1
|
Kopp J, Jahn D, Vogt G, Psoma A, Ratto E, Morelle W, Stelzer N, Hausser I, Hoffmann A, de Los Santos MR, Koch LA, Fischer-Zirnsak B, Thiel C, Palm W, Meierhofer D, van den Bogaart G, Foulquier F, Meinhardt A, Kornak U. Golgi pH elevation due to loss of V-ATPase subunit V0a2 function correlates with tissue-specific glycosylation changes and globozoospermia. Cell Mol Life Sci 2024; 82:4. [PMID: 39680136 DOI: 10.1007/s00018-024-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/01/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2-/-) and knock-in (Atp6v0a2RQ/RQ) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS. A hitherto unrecognized male infertility due to globozoospermia was evident in both mouse lines with impaired Golgi-derived acrosome formation and abolished mucin-type O-glycosylation in spermatids. Atp6v0a2-/- mutants showed enhanced fucosylation and glycosaminoglycan modification, but reduced levels of glycanated decorin and sialylation in skin and/or fibroblasts, which were absent or milder in Atp6v0a2RQ/RQ. Atp6v0a2RQ/RQ mutants displayed more abnormal migration of cortical neurons, correlating with seizures and a reduced O-mannosylation of α-dystroglycan. While anterograde transport within the secretory pathway was similarly delayed in both mutants the brefeldin A-induced retrograde fusion of Golgi membranes with the endoplasmic reticulum was less impaired in Atp6v0a2RQ/RQ. Measurement of the pH in the trans Golgi compartment revealed a shift from 5.80 in wildtype to 6.52 in Atp6v0a2-/- and 6.25 in Atp6v0a2RQ/RQ. Our findings suggest that altered O-glycosylation is more relevant for the WSS pathomechanism than N-glycosylation and leads to a secondary dystroglycanopathy. Most phenotypic and cellular properties correlate with the different degrees of trans Golgi pH elevation in both mutants underlining the fundamental relevance of pH regulation in the secretory pathway.
Collapse
Affiliation(s)
- Johannes Kopp
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Denise Jahn
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Guido Vogt
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Anthi Psoma
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - Edoardo Ratto
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Nina Stelzer
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Anne Hoffmann
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Miguel Rodriguez de Los Santos
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leonard A Koch
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, 69115, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass-Spectrometry Facility, 14195, Berlin, Germany
| | - Geert van den Bogaart
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus-Liebig-Universität Gießen, 35385, Gießen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
| |
Collapse
|
2
|
Zhang C, Feng Y, Calderin JD, Balutowski A, Ahmed R, Knapp C, Fratti RA. Lysophospholipid headgroup size, and acyl chain length and saturation differentially affect vacuole acidification, Ca 2+ transport, and fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615487. [PMID: 39386589 PMCID: PMC11463366 DOI: 10.1101/2024.09.27.615487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
SNARE-mediated membrane fusion is regulated by the lipid composition of the engaged bilayers. Lipid composition impacts fusion through direct protein lipid interactions or through modulating the physical properties of membranes at the site of contact, including the induction of positive curvature by lysophospholipids (LPLs). The degree of positive curvature induced is due to the length and saturation of the single acyl chain in addition to the size of the head group. Here we examined how yeast vacuole fusion and ion transport were differentially affected by changes in lysolipid properties. We found that lysophosphatidylcholine (LPC) with acyl chains containing 14-18 carbons all inhibited fusion with IC 50 values ranging from ∼40-120 µM. The monounsaturation of LPC-18:1 had no effect when compared to its saturated counterpart LPC-18:0. On the other hand, head group size played a more significant role in blocking fusion as lysophosphatidic acid (LPA)-18:1 failed to fully inhibit fusion. We also show that both Ca 2+ uptake and SNARE-dependent Ca 2+ efflux was sensitive to changes in the acyl chain length and saturation of LPCs, while LPA only affected Ca 2+ efflux. Finally, we tested these LPLs on vacuole acidification by the V-ATPase. This showed that LPC-18:0 could fully inhibit acidification whereas other LPCs had moderate effects. Again, LPA had no effect. Together these data suggest that the effects of LPLs were due to a combination of head group size and acyl chain length leading to a range in degree of positive curvature.
Collapse
|
3
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Gopaldass N, Mayer A. PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 2024; 52:1233-1241. [PMID: 38747700 DOI: 10.1042/bst20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
PROPPINs constitute a conserved protein family with multiple members being expressed in many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, where they co-operate with several core factors for autophagosome formation. Recently, novel functions of these proteins on endo-lysosomal compartments have emerged. PROPPINs support the division of these organelles and the formation of tubulo-vesicular cargo carriers that mediate protein exit from them, such as those generated by the Retromer coat. In both cases, PROPPINs provide membrane fission activity. Integrating information from yeast and human cells this review summarizes the most important molecular features that allow these proteins to facilitate membrane fission and thus provide a critical element to endo-lysosomal protein traffic.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
5
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Karin Öllinger
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
6
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
7
|
Shafagh Shishavan N, Morovvati S. A novel deletion mutation in the ATP6V0A2 gene in an Iranian patient affected by autosomal recessive cutis laxa. Ir J Med Sci 2023; 192:2279-2282. [PMID: 36520350 DOI: 10.1007/s11845-022-03246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Cutis laxa (CL) can be caused by mutations in a number of genes. Cutis laxa with autosomal recessive inheritance due to mutations in several genes, including mutations in the ATP6V0A2 gene, causes autosomal recessive cutis laxa type 2A (ARCL2A). The ATP6V0A2 gene encodes the a2 subunit in the V-ATPases pump. The V-ATPases are located in the membrane of some organelles, including the Golgi or some vesicles, and act as ATP-dependent proton pumps to pH adjustment intracellular segments. Mutations in the ATP6V0A2 gene consist present in ARCL2A patients. We present the case of a 12-year-old girl who was referred to Rasad Laboratory (Tehran, Iran) at the age of 5 with a set of symptoms of congenital disorders. Her clinical phenotype contains distal symmetrical sensory and motor polyneuropathy, loose joints, large nasal roots, growth delay, and wrinkled skin. Also, there was a history of the parental marriage of consanguinity. A potentially pathogenic homozygous deletion mutation was detected in the ATP6V0A2 gene related to ARCL2A. This mutation has not been reported in the other patients with ARCL2A. A novel homozygous deletion mutation in ATP6V0A2 is supposed to be the reason for disease in our proband.
Collapse
Affiliation(s)
- Negar Shafagh Shishavan
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Indrawinata K, Argiropoulos P, Sugita S. Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms. Front Mol Neurosci 2023; 16:1135015. [PMID: 37465367 PMCID: PMC10352029 DOI: 10.3389/fnmol.2023.1135015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a multisubunit protein composed of the cytosolic adenosine triphosphate (ATP) hydrolysis catalyzing V1 complex, and the integral membrane complex, Vo, responsible for proton translocation. The largest subunit of the Vo complex, subunit a, enables proton translocation upon ATP hydrolysis, mediated by the cytosolic V1 complex. Four known subunit a isoforms (a1-a4) are expressed in different cellular locations. Subunit a1 (also known as Voa1), the neural isoform, is strongly expressed in neurons and is encoded by the ATP6V0A1 gene. Global knockout of this gene in mice causes embryonic lethality, whereas pyramidal neuron-specific knockout resulted in neuronal cell death with impaired spatial and learning memory. Recently reported, de novo and biallelic mutations of the human ATP6V0A1 impair autophagic and lysosomal activities, contributing to neuronal cell death in developmental and epileptic encephalopathies (DEE) and early onset progressive myoclonus epilepsy (PME). The de novo heterozygous R740Q mutation is the most recurrent variant reported in cases of DEE. Homology studies suggest R740 deprotonates protons from specific glutamic acid residues in subunit c, highlighting its importance to the overall V-ATPase function. In this paper, we discuss the structure and mechanism of the V-ATPase, emphasizing how mutations in subunit a1 can lead to lysosomal and autophagic dysfunction in neurodevelopmental disorders, and how mutations to the non-neural isoforms, a2-a4, can also lead to various genetic diseases. Given the growing discovery of disease-causing variants of V-ATPase subunit a and its function as a pump-based regulator of intracellular organelle pH, this multiprotein complex warrants further investigation.
Collapse
Affiliation(s)
- Karen Indrawinata
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Peter Argiropoulos
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Translational and Experimental Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Tuli F, Kane PM. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Front Mol Biosci 2023; 10:1168680. [PMID: 37398550 PMCID: PMC10313074 DOI: 10.3389/fmolb.2023.1168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.
Collapse
Affiliation(s)
| | - Patricia M. Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
10
|
Kumar M, Sharma S, Mazumder S. Role of UPR mt and mitochondrial dynamics in host immunity: it takes two to tango. Front Cell Infect Microbiol 2023; 13:1135203. [PMID: 37260703 PMCID: PMC10227438 DOI: 10.3389/fcimb.2023.1135203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The immune system of a host contains a group of heterogeneous cells with the prime aim of restraining pathogenic infection and maintaining homeostasis. Recent reports have proved that the various subtypes of immune cells exploit distinct metabolic programs for their functioning. Mitochondria are central signaling organelles regulating a range of cellular activities including metabolic reprogramming and immune homeostasis which eventually decree the immunological fate of the host under pathogenic stress. Emerging evidence suggests that following bacterial infection, innate immune cells undergo profound metabolic switching to restrain and countervail the bacterial pathogens, promote inflammation and restore tissue homeostasis. On the other hand, bacterial pathogens affect mitochondrial structure and functions to evade host immunity and influence their intracellular survival. Mitochondria employ several mechanisms to overcome bacterial stress of which mitochondrial UPR (UPRmt) and mitochondrial dynamics are critical. This review discusses the latest advances in our understanding of the immune functions of mitochondria against bacterial infection, particularly the mechanisms of mitochondrial UPRmt and mitochondrial dynamics and their involvement in host immunity.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
11
|
Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, Alsadah A, Neilson DE, Naess K, Wedell A, Wredenberg A, Sorlin A, McCann E, Burghel GJ, Menendez B, Hoganson GE, Botto LD, Filloux FM, Aledo-Serrano Á, Gil-Nagel A, Tatton-Brown K, Verbeek NE, van der Zwaag B, Aleck KA, Fazenbaker AC, Balciuniene J, Dubbs HA, Marsh ED, Garber K, Ek J, Duno M, Hoei-Hansen CE, Deardorff MA, Raca G, Quindipan C, van Hirtum-Das M, Breckpot J, Hammer TB, Møller RS, Whitney A, Douglas AGL, Kharbanda M, Brunetti-Pierri N, Morleo M, Nigro V, May HJ, Tao JX, Argilli E, Sherr EH, Dobyns WB, Baines RA, Warwicker J, Parker JA, Banka S, Campeau PM, Escayg A. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain 2023; 146:1357-1372. [PMID: 36074901 PMCID: PMC10319782 DOI: 10.1093/brain/awac330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.
Collapse
Affiliation(s)
- Kari A Mattison
- Genetics and Molecular Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Gilles Tossing
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Fred Mulroe
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Callum Simmons
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Greenwood Genetics Center, Greenwood, SC, USA
| | - Alison Schreiber
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Adnan Alsadah
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Derek E Neilson
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Karin Naess
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Wedell
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Deparment of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Wredenberg
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women’s Hospital, Liverpool, UK
| | - George J Burghel
- Genomic Diagnostic Laboratory, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - George E Hoganson
- Division of Genetics, Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Francis M Filloux
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ángel Aledo-Serrano
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Katrina Tatton-Brown
- Medical Genetics, St. George’s University Hospitals NHS Foundation Trust and Institute for Molecular and Cell Sciences, St. George’s, University of London, London, UK
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Kyrieckos A Aleck
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Andrew C Fazenbaker
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Jorune Balciuniene
- Divison of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- PerkinElmer Genomics, Pittsburgh, PA, USA
| | - Holly A Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric D Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jakob Ek
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christina E Hoei-Hansen
- Department of Pediatrics, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Catherine Quindipan
- Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Michele van Hirtum-Das
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
- Insititue for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Andrea Whitney
- Pediatric Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mira Kharbanda
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Halie J May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elliot H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - J Alex Parker
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Siddharth Banka
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Lévêque C, Maulet Y, Wang Q, Rame M, Rodriguez L, Mochida S, Sangiardi M, Youssouf F, Iborra C, Seagar M, Vitale N, El Far O. A Role for the V0 Sector of the V-ATPase in Neuroexocytosis: Exogenous V0d Blocks Complexin and SNARE Interactions with V0c. Cells 2023; 12:cells12050750. [PMID: 36899886 PMCID: PMC10001230 DOI: 10.3390/cells12050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
V-ATPase is an important factor in synaptic vesicle acidification and is implicated in synaptic transmission. Rotation in the extra-membranous V1 sector drives proton transfer through the membrane-embedded multi-subunit V0 sector of the V-ATPase. Intra-vesicular protons are then used to drive neurotransmitter uptake by synaptic vesicles. V0a and V0c, two membrane subunits of the V0 sector, have been shown to interact with SNARE proteins, and their photo-inactivation rapidly impairs synaptic transmission. V0d, a soluble subunit of the V0 sector strongly interacts with its membrane-embedded subunits and is crucial for the canonic proton transfer activity of the V-ATPase. Our investigations show that the loop 1.2 of V0c interacts with complexin, a major partner of the SNARE machinery and that V0d1 binding to V0c inhibits this interaction, as well as V0c association with SNARE complex. The injection of recombinant V0d1 in rat superior cervical ganglion neurons rapidly reduced neurotransmission. In chromaffin cells, V0d1 overexpression and V0c silencing modified in a comparable manner several parameters of unitary exocytotic events. Our data suggest that V0c subunit promotes exocytosis via interactions with complexin and SNAREs and that this activity can be antagonized by exogenous V0d.
Collapse
Affiliation(s)
- Christian Lévêque
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Yves Maulet
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Léa Rodriguez
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Marion Sangiardi
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Fahamoe Youssouf
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Cécile Iborra
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
- Correspondence: (N.V.); or (O.E.F.); Tel.: +33-(0)3-8845-6712 (N.V.); +33-(0)4-9169-8860 (O.E.F.)
| | - Oussama El Far
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
- Correspondence: (N.V.); or (O.E.F.); Tel.: +33-(0)3-8845-6712 (N.V.); +33-(0)4-9169-8860 (O.E.F.)
| |
Collapse
|
13
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Wang Q, Wolf A, Ozkan S, Richert L, Mely Y, Chasserot-Golaz S, Ory S, Gasman S, Vitale N. V-ATPase modulates exocytosis in neuroendocrine cells through the activation of the ARNO-Arf6-PLD pathway and the synthesis of phosphatidic acid. Front Mol Biosci 2023; 10:1163545. [PMID: 37091866 PMCID: PMC10119424 DOI: 10.3389/fmolb.2023.1163545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Although there is mounting evidence indicating that lipids serve crucial functions in cells and are implicated in a growing number of human diseases, their precise roles remain largely unknown. This is particularly true in the case of neurosecretion, where fusion with the plasma membrane of specific membrane organelles is essential. Yet, little attention has been given to the role of lipids. Recent groundbreaking research has emphasized the critical role of lipid localization at exocytotic sites and validated the essentiality of fusogenic lipids, such as phospholipase D (PLD)-generated phosphatidic acid (PA), during membrane fusion. Nevertheless, the regulatory mechanisms synchronizing the synthesis of these key lipids and neurosecretion remain poorly understood. The vacuolar ATPase (V-ATPase) has been involved both in vesicle neurotransmitter loading and in vesicle fusion. Thus, it represents an ideal candidate to regulate the fusogenic status of secretory vesicles according to their replenishment state. Indeed, the cytosolic V1 and vesicular membrane-associated V0 subdomains of V-ATPase were shown to dissociate during the stimulation of neurosecretory cells. This allows the subunits of the vesicular V0 to interact with different proteins of the secretory machinery. Here, we show that V0a1 interacts with the Arf nucleotide-binding site opener (ARNO) and promotes the activation of the Arf6 GTPase during the exocytosis in neuroendocrine cells. When the interaction between V0a1 and ARNO was disrupted, it resulted in the inhibition of PLD activation, synthesis of phosphatidic acid during exocytosis, and changes in the timing of fusion events. These findings indicate that the separation of V1 from V0 could function as a signal to initiate the ARNO-Arf6-PLD1 pathway and facilitate the production of phosphatidic acid, which is essential for effective exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Alexander Wolf
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Sebahat Ozkan
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS UMR and Université de Strasbourg, Strasbourg, France
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS UMR and Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
- *Correspondence: Nicolas Vitale,
| |
Collapse
|
15
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
16
|
Endosomal v-ATPase as a Sensor Determining Myocardial Substrate Preference. Metabolites 2022; 12:metabo12070579. [PMID: 35888703 PMCID: PMC9316095 DOI: 10.3390/metabo12070579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is a metabolically flexible omnivore that can utilize a variety of substrates for energy provision. To fulfill cardiac energy requirements, the healthy adult heart mainly uses long-chain fatty acids and glucose in a balanced manner, but when exposed to physiological or pathological stimuli, it can switch its substrate preference to alternative substrates such as amino acids (AAs) and ketone bodies. Using the failing heart as an example, upon stress, the fatty acid/glucose substrate balance is upset, resulting in an over-reliance on either fatty acids or glucose. A chronic fuel shift towards a single type of substrate is linked with cardiac dysfunction. Re-balancing myocardial substrate preference is suggested as an effective strategy to rescue the failing heart. In the last decade, we revealed that vacuolar-type H+-ATPase (v-ATPase) functions as a key regulator of myocardial substrate preference and, therefore, as a novel potential treatment approach for the failing heart. Fatty acids, glucose, and AAs selectively influence the assembly state of v-ATPase resulting in modulation of its proton-pumping activity. In this review, we summarize these novel insights on v-ATPase as an integrator of nutritional information. We also describe its exploitation as a therapeutic target with focus on supplementation of AA as a nutraceutical approach to fight lipid-induced insulin resistance and contractile dysfunction of the heart.
Collapse
|
17
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
18
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
19
|
Siu KK, Serrão VHB, Ziyyat A, Lee JE. The cell biology of fertilization: Gamete attachment and fusion. J Cell Biol 2021; 220:e202102146. [PMID: 34459848 PMCID: PMC8406655 DOI: 10.1083/jcb.202102146] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.
Collapse
Affiliation(s)
- Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vitor Hugo B. Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
- Service d’Histologie, d’Embryologie, Biologie de la Reproduction, Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Wilson ZN, Buysse D, West M, Ahrens D, Odorizzi G. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. J Cell Sci 2021; 134:jcs258459. [PMID: 34342352 PMCID: PMC8353521 DOI: 10.1242/jcs.258459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes undergo a maturation process highlighted by a reduction in lumenal pH, a conversion of surface markers that prime endosome-lysosome fusion and the sequestration of ubiquitylated transmembrane protein cargos within intralumenal vesicles (ILVs). We investigated ILV cargo sorting in mutant strains of the budding yeast Saccharomyces cerevisiae that are deficient for either the lysosomal/vacuolar signaling lipid PI(3,5)P2 or the Doa4 ubiquitin hydrolase that deubiquitylates ILV cargos. Disruption of PI(3,5)P2 synthesis or Doa4 function causes a defect in sorting of a subset of ILV cargos. We show that these cargo-sorting defects are suppressed by mutations that disrupt Vph1, a subunit of vacuolar H+-ATPase (V-ATPase) complexes that acidify late endosomes and vacuoles. We further show that Vph1 dysfunction increases endosome abundance, and disrupts vacuolar localization of Ypt7 and Vps41, two crucial mediators of endosome-vacuole fusion. Because V-ATPase inhibition attenuates this fusion and rescues the ILV cargo-sorting defects in yeast that lack PI(3,5)P2 or Doa4 activity, our results suggest that the V-ATPase has a role in coordinating ILV cargo sorting with the membrane fusion machinery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
21
|
Sasaki N, Morimoto S, Suda C, Shimizu S, Ichihara A. Urinary soluble (pro)renin receptor excretion is associated with urine pH in humans. PLoS One 2021; 16:e0254688. [PMID: 34310595 PMCID: PMC8312976 DOI: 10.1371/journal.pone.0254688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
The (pro)renin receptor [(P)RR] binds to renin and its precursor prorenin to activate the tissue renin-angiotensin system. It is cleaved to generate soluble (P)RR and M8–9, a residual hydrophobic truncated protein. The (pro)renin receptor also functions as an intracellular accessory protein of vacuolar-type H+-ATPase, which plays an essential role in controlling the intracellular vesicular acid environment. Thus, in the kidney, (P)RR may play a role in transporting H+ to urine in the collecting duct. Although blood soluble (P)RR has been recognized as a biomarker reflecting the status of the tissue renin-angiotensin system and/or tissue (P)RR, the significance of urinary soluble (P)RR excretion has not been determined. Therefore, this study aimed to investigate the characteristics of urinary soluble (P)RR excretion. Urinary soluble (P)RR excretion was measured, and its association with background factors was investigated in 441 patients. Relationships between changes in urine pH due to vitamin C treatment, which reduce urine pH, and urinary soluble (P)RR excretion were investigated in 10 healthy volunteers. Urinary soluble (P)RR excretion was 1.46 (0.44–2.92) ng/gCre. Urine pH showed a significantly positive association with urinary soluble (P)RR excretion, independent of other factors. Changes in urine pH and urinary soluble (P)RR excretion due to vitamin C treatment were significantly and positively correlated (ρ = 0.8182, p = 0.0038). These data showed an association between urinary soluble (P)RR excretion and urine pH in humans, suggesting that (P)RR in the kidney might play a role in urine pH regulation.
Collapse
Affiliation(s)
- Nobukazu Sasaki
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| | - Chikahito Suda
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoru Shimizu
- School of Arts and Sciences, Tokyo Woman’s Christian University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021; 202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
Collapse
|
23
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Morimoto S, Morishima N, Watanabe D, Kato Y, Shibata N, Ichihara A. Immunohistochemistry for (Pro)renin Receptor in Humans. Int J Endocrinol 2021; 2021:8828610. [PMID: 34367278 PMCID: PMC8337151 DOI: 10.1155/2021/8828610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/16/2021] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor is a multifunctional protein with roles in angiotensin-II-dependent and -independent intracellular cell signaling and roles as an intracellular accessory protein for the vacuolar H+-ATPase, including hormone secretion. While (pro)renin receptor mRNA is widely expressed in various human tissues, localization of (pro)renin receptor protein expression has not yet been systemically determined. Therefore, this study localized (pro)renin receptor protein expression in human organs. Systemic immunohistochemical examination of (pro)renin receptor expression was performed in whole body organs of autopsy cases. (Pro)renin receptor immunostaining was observed in the cytoplasm of cells in almost all human organs. It was observed in thyroid follicular epithelial cells, hepatic cells, pancreatic duct epithelial cells, zona glomerulosa and zona reticularis of the cortex and medulla of the adrenal gland, proximal and distal tubules and collecting ducts of the kidney, cardiomyocytes, and skeletal muscle cells. In the brain, (pro)renin receptor staining was detected in neurons throughout all areas, especially in the medulla oblongata, paraventricular nucleus and supraoptic nucleus of the hypothalamus, cerebrum, granular layer of the hippocampus, Purkinje cell layer of the cerebellum, and the pituitary anterior and posterior lobes. In the anterior lobe of the pituitary gland, all types of anterior pituitary hormone-positive cells showed double staining with (pro)renin receptor. These data showed that (pro)renin receptor protein was expressed in almost all organs of the human body. Its expression pattern was not uniform, and cell-specific expression pattern was observed, supporting the notion that (pro)renin receptor plays numerous physiological roles in each human organ.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriko Morishima
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Wang P, Guo Y, Wang Y, Gao C. Vacuolar membrane H +-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd improves salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:370-378. [PMID: 33190056 DOI: 10.1016/j.plaphy.2020.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/29/2020] [Indexed: 05/15/2023]
Abstract
The plant vacuolar H+-ATPase (V-ATPase) is a multisubunit complex. In addition to performing basic housekeeping functions, this complex is also involved in abiotic stress resistance in plants. In this study, a V-ATPase c`` subunit gene (ThVHAc``1) from Tamarix hispida Willd was cloned with a 534-bp ORF. Sequence analysis showed that the ThVHAc``1 protein contains four transmembrane helices and lacks a signal peptide. qRT-PCR results showed that ThVHAc``1 was primarily induced by treatments of NaCl, NaHCO3, PEG6000, CdCl2 or ABA in roots, stems and leaves of T. hispida. The expression pattern of ThVHAc``1 was significantly different from that of ThVHAc1 (a V-ATPase c subunit in T. hispida). Furthermore, the cell survival rates and density (OD600) results showed that the transgenic yeast overexpressing ThVHAc``1 exhibited increased tolerance to the above-mentioned abiotic stresses. In addition, the overexpression of ThVHAc``1 confers salt tolerance to transgenic Arabidopsis plants by improving the ROS content and decreasing the accumulation of O2- and H2O2. Similarly, the homologous transformation of the ThVHAc``1 gene into T. hispida also improved salt tolerance. Our results suggest that the ThVHAc``1 gene plays an important role in plant stress tolerance.
Collapse
Affiliation(s)
- Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yucong Guo
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
26
|
SNAREs, tethers and SM proteins: how to overcome the final barriers to membrane fusion? Biochem J 2020; 477:243-258. [PMID: 31951000 DOI: 10.1042/bcj20190050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Physiological membrane vesicles are built to separate reaction spaces in a stable manner, even when they accidentally collide or are kept in apposition by spatial constraints in the cell. This requires a natural resistance to fusion and mixing of their content, which originates from substantial energetic barriers to membrane fusion [1]. To facilitate intracellular membrane fusion reactions in a controlled manner, proteinaceous fusion machineries have evolved. An important open question is whether protein fusion machineries actively pull the fusion reaction over the present free energy barriers, or whether they rather catalyze fusion by lowering those barriers. At first sight, fusion proteins such as SNARE complexes and viral fusion proteins appear to act as nano-machines, which mechanically transduce force to the membranes and thereby overcome the free energy barriers [2,3]. Whether fusion proteins additionally alter the free energy landscape of the fusion reaction via catalytic roles is less obvious. This is a question that we shall discuss in this review, with particular focus on the influence of the eukaryotic SNARE-dependent fusion machinery on the final step of the reaction, the formation and expansion of the fusion pore.
Collapse
|
27
|
Hurst LR, Fratti RA. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Front Cell Dev Biol 2020; 8:539. [PMID: 32719794 PMCID: PMC7349313 DOI: 10.3389/fcell.2020.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023] Open
Abstract
The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.
Collapse
Affiliation(s)
- Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
28
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Chitirala P, Ravichandran K, Schirra C, Chang HF, Krause E, Kazmaier U, Lauterbach MA, Rettig J. Role of V-ATPase a3-Subunit in Mouse CTL Function. THE JOURNAL OF IMMUNOLOGY 2020; 204:2818-2828. [PMID: 32269094 DOI: 10.4049/jimmunol.1901536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
CTLs release cytotoxic proteins such as granzymes and perforin through fusion of cytotoxic granules (CG) at the target cell interface, the immune synapse, to kill virus-infected and tumorigenic target cells. A characteristic feature of these granules is their acidic pH inside the granule lumen, which is required to process precursors of granzymes and perforin to their mature form. However, the role of acidic pH in CG maturation, transport, and fusion is not understood. We demonstrate in primary murine CTLs that the a3-subunit of the vacuolar-type (H+)-adenosine triphosphatase is required for establishing a luminal pH of 6.1 inside CG using ClopHensorN(Q69M), a newly generated CG-specific pH indicator. Knockdown of the a3-subunit resulted in a significantly reduced killing of target cells and a >50% reduction in CG fusion in total internal reflection fluorescence microscopy, which was caused by a reduced number of CG at the immune synapse. Superresolution microscopy revealed a reduced interaction of CG with the microtubule network upon a3-subunit knockdown. Finally, we find by electron and structured illumination microscopy that knockdown of the a3-subunit altered the diameter and density of individual CG, whereas the number of CG per CTL was unaffected. We conclude that the a3-subunit of the vacuolar adenosine triphosphatase is not only responsible for the acidification of CG, but also contributes to the maturation and efficient transport of the CG to the immune synapse.
Collapse
Affiliation(s)
- Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, 66123 Saarbrücken, Germany; and
| | - Marcel A Lauterbach
- Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
30
|
Whelan FJ, Rusilowicz M, McInerney JO. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb Genom 2020; 6:e000338. [PMID: 32100706 PMCID: PMC7200068 DOI: 10.1099/mgen.0.000338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
The accessory genes of prokaryote and eukaryote pangenomes accumulate by horizontal gene transfer, differential gene loss, and the effects of selection and drift. We have developed Coinfinder, a software program that assesses whether sets of homologous genes (gene families) in pangenomes associate or dissociate with each other (i.e. are 'coincident') more often than would be expected by chance. Coinfinder employs a user-supplied phylogenetic tree in order to assess the lineage-dependence (i.e. the phylogenetic distribution) of each accessory gene, allowing Coinfinder to focus on coincident gene pairs whose joint presence is not simply because they happened to appear in the same clade, but rather that they tend to appear together more often than expected across the phylogeny. Coinfinder is implemented in C++, Python3 and R and is freely available under the GNU license from https://github.com/fwhelan/coinfinder.
Collapse
Affiliation(s)
- Fiona Jane Whelan
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Martin Rusilowicz
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - James Oscar McInerney
- School of Life Sciences, The University of Nottingham, Nottingham, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Gowrisankaran S, Milosevic I. Regulation of synaptic vesicle acidification at the neuronal synapse. IUBMB Life 2020; 72:568-576. [DOI: 10.1002/iub.2235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sindhuja Gowrisankaran
- European Neuroscience Institute (ENI)A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen Germany
| | - Ira Milosevic
- European Neuroscience Institute (ENI)A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen Germany
| |
Collapse
|
32
|
Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud’ina GF. Cytonemes Versus Neutrophil Extracellular Traps in the Fight of Neutrophils with Microbes. Int J Mol Sci 2020; 21:ijms21020586. [PMID: 31963289 PMCID: PMC7014225 DOI: 10.3390/ijms21020586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils can phagocytose microorganisms and destroy them intracellularly using special bactericides located in intracellular granules. Recent evidence suggests that neutrophils can catch and kill pathogens extracellularly using the same bactericidal agents. For this, live neutrophils create a cytoneme network, and dead neutrophils provide chromatin and proteins to form neutrophil extracellular traps (NETs). Cytonemes are filamentous tubulovesicular secretory protrusions of living neutrophils with intact nuclei. Granular bactericides are localized in membrane vesicles and tubules of which cytonemes are composed. NETs are strands of decondensed DNA associated with histones released by died neutrophils. In NETs, bactericidal neutrophilic agents are adsorbed onto DNA strands and are not covered with a membrane. Cytonemes and NETs occupy different places in protecting the body against infections. Cytonemes can develop within a few minutes at the site of infection through the action of nitric oxide or actin-depolymerizing alkaloids of invading microbes. The formation of NET in vitro occurs due to chromatin decondensation resulting from prolonged activation of neutrophils with PMA (phorbol 12-myristate 13-acetate) or other stimuli, or in vivo due to citrullination of histones with peptidylarginine deiminase 4. In addition to antibacterial activity, cytonemes are involved in cell adhesion and communications. NETs play a role in autoimmunity and thrombosis.
Collapse
Affiliation(s)
- Svetlana I. Galkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| | - Natalia V. Fedorova
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | - Ekaterina A. Golenkina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
| | | | - Galina F. Sud’ina
- Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia; (N.V.F.); (E.A.G.)
- Correspondence: (S.I.G.); (G.F.S.); Tel.: +7-495-939-5408 (S.I.G.)
| |
Collapse
|
33
|
de Araujo MEG, Liebscher G, Hess MW, Huber LA. Lysosomal size matters. Traffic 2019; 21:60-75. [PMID: 31808235 PMCID: PMC6972631 DOI: 10.1111/tra.12714] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra‐ and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.
Collapse
Affiliation(s)
- Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gudrun Liebscher
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute, ADSI, Innsbruck, Austria
| |
Collapse
|
34
|
Ma K, Bin NR, Shi S, Harada H, Wada Y, Wada GHS, Monnier PP, Sugita S, Zhang L. Observations From a Mouse Model of Forebrain Voa1 Knockout: Focus on Hippocampal Structure and Function. Front Cell Neurosci 2019; 13:484. [PMID: 31824264 PMCID: PMC6881385 DOI: 10.3389/fncel.2019.00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Voa protein is a subunit of V-ATPase proton pump which is essential to acidify intracellular organelles including synaptic vesicles. Voa1 is one of the four isoforms of Voa family with strong expression in neurons. Our present study was aimed to examine the role of Voa1 protein in mammalian brain neurons. To circumvent embryonic lethality, we generated conditional Voa1 knockout mice in which Voa1 was selectively deleted from forebrain pyramidal neurons. We performed experiments in the Voa1 knockout mice of ages 5-6 months to assess the persistent effects of Voa1 deletion. We found that the Voa1 knockout mice exhibited poor performance in the Morris water maze test compared to control mice. In addition, synaptic field potentials of the hippocampal CA1 region were greatly diminished in the Voa1 knockout mice when examined in brain slices in vitro. Furthermore, brain histological experiments showed severe degeneration of dorsal hippocampal CA1 neurons while CA3 neurons were largely preserved. The CA1 neurodegeneration was associated with general brain atrophy as overall hemispheric areas were reduced in the Voa1 cKO mice. Despite the CA1 degeneration and dysfunction, electroencephalographic recordings from the hippocampal CA3 area revealed aberrant spikes and non-convulsive discharges in the Voa1 knockout mice but not in control mice. These hippocampal spikes were suppressed by single intra-peritoneal injection of diazepam which is a benzodiazepine GABAA receptor enhancer. Together these results suggest that Voa1 related activities are essential for the survival of the targeted neurons in the dorsal hippocampal CA1 as well as other forebrain areas. We postulate that the Voa1 knockout mice may serve as a valuable model for further investigation of V-ATPase dysfunction related neuronal degeneration and functional abnormalities in forebrain areas particularly the hippocampus.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Jilin, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Na-Ryum Bin
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Shan Shi
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Jilin, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Hidekiyo Harada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ge-Hong-Sun Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Ophthalmology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shuzo Sugita
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Miner GE, Sullivan KD, Zhang C, Hurst LR, Starr ML, Rivera-Kohr DA, Jones BC, Guo A, Fratti RA. Copper blocks V-ATPase activity and SNARE complex formation to inhibit yeast vacuole fusion. Traffic 2019; 20:841-850. [PMID: 31368617 DOI: 10.1111/tra.12683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg+ , Cd2+ and Cu2+ are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations. Excess copper ions can subsequently be transported into the vacuole lumen by an unknown mechanism. Transport across membranes requires the reduction of Cu2+ to Cu+ . Labile copper ions can interact with membranes to alter fluidity, lateral phase separation and fusion. Here we found that CuCl2 potently inhibited vacuole fusion by blocking SNARE pairing. This was accompanied by the inhibition of V-ATPase H+ pumping. Deletion of the vacuolar reductase Fre6 had no effect on the inhibition of fusion by copper. This suggests that Cu2+ is responsible for the inhibition of vacuole fusion and V-ATPase function. This notion is supported by the differential effects of chelators. The Cu2+ -specific chelator triethylenetetramine rescued fusion, whereas the Cu+ -specific chelator bathocuproine disulfonate had no effect on the inhibited fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
36
|
James TD, Zwiefelhofer DJ, Frank CA. Maintenance of homeostatic plasticity at the Drosophila neuromuscular synapse requires continuous IP 3-directed signaling. eLife 2019; 8:39643. [PMID: 31180325 PMCID: PMC6557630 DOI: 10.7554/elife.39643] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on neuroplasticity to adjust output and meet physiological needs. Forms of homeostatic synaptic plasticity impart stability at synapses by countering destabilizing perturbations. The Drosophila melanogaster larval neuromuscular junction (NMJ) is a model synapse with robust expression of homeostatic plasticity. At the NMJ, a homeostatic system detects impaired postsynaptic sensitivity to neurotransmitter and activates a retrograde signal that restores synaptic function by adjusting neurotransmitter release. This process has been separated into temporally distinct phases, induction and maintenance. One prevailing hypothesis is that a shared mechanism governs both phases. Here, we show the two phases are separable. Combining genetics, pharmacology, and electrophysiology, we find that a signaling system consisting of PLCβ, inositol triphosphate (IP3), IP3 receptors, and Ryanodine receptors is required only for the maintenance of homeostatic plasticity. We also find that the NMJ is capable of inducing homeostatic signaling even when its sustained maintenance process is absent. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Thomas D James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, United States
| | - Danielle J Zwiefelhofer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Programs in Neuroscience, Genetics and Molecular Medicine, University of Iowa, Iowa City, United States
| |
Collapse
|
37
|
Hirose T, Cabrera-Socorro A, Chitayat D, Lemonnier T, Féraud O, Cifuentes-Diaz C, Gervasi N, Mombereau C, Ghosh T, Stoica L, Bacha JDA, Yamada H, Lauterbach MA, Guillon M, Kaneko K, Norris JW, Siriwardena K, Blasér S, Teillon J, Mendoza-Londono R, Russeau M, Hadoux J, Ito S, Corvol P, Matheus MG, Holden KR, Takei K, Emiliani V, Bennaceur-Griscelli A, Schwartz CE, Nguyen G, Groszer M. ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. J Clin Invest 2019; 129:2145-2162. [PMID: 30985297 DOI: 10.1172/jci79990] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase-dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase-dependent signaling and protein degradation in the developing human central nervous system.
Collapse
Affiliation(s)
- Takuo Hirose
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France
| | - Alfredo Cabrera-Socorro
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - David Chitayat
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics and.,Department of Diagnostic Imaging, Division of Pediatric Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Lemonnier
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Olivier Féraud
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Nicolas Gervasi
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Cedric Mombereau
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Tanay Ghosh
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Loredana Stoica
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jeanne d'Arc Al Bacha
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,Laboratory of Applied Biotechnology, Azm Center for the Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli, Lebanon.,Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marcel A Lauterbach
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Guillon
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kiriko Kaneko
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joy W Norris
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | | - Jérémie Teillon
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | | | - Marion Russeau
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julien Hadoux
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Pierre Corvol
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | | | - Kenton R Holden
- Department of Radiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Annelise Bennaceur-Griscelli
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France.,Faculté de Médecine, Kremlin-Bicêtre, Université Paris Sud, Paris Saclay, France.,AP-HP, Service d'Hématologie, Hôpitaux Universitaires Paris Sud, Hôpital Paul Brousse, Villejuif, France
| | | | - Genevieve Nguyen
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | - Matthias Groszer
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
38
|
Shi Q. Expression profiling of genes coding for abundant proteins in the alkenone body of marine haptophyte alga Tisochrysis lutea. BMC Microbiol 2019; 19:56. [PMID: 30871466 PMCID: PMC6419369 DOI: 10.1186/s12866-019-1430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background Several abundant proteins have been identified in lipid body of an alkenone-producing marine haptophyte alga Tisochrysis lutea. The gene expression patterns of these proteins were investigated to better understand their roles in alkenone biosynthesis. For this purpose, T. lutea was first cultured in nitrogen-sufficient medium for biomass production and then shifted to nitrogen-deprived medium to induce lipid body formation. Results There were remarkable increases in the volume of alkenone body (AB) and alkenone content in the alga after they were exposed to nitrogen depletion medium. Relative mRNA levels of the genes coding for the identified proteins V-ATPase subunit VA, V-ATPase subunit Vd, hypothetical protein EMIHUDRAFT_465,517, coccolith scale associated protein-1, cycloartenol-c-24-methyltransferase 1-like and SPFH domain-containing protein were investigated over the culture period. RT-PCR data showed that the expression of all these genes except the gene coding for SPFH domain-containing protein was up-regulated during the transition period from nitrogen-sufficient to nitrogen-deficient medium. Among them, the expression of the coccolith scale associated protein-1 gene was up-regulated 50–650 folds. These up-regulations were consistent with the increased alkenone production in nitrogen-deprived medium, suggesting that these proteins are involved in alkenone biosynthesis in T. lutea. Conclusions Expression analysis of the lipoprotein genes suggests that five out of the six genes are up-regulated and are therefore likely to code for the identified lipoproteins associated with alkenone biosynthesis in T. lutea. These data would help better understand alkenone metabolism and engineer for improved biofuel production in T. lutea.
Collapse
Affiliation(s)
- Qing Shi
- School of Scientific Research, China University of Geosciences (Beijing), 29 Xueyuan Road, Beijing, 100083, China. .,State Key Laboratory of Biological and Environmental Geology, China University of Geosciences (Beijing), Beijing, China.
| |
Collapse
|
39
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
40
|
Miner GE, Sullivan KD, Guo A, Jones BC, Hurst LR, Ellis EC, Starr ML, Fratti RA. Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion. Mol Biol Cell 2018; 30:201-208. [PMID: 30427760 PMCID: PMC6589561 DOI: 10.1091/mbc.e18-08-0505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides (PIs) regulate a myriad of cellular functions including membrane fusion, as exemplified by the yeast vacuole, which uses various PIs at different stages of fusion. In light of this, the effect of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) on vacuole fusion remains unknown. PI(3,5)P2 is made by the PI3P 5-kinase Fab1 and has been characterized as a regulator of vacuole fission during hyperosmotic shock, where it interacts with the TRP Ca2+ channel Yvc1. Here we demonstrate that exogenously added dioctanoyl (C8) PI(3,5)P2 abolishes homotypic vacuole fusion. This effect was not linked to Yvc1, as fusion was equally affected using yvc1Δ vacuoles. Thus, the effects of C8-PI(3,5)P2 on fusion and fission operate through distinct mechanisms. Further testing showed that C8-PI(3,5)P2 inhibited vacuole fusion after trans-SNARE pairing. Although SNARE complex formation was unaffected, we found that C8-PI(3,5)P2 blocked outer leaflet lipid mixing. Overproduction of endogenous PI(3,5)P2 by the fab1T2250A hyperactive kinase mutant also inhibited the lipid mixing stage, bolstering the model in which PI(3,5)P2 inhibits fusion when present at elevated levels. Taken together, this work identifies a novel function for PI(3,5)P2 as a regulator of vacuolar fusion. Moreover, it suggests that this lipid acts as a molecular switch between fission and fusion.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Annie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brandon C Jones
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ez C Ellis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
41
|
Isobe Y, Nigorikawa K, Tsurumi G, Takemasu S, Takasuga S, Kofuji S, Hazeki K. PIKfyve accelerates phagosome acidification through activation of TRPML1 while arrests aberrant vacuolation independent of the Ca2+ channel. J Biochem 2018; 165:75-84. [DOI: 10.1093/jb/mvy084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yuri Isobe
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| | - Kiyomi Nigorikawa
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| | - Go Tsurumi
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| | - Shinya Takemasu
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| | - Shunsuke Takasuga
- Department of Pathology and Immunology, Akita University School of Medicine, Akita, Japan
| | - Satoshi Kofuji
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| | - Kaoru Hazeki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Minamiku Kasumi 1-2-3, Hiroshima, Japan
| |
Collapse
|
42
|
Chromophore-Assisted Light Inactivation of the V-ATPase V0c Subunit Inhibits Neurotransmitter Release Downstream of Synaptic Vesicle Acidification. Mol Neurobiol 2018; 56:3591-3602. [PMID: 30155790 DOI: 10.1007/s12035-018-1324-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Synaptic vesicle proton V-ATPase is an essential component in synaptic vesicle function. Active acidification of synaptic vesicles, triggered by the V-ATPase, is necessary for neurotransmitter storage. Independently from its proton transport activity, an additional important function of the membrane-embedded sector of the V-ATPase has been uncovered over recent years. Subunits a and c of the membrane sector of this multi-molecular complex have been shown to interact with SNARE proteins and to be involved in modulating neurotransmitter release. The c-subunit interacts with the v-SNARE VAMP2 and facilitates neurotransmission. In this study, we used chromophore-assisted light inactivation and monitored the consequences on neurotransmission on line in CA3 pyramidal neurons. We show that V-ATPase c-subunit V0c is a key element in modulating neurotransmission and that its specific inactivation rapidly inhibited neurotransmission.
Collapse
|
43
|
D'Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A. SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 2018; 37:embj.201899193. [PMID: 30120144 DOI: 10.15252/embj.201899193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Göttingen, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura J Endter
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
44
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Brusich DJ, Spring AM, James TD, Yeates CJ, Helms TH, Frank CA. Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway. PLoS Genet 2018; 14:e1007577. [PMID: 30080864 PMCID: PMC6095605 DOI: 10.1371/journal.pgen.1007577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/16/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Gain-of-function mutations in the human CaV2.1 gene CACNA1A cause familial hemiplegic migraine type 1 (FHM1). To characterize cellular problems potentially triggered by CaV2.1 gains of function, we engineered mutations encoding FHM1 amino-acid substitutions S218L (SL) and R192Q (RQ) into transgenes of Drosophila melanogaster CaV2/cacophony. We expressed the transgenes pan-neuronally. Phenotypes were mild for RQ-expressing animals. By contrast, single mutant SL- and complex allele RQ,SL-expressing animals showed overt phenotypes, including sharply decreased viability. By electrophysiology, SL- and RQ,SL-expressing neuromuscular junctions (NMJs) exhibited enhanced evoked discharges, supernumerary discharges, and an increase in the amplitudes and frequencies of spontaneous events. Some spontaneous events were gigantic (10-40 mV), multi-quantal events. Gigantic spontaneous events were eliminated by application of TTX-or by lowered or chelated Ca2+-suggesting that gigantic events were elicited by spontaneous nerve firing. A follow-up genetic approach revealed that some neuronal hyperexcitability phenotypes were reversed after knockdown or mutation of Drosophila homologs of phospholipase Cβ (PLCβ), IP3 receptor, or ryanodine receptor (RyR)-all factors known to mediate Ca2+ release from intracellular stores. Pharmacological inhibitors of intracellular Ca2+ store release produced similar effects. Interestingly, however, the decreased viability phenotype was not reversed by genetic impairment of intracellular Ca2+ release factors. On a cellular level, our data suggest inhibition of signaling that triggers intracellular Ca2+ release could counteract hyperexcitability induced by gains of CaV2.1 function.
Collapse
Affiliation(s)
- Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Thomas D. James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| | - Catherine J. Yeates
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| | - Timothy H. Helms
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
46
|
Pavelin J, McCormick D, Chiweshe S, Ramachandran S, Lin YT, Grey F. Cellular v-ATPase is required for virion assembly compartment formation in human cytomegalovirus infection. Open Biol 2018; 7:rsob.160298. [PMID: 29093211 PMCID: PMC5717334 DOI: 10.1098/rsob.160298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Successful generation of virions from infected cells is a complex process requiring orchestrated regulation of host and viral genes. Cells infected with human cytomegalovirus (HCMV) undergo a dramatic reorganization of membrane organelles resulting in the formation of the virion assembly compartment, a process that is not fully understood. Here we show that acidification of vacuoles by the cellular v-ATPase is a crucial step in the formation of the virion assembly compartment and disruption of acidification results in mis-localization of virion components and a profound reduction in infectious virus levels. In addition, knockdown of ATP6V0C blocks the increase in nuclear size, normally associated with HCMV infection. Inhibition of the v-ATPase does not affect intracellular levels of viral DNA synthesis or gene expression, consistent with a defect in assembly and egress. These studies identify a novel host factor involved in virion production and a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Jonathan Pavelin
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Dominique McCormick
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Stephen Chiweshe
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Saranya Ramachandran
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yao-Tang Lin
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
47
|
Zhao H, Wang J, Wang T. The V-ATPase V1 subunit A1 is required for rhodopsin anterograde trafficking in Drosophila. Mol Biol Cell 2018; 29:1640-1651. [PMID: 29742016 PMCID: PMC6080656 DOI: 10.1091/mbc.e17-09-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis and maturation of the light sensor, rhodopsin, are critical for the maintenance of light sensitivity and for photoreceptor homeostasis. In Drosophila, the main rhodopsin, Rh1, is synthesized in the endoplasmic reticulum and transported to the rhabdomere through the secretory pathway. In an unbiased genetic screen for factors involved in rhodopsin homeostasis, we identified mutations in vha68-1, which encodes the vacuolar proton-translocating ATPase (V-ATPase) catalytic subunit A isoform 1 of the V1 component. Loss of vha68-1 in photoreceptor cells disrupted post-Golgi anterograde trafficking of Rh1, reduced light sensitivity, increased secretory vesicle pH, and resulted in incomplete Rh1 deglycosylation. In addition, vha68-1 was required for activity-independent photoreceptor cell survival. Importantly, vha68-1 mutants exhibited phenotypes similar to those exhibited by mutations in the V0 component of V-ATPase, vha100-1. These data demonstrate that the V1 and V0 components of V-ATPase play key roles in post-Golgi trafficking of Rh1 and that Drosophila may represent an important animal model system for studying diseases associated with V-ATPase dysfunction.
Collapse
Affiliation(s)
- Haifang Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
48
|
Cooperative electrogenic proton transport pathways in the plasma membrane of the proton-secreting osteoclast. Pflugers Arch 2018; 470:851-866. [PMID: 29550927 DOI: 10.1007/s00424-018-2137-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
A proton is a ubiquitous signaling ion. Many transmembrane H+ transport pathways either maintain pH homeostasis or generate acidic compartments. The osteoclast is a bone-resorbing cell, which degrades bone tissues by secreting protons and lysosomal enzymes into the resorption pit. The plasma membrane facing bone tissue (ruffled border), generated partly by fusion of lysosomes, may mimic H+ flux mechanisms regulating acidic vesicles. We identified three electrogenic H+-fluxes in osteoclast plasma membranes-a vacuolar H+-ATPase (V-ATPase), a voltage-gated proton channel (Hv channel) and an acid-inducible H+-leak-whose electrophysiological profiles and regulation mechanisms differed. V-ATPase and Hv channel, both may have intracellular reservoirs, but the recruitment/internalization is regulated independently. V-ATPase mediates active H+ efflux, acidifying the resorption pit, while acid-inducible H+ leak, activated at an extracellular pH < 5.5, diminishes pit acidification, possibly to protect bone from excess degradation. The two-way H+ flux mechanisms in opposite directions may have advantages in fine regulation of pit pH. Hv channel mediates passive H+ efflux. Although its working ranges are limited, the amount of H+ extrusion is 100 times larger than those of the V-ATPase and may support reactive oxygen species production during osteoclastogenesis. Extracellular Ca2+, H+ and inorganic phosphate, which accumulate in the resorption pit, will either stimulate or inhibit these H+ fluxes. Skeletal integration is disrupted by too much or too less of bone resorption. Diversities in plasma membrane H+ flux pathways, which may co-operate or compete, are essential to adjust osteoclast functions in variable conditions.
Collapse
|
49
|
Karim MA, Brett CL. The Na +(K +)/H + exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion. Mol Biol Cell 2018; 29:317-325. [PMID: 29212874 PMCID: PMC5996954 DOI: 10.1091/mbc.e17-08-0496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023] Open
Abstract
Loss-of-function mutations in human endosomal Na+(K+)/H+ exchangers (NHEs) NHE6 and NHE9 are implicated in neurological disorders including Christianson syndrome, autism, and attention deficit and hyperactivity disorder. These mutations disrupt retention of surface receptors within neurons and glial cells by affecting their delivery to lysosomes for degradation. However, the molecular basis of how these endosomal NHEs control endocytic trafficking is unclear. Using Saccharomyces cerevisiae as a model, we conducted cell-free organelle fusion assays to show that transport activity of the orthologous endosomal NHE Nhx1 is important for multivesicular body (MVB)-vacuolar lysosome fusion, the last step of endocytosis required for surface protein degradation. We find that deleting Nhx1 disrupts the fusogenicity of the MVB, not the vacuole, by targeting pH-sensitive machinery downstream of the Rab-GTPase Ypt7 needed for SNARE-mediated lipid bilayer merger. All contributing mechanisms are evolutionarily conserved offering new insight into the etiology of human disorders linked to loss of endosomal NHE function.
Collapse
|
50
|
Abstract
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Collapse
|