1
|
Fan J, Gillespie KP, Mesaros C, Blair IA. HMGB2-induced calreticulin translocation required for immunogenic cell death and ferroptosis of cancer cells are controlled by the nuclear exporter XPO1. Commun Biol 2024; 7:1234. [PMID: 39354146 PMCID: PMC11445383 DOI: 10.1038/s42003-024-06930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) protein from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the cell nucleus into the extracellular milieu. We previously showed that cisplatin-mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin-mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is required for the CRT translocation. Furthermore, CT-HMGB2 is three orders of magnitude more potent at inducing CRT translocation than oxaliplatin.
Collapse
Affiliation(s)
- Jingqi Fan
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin P Gillespie
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Penn/CHOP Center of Excellence in Friedreich's Ataxia, Center of Excellence in Environmental Toxicology, and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
3
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
4
|
The DnaJ-like Zinc Finger Protein ORANGE Promotes Proline Biosynthesis in Drought-Stressed Arabidopsis Seedlings. Int J Mol Sci 2022; 23:ijms23073907. [PMID: 35409266 PMCID: PMC8999238 DOI: 10.3390/ijms23073907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.
Collapse
|
5
|
Ma SH, Kim HM, Park SH, Park SY, Mai TD, Do JH, Koo Y, Joung YH. The ten amino acids of the oxygen-evolving enhancer of tobacco is sufficient as the peptide residues for protein transport to the chloroplast thylakoid. PLANT MOLECULAR BIOLOGY 2021; 105:513-523. [PMID: 33393067 PMCID: PMC7892526 DOI: 10.1007/s11103-020-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE The thylakoid transit peptide of tobacco oxygen-evolving enhancer protein contains a minimal ten amino acid sequences for thylakoid lumen transports. This ten amino acids do not contain twin-arginine, which is required for typical chloroplast lumen translocation. Chloroplasts are intracellular organelles responsible for photosynthesis to produce organic carbon for all organisms. Numerous proteins must be transported from the cytosol to chloroplasts to support photosynthesis. This transport is facilitated by chloroplast transit peptides (TPs). Four chloroplast thylakoid lumen TPs were isolated from Nicotiana tabacum and were functionally analyzed as thylakoid lumen TPs. Typical chloroplast stroma-transit peptides and thylakoid lumen transit peptides (tTPs) are found in N. tabacum transit peptides (NtTPs) and the functions of these peptides are confirmed with TP-GFP fusion proteins under fluorescence microscopy and chloroplast fractionation, followed by Western blot analysis. During the functional analysis of tTPs, we uncovered the minimum 10 amino acid sequence is sufficient for thylakoid lumen transport. These ten amino acids can efficiently translocate GFP protein, even if they do not contain the twin-arginine residues required for the twin-arginine translocation (Tat) pathway, which is a typical thylakoid lumen transport. Further, thylakoid lumen transporting processes through the Tat pathway was examined by analyzing tTP sequence functions and we demonstrate that the importance of hydrophobic core for the tTP cleavage and target protein translocation.
Collapse
Affiliation(s)
- Sang Hoon Ma
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyun Min Kim
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Se Hee Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Thanh Dat Mai
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Ju Hui Do
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Yeonjong Koo
- Department of Agricultural Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Young Hee Joung
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
6
|
The Nuclear Localization of the DnaJ-Like Zinc Finger Domain-Containing Protein EDA3 Affects Seed Development in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21217979. [PMID: 33121105 PMCID: PMC7662858 DOI: 10.3390/ijms21217979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022] Open
Abstract
The DnaJ-like zinc finger domain-containing proteins are involved in different aspects of plastid function and development. Some of these proteins were recently reported to have dual subcellular localization in the nucleus and plastids. One member of this family, PSA2 (AT2G34860), was found to localize to the thylakoid lumen and regulate the assembly of photosystem I (PSI). However, PSA2 was also annotated as Embryo sac Development Arrest 3 (EDA3) from the observation that its embryo sac development was arrested at the two-nuclear stage. In this study, we characterized the eda3 mutant, and demonstrated that, as compared with the wild-type (WT) plants, the mutant has shorter siliques, fewer siliques per plant, and fewer seeds per silique. Both aborted and undeveloped ovules were observed in siliques of the mutant. By immunoblot analysis, we found that, different from the chloroplast localization in mature leaves, EDA3 localizes in the nucleus in seeds. A nuclear localization signal was identified from the deduced amino acid sequence of EDA3, and also proved to be sufficient for directing its fusion peptide into the nucleus.
Collapse
|
7
|
Deng YY, Cheng L, Wang Q, Ge ZH, Zheng H, Cao TJ, Lu QQ, Yang LE, Lu S. Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway toward Lutein in Red Algal Seaweeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1354-1363. [PMID: 31933364 DOI: 10.1021/acs.jafc.9b06918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into different downstream branches. Carotenoids of the β,β-branch (e.g., β-carotene) are found in all photosynthetic organisms, but those of the β,ε-branch (e.g., lutein) are generally absent in cyanobacteria, heterokonts, and some red algae. Although both LCYBs and LCYEs have been characterized from land plants, there are only a few reports on LCYs from cyanobacteria and algae. Here, we cloned four LCY genes from Porphyra umbilicalis and Pyropia yezoensis (susabi-nori) of Bangiales, the most primitive red algal order that synthesizes lutein. Our functional characterization in both Escherichia coli and Arabidopsis thaliana demonstrated that each species has a pair of LCYB and LCYE. Similar to LCYs from higher plants, red algal LCYBs cyclize both ends of lycopene, and their LCYEs only cyclize a single end. The characterization of LCYEs from red algae resolved the first bifurcation step toward β-carotene and lutein biosynthesis. Our phylogenetic analysis suggests that LCYEs of the green lineage and the red algae originated separately during evolution.
Collapse
Affiliation(s)
- Yin-Yin Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Lu Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zi-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Hui Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qin-Qin Lu
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Li-En Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
- Jiangsu Marine Fisheries Research Institute , Nantong 226007 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
8
|
Tidhar A, Levy Y, Zauberman A, Vagima Y, Gur D, Aftalion M, Israeli O, Chitlaru T, Ariel N, Flashner Y, Zvi A, Mamroud E. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl Trop Dis 2019; 13:e0007449. [PMID: 31170147 PMCID: PMC6553720 DOI: 10.1371/journal.pntd.0007449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis. We have previously shown that the NlpD lipoprotein, which is involved in the regulation of cell morphogenesis, is essential for virulence of the plague bacteria, Yersinia pestis. To uncover the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis as well as phenotypic and virulence evaluation analyses of the nlpD and related mutants. The study reveals a new role for the Y. pestis NlpD lipoprotein in iron assimilation and Tat system activity.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| |
Collapse
|
9
|
Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. Microbiol Res 2019; 218:97-107. [DOI: 10.1016/j.micres.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022]
|
10
|
Wang Q, Huang XQ, Cao TJ, Zhuang Z, Wang R, Lu S. Heteromeric Geranylgeranyl Diphosphate Synthase Contributes to Carotenoid Biosynthesis in Ripening Fruits of Red Pepper ( Capsicum annuum var. conoides). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11691-11700. [PMID: 30339374 DOI: 10.1021/acs.jafc.8b04052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pepper ( Capsicum annuum) fruits are a rich source of carotenoids. Geranylgeranyl diphosphate (GGPP) is the precursor for carotenoid biosynthesis and is produced by GGPP synthase (GGPPS), which belongs to the prenyl transferase (PTS) family. In this study, we identified from the pepper genome a total of eight PTS homologues. Our subcellular localization, enzymatic activity, and expression level analyses proved that among these homologues Capana04g000412 is the only functional GGPPS (CaGGPPS1) for carotenoid biosynthesis in pepper fruits. We demonstrated that CaGGPPS1 interacts with a catalytically inactive small subunit homologue protein CaSSUII, and such an interaction promotes CaGGPPS1 enzymatic activity. We also revealed a protein-protein interaction between CaSSUII and a putative phytoene synthase and the repression of carotenoid accumulation by silencing CaSSUII in pepper fruits. Taken together, our results suggest an essential contribution of the CaGGPPS1/CaSSUII interaction to carotenoid biosynthesis in ripening pepper fruits.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zhong Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute , Zhengzhou 450001 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
11
|
Jeong J, Baek K, Kirst H, Melis A, Jin E. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:45-55. [DOI: 10.1016/j.bbabio.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
12
|
Huang XQ, Zhao L, Rui JD, Zhou CF, Zhuang Z, Lu S. At5g19540 Encodes a Novel Protein That Affects Pigment Metabolism and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:2140. [PMID: 29312395 PMCID: PMC5742152 DOI: 10.3389/fpls.2017.02140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 05/04/2023]
Abstract
Chlorophylls and carotenoids not only function in photosynthesis and photoprotection but are also involved in the assembly of thylakoid membranes and the stabilization of apoproteins in photosystems. In this study, we identified a nuclear gene required for chlorophyll and carotenoid metabolism, namely, DWARF AND YELLOW 1 (DY1). Growth of the loss-of-function dy1 mutant was severely retarded, and the seedlings of this mutant accumulated significantly less amounts of both chlorophylls and carotenoids in cotyledons and rosette leaves, although genes related to pigment metabolism did not show corresponding fluctuation at the transcriptional level. In chloroplasts of the dy1 leaves, thylakoids were loosely packed into grana. The dy1 mutant also possessed severely impaired photosynthetic and photoprotective abilities. DY1 encodes a chloroplast stroma protein that is highly conserved in vascular plants. Our results demonstrated that after the full-length DY1 (53 kDa) was imported into the chloroplast and its N-terminal transit peptide was processed, the C-terminal end of this premature DY1 (42 kDa) was also removed during the maturation of rosette leaves, resulting in a 24-kDa mature peptide. Our blue native PAGE and Western blot analyses showed the presence of both premature and mature forms of DY1 in protein complexes. The involvement of DY1 in chloroplast development is discussed.
Collapse
|
13
|
Sun TH, Zhou F, Liu CJ, Zhuang Z, Lu S. The DnaJ-like zinc finger domain protein ORANGE localizes to the nucleus in etiolated cotyledons of Arabidopsis thaliana. PROTOPLASMA 2016; 253:1599-1604. [PMID: 26634929 DOI: 10.1007/s00709-015-0919-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
Vitamin A deficiency (VAD) is a worldwide health problem. Overexpression of the DnaJ-like zinc finger domain protein ORANGE (OR) is a novel strategy for the biofortification of pro-vitamin A carotenoids in different staple crops to alleviate VAD. In plants, OR triggers the differentiation from non-pigmented plastids into carotenoid-accumulating plastids. There are different reports on the subcellular localization of this protein in either chloroplasts or the nucleus, both of which were supported by confocal observation and protein-protein interaction results. In this work, we studied the subcellular localization of OR in the cotyledons of germinating seedlings whose plastids were transitioning from non-pigmented proplastids into carotenoid-accumulating etioplasts in the dark, and then into chloroplasts upon illumination. Our Western blot analysis identified two bands of the Arabidopsis OR protein (AtOR) from the chloroplast fraction of the mature leaves (i.e., a 34-kDa form corresponding to the full-length peptide and a 30-kDa form suggesting the removal of the N-terminal chloroplast transit peptide). We found that the full-length AtOR was predominantly localized in the nucleus in etiolated cotyledons, although its abundance decreased upon illumination. Our bioinformatics analysis indicated a nuclear localization signal (NLS) after the N-terminal chloroplast transit peptide. When we substituted different N-terminal regions of AtOR with the green fluorescent protein, our confocal observations demonstrated that this NLS was sufficient to target AtOR to the nucleus. Our results demonstrate that AtOR is a dual-targeted protein that mainly localizes in the nucleus in etiolated cotyledons.
Collapse
Affiliation(s)
- Tian-Hu Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chuan-Jun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhong Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Kang DG, Seo JH, Jo BH, Kim CS, Choi SS, Cha HJ. Versatile signal peptide ofFlavobacterium-originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins inEscherichia coli. Biotechnol Prog 2016; 32:848-54. [DOI: 10.1002/btpr.2274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 04/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Dong Gyun Kang
- Dept. of Chemical Engineering; Pohang University of Science and Technology; Pohang 790-784 Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering; Yeungnam University; Gyeongsan 712-749 Korea
| | - Byung Hoon Jo
- Dept. of Chemical Engineering; Pohang University of Science and Technology; Pohang 790-784 Korea
| | - Chang Sup Kim
- School of Biotechnolgy and Graduate School of Biochemistry; Yeungnam University; Gyeongsan 712-749 Korea
| | - Suk Soon Choi
- Dept. of Biological and Environmental Engineering; Semyung University; Jecheon 390-711 Korea
| | - Hyung Joon Cha
- Dept. of Chemical Engineering; Pohang University of Science and Technology; Pohang 790-784 Korea
| |
Collapse
|
15
|
Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans. J Bacteriol 2014; 197:893-904. [PMID: 25512312 DOI: 10.1128/jb.02370-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA.
Collapse
|
16
|
Lee JJ, Lim JJ, Kim DG, Simborio HL, Kim DH, Reyes AWB, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Characterization of culture supernatant proteins from Brucella abortus and its protection effects against murine brucellosis. Comp Immunol Microbiol Infect Dis 2014; 37:221-8. [PMID: 25016407 DOI: 10.1016/j.cimid.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/13/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
In this study, we characterized the secreted proteins of Brucella abortus into the enriched media under the bacterial laboratory growth condition and investigated the pathogenic importance of culture supernatant (CS) proteins to B. abortus infection. CS proteins from stationary phase were concentrated and analyzed using 2D electrophoresis. In MALDI TOF/TOF analysis, more than 27 proteins including CuZn SOD, Dps, Tat, OMPs, Adh, LivF, Tuf, SucC, GroEL and DnaK were identified. Cytotoxic effects of CS proteins were found to increase in a dose-dependent manner in RAW 264.7 cells. Upon B. abortus challenge into phagocytes, however, CS proteins pre-treated cells exhibited lower bacterial uptake and intracellular replication compared to untreated cells. Immunization with CS proteins induced a strong humoral and cell mediated immune responses and exhibited significant higher degree of protection against virulence of B. abortus infection compared to mice immunized with Brucella broth protein (BBP). Taken together, these results indicate that B. abortus secreted a number of soluble immunogenic proteins under laboratory culture condition, which can promote antibody production resulted in enhancing host defense against to subsequently bacterial infection. Moreover, further analysis of CS proteins may help to understand the pathogenic mechanism of B. abortus infection and host-pathogen interaction.
Collapse
Affiliation(s)
- Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea; College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Ju Lim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Geun Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hannah Leah Simborio
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hyeok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - WonGi Min
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong Hee Kim
- School of Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
17
|
Signal peptide of cellulase. Appl Microbiol Biotechnol 2014; 98:5329-62. [DOI: 10.1007/s00253-014-5742-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/24/2022]
|
18
|
Nualkaew N, Guennewich N, Springob K, Klamrak A, De-Eknamkul W, Kutchan TM. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba. PHYTOCHEMISTRY 2013; 91:140-147. [PMID: 23092673 DOI: 10.1016/j.phytochem.2012.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 08/14/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57-85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.
Collapse
Affiliation(s)
- Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon-Kaen University, Khon-Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
19
|
Park HJ, Lee SS, You YN, Yoon DH, Kim BG, Ahn JC, Cho HS. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice. Int J Mol Sci 2013; 14:5899-919. [PMID: 23485991 PMCID: PMC3634459 DOI: 10.3390/ijms14035899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023] Open
Abstract
The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.
Collapse
Affiliation(s)
- Hyun Ji Park
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Sang Sook Lee
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Young Nim You
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Dae Hwa Yoon
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
- Department of Pharmacology, Medical Science, Seonam University, Namwon 590-170, Korea
| | - Beom-Gi Kim
- Division of Bio-Crops Development, National Academy of Agricultural Science, RDA, Suwon 441-707, Korea; E-Mail:
| | - Jun Cheul Ahn
- Department of Pharmacology, Medical Science, Seonam University, Namwon 590-170, Korea
- Authors to whom correspondence should be addressed; E-Mails: (J.C.A.); (H.S.C.); Tel.: +82-63-620-0256 (J.C.A.); +82-42-860-4469 (H.S.C); Fax: +82-63-620-0031 (J.C.A.); +82-42-860-4608 (H.S.C)
| | - Hye Sun Cho
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (J.C.A.); (H.S.C.); Tel.: +82-63-620-0256 (J.C.A.); +82-42-860-4469 (H.S.C); Fax: +82-63-620-0031 (J.C.A.); +82-42-860-4608 (H.S.C)
| |
Collapse
|
20
|
Goosens VJ, Otto A, Glasner C, Monteferrante CC, van der Ploeg R, Hecker M, Becher D, van Dijl JM. Novel Twin-Arginine Translocation Pathway-Dependent Phenotypes of Bacillus subtilis Unveiled by Quantitative Proteomics. J Proteome Res 2013; 12:796-807. [DOI: 10.1021/pr300866f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivianne J. Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Corinna Glasner
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine C. Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - René van der Ploeg
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
21
|
Eick M, Stöhr C. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase. PROTOPLASMA 2012; 249:909-918. [PMID: 22160216 DOI: 10.1007/s00709-011-0355-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.
Collapse
Affiliation(s)
- Manuela Eick
- Institut für Botanik, Ernst-Moritz-Arndt-Universität, Grimmer Strasse 88, 17487, Greifswald, Germany
| | | |
Collapse
|
22
|
Waraho D, DeLisa MP. Identifying and optimizing intracellular protein-protein interactions using bacterial genetic selection. Methods Mol Biol 2012; 813:125-143. [PMID: 22083739 DOI: 10.1007/978-1-61779-412-4_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-protein interactions are crucial for the vast majority of biological processes. To fully understand these processes therefore requires methods for identifying protein interactions within the complex cellular environment. To isolate interacting proteins, we have developed a simple and reliable genetic selection by exploiting the inbuilt "hitchhiker" mechanism of the Escherichia coli twin-arginine translocation (Tat) pathway. This method is based on the unique ability of the Tat system to efficiently co-localize noncovalent complexes of two folded polypeptides to the periplasmic space of E. coli. The genetic selection is comprised of two engineered fusion proteins: an N-terminal Tat signal peptide fused to the protein of interest, and the known or putative partner protein fused to mature TEM-1 β-lactamase. The efficiency with which co-localized β-lactamase chimeras are exported in the periplasm, and thus confer ampicillin resistance to cells, is directly linked to the relative binding affinity of the protein-ligand system. Thus, ampicillin resistance can be used as a convenient readout for identifying and optimizing protein interactions in E. coli. Furthermore, because Tat substrates must be correctly folded for export, our method favors the identification of soluble, non-aggregating, protease-resistant protein pairs. Overall, we anticipate that this new selection tool will be useful for discovering and engineering protein drugs, protein complexes for structural biology, factors that inhibit PPIs, and components for synthetic biology.
Collapse
Affiliation(s)
- Dujduan Waraho
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
23
|
Wang X, Yue J, Ren X, Wang Y, Tan M, Li B, Liang L. Modularity analysis based on predicted protein-protein interactions provides new insights into pathogenicity and cellular process of Escherichia coli O157:H7. Theor Biol Med Model 2011; 8:47. [PMID: 22188601 PMCID: PMC3275473 DOI: 10.1186/1742-4682-8-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022] Open
Abstract
Background With the development of experimental techniques and bioinformatics, the quantity of data available from protein-protein interactions (PPIs) is increasing exponentially. Functional modules can be identified from protein interaction networks. It follows that the investigation of functional modules will generate a better understanding of cellular organization, processes, and functions. However, experimental PPI data are still limited, and no modularity analysis of PPIs in pathogens has been published to date. Results In this study, we predict and analyze the functional modules of E. coli O157:H7 systemically by integrating several bioinformatics methods. After evaluation, most of the predicted modules are found to be biologically significant and functionally homogeneous. Six pathogenicity-related modules were discovered and analyzed, including novel modules. These modules provided new information on the pathogenicity of O157:H7. The modularity of cellular function and cooperativity between modules are also discussed. Moreover, modularity analysis of O157:H7 can provide possible candidates for biological pathway extension and clues for discovering new pathways of cross-talk. Conclusions This article provides the first modularity analysis of a pathogen and sheds new light on the study of pathogens and cellular processes. Our study also provides a strategy for applying modularity analysis to any sequenced organism.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Fisher AC, Kim JY, Perez-Rodriguez R, Tullman-Ercek D, Fish WR, Henderson LA, DeLisa MP. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb Biotechnol 2011; 1:403-15. [PMID: 21261860 PMCID: PMC3057487 DOI: 10.1111/j.1751-7915.2008.00041.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Historically, the general secretory (Sec) pathway of Gram‐negative bacteria has served as the primary route by which heterologous proteins are delivered to the periplasm in numerous expression and engineering applications. Here we have systematically examined the twin‐arginine translocation (Tat) pathway as an alternative, and possibly advantageous, secretion pathway for heterologous proteins. Overall, we found that: (i) export efficiency and periplasmic yield of a model substrate were affected by the composition of the Tat signal peptide, (ii) Tat substrates were correctly processed at their N‐termini upon reaching the periplasm and (iii) proteins fused to maltose‐binding protein (MBP) were reliably exported by the Tat system, but only when correctly folded; aberrantly folded MBP fusions were excluded by the Tat pathway's folding quality control feature. We also observed that Tat export yield was comparable to Sec for relatively small, well‐folded proteins, higher relative to Sec for proteins that required cytoplasmic folding, and lower relative to Sec for larger, soluble fusion proteins. Interestingly, the specific activity of material purified from the periplasm was higher for certain Tat substrates relative to their Sec counterparts, suggesting that Tat expression can give rise to relatively pure and highly active proteins in one step.
Collapse
Affiliation(s)
- Adam C Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Schleiff E, Maier UG, Becker T. Omp85 in eukaryotic systems: one protein family with distinct functions. Biol Chem 2011; 392:21-7. [DOI: 10.1515/bc.2011.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractOmp85-like proteins are evolutionary ancient components of bacterial outer membranes and their evolutionary offspring. As a consequence, proteins of this family can be found in the outer membrane systems of Gram-negative bacteria and endosymbiotically derived organelles. In the different membranes, they perform distinct functions such as catalyzing protein insertion into or protein transport across the bilayer. Here, the knowledge on the Omp85-like proteins in the eukaryotic system with regard to structural properties and physiological behavior is summarized.
Collapse
|
26
|
Ho YC, Liao ZX, Panda N, Tang DW, Yu SH, Mi FL, Sung HW. Self-organized nanoparticles prepared by guanidine- and disulfide-modified chitosan as a gene delivery carrier. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11639h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
In silico methods for identifying organellar and suborganellar targeting peptides in Arabidopsis chloroplast proteins and for predicting the topology of membrane proteins. Methods Mol Biol 2011; 774:243-80. [PMID: 21822844 DOI: 10.1007/978-1-61779-234-2_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous experimental and in silico approaches have been developed for attempting to identify the -subcellular localisation of proteins. Approximately 2,000-4,000 proteins are thought to be targeted to plastids in plants, but a complete and unambiguous catalogue has yet to be drawn up. This article reviews the various prediction methods that identify plastid targeting sequences, and those that can help estimate location and topology within the plastid or plastid membranes. The most successful approaches are described in detail, with detailed notes to help avoid common pitfalls and advice on interpreting conflicting or ambiguous results. In most cases, it is best to try multiple approaches, and we also cover the powerful new integrated databases that provide a selected blend of experimental data and predictions.
Collapse
|
28
|
Bohnsack MT, Schleiff E. The evolution of protein targeting and translocation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1115-30. [DOI: 10.1016/j.bbamcr.2010.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/26/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
|
29
|
Allen JF. Why chloroplasts and mitochondria contain genomes. Comp Funct Genomics 2010; 4:31-6. [PMID: 18629105 PMCID: PMC2447392 DOI: 10.1002/cfg.245] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 11/25/2002] [Indexed: 11/05/2022] Open
Abstract
Chloroplasts and mitochondria originated as bacterial symbionts. The larger, host
cells acquired genetic information from their prokaryotic guests by lateral gene
transfer. The prokaryotically-derived genes of the eukaryotic cell nucleus now
function to encode the great majority of chloroplast and mitochondrial proteins,
as well as many proteins of the nucleus and cytosol. Genes are copied and moved
between cellular compartments with relative ease, and there is no established obstacle
to successful import of any protein precursor from the cytosol. Yet chloroplasts and
mitochondria have not abdicated all genes and gene expression to the nucleus and
to cytosolic translation. What, then, do chloroplast- and mitochondrially-encoded
proteins have in common that confers a selective advantage on the cytoplasmic
location of their genes? The proposal advanced here is that co-location of chloroplast
and mitochondrial genes with their gene products is required for rapid and direct
regulatory coupling. Redox control of gene expression is suggested as the common
feature of those chloroplast and mitochondrial proteins that are encoded in situ.
Recent evidence is consistent with this hypothesis, and its underlying assumptions
and predictions are described.
Collapse
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund SE-221 00, Sweden.
| |
Collapse
|
30
|
San-Miguel MA, Robinson C, Mark Rodger P. Secondary structure simulations of twin-arginine signal peptides in different environments. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020902974063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Dumas E, Desvaux M, Chambon C, Hébraud M. Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 2009; 9:3136-55. [DOI: 10.1002/pmic.200800765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Subcellular localization of TatAd of Bacillus subtilis depends on the presence of TatCd or TatCy. J Bacteriol 2009; 191:4410-8. [PMID: 19395490 DOI: 10.1128/jb.00215-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Bacillus subtilis contains two minimal Tat translocases, TatAdCd and TatAyCy, which are each involved in the secretion of one or more specific protein substrates. We have investigated the subcellular localization of the TatA components by employing C-terminal green fluorescent protein (GFP) fusions and fluorescence microscopy. When expressed from a xylose-inducible promoter, the TatA-GFP fusion proteins displayed a dual localization pattern, being localized peripherally and showing bright foci which are predominantly located at the division sites and/or poles of the cells. Importantly, the localization of TatAd-GFP was similar when the protein was expressed from its own promoter under phosphate starvation conditions, indicating that these foci are not the result of artificial overexpression. Moreover, the TatAd-GFP fusion protein was shown to be functional in the translocation of its substrate PhoD, provided that TatCd is also present. Furthermore, we demonstrate that the localization of TatAd-GFP in foci depends on the presence of the TatCd component. Remarkably, however, the TatAd-GFP foci can also be observed in the presence of TatCy, indicating that TatAd can interact not only with TatCd but also with TatCy. These results suggest that the formation of TatAd complexes in B. subtilis is controlled by TatC.
Collapse
|
33
|
Huang KC, Huang PH, Lin SC. A comparative study on the secretion of alkaline phosphatase in Escherichia coli. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2008.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Abstract
Novel single-molecule techniques allow the observation of single-molecular motors in real time under physiological conditions. This enables one to gain previously inaccessible information about the mechanics of molecular motors, especially their mechano-chemical coupling. As an example, we discuss the DNA import motor of the bacteriophage phi29 and protein import into chloroplasts. In contrast to these highly developed biological molecular motors, artificial molecular motors are still at an early stage of development. Nevertheless, they already give a wealth of information. Our review focuses on how the investigation of artificial and biological molecular motors can mutually enrich each other.
Collapse
Affiliation(s)
- Moritz Mickler
- Physics Department, IMETUM, CeNS and CIPSM, Technische Universität München, 85748 Garching, Germany
| | | | | |
Collapse
|
35
|
The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl Environ Microbiol 2008; 74:7507-13. [PMID: 18931290 DOI: 10.1128/aem.01401-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis alpha-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.
Collapse
|
36
|
Salmonella enterica serovar Enteritidis genes induced during oviduct colonization and egg contamination in laying hens. Appl Environ Microbiol 2008; 74:6616-22. [PMID: 18776023 DOI: 10.1128/aem.01087-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is the predominant serovar associated with salmonellosis worldwide, which is in part due to its ability to contaminate the internal contents of the hen's egg. It has been shown that S. enterica serovar Enteritidis has an unusual tropism for the avian reproductive tract and an ability to persist in the oviduct and ovary. Factors allowing S. enterica serovar Enteritidis strains to contaminate eggs could be a specific interaction with the oviduct tissue, leading to persisting oviduct colonization. In vivo expression technology, a promoter-trap strategy, was used to identify genes expressed during oviduct colonization and egg contamination with S. enterica serovar Enteritidis. A total of 25 clones with in vivo-induced promoters were isolated from the oviduct tissue and from laid eggs. Among the 25 clones, 7 were isolated from both the oviducts and the eggs. DNA sequencing of the cloned promoters revealed that genes involved in amino acid and nucleic acid metabolism, motility, cell wall integrity, and stress responses were highly expressed in the reproductive tract tissues of laying hens.
Collapse
|
37
|
Koussevitzky S, Ne'eman E, Peleg S, Harel E. Polyphenol oxidase can cross thylakoids by both the Tat and the Sec-dependent pathways: a putative role for two stromal processing sites. PHYSIOLOGIA PLANTARUM 2008; 133:266-77. [PMID: 18331405 DOI: 10.1111/j.1399-3054.2008.01074.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polyphenol oxidase (PPO; EC 1.10.3.2 or EC 1.14.18.1), a thylakoid-lumen protein encoded by a nuclear gene, plays a role in the defense of plants against both herbivores and pathogens. Although previously reported to be a Tat (twin-arginine-dependent translocation) protein, the import of PPO by isolated chloroplasts was inhibited by azide, a diagnostic inhibitor of the Sec-dependent pathway. Import of PPO inhibited thylakoid translocation of a Tat protein and did not affect translocation of Sec-dependent proteins. In contrast, a pre-accumulated iPPO competed with Sec-dependent but not with Tat proteins. A previously reported second processing step in the stroma removes a twin-Arg that is part of a 'Sec-avoidance' motif in the thylakoid targeting domain of PPO. When the second processing site was mutated, the import of the resulting precursor showed Sec-dependent characteristics. The PPO transit peptide could drive thylakoid translocation of a Tat protein in the dark. Azide inhibited the secretion of a PPO intermediate that lacks a twin-Arg to the periplasm of Escherichia coli, but had no effect on the export of the intermediate containing the twin-Arg. PPO is synthesized in plants in response to wound and pathogen-related signals and it is possible that when the Tat pathway is unable to translocate adequate amounts of newly synthesized PPO, translocation is diverted to the Sec-dependent pathway by processing the intermediate at the second site and removing the twin-Arg.
Collapse
Affiliation(s)
- Shai Koussevitzky
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
38
|
Qiu Y, Zhang R, Binkowski TA, Tereshko V, Joachimiak A, Kossiakoff A. The 1.38 A crystal structure of DmsD protein from Salmonella typhimurium, a proofreading chaperone on the Tat pathway. Proteins 2008; 71:525-33. [PMID: 18175314 DOI: 10.1002/prot.21828] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The DmsD protein is necessary for the biogenesis of dimethyl sulphoxide (DMSO) reductase in many prokaryotes. It performs a critical chaperone function initiated through its binding to the twin-arginine signal peptide of DmsA, the catalytic subunit of DMSO reductase. Upon binding to DmsD, DmsA is translocated to the periplasm via the so-called twin-arginine translocation (Tat) pathway. Here we report the 1.38 A crystal structure of the protein DmsD from Salmonella typhimurium and compare it with a close functional homolog, TorD. DmsD has an all-alpha fold structure with a notable helical extension located at its N-terminus with two solvent exposed hydrophobic residues. A major difference between DmsD and TorD is that TorD structure is a domain-swapped dimer, while DmsD exists as a monomer. Nevertheless, these two proteins have a number of common features suggesting they function by using similar mechanisms. A possible signal peptide-binding site is proposed based on structural similarities. Computational analysis was used to identify a potential GTP binding pocket on similar surfaces of DmsD and TorD structures.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Indicators from archaeal secretomes. Microbiol Res 2008; 165:1-10. [PMID: 18407482 DOI: 10.1016/j.micres.2008.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/14/2008] [Accepted: 03/01/2008] [Indexed: 11/21/2022]
Abstract
Just as in the Eukarya and the Bacteria, members of the Archaea need to export proteins beyond the cell membrane. This would be required to fulfill a variety of essential functions such as nutrient acquisition and biotransformations, maintenance of extracellular structures and more. Apart from the Eukarya and the Bacteria however, members of the Archaea share a number of unique characteristics. Does this uniqueness extend to the protein secretion system? It was the objective of this study to answer this question. To overcome the limited experimental information on secreted proteins in Archaea, this study was carried out by subjecting the available archaeal genomes, which represent halophiles, thermophiles, and extreme thermophiles, to bioinformatics analysis. Specifically, to examine the properties of the secretomes of the Archaea using the ExProt program. A total of 24 genomes were analyzed. Secretomes were found to fall in the range of 6% of total ORFs (Methanopyrus kandleri) to 19% (Halobacterium sp. NRC-1). Methanosarcina acetivorans has the highest fraction of lipoproteins (at 89) and the lowest (at 1) were members of the Thermoplasma, Pyrobaculum aerophilum, and Nanoarchaeum equitans. Based on the Tat consensus sequence, contribution of these secreted proteins to the secretomes were negligible, making up 8 proteins out of a total of 7105 predicted exported proteins. Amino acid composition, an attribute of signal peptides not used as a selection criteria by ExProt, of predicted archaeal signal peptides show that in the haloarchaea secretomes, the frequency of the amino acid Lys is much lower than that seen in bacterial signal peptides, but is compensated for by a higher frequency of Arg. It also showed that higher frequencies for Thr, Val, and Gly contribute to the hydrophobic character in haloarchaeal signal peptides, unlike bacterial signal peptides in which the hydrophobic character is dominated by Leu and Ile.
Collapse
|
40
|
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007; 2:953-71. [PMID: 17446895 DOI: 10.1038/nprot.2007.131] [Citation(s) in RCA: 2458] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Determining the subcellular localization of a protein is an important first step toward understanding its function. Here, we describe the properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and chloroplasts, and sketch a brief history of methods to predict subcellular localization based on these sorting signals and other sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed step-by-step instructions for the coupled use of the amino-acid sequence-based predictors TargetP, SignalP, ChloroP and TMHMM, which are all hosted at the Center for Biological Sequence Analysis, Technical University of Denmark. In addition, we describe and provide web references to other useful subcellular localization predictors. Finally, we discuss predictive performance measures in general and the performance of TargetP and SignalP in particular.
Collapse
Affiliation(s)
- Olof Emanuelsson
- Stockholm Bioinformatics Center, Albanova, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Yamada K, Sanzen I, Ohkura T, Okamoto A, Torii K, Hasegawa T, Ohta M. Analysis of Twin-Arginine Translocation Pathway Homologue in Staphylococcus aureus. Curr Microbiol 2007; 55:14-9. [PMID: 17551788 DOI: 10.1007/s00284-006-0461-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 10/04/2006] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus releases a large number of exoproteins, including membrane-active proteins and toxins with superantigenic activity involved in pathogenicity. However, the export pathways of exoproteins in S. aureus have not been reported. We analyzed the function of the staphylococcal twin-arginine translocation (Tat) pathway homologue, the presence of which was recently discovered according to the genome database. The amino-acid sequences of the Tat homologues of S. aureus do not have a high similarity with those of Escherichia coli and other bacteria. Constructed tatC-deficient mutants from distinct parent strains showed the same patterns of exoproteins compared with those of parent strains on two-dementional gel electrophoresis, and the amounts of secreted staphylococcal enterotoxins and toxic shock syndrome toxin-1, of which signal peptides have some features often seen in signal sequences of Tat-dependent proteins, did not change with Western blotting analyses. Therefore, it seems that the Tat pathway does not play a major role in the secretion system of S. aureus, but other export pathways may play an important role in toxin secretion. This is the first experimental report showing the influence of the Tat pathway on the secretion of S. aureus.
Collapse
Affiliation(s)
- Keiko Yamada
- Department of Bacteriology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Meissner D, Vollstedt A, van Dijl JM, Freudl R. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 2007; 76:633-42. [PMID: 17453196 DOI: 10.1007/s00253-007-0934-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the secretory production of heterologous proteins via the Sec system. In this study, the potential for Tat-dependent heterologous protein secretion was compared in the three Gram-positive bacteria Staphylococcus carnosus, Bacillus subtilis, and Corynebacterium glutamicum using green fluorescent protein (GFP) as a model protein. In all three microorganisms, fusion of a Tat signal peptide to GFP resulted in its Tat-dependent translocation across the corresponding cytoplasmic membranes. However, striking differences with respect to the final localization and folding status of the exported GFP were observed. In S. carnosus, GFP was trapped entirely in the cell wall and not released into the supernatant. In B. subtilis, GFP was secreted into the supernatant, however, in an inactive form. In contrast, C. glutamicum effectively secreted active GFP. Our results clearly demonstrate that a comparative evaluation of different Gram-positive host microorganisms is a crucial step on the way to an efficient Tat-mediated secretory production process for a desired heterologous target protein.
Collapse
Affiliation(s)
- Daniel Meissner
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | | | | | | |
Collapse
|
43
|
Ribnicky B, Van Blarcom T, Georgiou G. A scFv antibody mutant isolated in a genetic screen for improved export via the twin arginine transporter pathway exhibits faster folding. J Mol Biol 2007; 369:631-9. [PMID: 17462668 PMCID: PMC1995598 DOI: 10.1016/j.jmb.2007.03.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/16/2007] [Accepted: 03/27/2007] [Indexed: 11/15/2022]
Abstract
Proteins destined for export across the cytoplasmic membrane via the post-translational Sec-dependent route have to be maintained in a largely unfolded state within the cytoplasm. In sharp contrast, only proteins that have folded into a native-like state within the cytoplasm are competent for export via the twin arginine translocation (Tat) pathway. Proteins that contain disulfide bonds, such as scFv antibody fragments, can be translocated via Tat only when expressed in Escherichia coli trxB gor mutant strains having an oxidizing cytoplasm. However, export is poor with the majority of the protein accumulating in the cytoplasm and only a fraction exported to the periplasmic space. Using a high throughput fluorescence screen, we isolated a mutant of the anti-digoxin 26-10 scFv from a large library of random mutants that is exported with a higher yield into the periplasm. In vitro refolding experiments revealed that the mutant scFv exhibits a 250% increase in the rate constant of the critical second phase of folding. This result suggests that Tat export competence is related to the protein folding rate and could be exploited for the isolation of faster folding protein mutants.
Collapse
Affiliation(s)
- Brian Ribnicky
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Thomas Van Blarcom
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
- *Corresponding author: , Department of Chemical Engineering, CPE 4.410, University of Texas at Austin, Austin, TX 78712, Phone 512-471-6975, Fax 512-471-7963
| |
Collapse
|
44
|
Kreutzenbeck P, Kröger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R. Escherichia coli Twin Arginine (Tat) Mutant Translocases Possessing Relaxed Signal Peptide Recognition Specificities. J Biol Chem 2007; 282:7903-11. [PMID: 17229735 DOI: 10.1074/jbc.m610126200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.
Collapse
Affiliation(s)
- Peter Kreutzenbeck
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Pérez-Rodríguez R, Fisher AC, Perlmutter JD, Hicks MG, Chanal A, Santini CL, Wu LF, Palmer T, DeLisa MP. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 2007; 367:715-30. [PMID: 17280684 DOI: 10.1016/j.jmb.2007.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
All secreted proteins in Escherichia coli must be maintained in an export-competent state before translocation across the inner membrane. In the case of the Sec pathway, this function is carried out by the dedicated SecB chaperone and the general chaperones DnaK-DnaJ-GrpE and GroEL-GroES, whose job collectively is to render substrate proteins partially or entirely unfolded before engagement of the translocon. To determine whether these or other general molecular chaperones are similarly involved in the translocation of folded proteins through the twin-arginine translocation (Tat) system, we screened a collection of E. coli mutant strains for their ability to transport a green fluorescent protein (GFP) reporter through the Tat pathway. We found that the molecular chaperone DnaK was essential for cytoplasmic stability of GFP bearing an N-terminal Tat signal peptide, as well as for numerous other recombinantly expressed endogenous and heterologous Tat substrates. Interestingly, the stability conferred by DnaK did not require a fully functional Tat signal as substrates bearing translocation defective twin lysine substitutions in the consensus Tat motif were equally unstable in the absence of DnaK. These findings were corroborated by crosslinking experiments that revealed an in vivo association between DnaK and a truncated version of the Tat substrate trimethylamine N-oxide reductase (TorA502) bearing an RR or a KK signal peptide. Since TorA502 lacks nine molybdo-cofactor ligands essential for cofactor attachment, the involvement of DnaK is apparently independent of cofactor acquisition. Finally, we show that the stabilizing effects of DnaK can be exploited to increase the expression and translocation of Tat substrates under conditions where the substrate production level exceeds the capacity of the Tat translocase. This latter observation is expected to have important consequences for the use of the Tat system in biotechnology applications where high levels of periplasmic expression are desirable.
Collapse
|
46
|
Tullman-Ercek D, DeLisa MP, Kawarasaki Y, Iranpour P, Ribnicky B, Palmer T, Georgiou G. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 2007; 282:8309-16. [PMID: 17218314 PMCID: PMC2730154 DOI: 10.1074/jbc.m610507200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli genome encodes at least 29 putative signal peptides containing a twin arginine motif characteristic of proteins exported via the twin arginine translocation (Tat) pathway. Fusions of the putative Tat signal peptides plus six to eight amino acids of the mature proteins to three reporter proteins (short-lived green fluorescent protein, maltose-binding protein (MBP), and alkaline phosphatase) and also data from the cell localization of epitope-tagged full-length proteins were employed to determine the ability of the 29 signal peptides to direct export through the Tat pathway, through the general secretory pathway (Sec), or through both. 27/29 putative signal peptides could export one or more reporter proteins through Tat. Of these, 11 signal peptides displayed Tat specificity in that they could not direct the export of Sec-only reporter proteins. The rest (16/27) were promiscuous and were capable of directing export of the appropriate reporter either via Tat (green fluorescent protein, MBP) or via Sec (PhoA, MBP). Mutations that conferred a >or=+1 charge to the N terminus of the mature protein abolished or drastically reduced routing through the Sec pathway without affecting the ability to export via the Tat pathway. These experiments demonstrate that the charge of the mature protein N terminus affects export promiscuity, independent of the effect of the folding state of the mature protein.
Collapse
Affiliation(s)
| | - Matthew P. DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
| | - Yasuaki Kawarasaki
- Department of Chemical, University of Texas, Austin, Texas 78712
- Department of Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Pooya Iranpour
- Department of Chemical, University of Texas, Austin, Texas 78712
| | - Brian Ribnicky
- Department of Chemical, University of Texas, Austin, Texas 78712
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712
- Department of Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712
- To whom correspondence should be addressed: Dept. of Chemical Engineering, University of Texas at Austin, 1 University Station C04000, Austin, TX 78712. Tel.: 512-471-6975; Fax: 512-471-7963; E-mail:
| |
Collapse
|
47
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
48
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|
49
|
Sibbald MJJB, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, van Dijl JM. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88. [PMID: 16959968 PMCID: PMC1594592 DOI: 10.1128/mmbr.00008-06] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative "secretomics" approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the "gadgets" that S. aureus needs to conquer these well-protected niches.
Collapse
Affiliation(s)
- M J J B Sibbald
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schleiff E, Soll J. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep 2006; 6:1023-7. [PMID: 16264426 PMCID: PMC1371041 DOI: 10.1038/sj.embor.7400563] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022] Open
Abstract
Proteins are translocated across or inserted into membranes by machines that are composed of soluble and membrane-anchored subunits. The molecular action of these machines and their evolutionary origin are at present the focus of intense research. For instance, our understanding of the mode of insertion of beta-barrel membrane proteins into the outer membrane of endosymbiotically derived organelles has increased rapidly during the past few years. In particular, the identification of the Omp85/YaeT-involving pathways in Neisseria meningitidis, Escherichia coli and cyanobacteria, and homologues of Omp85/YaeT in chloroplasts and mitochondria, has provided new clues about the ancestral beta-barrel protein insertion pathway. This review focuses on recent advances in the elucidation of the evolutionarily conserved concepts that underlie the translocation and insertion of beta-barrel membrane proteins.
Collapse
Affiliation(s)
- Enrico Schleiff
- Department of Biology I, Ludwig-Maximilians-Universität Munich, Menzinger Strasse 67, 80638 Munich, Germany.
| | | |
Collapse
|