1
|
Hou G, Wu G, Jiang H, Bai X, Chen Y. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts ( Cyperus esculentus L.). Int J Mol Sci 2024; 25:5100. [PMID: 38791140 PMCID: PMC11121407 DOI: 10.3390/ijms25105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.
Collapse
Affiliation(s)
- Guangshan Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue Bai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun 666303, China;
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Deng X, Xiao Y, Tang X, Liu B, Lin H. Arabidopsis α-Aurora kinase plays a role in cytokinesis through regulating MAP65-3 association with microtubules at phragmoplast midzone. Nat Commun 2024; 15:3779. [PMID: 38710684 PMCID: PMC11074315 DOI: 10.1038/s41467-024-48238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.
Collapse
Affiliation(s)
- Xingguang Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yu Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoya Tang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Bao Z, Guo Y, Meng X, Shi C, Ouyang B, Qu X, Wang P. Microtubule-associated proteins MAP65-1 and SUN18/IQD26 coordinately regulate tomato fruit shape by affecting cell division. PLANT PHYSIOLOGY 2024; 194:629-633. [PMID: 37933687 DOI: 10.1093/plphys/kiad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Microtubule-associated proteins MAP65-1 and SUN18 function additively in fruit shape regulation by modulating cell division patterns but not changing cell morphology.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiangxu Meng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
5
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
6
|
Loginova DB, Zhuravleva AA, Silkova OG. Random chromosome distribution in the first meiosis of F1 disomic substitution line 2R(2D) x rye hybrids (ABDR, 4× = 28) occurs without bipolar spindle assembly. COMPARATIVE CYTOGENETICS 2020; 14:453-482. [PMID: 33117496 PMCID: PMC7567738 DOI: 10.3897/compcytogen.v14.i4.55827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from "interpolar" microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.
Collapse
Affiliation(s)
- Dina B. Loginova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Anastasia A. Zhuravleva
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Olga G. Silkova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| |
Collapse
|
7
|
Smertenko A. Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:130-137. [PMID: 30072118 DOI: 10.1016/j.pbi.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 05/21/2023]
Abstract
The phragmoplast is a plant-specific secretory module that partitions daughter cells during cytokinesis by constructing a cell plate from membranes and oligosaccharides. The cell plate is typically a long structure, which requires the phragmoplast to expand to complete cytokinesis. The phragmoplast expands by coordinating microtubule dynamics with membrane trafficking. Each step in phragmoplast expansion involves the establishment of anti-parallel microtubule overlaps that are enriched with the protein MAP65, which recruits cytokinetic vesicles through interaction with the tethering factor, TRAPPII. Cell plate assembly triggers dissolution of the anti-parallel overlaps and stabilization of microtubule plus ends through association with the cell plate assembly machinery. This opinion article discusses processes that drive phragmoplast expansion as well as highlights key questions that remain for better understanding its role in plant cell division.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
8
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol 2017; 27:885-894. [PMID: 28943203 DOI: 10.1016/j.tcb.2017.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022]
Abstract
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Collapse
|
10
|
Parrotta L, Faleri C, Cresti M, Cai G. Proteins immunologically related to MAP65-1 accumulate and localize differentially during bud development in Vitis vinifera L. PROTOPLASMA 2017; 254:1591-1605. [PMID: 27913905 DOI: 10.1007/s00709-016-1055-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Various arrays of microtubules are present throughout the plant cell cycle and are involved in distinct functions. Microtubule-associated proteins (MAPs) regulate microtubule dynamics by acting as stabilizers, destabilizers, and promoters of microtubule dynamics. The MAP65 family is a specific group of cross-linkers required for structural maintenance of microtubules. In plants, different isoforms of MAP65 are differentially expressed according to their developmental program. In this work, we analyzed the differential distribution of proteins immunologically related to MAP65-1 during bud development in grapevine (Vitis vinifera L.). First, we annotated the MAP65 genes present in the Vitis genome in order to compare the number and sequence of genes to other species. Subsequently, we focused on a specific isoform (MAP65-1) by characterizing its accumulation and distribution. Proteins were extracted from different organs of Vitis (buds, leaves, flowers, and tendrils), were separated by two-dimensional electrophoresis (2-DE), and were probed by immunoblot with a specific antiserum. We found seven spots immunologically related to MAP65-1, grouped in two distinct clusters, which accumulate differentially according to the developmental stage. In addition, we analyzed the localization of MAP65-1 during three different stages of bud development. Implication of data on the use of different isotypes of MAP65-1 during Vitis development is discussed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Irnerio 42, 40126, Bologna, Italy.
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Mauro Cresti
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
11
|
Polak B, Risteski P, Lesjak S, Tolić IM. PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep 2016; 18:217-230. [PMID: 28028032 PMCID: PMC5286359 DOI: 10.15252/embr.201642650] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 02/04/2023] Open
Abstract
In the mitotic spindle, kinetochore microtubules form k‐fibers, whereas overlap or interpolar microtubules form antiparallel arrays containing the cross‐linker protein regulator of cytokinesis 1 (PRC1). We have recently shown that an overlap bundle, termed bridging fiber, links outermost sister k‐fibers. However, the relationship between overlap bundles and k‐fibers throughout the spindle remained unknown. Here, we show that in a metaphase spindle more than 90% of overlap bundles act as a bridge between sister k‐fibers. We found that the number of PRC1‐GFP‐labeled bundles per spindle is nearly the same as the number of kinetochore pairs. Live‐cell imaging revealed that kinetochore movement in the equatorial plane of the spindle is highly correlated with the movement of the coupled PRC1‐GFP‐labeled fiber, whereas the correlation with other fibers decreases with increasing distance. Analysis of endogenous PRC1 localization confirmed the results obtained with PRC1‐GFP. PRC1 knockdown reduced the bridging fiber thickness and interkinetochore distance throughout the spindle, suggesting a function of PRC1 in bridging microtubule organization and force balance in the metaphase spindle.
Collapse
Affiliation(s)
- Bruno Polak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sonja Lesjak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Du P, Kumar M, Yao Y, Xie Q, Wang J, Zhang B, Gan S, Wang Y, Wu AM. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. BMC Genomics 2016; 17:967. [PMID: 27881090 PMCID: PMC5122032 DOI: 10.1186/s12864-016-3303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Xklp2 (TPX2) proteins belong to the microtubule-associated (MAP) family of proteins. All members of the family contain the conserved TPX2 motif, which can interact with microtubules, regulate microtubule dynamics or assist with different microtubule functions, for example, maintenance of cell morphology or regulation of cell growth and development. However, the role of members of the TPX family have not been studied in the model tree species Eucalyptus to date. Here, we report the identification of the members of the TPX2 family in Eucalyptus grandis (Eg) and analyse the expression patterns and functions of these genes. RESULTS In present study, a comprehensive analysis of the plant TPX2 family proteins was performed. Phylogenetic analyses indicated that the genes can be classified into 6 distinct subfamilies. A genome-wide survey identified 12 members of the TPX2 family in the sequenced genome of Eucalyptus grandis. The basic genetic properties of the TPX2 family in Eucalyptus were analysed. Our results suggest that the TPX2 family proteins within different sub-groups are relatively conserved but there are important differences between groups. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression levels of the genes in different tissues. The results showed that in the whole plant, the levels of EgWDL5 transcript are the highest, followed by those of EgWDL4. Compared with other tissues, the level of the EgMAP20 transcript is the highest in the root. Over-expression of EgMAP20 in Arabidopsis resulted in organ twisting. The cotyledon petioles showed left-handed twisting while the hypocotyl epidermal cells produced right-handed helical twisting. Finally, EgMAP20, EgWDL3 and EgWDL3L were all able to decorate microtubules. CONCLUSIONS Plant TPX2 family proteins were systematically analysed using bioinformatics methods. There are 12 TPX2 family proteins in Eucalyptus. We have performed an initial characterization of the functions of several members of the TPX2 family. We found that the gene products are localized to the microtubule cytoskeleton. Our results lay the foundation for future efforts to reveal the biological significance of TPX2 family proteins in Eucalyptus.
Collapse
Affiliation(s)
- Pingzhou Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Manoj Kumar
- Faculty of Life Science, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoli Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Siming Gan
- Research Institute of tropical forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Yuqi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. .,Boyce Thompson Institute for Plant Research, Ithaca, 14853, USA.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Buschmann H, Zachgo S. The Evolution of Cell Division: From Streptophyte Algae to Land Plants. TRENDS IN PLANT SCIENCE 2016; 21:872-883. [PMID: 27477927 DOI: 10.1016/j.tplants.2016.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes. The tree suggests that, after the establishment of the phragmoplast mechanism, several groups independently lost their centrosomes. Surprisingly, the phragmoplast shows reductions in the Zygnematophyceae (the sister to land plants), many of which returned to cleavage. The PPB by contrast evolved stepwise and, most likely, originated in the algae. The phragmoplast/PPB mechanism established in this way served as a basis for the 3D development of land plants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany.
| | - Sabine Zachgo
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
14
|
Zhu Y, Liu W, Sheng Y, Zhang J, Chiu T, Yan J, Jiang M, Tan M, Zhang A. ABA Affects Brassinosteroid-Induced Antioxidant Defense via ZmMAP65-1a in Maize Plants. PLANT & CELL PHYSIOLOGY 2015; 56:1442-55. [PMID: 25941233 DOI: 10.1093/pcp/pcv061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/22/2015] [Indexed: 05/07/2023]
Abstract
Brassinosteroids (BRs) and ABA co-ordinately regulate water deficit tolerance in maize leaves. ZmMAP65-1a, a maize microtubule-associated protein (MAP) which plays an essential role in BR-induced antioxidant defense, has been characterized previously. However, the interactions among BR, ABA and ZmMAP65-1a in water deficit tolerance remain unexplored. In this study, we demonstrated that ABA was required for BR-induced antioxidant defense via ZmMAP65-1a by using biochemical blocking and ABA biosynthetic mutants. The expression of ZmMAP65-1a in maize leaves and mesophyll protoplasts could be increased under polyethylene glycol- (PEG) stimulated water deficit and ABA treatments. Furthermore, the importance of ABA in the early pathway of BR-induced water deficit tolerance was demonstrated by limiting ABA availability. Blocking ABA biosynthesis biochemically or by a null mutation inhibited the downstream gene expression of ZmMAP65-1a and the activity of ZmMAPK5 in the pathway. It also affected the activities of BR-induced antioxidant defense-related enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD) and NADPH oxidase. In addition, combining results from transiently overexpressed or silenced ZmMAP65-1a in mesophyll protoplasts, we discovered that ZmMAP65-1a mediated the ABA-induced gene expression and activities of APX and SOD. Surprisingly, silencing of ZmMAP65-1a in mesophyll protoplasts did not alter the gene expression of ZmCCaMK and vice versa in response to ABA. Taken together, our data indicate that water deficit-induced ABA is a key mediator in BR-induced antioxidant defense via ZmMAP65-1a in maize.
Collapse
Affiliation(s)
- Yuan Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tsanyu Chiu
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Davies T, Kodera N, Kaminski Schierle GS, Rees E, Erdelyi M, Kaminski CF, Ando T, Mishima M. CYK4 promotes antiparallel microtubule bundling by optimizing MKLP1 neck conformation. PLoS Biol 2015; 13:e1002121. [PMID: 25875822 PMCID: PMC4395295 DOI: 10.1371/journal.pbio.1002121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
Centralspindlin, a constitutive 2:2 heterotetramer of MKLP1 (a kinesin-6) and the non-motor subunit CYK4, plays important roles in cytokinesis. It is crucial for the formation of central spindle microtubule bundle structure. Its accumulation at the central antiparallel overlap zone is key for recruitment and regulation of downstream cytokinesis factors and for stable anchoring of the plasma membrane at the midbody. Both MKLP1 and CYK4 are required for efficient microtubule bundling. However, the mechanism by which CYK4 contributes to this is unclear. Here we performed structural and functional analyses of centralspindlin using high-speed atomic force microscopy, Fӧrster resonance energy transfer analysis, and in vitro reconstitution. Our data reveal that CYK4 binds to a globular mass in the atypically long MKLP1 neck domain between the catalytic core and the coiled coil and thereby reconfigures the two motor domains in the MKLP1 dimer to be suitable for antiparallel microtubule bundling. Our work provides insights into the microtubule bundling during cytokinesis and into the working mechanisms of the kinesins with non-canonical neck structures. Cell division depends on the antiparallel bundling of microtubules by a motor complex called centralpindlin. This study reveals how the centralspindlin non-motor subunit CYK4 reconfigures the motor domains of the kinesin subunit MKLP1 to help it carry out this role. Cell division requires coordination of many different cellular components. Cytokinesis is the process by which the cytoplasm divides between the two forming daughter cells. During cytokinesis, centralspindlin is truly central, as it organizes microtubule bundle structures, recruits other factors to the site of division, and anchors the plasma membrane at the inter-cellular bridge while the two daughter cells are waiting for the final separation. Centralspindlin is a heterotetramer composed of two molecules of a kinesin-6 motor subunit, MKLP1, and two molecules of the second subunit, CYK4. For efficient microtubule bundling, both the microtubule motor subunit MKLP1 and the non-motor CYK4 subunit are required. However, it has remained unclear how CYK4 contributes to this activity. Here, we took a combinatorial approach to investigate this process, using in vitro reconstitution and structural analyses by atomic force microscopy and Förster resonance energy transfer. We revealed that the CYK4 dimer binds to a hitherto unknown globular domain at the neck of the MKLP1 dimer and optimizes the configuration of two motor domains, making them suitable for antiparallel microtubule bundling. This provides novel insight into how other kinesin superfamily molecules with non-canonical neck structures may work.
Collapse
Affiliation(s)
- Tim Davies
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Noriyuki Kodera
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Miklos Erdelyi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, United Kingdom
| | - Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | - Masanori Mishima
- Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Smertenko A. Determination of phosphorylation sites in microtubule associated protein MAP65-1. Methods Mol Biol 2015; 1171:161-70. [PMID: 24908127 DOI: 10.1007/978-1-4939-0922-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reorganization of microtubules during cell cycle depends on the modulation of activity of microtubule-associated proteins. MAP65 is one of the main microtubule structural proteins in plants responsible for the formation of bundles of parallel and antiparallel microtubules. A member of MAP65 protein family, MAP65-1, binds to microtubules of preprophase band during early stages of cell division and later to the midzone of anaphase spindle and the phragmoplast, but exhibits no or reduced microtubule binding during metaphase. Artificially induced interaction of MAP65-1 with microtubules during metaphase promotes excessive formation of pole-to-pole microtubule bundles and causes delay of anaphase onset. The exact mechanism of this delay is not known, but it was suggested that microtubule bundles induced by MAP65 impose spatial constraints on the chromosome movement obstructing their alignment in the metaphase plate. Interaction of MAP65-1 with microtubules is controlled by phosphorylation. This chapter describes a strategy for the identification of phosphorylation residues responsible for the cell-cycle control of MAP65-1 activity.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 646340, Pullman, WA, 99164, USA,
| |
Collapse
|
17
|
Struk S, Dhonukshe P. MAPs: cellular navigators for microtubule array orientations in Arabidopsis. PLANT CELL REPORTS 2014; 33:1-21. [PMID: 23903948 DOI: 10.1007/s00299-013-1486-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 05/24/2023]
Abstract
Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites, mainly composed of γ-tubulin complexes [corrected]. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | | |
Collapse
|
18
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Horio T, Murata T. The role of dynamic instability in microtubule organization. FRONTIERS IN PLANT SCIENCE 2014; 5:511. [PMID: 25339962 PMCID: PMC4188131 DOI: 10.3389/fpls.2014.00511] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 05/09/2023]
Abstract
Microtubules are one of the three major cytoskeletal components in eukaryotic cells. Heterodimers composed of GTP-bound α- and β-tubulin molecules polymerize to form microtubule protofilaments, which associate laterally to form a hollow microtubule. Tubulin has GTPase activity and the GTP molecules associated with β-tubulin molecules are hydrolyzed shortly after being incorporated into the polymerizing microtubules. GTP hydrolysis alters the conformation of the tubulin molecules and drives the dynamic behavior of microtubules. Periods of rapid microtubule polymerization alternate with periods of shrinkage in a process known as dynamic instability. In plants, dynamic instability plays a key role in determining the organization of microtubules into arrays, and these arrays vary throughout the cell cycle. In this review, we describe the mechanisms that regulate microtubule dynamics and underlie dynamic instability, and discuss how dynamic instability may shape microtubule organization in plant cells.
Collapse
Affiliation(s)
- Tetsuya Horio
- Department of Natural Sciences, Nippon Sport Science UniversityYokohama, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Sciences, The Graduate University for Advanced StudiesOkazaki, Japan
- *Correspondence: Takashi Murata, Division of Evolutionary Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan e-mail:
| |
Collapse
|
20
|
Welburn JPI. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 2013; 70:476-93. [PMID: 24039047 PMCID: PMC4065354 DOI: 10.1002/cm.21135] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
21
|
Gardiner J. The evolution and diversification of plant microtubule-associated proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:219-29. [PMID: 23551562 DOI: 10.1111/tpj.12189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 05/07/2023]
Abstract
Plant evolution is marked by major advances in structural characteristics that facilitated the highly successful colonization of dry land. Underlying these advances is the evolution of genes encoding specialized proteins that form novel microtubular arrays of the cytoskeleton. This review investigates the evolution of plant families of microtubule-associated proteins (MAPs) through the recently sequenced genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii, Physcomitrella patens, Volvox carteri and Chlamydomonas reinhardtii. The families of MAPs examined are AIR9, CLASP, CRIPT, MAP18, MOR1, TON, EB1, AtMAP70, SPR2, SPR1, WVD2 and MAP65 families (abbreviations are defined in the footnote to Table 1). Conjectures are made regarding the evolution of MAPs in plants in relation to the evolution of multicellularity, oriented cell division and vasculature. Angiosperms in particular have high numbers of proteins that are involved in promotion of helical growth or its suppression, and novel plant microtubular structures may have acted as a catalyst for the development of novel plant MAPs. Comparisons of plant MAP gene families with those of animals show that animals may have more flexibility in the structure of their microtubule cytoskeletons than plants, but with both plants and animals possessing many MAP splice variants.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
22
|
Kakar K, Zhang H, Scheres B, Dhonukshe P. CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 2013; 495:529-33. [PMID: 23515161 DOI: 10.1038/nature11980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/31/2013] [Indexed: 01/17/2023]
Abstract
Recent evidence indicates a correlation between orientation of the plant cortical microtubule cytoskeleton and localization of polar cargoes. However, the molecules and mechanisms that create this correlation have remained unknown. Here we show that, in Arabidopsis thaliana, the microtubule orientation regulators CLASP and MAP65 (refs 3, 4) control the abundance of polarity regulator PINOID kinase at the plasma membrane. By localized upregulation of clathrin-dependent endocytosis at cortical microtubule- and clathrin-rich domains orthogonal to the axis of polarity, PINOID accelerates the removal of auxin transporter PIN proteins from those sites. This mechanism links directional microtubule organization to the polar localization of auxin transporter PIN proteins, and clarifies how microtubule-enriched cell sides are kept distinct from polar delivery domains. Our results identify the molecular machinery that connects microtubule organization to the regulation of the axis of PIN polarization.
Collapse
Affiliation(s)
- Klementina Kakar
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
23
|
Duellberg C, Fourniol FJ, Maurer SP, Roostalu J, Surrey T. End-binding proteins and Ase1/PRC1 define local functionality of structurally distinct parts of the microtubule cytoskeleton. Trends Cell Biol 2013; 23:54-63. [PMID: 23103209 DOI: 10.1016/j.tcb.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
The microtubule cytoskeleton is crucial for the intracellular organization of eukaryotic cells. It is a dynamic scaffold that has to perform a variety of very different functions. This multitasking is achieved through the activity of numerous microtubule-associated proteins. Two prominent classes of proteins are central to the selective recognition of distinct transiently existing structural features of the microtubule cytoskeleton. They define local functionality through tightly regulated protein recruitment. Here we summarize the recent developments in elucidating the molecular mechanism underlying the action of microtubule end-binding proteins (EBs) and antiparallel microtubule crosslinkers of the Ase1/PRC1 family that represent the core of these two recruitment modules. Despite their fundamentally different activities, these conserved families share several common features.
Collapse
Affiliation(s)
- Christian Duellberg
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | |
Collapse
|
24
|
Murata T, Sano T, Sasabe M, Nonaka S, Higashiyama T, Hasezawa S, Machida Y, Hasebe M. Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat Commun 2013; 4:1967. [PMID: 23770826 PMCID: PMC3709505 DOI: 10.1038/ncomms2967] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 05/02/2013] [Indexed: 12/18/2022] Open
Abstract
In land plants, the cell plate partitions the daughter cells at cytokinesis. The cell plate initially forms between daughter nuclei and expands centrifugally until reaching the plasma membrane. The centrifugal development of the cell plate is driven by the centrifugal expansion of the phragmoplast microtubule array, but the molecular mechanism underlying this expansion is unknown. Here, we show that the phragmoplast array comprises stable microtubule bundles and dynamic microtubules. We find that the dynamic microtubules are nucleated by γ-tubulin on stable bundles. The dynamic microtubules elongate at the plus ends and form new bundles preferentially at the leading edge of the phragmoplast. At the same time, they are moved away from the cell plate, maintaining a restricted distribution of minus ends. We propose that cycles of attachment of γ-tubulin complexes onto the microtubule bundles, microtubule nucleation and bundling, accompanied by minus-end-directed motility, drive the centrifugal development of the phragmoplast.
Collapse
Affiliation(s)
- Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lucas JR, Shaw SL. MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:454-63. [PMID: 22443289 DOI: 10.1111/j.1365-313x.2012.05002.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigated the role of the Arabidopsis microtubule associated proteins 65-1 and 65-2 (MAP65-1 and MAP65-2) in the control of axial root growth. Transgenic plants expressing fluorescent fusion proteins from native promoters indicated exactly overlapping accumulation of MAP65-1 and MAP65-2 in the root tip and elongation zone. Nearly identical protein accumulation patterns were observed when MAP65-1 and MAP65-2 were expressed behind a constitutive CaMV 35S promoter, suggesting a level of post-transcriptional control that restricts these proteins to rapidly growing portions of the root. Co-expression of MAP65-1 and MAP65-2 fusion proteins showed precise co-localization to interphase and cytokinetic microtubule arrays. In interphase root tip cells, the fluorescent protein fusions labeled microtubules that were organized into a variety of different array patterns. In the rapidly growing cells of the root elongation zone, we found MAP65-1 and MAP65-2 co-localized exclusively to the lateral faces of cells that were axially extending. Genetic analysis showed that MAP65-1 and MAP65-2 are coordinately required for proper root elongation. Double map65-1-1 map65-2-2 mutant roots from dark-grown plants contained 50% fewer cells per file than wild-type roots, but we found no evidence that cytokinesis was disrupted. We additionally discovered that cell length was significantly shorter in the mature regions of the root beyond the zone where MAP65-1 and MAP65-2 accumulated. Our data indicate that MAP65-1 and MAP65-2 play a critical role in root growth by promoting cell proliferation and axial extension.
Collapse
Affiliation(s)
- Jessica R Lucas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
26
|
RETRACTED: A PLETHORA-Auxin Transcription Module Controls Cell Division Plane Rotation through MAP65 and CLASP. Cell 2012; 149:383-96. [DOI: 10.1016/j.cell.2012.02.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/15/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
|
27
|
Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B. Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. THE PLANT CELL 2011; 23:2909-23. [PMID: 21873565 PMCID: PMC3180800 DOI: 10.1105/tpc.110.078204] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 06/28/2011] [Accepted: 08/04/2011] [Indexed: 05/18/2023]
Abstract
In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells.
Collapse
Affiliation(s)
- Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Fengli Guo
- Department of Plant Biology, University of California, Davis, CA 95616
| | | | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616
- Address correspondence to
| |
Collapse
|
28
|
Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL. Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. THE PLANT CELL 2011; 23:1889-903. [PMID: 21551389 PMCID: PMC3123956 DOI: 10.1105/tpc.111.084970] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/05/2011] [Accepted: 04/18/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.
Collapse
|
29
|
|
30
|
Meng Q, Du J, Li J, Lü X, Zeng X, Yuan M, Mao T. Tobacco microtubule-associated protein, MAP65-1c, bundles and stabilizes microtubules. PLANT MOLECULAR BIOLOGY 2010; 74:537-47. [PMID: 20878450 DOI: 10.1007/s11103-010-9694-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 09/16/2010] [Indexed: 05/29/2023]
Abstract
Three genes that encode MAP65-1 family proteins have been identified in the Nicotiana tabacum genome. In this study, NtMAP65-1c fusion protein was shown to bind and bundle microtubules (MTs). Further in vitro investigations demonstrated that NtMAP65-1c not only alters MT assembly and nucleation, but also exhibits high MT stabilizing activity against cold or katanin-induced destabilization. Analysis of NtMAP65-1c-GFP expressing BY-2 cells clearly demonstrated that NtMAP65-1c was able to bind to MTs during specific stages of the cell cycle. Furthermore, in vivo, NtMAP65-1c-GFP-bound cortical MTs displayed an increase in resistance against the MT-disrupting drug, propyzamide, as well as against cold temperatures. Taken together, these results strongly suggest that NtMAP65-1c stabilizes MTs and is involved in the regulation of MT organization and cellular dynamics.
Collapse
Affiliation(s)
- Qiutao Meng
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Shaw SL, Lucas J. Intrabundle microtubule dynamics in the Arabidopsis cortical array. Cytoskeleton (Hoboken) 2010; 68:56-67. [PMID: 20960529 DOI: 10.1002/cm.20495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/06/2022]
Abstract
We tested the general hypothesis that bundling stabilizes the dynamic properties of the constituent microtubules (MTs) in vivo. We quantified the assembly dynamics of bundled and unbundled MTs in the interphase cortical array of Arabidopsis hypocotyl cells using high dynamic range spinning disk confocal microscopy. We find no evidence that bundled MTs are stabilized against depolymerization through changes to their dynamic properties. Our observations of MT plus and minus ends indicate that both bundled and unbundled polymers undergo persistent treadmilling in this system. We conclude that the temporal persistence of MT subassemblies in the Arabidopsis cortical array is largely dependent upon recruitment or nucleation of new treadmilling MTs and not on polymer stabilization. Monte Carlo simulations suggest that small differences discovered in the dynamic properties between bundled and unbundled polymers would produce relatively small macroscopic effects on the larger MT array.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
32
|
Panteris E, Komis G, Adamakis IDS, Samaj J, Bosabalidis AM. MAP65 in tubulin/colchicine paracrystals of Vigna sinensis root cells: possible role in the assembly and stabilization of atypical tubulin polymers. Cytoskeleton (Hoboken) 2010; 67:152-60. [PMID: 20217678 DOI: 10.1002/cm.20432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Members of the MAP65 family, colocalizing with microtubule arrays, have been identified in Vigna sinensis root cells by Western blotting and immunofluorescence. MAP65 proteins were also found in tubulin/colchicine paracrystals, which were formed during colchicine treatment by both immunofluorescence and immunogold microscopy. During recovery from colchicine, MAP65 signal was depleted from disintegrating paracrystals appearing in the reinstating microtubule arrays. MAP65-free perinuclear tubulin/colchicine aggregates were observed in plasmolyzed colchicine-treated cells. Deplasmolysis of the above cells resulted in the formation of MAP65-decorated paracrystals. As confirmed by appropriate biochemical assays with the Phos-tag reagent, MAP65 proteins underwent phosphorylation during plasmolysis, which was reversible by deplasmolysis. According to the effect of the mitogen-activated protein kinase (MAPK) inhibitor UO126, the phosphorylation status of MAP65, as well as its presence in tubulin/colchicine polymers is probably controlled by MAPK-mediated phosphorylation. According to the above, it seems likely that apart from binding to microtubules, MAP65 proteins may act as "tubulin associated proteins" in a broader manner, promoting the polymerization and/or stabilization of atypical polymers such as tubulin/colchicine paracrystals.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University, Thessaloniki, Macedonia, Greece.
| | | | | | | | | |
Collapse
|
33
|
Fridman V, Gerson-Gurwitz A, Movshovich N, Kupiec M, Gheber L. Midzone organization restricts interpolar microtubule plus-end dynamics during spindle elongation. EMBO Rep 2009; 10:387-93. [PMID: 19270715 DOI: 10.1038/embor.2009.7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 11/05/2008] [Accepted: 01/08/2009] [Indexed: 01/05/2023] Open
Abstract
To study the dynamics of interpolar microtubules (iMTs) in Saccharomyces cerevisiae cells, we photobleached a considerable portion of the middle region of anaphase spindles in cells expressing tubulin-green fluorescent protein (GFP) and followed fluorescence recovery at the iMT plus-ends. We found that during anaphase, iMTs show phases of fast growth and shrinkage that are restricted to the iMT plus-ends. Our data indicate that iMT plus-end dynamics are regulated during mitosis, as fluorescence recovery was faster in intermediate anaphase (30 s) compared with long (100 s) and pre-anaphase (80 s) spindles. We also observed that deletion of Cin8, a microtubule-crosslinking kinesin-5 motor protein, reduced the recovery rate in anaphase spindles, indicating that Cin8 contributes to the destabilization of iMT plus-ends. Finally, we show that in cells lacking the midzone organizing protein Ase1, iMTs are highly dynamic and are exchangeable throughout most of their length, indicating that midzone organization is essential for restricting iMT dynamics.
Collapse
Affiliation(s)
- Vladimir Fridman
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
34
|
Li H, Zeng X, Liu ZQ, Meng QT, Yuan M, Mao TL. Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. PLANT MOLECULAR BIOLOGY 2009; 69:313-24. [PMID: 19002591 DOI: 10.1007/s11103-008-9426-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/24/2008] [Indexed: 05/04/2023]
Abstract
Nine genes that encode proteins of the MAP65 family have been identified in the Arabidopsis thaliana genome. In this study, we reported that AtMAP65-2, a member of the AtMAP65 family, could strongly stabilize microtubules (MTs). Bacterially-expressed AtMAP65-2 fusion proteins induced the formation of large MT bundles in vitro. Although AtMAP65-2 showed little effect on MT assembly or nucleation, AtMAP65-2 greatly stabilized MTs that were subjected to low-temperature treatment in vitro. Analyses of truncated versions of AtMAP65-2 indicated that the region that encompassed amino acids 495-578, which formed a flexible extended loop, played a crucial role in the stabilization of MTs. Analysis of suspension-cultured Arabidopsis cells that expressed the AtMAP65-2-GFP fusion protein showed that AtMAP65-2 co-localized with MTs throughout the cell cycle. Cortical MTs that were decorated with AtMAP65-2-GFP were more resistant to the MT-disrupting drug propyzamide and to ice treatment in vivo. The results of this study demonstrate that AtMAP65-2 strongly stabilizes MTs and is involved in the regulation of MT organization and dynamics.
Collapse
Affiliation(s)
- Hua Li
- Department of Plant Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
35
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
36
|
Plett JM, Mathur J, Regan S. Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3923-33. [PMID: 19648171 PMCID: PMC2736899 DOI: 10.1093/jxb/erp228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The single-celled trichome of Arabidopsis thaliana is a widely used model system for studying cell development. While the pathways that control the later stages of trichome development are well characterized, the early signalling events that co-ordinate these pathways are less well understood. Hormones such as gibberellic acid, salicylic acid, cytokinins, and ethylene are known to affect trichome initiation and development. To understand the role of the plant hormone ethylene in trichome development, an Arabidopsis loss-of-function ethylene receptor mutant, etr2-3, which has completely unbranched trichomes, is analysed in this study. It was hypothesized that ETR2 might affect the assembly of the microtubule cytoskeleton based on analysis of the cytoskeleton in developing trichomes, and exposures to paclitaxol and oryzalin, which respectively act either to stabilize or depolymerize the cytoskeleton. Through epistatic and gene expression analyses it is shown that ETR2 is positioned upstream of CHROMATIN ASSEMBLY FACTOR1 and TRYPTICHON and is independent of the GLABRA2 and GLABRA3 pathways. These results help extend understanding of the early events that control trichome development and identify a signalling pathway through which ethylene affects trichome branching.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Sharon Regan
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
37
|
Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. THE PLANT CELL 2008; 20:3346-58. [PMID: 19060108 PMCID: PMC2630438 DOI: 10.1105/tpc.108.063362] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/07/2008] [Accepted: 11/20/2008] [Indexed: 05/18/2023]
Abstract
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
Collapse
Affiliation(s)
- Andrei P Smertenko
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Buschmann H, Lloyd CW. Arabidopsis mutants and the network of microtubule-associated functions. MOLECULAR PLANT 2008; 1:888-98. [PMID: 19825590 DOI: 10.1093/mp/ssn060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In early eukaryotes, the microtubule system was engaged in mitosis, intracellular transport, and flagellum-based motility. In the plant lineage, the evolution of a multicellular body involved the conservation of some core functions, the loss of others, and the elaboration of new microtubule functions associated with the multicellular plant habit. This diversification is reflected by the presence of both conserved (animal/fungi-like) and novel (plant-like) sequences encoding microtubule-related functions in the Arabidopsis genome. The collection of microtubule mutants has grown rapidly over recent years. These mutants present a wide range of phenotypes, consistent with the hypothesis of a functional diversification of the microtubule system. In this review, we focus on mutant analysis and, in particular, discuss double mutant analysis as a valuable tool for pinpointing pathways of gene function. A future challenge will be to define the complete network of genetic and physical interactions of microtubule function in plants. In addition to reviewing recent progress in the functional analysis of the 'MAPome', we present an online database of Arabidopsis mutants impaired in microtubule functions.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | | |
Collapse
|
39
|
Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y. A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:829-44. [PMID: 18266916 DOI: 10.1111/j.1365-313x.2008.03445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To study cellular morphogenesis genetically, we isolated loss-of-function mutants of Arabidopsis thaliana, designated ibo1. The ibo1 mutations cause local outgrowth in the middle of epidermal cells of the hypocotyls and petioles, resulting in the formation of a protuberance. In Arabidopsis, the hypocotyl epidermis differentiates into two alternate cell files, the stoma cell file and the non-stoma cell file, by a mechanism involving TRANSPARENT TESTA GLABRA1 (TTG1) and GLABRA2 (GL2). The ectopic protuberances of the ibo1 mutants were preferentially induced in the non-stoma cell files, which express GL2. TTG1-dependent epidermal patterning is required for protuberance formation in ibo1, suggesting that IBO1 functions downstream from epidermal cell specification. Pharmacological and genetic analyses demonstrated that ethylene promotes protuberance formation in ibo1, implying that IBO1 acts antagonistically to ethylene to suppress radial outgrowth. IBO1 is identical to NEK6, which encodes a Never In Mitosis A (NIMA)-related protein kinase (Nek) with sequence similarity to Neks involved in microtubule organization in fungi, algae, and animals. The ibo1-1 mutation, in which a conserved Glu residue in the activation loop is substituted by Arg, completely abolishes its kinase activity. The intracellular localization of GFP-tagged NEK6 showed that NEK6 mainly accumulates in cytoplasmic spots associated with cortical microtubules and with a putative component of the gamma-tubulin complex. The localization of NEK6 is regulated by the C-terminal domain, which is truncated in the ibo1-2 allele. These results suggest that the role of NEK6 in the control of cellular morphogenesis is dependent on its kinase action and association with the cortical microtubules.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
40
|
Ehrhardt DW. Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr Opin Cell Biol 2008; 20:107-16. [PMID: 18243678 DOI: 10.1016/j.ceb.2007.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 11/28/2022]
Abstract
Live cell imaging and genetic studies are demonstrating that cortical microtubule arrays in plant cells are dynamic structures in which microtubule (MT) bundles play a key role in creating array organization and function. Steps important for creating and organizing these arrays include recruitment of nucleation complexes to the cell cortex and to the lattices of previously established MTs, association of newly created MTs to the cell cortex, release of MTs from sites of nucleation, transport of released MTs by polymer treadmilling, and subsequent interactions between treadmilling MTs. The results of MT interactions include induced catastrophe, severing, and the capture and reorientation of growing polymer ends by bundling interactions. Together, these properties predict a capacity for self-ordering that is likely to play an important role in establishing the parallel organization of the arrays.
Collapse
Affiliation(s)
- David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Van Damme D, Geelen D. Demarcation of the cortical division zone in dividing plant cells. Cell Biol Int 2007; 32:178-87. [PMID: 18083049 DOI: 10.1016/j.cellbi.2007.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/06/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Somatic cytokinesis in higher plants involves, besides the actual construction of a new cell wall, also the determination of a division zone. Several proteins have been shown to play a part in the mechanism that somatic plant cells use to control the positioning of the new cell wall. Plant cells determine the division zone at an early stage of cell division and use a transient microtubular structure, the preprophase band (PPB), during this process. The PPB is formed at the division zone, leaving behind a mark that during cytokinesis is utilized by the phragmoplast to guide the expanding cell plate toward the correct cortical insertion site. This review discusses old and new observations with regard to mechanisms implicated in the orientation of cell division and determination of a cortical division zone.
Collapse
Affiliation(s)
- Daniel Van Damme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghen University, B-9052 Ghent, Belgium
| | | |
Collapse
|
42
|
Huang S, Jin L, Du J, Li H, Zhao Q, Ou G, Ao G, Yuan M. SB401, a pollen-specific protein from Solanum berthaultii, binds to and bundles microtubules and F-actin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:406-18. [PMID: 17559515 DOI: 10.1111/j.1365-313x.2007.03153.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We characterize a novel, pollen-specific, microtubule-associated protein, SB401, found in Solanum berthaultii. This protein binds to and bundles taxol-stabilized microtubules and enhances tubulin polymerization in a concentration-dependent manner, particularly at lower temperatures. Electron microscopy revealed that the protein decorates the entire length of microtubules. Cross-linking and electrophoresis studies showed that SB401 protein forms dimers, and suggest that dimerization could account for bundling. Double immunofluorescent staining of pollen tubes of S. berthaultii showed that SB401 protein co-localized with cortical microtubule bundles. SB401 protein also binds to and bundles actin filaments, and could connect actin filaments to microtubules. SB401 protein had a much higher affinity for microtubules than for actin filaments. In the presence of both cytoskeletal elements, the protein preferentially bound microtubules to form bundles. These results demonstrate that SB401 protein may have important roles in organizing the cytoskeleton in pollen tubes.
Collapse
Affiliation(s)
- Shuli Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Korolev AV, Buschmann H, Doonan JH, Lloyd CW. AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J Cell Sci 2007; 120:2241-7. [PMID: 17567681 DOI: 10.1242/jcs.007393] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AtMAP70-5 is the most divergent of a recently described multigene family of plant-specific microtubule-associated proteins (MAPs). It is significantly smaller than other members and has several isoform-specific sequence features. To confirm that this protein still functions as a MAP we show that it directly binds microtubules in vitro and decorates microtubules in vivo. When added to tubulin polymerization assays, AtMAP70-5 increases the length distribution profile of microtubules indicating that it stabilizes microtubule dynamics. The overexpressed fusion protein perturbs cell polarity in cell suspensions by inducing extra poles for growth. Similarly, in Arabidopsis plants the overexpression of AtMAP70-5 causes epidermal cells to swell; it also stunts growth and induces right-handed organ twisting. RNAi-mediated downregulation of AtMAP70-5 results in reduced inflorescence stem length and diameter and individual cells are inhibited in their capacity for expansion. These observations suggest that the control over AtMAP70-5 expression levels is important in order to maintain axial polarity and to ensure regular extension of plant organs.
Collapse
Affiliation(s)
- Andrey V Korolev
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
In Arabidopsis thaliana, the microtubule-associated protein AtMAP65-1 shows various functions on microtubule dynamics and organizations. However, it is still an open question about whether AtMAP65-1 binds to tubulin dimers and how it regulates microtubule dynamics. In present study, the tubulin-binding activity of AtMAP65-1 was investigated. Pull-down and co-sedimentation experiments demonstrated that AtMAP65-1 bound to tubulin dimers, at a molar ratio of 1 : 1. Cross-linking experiments showed that AtMAP65-1 bound to tubulin dimers by interacting with alpha-tubulin of the tubulin heterodimer. Interfering the bundling effect of AtMAP65-1 by addition of salt and monitoring the tubulin assembly, the experiment results indicated that AtMAP65-1 promoted tubulin assembly by interacting with tubulin dimers. In addition, five truncated versions of AtMAP65-1, namely AtMAP65-1 deltaN339 (amino acids 340-587); AtMAP65-1 deltaN494 (amino acids 495-587); AtMAP65-1 340-494 (amino acids 340-494); AtMAP65-1 deltaC495 (amino acids 1-494) and AtMAP65-1 deltaC340 (amino acids 1-339), were tested for their binding activities and roles in tubulin polymerization in vitro. Four (AtMAP65-1 deltaN339, deltaN494, AtMAP65-1 340-494 and deltaC495) from the five truncated proteins were able to co-sediment with microtubules, and three (AtMAP65-1 deltaN339, deltaN494 and AtMAP65-1 340-494) of them could bind to tubulin dimers in vitro. Among the three truncated proteins, AtMAP65-1 deltaN339 showed the greatest activity to promote tubulin polymerization, AtMAP65-1 deltaN494 exhibited almost the same activity as the full length protein in promoting tubulin assembly, and AtMAP65-1 340-494 had minor activity to promote tubulin assembly. On the contrast, AtMAP65-1 deltaC495, which bound to microtubules but not to tubulin dimers, did not affect tubulin assembly. Our study suggested that AtMAP65-1 might promote tubulin assembly by binding to tubulin dimers in vivo.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | |
Collapse
|
45
|
Perrin RM, Wang Y, Yuen CYL, Will J, Masson PH. WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:961-71. [PMID: 17319849 DOI: 10.1111/j.1365-313x.2006.03015.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis WAVE-DAMPENED 2 (WVD2) was identified by forward genetics as an activation-tagged allele that causes plant and organ stockiness and inversion of helical root growth handedness on agar surfaces. Plants with high constitutive expression of WVD2 or other members of the WVD2-LIKE (WDL) gene family have stems and roots that are short and thick, have reduced anisotropic cell elongation, are suppressed in a root-waving phenotype, and have inverted handedness of twisting in hypocotyls and roots compared with wild-type. The wvd2-1 mutant shows aberrantly organized cortical microtubules in peripheral root cap cells as well as reduced branching of trichomes, unicellular leaf structures whose development is regulated by microtubule stability. Orthologs of the WVD2/WDL family are found widely throughout the plant kingdom, but are not similar to non-plant proteins with the exception of a C-terminal domain distantly related to the vertebrate microtubule-associated protein TPX2. in vivo, WVD2 and its closest paralog WDL1 are localized to interphase cortical microtubules in leaves, hypocotyls and roots. Recombinant glutathione-S-transferase:WVD2 or maltose binding protein:WVD2 protein bind to and bundle microtubules in vitro. We speculate that a C-terminal domain of TPX2 has been utilised by the WVD2 family for functions critical to the organization of plant microtubules.
Collapse
Affiliation(s)
- Robyn M Perrin
- Laboratory of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Müller J, Menzel D, Samaj J. Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. PROTOPLASMA 2007; 230:231-42. [PMID: 17458637 DOI: 10.1007/s00709-006-0239-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 08/18/2006] [Indexed: 05/15/2023]
Abstract
The cytoskeleton in plant cells plays an important role in controlling cell shape and mediating intracellular signalling. However, almost nothing is known about the reactions of cytoskeletal elements to heat stress, which represents one of the major environmental challenges for plants. Here we show that living epidermal root cells of Arabidopsis thaliana could cope with short-term heat shock stress showing disruption and subsequent recovery of microtubules and actin microfilaments in a time-dependent manner. Time-lapse imaging revealed a very dynamic behavior of both cytoskeletal elements including transient depolymerization and disassembly upon heat shock (40-41 degrees C) followed by full recovery at room temperature (20 degrees C) within 1-3 h. Reaction of microtubules, but not actin filaments, to heat shock was dependent on cell type and developmental stage. On the other hand, recovery of actin filaments, but not microtubules, from heat shock stress was dependent on the same parameters. The relevance of this adaptive cytoskeletal behavior to intracellular signalling is discussed.
Collapse
Affiliation(s)
- J Müller
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Federal Republic of Germany.
| | | | | |
Collapse
|
47
|
Hamada T. Microtubule-associated proteins in higher plants. JOURNAL OF PLANT RESEARCH 2007; 120:79-98. [PMID: 17285404 DOI: 10.1007/s10265-006-0057-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/09/2006] [Indexed: 05/09/2023]
Abstract
A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the gamma-tubulin complex (gammaTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components--actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| |
Collapse
|
48
|
Sasabe M, Machida Y. MAP65: a bridge linking a MAP kinase to microtubule turnover. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:563-70. [PMID: 17011227 DOI: 10.1016/j.pbi.2006.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
After the segregation of chromosomes, animal and plant cells build a central spindle (midbody) and a phragmoplast, respectively, that are mainly composed of aligned microtubules and microfilaments. These microtubule-based structures are highly dynamic and play an essential role in cytokinesis. Recent studies using model organisms have shed light on the involvement of common molecules in the regulatory mechanisms of cytokinesis, including microtubule dynamics, in a variety of species. Among these molecules, members of the MAP65 protein family, a microtubule-associated protein family, appear to be key regulators of both the maintenance and dynamics of central spindles and phragmoplasts.
Collapse
Affiliation(s)
- Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | |
Collapse
|
49
|
Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:571-8. [PMID: 17010658 DOI: 10.1016/j.pbi.2006.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/15/2006] [Indexed: 05/04/2023]
Abstract
Plant cell cortical microtubule arrays attain a high degree of order without the benefit of an organizing center such as a centrosome. New assays for molecular behaviors in living cells and gene discovery are yielding insight into the mechanisms by which acentrosomal microtubule arrays are created and organized, and how microtubule organization functions to modify cell form by regulating cellulose deposition. Surprising and potentially important behaviors of cortical microtubules include nucleation from the walls of established microtubules, and treadmilling-driven motility leading to polymer interaction, reorientation, and microtubule bundling. These behaviors suggest activities that can act to increase or decrease the local level of order in the array. The SPIRAL1 (SPR1) and SPR2 microtubule-localized proteins and the radial swollen 6 (rsw-6) locus are examples of new molecules and genes that affect both microtubule array organization and cell growth pattern. Functional tagging of cellulose synthase has now allowed the dynamic relationship between cortical microtubules and the cell-wall-synthesizing machinery to be visualized, providing direct evidence that cortical microtubules can organize cellulose synthase complexes and guide their movement through the plasma membrane as they create the cell wall.
Collapse
Affiliation(s)
- Alex Paradez
- Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA
| | | | | |
Collapse
|
50
|
Cosentino Lagomarsino M, Tanase C, Vos JW, Emons AMC, Mulder BM, Dogterom M. Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. Biophys J 2006; 92:1046-57. [PMID: 17098802 PMCID: PMC1779979 DOI: 10.1529/biophysj.105.076893] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a confining box-like geometry, in the absence of other (active) microtubule organizing processes. This is inspired, for example, by the cortical microtubule array of elongating plant cells, where microtubules are typically organized in an aligned array transverse to the cell elongation axis. The method we adopt is a combination of analytical calculations, in which the polymers are modeled as inextensible filaments with bending elasticity confined to a two-dimensional surface that defines the limits of a three-dimensional space, and in vitro experiments, in which microtubules are polymerized from nucleation seeds in microfabricated chambers. We show that these features are sufficient to organize the polymers in aligned, coiling configurations as for example observed in plant cells. Though elasticity can account for the regularity of these arrays, it cannot account for a transverse orientation of microtubules to the cell's long axis. We therefore conclude that an additional active, force-generating process is necessary to create a coiling configuration perpendicular to the long axis of the cell.
Collapse
|