1
|
Errante A, Ciullo G, Ziccarelli S, Piras A, Russo C, Fogassi L. Predicting imitative performance through cortico-cerebellar circuits: A multivariate and effective connectivity study. Neuroimage 2025; 308:121081. [PMID: 39929404 DOI: 10.1016/j.neuroimage.2025.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/16/2025] Open
Abstract
The ability to accurately imitate actions requires the contribution of the Mirror Neuron System (MNS) and of prefrontal and cerebellar regions. The present study aimed at investigating whether functional interaction between cortical areas and the cerebellum during the observation of complex bimanual actions can predict individual ability to imitate the same actions. Nineteen healthy participants underwent an fMRI task in which they observed complex bimanual action sequences (paper folding) and subsequently imitated the same sequences. Control conditions included passive observation of bimanual actions, observation of reaching movements, observation of actions without intent to imitate, and observation of natural landscapes. Participants' imitation performance was video-recorded and scored for accuracy. Univariate whole-brain regression, multivariate pattern recognition, and generalized psychophysiological interaction analyses were used to assess whether activation patterns during the observation phase could predict subsequent imitation performance. The results showed that: (i) observing actions during the imitation condition activated parietal, premotor, prefrontal cortex, and lateral cerebellum; (ii) activation levels in the left anterior intraparietal sulcus (aIPS), ventral premotor cortex (PMv), dorsolateral prefrontal cortex (DLPFC), and right lateral cerebellum (CB VI) predicted imitation accuracy; (iii) a bilateral distribution pattern involving aIPS, PMv, DLPFC, and CB VI better predicted imitation performance than a whole-brain approach; (iv) increased effective connectivity between the right CB VI, left aIPS, and left DLPFC during observation-to-imitate condition correlated with higher imitation accuracy. These findings underscore the role of the cerebellum within the MNS in simulating observed actions and enabling their accurate reproduction.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Ciullo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Economics and Management, University of Parma, Parma, Italy
| | - Alessandro Piras
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Russo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
2
|
Simone L, Pierotti E, Satta E, Becchio C, Turella L. Resting-State Functional Interactions Between the Action Observation Network and the Mentalizing System. Eur J Neurosci 2025; 61:e70082. [PMID: 40114360 PMCID: PMC11926297 DOI: 10.1111/ejn.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Human social functioning is thought to rely on the action observation network (AON) and the mentalizing system (MS). It is debated whether AON and MS are functionally separate or if they interact. To this end, we combined resting-state connectivity with task-based fMRI to characterize the functional connectome within and between these systems. In detail, we computed resting-state connectivity within and between the AON and MS using single subject-defined regions of interest (ROIs). Our results showed a positive coupling between ROIs within each system and negative coupling between the two systems, supporting the existence of two independent networks at rest. Still, two regions (pSTS, aIFG) showed hybrid coupling, connecting with regions of both systems, suggesting that they might mediate cross-network communication. This characterization of the interplay between MS and AON in the healthy brain might provide the starting point to further investigate aberrant "connectivity" fingerprints associated with neuropsychiatric disorders characterized by impairments in social cognition.
Collapse
Affiliation(s)
- Luciano Simone
- Department of Medicine and SurgeryUniversity of Parma Via Volturno 39ParmaItaly
| | - Enrica Pierotti
- Center for Mind/Brain Sciences (CIMeC)University of TrentoRovereto (TN)Italy
| | - Eleonora Satta
- Center for Mind/Brain Sciences (CIMeC)University of TrentoRovereto (TN)Italy
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di TecnologiaRoveretoItaly
| | - Cristina Becchio
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Luca Turella
- Center for Mind/Brain Sciences (CIMeC)University of TrentoRovereto (TN)Italy
| |
Collapse
|
3
|
Fattal J, McAdams DP, Mittal VA. Interpersonal synchronization: An overlooked factor in development, social cognition, and psychopathology. Neurosci Biobehav Rev 2025; 170:106037. [PMID: 39929382 DOI: 10.1016/j.neubiorev.2025.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Intact social functioning relies on a combination of explicit and implicit behavioral, attentional, and interpersonal processes referred to as "social cognition". Characterizing these interpersonal processes forms a critical underpinning to understanding and treating psychopathology, particularly in disorders where deficits in social functioning do not emerge as a secondary symptom but rather as an essential feature of the disorder. Two of such disorders are autism spectrum disorders (ASD) and schizophrenia spectrum disorders (SZ). However, despite the substantial overlap in the features of social dysfunction between ASD and SZ, including social cognitive deficits in theory of mind, perspective-taking, and empathy, there is a limited understanding of the mechanisms underlying those shared deficits, and how to treat them. We suggest that disruptions of interpersonal functioning emerge over the course of development, and that interpersonal synchronization, a phenomenon in which behavioral and physiological cues align between interacting partners, forms a critical component of social cognition that underlies the disruption in social functioning in ASD and SZ. We present a conceptual review of typical and atypical development of social processes and highlight the role of interpersonal synchronization across the course of development. Then, we review the existing evidence suggesting impairments in both the intentional and spontaneous synchronization of interpersonal processes in ASD and SZ, as well as studies suggesting that interpersonal synchronization and clinical symptoms may be improved through body-oriented interventions within these disorders. Finally, we suggest potential mechanisms that may underpin typical and atypical development of interpersonal synchronization.
Collapse
Affiliation(s)
- Jessica Fattal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA.
| | - Dan P McAdams
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, Swift Hall, 2029 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
5
|
Zhang L, Zhang L, Wang J, Zhu Y. Frontal Cortex Acts as Causality Transition Hub from Mirror Network to Mentalizing Network During Action Intention Understanding. Brain Connect 2025; 15:3-18. [PMID: 39602238 DOI: 10.1089/brain.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Introduction: While understanding other's action intention, mirror and mentalizing systems of human brain are successively activated in action perception and intention inference processes. Methods: To reveal the relationship between mirror and mentalizing systems during the two stages, this electroencephalogram study adopted the method of time-varying orthogonalized partial directed coherence (OPDC) to assess causal interaction between mirror and mentalizing networks during a "hand-cup interaction" action intention understanding task. Results: Task-related causal connectivity was found in gamma frequency band (30-45 Hz), primarily manifested as directed edges from sensorimotor to frontal areas in poststimulus 400-600 ms interval and directed links from frontal to parietal and temporal regions in 600-800 ms period. The analysis of event-related potential and source currents suggests that the change of inter-regional causality is related with functional transition of the brain from mirror matching to intention inference. The OPDC network modeling further finds that frontal area contains more inflow nodes in mirror network, whereas more outflow nodes in mentalizing network, with high betweenness centrality in temporally changing functional communities. Compared with intention-oriented actions, identification of unintelligible action intention particularly induces stronger OPDC from right superior frontal to inferior frontal gyrus and from sensorimotor to right frontotemporal regions during mentalizing inference process. Conclusion: These findings collectively suggest that, in the time ordering of information transfer within the directed networks, frontal area plays an important role of bridging hub between mirror and mentalizing systems, from maintaining and supervising perceptual information for mirror matching to controlling the mentalizing process for decoding other's action intention.
Collapse
Affiliation(s)
- Li Zhang
- School of Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, PR China
| | - Lei Zhang
- School of Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, PR China
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Jing Wang
- School of Computer Science and Information Technology, Xinyang Normal University, Xinyang, PR China
| | - Yanmei Zhu
- School of Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, PR China
- Ministry of Education, Key Laboratory of Child Development and Learning Science (Southeast University), Nanjing, PR China
| |
Collapse
|
6
|
Forte V, Sartori L, Visalli A, Yildirim M, Galati G, Vidale M, Faresin E, Vallesi A. Neural plasticity in early potters: Shape analysis and TMS-EEG co-registration trace the rise of a new motor skill. PLoS One 2025; 20:e0316545. [PMID: 39823465 PMCID: PMC11741608 DOI: 10.1371/journal.pone.0316545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
In this study, we explored the biocultural mechanisms underlying ancient craft behaviours. Archaeological methods were integrated with neuroscience techniques to explore the impact on neuroplasticity resulting from the introduction of early pottery techniques. The advent of ceramic marked a profound change in the economy and socio-cultural dynamics of past societies. It may have also played a central role in developing new craft skills that influenced the neural plasticity of the potters. Coiling, one of the most widespread neolithic techniques, requires precise hand movements and the ability to regulate finger pressure to shape the clay without deformation. In a pilot study involving intensive training in neolithic pottery, we used TMS-EEG co-registration to monitor a group of participants and we examined the shape of the artefacts they made before and after training. Our findings suggest changes in the functional properties of the primary motor cortex (M1) responsible for the control and execution of actions. We also observed an improvement in symmetry and consistency of the artefacts and a significant reduction in errors. This multidisciplinary approach sheds light on the mechanisms of material culture's variation in the archaeological field and provides promising insights into the co-evolution of technology and human skill.
Collapse
Affiliation(s)
- Vanessa Forte
- Department of Science of Antiquities, Sapienza University of Rome, Rome, Italy
- Department of Cultural Heritage: Archaeology, History of Art, Cinema and Music, University of Padova, Padua, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Padua, Italy
| | | | - Mustafa Yildirim
- Department of Cognitive Psychology, Ruhr University Bochum, Bochum, Germany
| | - Gaspare Galati
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Massimo Vidale
- Department of Cultural Heritage: Archaeology, History of Art, Cinema and Music, University of Padova, Padua, Italy
| | - Emanuela Faresin
- Department of Cultural Heritage: Archaeology, History of Art, Cinema and Music, University of Padova, Padua, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
7
|
Melzel S, Altvater-Mackensen N, Ganglmayer K, Müller F, Steinmassl K, Hauf P, Paulus M. The development of children's and adults' use of kinematic cues for visual anticipation and verbal prediction of action. J Exp Child Psychol 2025; 249:106064. [PMID: 39293205 DOI: 10.1016/j.jecp.2024.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Expectations about how others' actions unfold in the future are crucial for our everyday social interactions. The current study examined the development of the use of kinematic cues for action anticipation and prediction in 3-year-olds, 4-year-olds, 10-year-olds, and adults in two experiments. Participants observed a hand repeatedly reaching for either a close or far object. The motor kinematics of the hand varied depending on whether the hand reached for the close or far object. We assessed whether participants would use kinematic cues to visually anticipate (Experiment 1; N=98) and verbally predict (Experiment 2; N=80) which object the hand was going to grasp. We found that only adults, but not 3- to 10-year-olds, based their visual anticipations on kinematic cues (Experiment 1). This speaks against claims that action anticipations are based on simulating others' motor processes and instead provides evidence that anticipations are based on perceptual mechanisms. Interestingly, 10-year-olds used kinematic cues to correctly verbally predict the target object, and 4-year-olds learned to do so over the trials (Experiment 2). Thus, kinematic cues are used earlier in life for explicit action predictions than for visual action anticipations. This adds to a recent debate on whether or not an implicit understanding of others' actions precedes their ability to verbally reason about the same actions.
Collapse
Affiliation(s)
- Saskia Melzel
- Department of Psychology, Ludwig Maximilians Universität München, 80802 Munich, Germany.
| | | | - Kerstin Ganglmayer
- Department of Psychology, Ludwig Maximilians Universität München, 80802 Munich, Germany
| | - Fabian Müller
- Laboratoire de Psychologie Sociale, Université Paris Cité, 92100 Boulogne-Billancourt, France
| | - Konstantin Steinmassl
- Department of Psychology, Ludwig Maximilians Universität München, 80802 Munich, Germany
| | - Petra Hauf
- Interdisciplinary Health Program, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada; Department of Psychology, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Markus Paulus
- Department of Psychology, Ludwig Maximilians Universität München, 80802 Munich, Germany
| |
Collapse
|
8
|
Adam M, Elsner B, Zmyj N. Perspective matters in goal-predictive gaze shifts during action observation: Results from 6-, 9-, and 12-month-olds and adults. J Exp Child Psychol 2025; 249:106075. [PMID: 39305583 DOI: 10.1016/j.jecp.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 11/24/2024]
Abstract
Research on goal-predictive gaze shifts in infancy so far has mostly focused on the effect of infants' experience with observed actions or the effect of agency cues that the observed agent displays. However, the perspective from which an action is presented to the infants (egocentric vs. allocentric) has received only little attention from researchers despite the fact that the natural observation of own actions is always linked to an egocentric perspective, whereas the observation of others' actions is often linked to an allocentric perspective. The current study investigated the timing of 6-, 9-, and 12-month-olds' goal-predictive gaze behavior, as well as that of adults, during the observation of simple human grasping actions that were presented from either an egocentric or allocentric perspective (within-participants design). The results showed that at 6 and 9 months of age, the infants predicted the action goal only when observing the action from the egocentric perspective. The 12-month-olds and adults, in contrast, predicted the action in both perspectives. The results therefore are in line with accounts proposing an advantage of egocentric versus allocentric processing of social stimuli, at least early in development. This study is among the first to show this egocentric bias already during the first year of life.
Collapse
Affiliation(s)
- Maurits Adam
- Department of Psychology, University of Potsdam, 14476 Potsdam, Germany
| | - Birgit Elsner
- Department of Psychology, University of Potsdam, 14476 Potsdam, Germany
| | - Norbert Zmyj
- Institute of Psychology, TU Dortmund University, 44227 Dortmund, Germany.
| |
Collapse
|
9
|
Pan H, Liu TW, Ng SSM, Chen PM, Chung RCK, Lam SSL, Li CSK, Chan CCC, Lai CWK, Ng WWL, Tang MWS, Hui E, Woo J. Effects of mirror therapy with electrical stimulation for upper limb recovery in people with stroke: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:5660-5675. [PMID: 38334111 DOI: 10.1080/09638288.2024.2310757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To provide updated evidence about the effects of MT with ES for recovering upper extremities motor function in people with stroke. METHODS Systematic review and meta-analysis were completed. Methodological quality was assessed using the version 2 of the Cochrane risk-of-bias tool. The GRADE approach was employed to assess the certainty of evidence. RESULTS A total of 16 trials with 773 participants were included in this review. The results demonstrated that MT with ES was more effective than sham (standardized mean difference [SMD], 1.89 [1.52-2.26]) and ES alone (SMD, 0.42 [0.11-0.73]) with low quality of evidence, or MT alone (SMD, 0.47[0.04-0.89]) with low quality of evidence for improving upper extremity motor control assessed using Fugl-Meyer Assessment. MT with ES had significant improvement of (MD, 6.47 [1.92-11.01]) the upper extremity gross gripping function assessed using the Action Research Arm Test compared with MT alone with low quality of evidence. MT combined with ES was more effective than sham group (SMD, 1.17 [0.42-1.93) for improving the ability to perform activities of daily living with low quality of evidence assessed using Motor Activity Log. CONCLUSION MT with ES may be effective in improving upper limb motor recovery in people with stroke.
Collapse
Affiliation(s)
- Hong Pan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Tai Wa Liu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China (SAR)
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Pei Ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Stefanie S L Lam
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Carol S K Li
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles C C Chan
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles W K Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Winnie W L Ng
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China (SAR)
| | - Maria W S Tang
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Elsie Hui
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Jean Woo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (SAR)
| |
Collapse
|
10
|
Japee S. On the Role of Sensorimotor Experience in Facial Expression Perception. J Cogn Neurosci 2024; 36:2780-2792. [PMID: 38527075 PMCID: PMC11602010 DOI: 10.1162/jocn_a_02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Humans recognize the facial expressions of others rapidly and effortlessly. Although much is known about how we perceive expressions, the role of facial experience in shaping this remarkable ability remains unclear. Is our perception of expressions linked to how we ourselves make facial expressions? Are we better at recognizing other's facial expressions if we are experts at making the same expressions ourselves? And if we could not make facial expressions at all, would it impact our ability to recognize others' facial expressions? The current article aims to examine these questions by explicating the link between facial experience and facial expression recognition. It includes a comprehensive appraisal of the related literature and examines three main theories that posit a connection between making and recognizing facial expressions. First, recent studies in individuals with Moebius syndrome support the role of facial ability (i.e., the ability to move one's face to make facial expressions) in facial expression recognition. Second, motor simulation theory suggests that humans recognize others' facial expressions by covertly mimicking the observed expression (without overt motor action) and that this facial mimicry helps us identify and feel the associated emotion. Finally, the facial feedback hypothesis provides a framework for enhanced emotional experience via proprioceptive feedback from facial muscles when mimicking a viewed facial expression. Evidence for and against these theories is presented as well as some considerations and outstanding questions for future research studies investigating the role of facial experience in facial expression perception.
Collapse
|
11
|
Sotoodeh MS, Chien SHL, Hadjikhani N. Visual attention modulates mu suppression during biological motion perception in autistic individuals. Eur J Neurosci 2024. [PMID: 39537315 DOI: 10.1111/ejn.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
There has been a lot of controversy regarding mirror neuron function in autism spectrum disorder (ASD), in particular during the observation of biological motions (BM). Here, we directly explored the link between visual attention and brain activity in terms of mu suppression, by simultaneously recording eye-tracking and EEGs during BM tasks. Nineteen autistic children (15 boys, mean age = 11.57 ± 4.28 years) and 19 age-matched neurotypical (NT) children (15 boys, mean age = 11.68 ± 5.22 years) participated in the study. Each participant's eye movement and EEG were simultaneously recorded while watching four BM stimuli (walking, cartwheeling, free-throwing and underarm throwing) and a scrambled condition. Mu (8-13 Hz) suppression index (SI) for central regions was calculated. Fixation counts and percent of fixation time were calculated as indices of eye movements. EEG results revealed significant mu suppressions in the central region in both groups for all BM actions. Eye-tracking results showed that NT children had greater fixation counts and a higher percentage of fixation time than autistic children, indicating greater overall visual attention to BM. Notably, correlational analyses for both groups further revealed that individuals' fixation time and fixation counts were negatively correlated with the mu suppression index for all actions, indicating a strong association between visual attention and mu SI in the central region. Our findings suggest a critical role of visual attention in interpreting mu suppression during action perception in autism.
Collapse
Affiliation(s)
| | - Sarina Hui-Lin Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Neuroscience and Brain Diseases, China Medical University, Taichung, Taiwan
| | - Nouchine Hadjikhani
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
- Gillberg Neuropsychiatry Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Zhao M, Li R, Xiang S, Liu N. Two different mirror neuron pathways for social and non-social actions? A meta-analysis of fMRI studies. Soc Cogn Affect Neurosci 2024; 19:nsae068. [PMID: 39361133 PMCID: PMC11482255 DOI: 10.1093/scan/nsae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Mirror neurons (MNs) represent a class of neurons that are activated when performing or observing the same action. Given their role in social cognition and previous research in patients with psychiatric disorders, we proposed that the human MN system (MNS) might display different pathways for social and non-social actions. To examine this hypothesis, we conducted a comprehensive meta-analysis of 174 published human functional magnetic resonance imaging studies. Our findings confirmed the proposed hypothesis. Our results demonstrated that the non-social MN pathway exhibited a more classical pattern of frontoparietal activation, whereas the social MN pathway was activated less in the parietal lobe but more in the frontal lobe, limbic lobe, and sublobar regions. Additionally, our findings revealed a modulatory role of the effector (i.e. face and hands) within this framework: some areas exhibited effector-independent activation, while others did not. This novel subdivision provides valuable theoretical support for further investigations into the neural mechanisms underlying the MNS and its related disorders.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijia Xiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Mou H, Liu L, Zhou T, Yan Z, Wang Y. Action expectancy modulates activity in the mirror neuron system and mentalizing system. Neuroimage 2024; 300:120876. [PMID: 39343111 DOI: 10.1016/j.neuroimage.2024.120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Action understanding involves two distinct processing levels that engage separate neural mechanisms: perception of concrete kinematic information and recognition of abstract action intentions. The mirror neuron system and the mentalizing system have both been linked to concrete action and abstract information processing, but their specific roles remain debatable. Here, we conducted a functional magnetic resonance imaging study with 26 participants who passively observed expected and unexpected actions. We performed whole-brain activation, region of interest, and effective connectivity analyses to investigate the neural correlates of these actions. Whole-brain activation analyses revealed that expected actions were associated with increased activation in the left medial superior frontal gyrus, while unexpected actions were linked to heightened activity in the left supramarginal gyrus, left superior parietal lobule, right inferior temporal gyrus, and left middle frontal gyrus. Region of interest analyses demonstrated that the left ventral premotor cortex exhibited greater activation during the observation of expected actions compared to unexpected actions, while the left inferior frontal gyrus, left superior parietal lobule, and left precuneus showed stronger activation during the observation of unexpected actions. Effective connectivity was observed between the left ventral premotor cortex and the left angular gyrus, left intraparietal sulcus, left dorsal premotor cortex, and left ventromedial prefrontal cortex with the middle frontal gyrus when observing unexpected, but not expected, actions. These findings suggest that expected actions are primarily processed by the mirror neuron system, whereas unexpected actions engage both the mirror neuron system and the mentalizing system, with these systems playing complementary roles in the understanding of unexpected actions.
Collapse
Affiliation(s)
- Hong Mou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Likai Liu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
14
|
Zhang MM, Chen T. Empathic pain: Underlying neural mechanism. Neuroscientist 2024:10738584241283435. [PMID: 39365808 DOI: 10.1177/10738584241283435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
16
|
Shafer RL, Bartolotti J, Driggers A, Bojanek E, Wang Z, Mosconi MW. Visual feedback and motor memory contributions to sustained motor control deficits in autism spectrum disorder across childhood and into adulthood. RESEARCH SQUARE 2024:rs.3.rs-4831158. [PMID: 39281871 PMCID: PMC11398565 DOI: 10.21203/rs.3.rs-4831158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Autistic individuals show deficits in sustained fine motor control which are associated with an over-reliance on visual feedback. Motor memory deficits also have been reported during sustained fine motor control in autism spectrum disorders (ASD). The development of motor memory and visuomotor feedback processes contributing to sustained motor control issues in ASD are not known. The present study aimed to characterize age-related changes in visual feedback and motor memory processes contributing to sustained fine motor control issues in ASD. Methods Fifty-four autistic participants and 31 neurotypical (NT) controls ages 10-25 years completed visually guided and memory guided sustained precision gripping tests by pressing on force sensors with their dominant hand index finger and thumb. For visually guided trials, participants viewed a stationary target bar and a force bar that moved upwards with increased force for 15s. During memory guided trials, the force bar was visible for 3s, after which participants attempted to maintain their force output without visual feedback for another 12s. To assess visual feedback processing, force accuracy, variability (standard deviation), and regularity (sample entropy) were examined. To assess motor memory, force decay latency, slope, and magnitude were examined during epochs without visual feedback. Results Relative to NT controls, autistic individuals showed a greater magnitude and steeper slope of force decay during memory guided trials. Across conditions, the ASD group showed reduced force accuracy (β = .41, R2 = 0.043, t79.3=2.36, p = 0.021) and greater force variability (β=-2.16, R2 = .143, t77.1=-4.04, p = 0.0001) and regularity (β=-.52, R2 = .021, t77.4=-2.21, p = 0.030) relative to controls at younger ages, but these differences normalized by adolescence (age × group interactions). Lower force accuracy and greater force variability during visually guided trials and steeper decay slope during memory guided trials were associated with overall autism severity. Conclusions Our findings that autistic individuals show a greater rate and magnitude of force decay than NT individuals following the removal of visual feedback indicate that motor memory deficits contribute to fine motor control issues in ASD. Findings that sensorimotor differences in ASD were specific to younger ages suggest delayed development across multiple motor control processes.
Collapse
Affiliation(s)
| | | | | | - Erin Bojanek
- University of Rochester School of Medicine and Dentistry
| | | | | |
Collapse
|
17
|
Yue Y, Afzal MI, Wang L. Imitation-inhibition training can reduce the observation-inflation effect in face-to-face scenarios. Mem Cognit 2024:10.3758/s13421-024-01632-6. [PMID: 39230648 DOI: 10.3758/s13421-024-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Observing others performing an action can lead to false memories of self-performance-the observation-inflation effect. Previous research has indicated that this phenomenon might impact the memory of actions in real-world interactions. However, whether direct observation without interaction can lead to observation inflation remains unclear. In Experiment 1, participants passively observed the experimenter performing actions live. In subsequent memory tests, they indeed reported false memories regarding their performances. Building on this, Experiment 2 investigated the causes of the observation-inflation effect induced by "real" actions. Participants underwent imitation-inhibition training with the individuals they observed previously. The results revealed that participants who completed imitation-inhibition training reported fewer false memories in memory tests than those who completed imitation training. These findings suggest that even passive observation of "real" actions can lead to observation inflation, and the simulation of others' actions by individuals may be a potential underlying cause of their occurrence in real-life situations.
Collapse
Affiliation(s)
- Yaqi Yue
- School of Psychology, Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China
| | - Muhammad Imran Afzal
- School of Psychology, Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China
| | - Lijuan Wang
- School of Psychology, Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China.
| |
Collapse
|
18
|
Shin N, Ikeda Y, Motomura Y, Higuchi S. Effects of observing own/others hand movement in different perspectives on mu rhythm suppression: an EEG study. J Physiol Anthropol 2024; 43:21. [PMID: 39232843 PMCID: PMC11373409 DOI: 10.1186/s40101-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Previous studies have reported that the sense of "self" is associated with specific brain regions and neural network activities. In addition, the mirror system, which functions when executing or observing an action, might contribute to differentiating the self from others and form the basis of the sense of self as a fundamental physical representation. This study investigated whether differences in mu suppression, an indicator of mirror system activity, reflect cognitions related to self-other discrimination. METHODS The participants were 30 of healthy college students. The participants observed short video clips of hand movements performed by themselves or actors from two perspectives (i.e., first-person and third-person). The electroencephalogram (EEG) mu rhythm (8-13 Hz) was measured during video observation as an index of mirror neuron system activity. EEG activity related to self-detection was analyzed using participants' hand movements as self-relevant stimuli. RESULTS The results showed that mu suppression in the 8-13-Hz range exhibited perspective-dependent responses to self/other stimuli. There was a significant self-oriented mu suppression response in the first-person perspective. However, the study found no significant response orientation in the third-person perspective. The results suggest that mirror system activity may involve self-other discrimination differently depending on the perspective. CONCLUSIONS In summary, this study examined the mirror system's activity for self and others using the EEG's mu suppression. As a result, it was suggested that differences in self and others or perspectives may influence mu suppression.
Collapse
Affiliation(s)
- Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka City, Fukuoka, Japan.
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan.
| | - Yuki Ikeda
- Faculty of Health Science, Kyorin University, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center, Building, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, Japan
| | - Yuki Motomura
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| | - Shigekazu Higuchi
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku Fukuoka City, Fukuoka, Japan
| |
Collapse
|
19
|
Scott MW, Mulligan D, Kuehne M, Zhu M, Ma M, Hodges NJ. Effector-specific improvements in action prediction in left-handed individuals after short-term physical practice. Cortex 2024; 178:18-31. [PMID: 38964150 DOI: 10.1016/j.cortex.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
Research has established the influence of short-term physical practice for enhancing action prediction in right-handed (RH) individuals. In addition to benefits of physical practice for these later assessed perceptual-cognitive skills, effector-specific interference has been shown through action-incongruent secondary tasks (motor interference tasks). Here we investigated this experience-driven facilitation of action predictions and effector-specific interference in left-handed (LH) novices, before and after practicing a dart throwing task. Participants watched either RH (n = 19) or LH (n = 24) videos of temporally occluded dart throws, across a control condition and three secondary-task conditions: tone-monitoring, RH or LH force monitoring. These conditions were completed before and after physical practice throwing with the LH. Significantly greater improvement in prediction accuracy was shown post-practice for the LH- versus RH-video group. Consistent with previous work, effector-specific interference was shown, exclusive to the LH-video group. Only when doing the LH force monitoring task did the LH-video group show secondary task interference in prediction accuracy. These data support the idea that short-term physical practice resulted in the development of an effector-specific motor representation. The results are also consistent with other work in RH individuals (showing RH motor interference) and hence rule out the interpretation that these effector specific effects are due to the disruption of more generalized motor processes, thought to be lateralized to the left-hemisphere of the brain.
Collapse
Affiliation(s)
- Matthew W Scott
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Desmond Mulligan
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Mareike Kuehne
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Megan Zhu
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Minghao Ma
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Nicola J Hodges
- School of Kinesiology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Karakale Ö, McNair N, Moore M, Kirk I. Increased sensorimotor activity during categorisation of emotionally ambiguous faces. Eur J Neurosci 2024; 60:5217-5233. [PMID: 39138605 DOI: 10.1111/ejn.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Actions are rarely devoid of emotional content. Thus, a more complete picture of the neural mechanisms underlying the mental simulation of observed actions requires more research using emotion information. The present study used high-density electroencephalography to investigate mental simulation associated with facial emotion categorisation. Alpha-mu rhythm modulation was measured at each frequency, from 8 Hz to 13 Hz, to infer the degree of sensorimotor simulation. Results suggest the sensitivity of the sensorimotor activity to emotional information, because (1) categorising static images of neutral faces as happy or sad was associated with stronger suppression in the central region than categorising clearly happy faces, (2) there was preliminary evidence indicating that the strongest suppression in the central region was in response to neutral faces, followed by sad and then happy faces and (3) in the control task, which required categorising images with the head oriented right, left, or forward as right or left, differences between conditions showed a pattern more indicative of task difficulty rather than sensorimotor engagement. Dissociable processing of emotional information in facial expressions and directionality information in head orientations was further captured in beta band activity (14-20 Hz). Stronger mu suppression to neutral faces indicates that sensorimotor simulation extends beyond crude motor mimicry. We propose that mu rhythm responses to facial expressions may serve as a biomarker for empathy circuit activation. Future research should investigate whether atypical or inconsistent mu rhythm responses to facial expressions indicate difficulties in understanding or sharing emotions.
Collapse
Affiliation(s)
- Özge Karakale
- School of Psychology, The University of Adelaide, Adelaide, Australia
| | - Nicolas McNair
- School of Psychology, The University of Sydney, Sydney, Australia
| | - Matthew Moore
- School of Medicine Management, The University of Auckland, Auckland, New Zealand
| | - Ian Kirk
- School of Psychology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Bianco V, Finisguerra A, D'Argenio G, Boscarol S, Urgesi C. Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study. Neuroimage 2024; 297:120702. [PMID: 38909762 DOI: 10.1016/j.neuroimage.2024.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024] Open
Abstract
Contextual information may shape motor resonance and support intention understanding during observation of incomplete, ambiguous actions. It is unclear, however, whether this effect is contingent upon kinematics ambiguity or contextual information is continuously integrated with kinematics to predict the overarching action intention. Moreover, a differentiation between the motor mapping of the intention suggested by context or kinematics has not been clearly demonstrated. In a first action execution phase, 29 participants were asked to perform reaching-to-grasp movements towards big or small food objects with the intention to eat or to move; electromyography from the First Dorsal Interosseous (FDI) and Abductor Digiti Minimi (ADM) was recorded. Depending on object size, the intentions to eat or to move were differently implemented by a whole-hand or a precision grip kinematics, thus qualifying an action-muscle dissociation. Then, in a following action prediction task, the same participants were asked to observe an actor performing the same actions and to predict his/her intention while motor resonance was assessed for the same muscles. Of note, videos were interrupted at early or late action phases, and actions were embedded in contexts pointing toward an eating or a moving intention, congruently or incongruently with kinematics. We found greater involvement of the FDI or ADM in the execution of precision or whole-hand grips, respectively. Crucially, this pattern of activation was mirrored during observation of the same actions in congruent contexts, but it was cancelled out or reversed in the incongruent ones, either when videos were interrupted at either early or long phases of action deployment. Our results extend previous evidence by showing that contextual information shapes motor resonance not only under conditions of perceptual uncertainty but also when more informative kinematics is available.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.
| | | | - Giulia D'Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Fondazione Progettoautismo FVG Onlus, Feletto Umberto, Udine, Italy
| | - Sara Boscarol
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy; University of Camerino, Center for Neuroscience, Camerino, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy
| |
Collapse
|
22
|
Errante A, Beccani L, Verzelloni J, Maggi I, Filippi M, Bressi B, Ziccarelli S, Bozzetti F, Costi S, Ferrari A, Fogassi L. Effectiveness of action observation treatment based on pathological model in hemiplegic children: a randomized-controlled trial. Eur J Phys Rehabil Med 2024; 60:643-655. [PMID: 38814197 PMCID: PMC11391395 DOI: 10.23736/s1973-9087.24.08413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND Action observation treatment (AOT) is an innovative therapeutic approach consisting in the observation of actions followed by their subsequent repetition. The standard version of AOT consists in the observation/imitation of a typically developed individual, which is proposed as model (TDM-AOT). AIM This study aims to compare the effectiveness of AOT based on a pathological ameliorative model (PAM-AOT) versus TDM-AOT in improving upper limb ability in children with unilateral cerebral palsy (UCP). DESIGN The study consists in a prospective randomized controlled, evaluator-blinded trial (RCT), with two active arms, designed to evaluate the effectiveness of AOT based on pathological model (PAM-AOT) as compared to a standard AOT based on TDM (TDM-AOT). SETTING The 3-week AOT program was administered in a clinical setting. For some patients, the treatment was delivered at participant's home with the remote support of the physiotherapist (tele-rehabilitation). POPULATION Twenty-six children with UCP (mean age 10.5±3.09 years; 14 females) participated in the study, with the experimental group observing a pathological model and the control group observing a typically developed model. METHODS Motor assessments included unimanual and bimanual ability measures conducted at T0 (baseline, before the treatment), T1 (3 weeks after T0), T2 (8-12 weeks after treatment) and T3 (24-28 weeks after treatment); a subset of 16 patients also underwent fMRI motor assessment. Generalized Estimating Equations models were used for statistical analysis. RESULTS Both groups showed significant improvement in bimanual function (GEE, Wald 106.16; P<0.001) at T1 (P<0.001), T2 (P<0.001), and T3 (P<0.001). Noteworthy, the experimental group showed greater improvement than the control group immediately after treatment (P<0.013). Both groups exhibited similar improvement in unimanual ability (GEE, Wald 25.49; P<0.001). The fMRI assessments revealed increased activation of ventral premotor cortex after treatment in the experimental compared with control group (GEE, Wald 6.26; P<0.012). CONCLUSIONS Overall, this study highlights the effectiveness of PAM-AOT in achieving short-term improvement of upper limb ability in children with UCP. CLINICAL REHABILITATION IMPACT These findings have significant implications for rehabilitative interventions based on AOT in hemiplegic children, by proposing a non-traditional approach focused on the most functional improvement achievable by imitating a pathological model.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Beccani
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Jessica Verzelloni
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Irene Maggi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariacristina Filippi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Barbara Bressi
- Physical Medicine and Rehabilitation Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Stefania Costi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Adriano Ferrari
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy -
| |
Collapse
|
23
|
Kareklas K, Oliveira RF. Emotional contagion and prosocial behaviour in fish: An evolutionary and mechanistic approach. Neurosci Biobehav Rev 2024; 163:105780. [PMID: 38955311 DOI: 10.1016/j.neubiorev.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal; ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal.
| |
Collapse
|
24
|
Craighero L. An embodied approach to fetal and newborn perceptual and sensorimotor development. Brain Cogn 2024; 179:106184. [PMID: 38843762 DOI: 10.1016/j.bandc.2024.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
The embodied approach argues that interaction with the environment plays a crucial role in brain development and that the presence of sensory effects generated by movements is fundamental. The movement of the fetus is initially random. Then, the repeated execution of the movement creates a link between it and its sensory effects, allowing the selection of movements that produce expected sensations. During fetal life, the brain develops from a transitory fetal circuit to the permanent cortical circuit, which completes development after birth. Accordingly, this process must concern the interaction of the fetus with the intrauterine environment and of the newborn with the new aerial environment, which provides a new sensory stimulation, light. The goal of the present review is to provide suggestions for neuroscientific research capable of shedding light on brain development process by describing from a functional point of view the relationship between the motor and sensory abilities of fetuses and newborns and the increasing complexity of their interaction with objects in the womb and outside of it.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy.
| |
Collapse
|
25
|
Chiang YC, Chien SHL, Lyu JL, Chang CK. Recognition of Dynamic Emotional Expressions in Children and Adults and Its Associations with Empathy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4674. [PMID: 39066071 PMCID: PMC11281223 DOI: 10.3390/s24144674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
This present study investigates emotion recognition in children and adults and its association with EQ and motor empathy. Overall, 58 children (33 5-6-year-olds, 25 7-9-year-olds) and 61 adults (24 young adults, 37 parents) participated in this study. Each participant received an EQ questionnaire and completed the dynamic emotion expression recognition task, where participants were asked to identify four basic emotions (happy, sad, fearful, and angry) from neutral to fully expressed states, and the motor empathy task, where participants' facial muscle activity was recorded. The results showed that "happy" was the easiest expression for all ages; 5- to 6-year-old children performed equally well as adults. The accuracies for "fearful," "angry," and "sad" expressions were significantly lower in children than in adults. For motor empathy, 7- to 9-year-old children exhibited the highest level of facial muscle activity, while the young adults showed the lowest engagement. Importantly, individual EQ scores positively correlated with the motor empathy index in adults but not in children. In sum, our study echoes the previous literature, showing that the identification of negative emotions is still difficult for children aged 5-9 but that this improves in late childhood. Our results also suggest that stronger facial mimicry responses are positively related to a higher level of empathy in adults.
Collapse
Affiliation(s)
- Yu-Chen Chiang
- School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Sarina Hui-Lin Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (J.-L.L.)
- Center for Neuroscience and Brain Disease, China Medical University, Taichung 404, Taiwan
| | - Jia-Ling Lyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (J.-L.L.)
| | - Chien-Kai Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (J.-L.L.)
| |
Collapse
|
26
|
Wang LS, Chang YC, Liou S, Weng MH, Chen DY, Kung CC. When "more for others, less for self" leads to co-benefits: A tri-MRI dyad-hyperscanning study. Psychophysiology 2024; 61:e14560. [PMID: 38469655 DOI: 10.1111/psyp.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Unselfishness is admired, especially when collaborations between groups of various scales are urgently needed. However, its neural mechanisms remain elusive. In a tri-MRI dyad-hyperscanning experiment involving 26 groups, each containing 4 participants as two rotating pairs in a coordination game, we sought to achieve reciprocity, or "winning in turn by the two interacting players," as the precursor to unselfishness. Due to its critical role in social processing, the right temporal-parietal junction (rTPJ) was the seed for both time domain (connectivity) and frequency domain (i.e., coherence) analyses. For the former, negative connectivity between the rTPJ and the mentalizing network areas (e.g., the right inferior parietal lobule, rIPL) was identified, and such connectivity was further negatively correlated with the individual's final gain, supporting our task design that "rewarded" the reciprocal participants. For the latter, cerebral coherences of the rTPJs emerged between the interacting pairs (i.e., within-group interacting pairs), and the coupling between the rTPJ and the right superior temporal gyrus (rSTG) between the players who were not interacting with each other (i.e., within-group noninteracting pairs). These coherences reinforce the hypotheses that the rTPJ-rTPJ coupling tracks the collaboration processes and the rTPJ-rSTG coupling for the emergence of decontextualized shared meaning. Our results underpin two social roles (inferring others' behavior and interpreting social outcomes) subserved by the rTPJ-related network and highlight its interaction with other-self/other-concerning brain areas in reaching co-benefits among unselfish players.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Yi-Cing Chang
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Ming-Hung Weng
- Department of Economics, National Cheng Kung University (NCKU), Tainan, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, National Cheng Kung University (NCKU), Tainan, Taiwan
- Mind Research and Imaging Center (MRIC), Tainan, Taiwan
| |
Collapse
|
27
|
Porcelli P, Giromini L, Zennaro A. Rorschach Human Movement and Psychotherapy: Relationship with the Therapist's Emotional Responses. J Pers Assess 2024; 106:436-447. [PMID: 38251848 DOI: 10.1080/00223891.2024.2303443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The emotional responses of psychotherapists to their patients, known as countertransference, can yield valuable insights into the patient's psychological functioning. Albeit from a different perspective, the Rorschach test also provides information about the patient's psychological processes. In particular, the Rorschach human movement response (M) has been shown to be a useful measure of higher-level psychological functioning. In an attempt to bridge these two largely different perspectives, the aim of this study was to explore the association between M responses in the Rorschach protocols of psychotherapy patients and emotional responses exhibited by their therapists. To this end, a convenience sample of 149 outpatients were administered the Rorschach according to the Comprehensive System, and their therapists completed the Therapist Response Questionnaire. Through a series of regression models, controlling for response style, response complexity, and degree of psychopathology, M demonstrated a significant association with the therapists' emotional responses. A lower number of M responses was associated with the therapists' feelings of disengagement, and a higher number of M responses was associated with the therapists' feelings of being more involved with the patient. Taken together, these results suggest a potential relationship between the number of M responses the respondent gives in the Rorschach and the subsequent development of the therapeutic alliance between the respondent and their therapist.
Collapse
Affiliation(s)
- Piero Porcelli
- Department of Psychological, Health, and Territorial Sciences, University of Chieti, Chieti, Italy
| | | | | |
Collapse
|
28
|
Del Casale A, Mancino S, Arena JF, Spitoni GF, Campanini E, Adriani B, Tafaro L, Alcibiade A, Ciocca G, Romano A, Bozzao A, Ferracuti S. Neural Functioning in Late-Life Depression: An Activation Likelihood Estimation Meta-Analysis. Geriatrics (Basel) 2024; 9:87. [PMID: 39051251 PMCID: PMC11270429 DOI: 10.3390/geriatrics9040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Late-life depression (LLD) is a relatively common and debilitating mental disorder, also associated with cognitive dysfunctions and an increased risk of mortality. Considering the growing elderly population worldwide, LLD is increasingly emerging as a significant public health issue, also due to the rise in direct and indirect costs borne by healthcare systems. Understanding the neuroanatomical and neurofunctional correlates of LLD is crucial for developing more targeted and effective interventions, both from a preventive and therapeutic standpoint. This ALE meta-analysis aims to evaluate the involvement of specific neurofunctional changes in the neurophysiopathology of LLD by analysing functional neuroimaging studies conducted on patients with LLD compared to healthy subjects (HCs). We included 19 studies conducted on 844 subjects, divided into 439 patients with LLD and 405 HCs. Patients with LLD, compared to HCs, showed significant hypoactivation of the right superior and medial frontal gyri (Brodmann areas (Bas) 8, 9), left cingulate cortex (BA 24), left putamen, and left caudate body. The same patients exhibited significant hyperactivation of the left superior temporal gyrus (BA 42), left inferior frontal gyrus (BA 45), right anterior cingulate cortex (BA 24), right cerebellar culmen, and left cerebellar declive. In summary, we found significant changes in activation patterns and brain functioning in areas encompassed in the cortico-limbic-striatal network in LLD. Furthermore, our results suggest a potential role for areas within the cortico-striatal-cerebellar network in the neurophysiopathology of LLD.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Psychiatry, Emergency and Admissions Department, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Serena Mancino
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisa Campanini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Barbara Adriani
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Laura Tafaro
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Unit of Internal Medicine, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Alessandro Alcibiade
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Marina Militare Italiana (Italian Navy), Ministry of Defence, Piazza della Marina, 4, 00196 Rome, Italy
| | - Giacomo Ciocca
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Romano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Neuroradiology, Department of Diagnostic Sciences, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Alessandro Bozzao
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Neuroradiology, Department of Diagnostic Sciences, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Risk Management, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| |
Collapse
|
29
|
Han C, Pan J, Du J, Feng L, Ma H, Tang J. Efficacy of different rehabilitation therapies on post-stroke aphasia patients: A network meta-analysis. Medicine (Baltimore) 2024; 103:e38255. [PMID: 38787993 PMCID: PMC11124600 DOI: 10.1097/md.0000000000038255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Although several rehabilitation interventions are effective in post-stroke aphasia (PSA), the efficacy of different rehabilitation interventions compared to each other remains controversial. Here, we aimed to compare the effectiveness of varying rehabilitation interventions in PSA. METHODS Randomized controlled trials on 8 kinds of rehabilitation interventions to improve speech function in patients with PSA were searched by computer from 10 databases, including PubMed, Web of Science, Cochrane, OVID, CINAHL, Embase, CNKI, WanFang, CBM, and VIP. The search scope was from the establishment of the database to August 2023. The literature screening, extraction of basic information, and quality assessment of the literature were conducted independently by 2 researchers. Network meta-analysis (NMA) was performed using Stata 17.0 software. RESULTS Fifty-four studies involving 2688 patients with PSA were included. The results of NMA showed that: ① in terms of improving the severity of aphasia, the therapeutic effects of repetitive transcranial magnetic stimulation were the most significant; ② motor imagery therapy was the most effective in improving spontaneous speech, repetition, and naming ability; ③ in terms of improving listening comprehension ability, the therapeutic effects of mirror neuron therapy was the most significant. CONCLUSION The 8 rehabilitation interventions have different focuses in improving the speech function of PSA patients, and the clinical therapists can select the optimal rehabilitation interventions in a targeted manner according to the results of this NMA and the patients' conditions and other relevant factors.
Collapse
Affiliation(s)
- Congli Han
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jienuo Pan
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinchao Du
- College of Rehabilitation, Weifang Medical University, Weifang, Shandong, China
| | - Luye Feng
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hengqin Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
30
|
Dekleva BM, Chowdhury RH, Batista AP, Chase SM, Yu BM, Boninger ML, Collinger JL. Motor cortex retains and reorients neural dynamics during motor imagery. Nat Hum Behav 2024; 8:729-742. [PMID: 38287177 PMCID: PMC11089477 DOI: 10.1038/s41562-023-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
The most prominent characteristic of motor cortex is its activation during movement execution, but it is also active when we simply imagine movements in the absence of actual motor output. Despite decades of behavioural and imaging studies, it is unknown how the specific activity patterns and temporal dynamics in motor cortex during covert motor imagery relate to those during motor execution. Here we recorded intracortical activity from the motor cortex of two people who retain some residual wrist function following incomplete spinal cord injury as they performed both actual and imagined isometric wrist extensions. We found that we could decompose the population activity into three orthogonal subspaces, where one was similarly active during both action and imagery, and the others were active only during a single task type-action or imagery. Although they inhabited orthogonal neural dimensions, the action-unique and imagery-unique subspaces contained a strikingly similar set of dynamic features. Our results suggest that during motor imagery, motor cortex maintains the same overall population dynamics as during execution by reorienting the components related to motor output and/or feedback into a unique, output-null imagery subspace.
Collapse
Affiliation(s)
- Brian M Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Raeed H Chowdhury
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
32
|
Errante A, Ferraro S, Demichelis G, Pinardi C, Stanziano M, Sattin D, Rossi Sebastiano D, Rozzi S, D’Incerti L, Catricalà E, Leonardi M, Bruzzone MG, Fogassi L, Nigri A. Brain activation during processing of mouth actions in patients with disorders of consciousness. Brain Commun 2024; 6:fcae045. [PMID: 38434219 PMCID: PMC10907975 DOI: 10.1093/braincomms/fcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
In the past 2 decades, several attempts have been made to promote a correct diagnosis and possible restorative interventions in patients suffering from disorders of consciousness. Sensory stimulation has been proved to be useful in sustaining the level of arousal/awareness and to improve behavioural responsiveness with a significant effect on oro-motor functions. Recently, action observation has been proposed as a stimulation strategy in patients with disorders of consciousness, based on neurophysiological evidence that the motor cortex can be activated not only during action execution but also when actions are merely observed in the absence of motor output, or during listening to action sounds and speech. This mechanism is provided by the activity of mirror neurons. In the present study, a group of patients with disorders of consciousness (11 males, 4 females; median age: 55 years; age range: 19-74 years) underwent task-based functional MRI in which they had, in one condition, to observe and listen to the sound of mouth actions, and in another condition, to listen to verbs with motor or abstract content. In order to verify the presence of residual activation of the mirror neuron system, the brain activations of patients were compared with that of a group of healthy individuals (seven males, eight females; median age: 33.4 years; age range: 24-65 years) performing the same tasks. The results show that brain activations were lower in patients with disorders of consciousness compared with controls, except for primary auditory areas. During the audiovisual task, 5 out of 15 patients with disorders of consciousness showed only residual activation of low-level visual and auditory areas. Activation of high-level parieto-premotor areas was present in six patients. During the listening task, three patients showed only low-level activations, and six patients activated also high-level areas. Interestingly, in both tasks, one patient with a clinical diagnosis of vegetative state showed activations of high-level areas. Region of interest analysis on blood oxygen level dependent signal change in temporal, parietal and premotor cortex revealed a significant linear relation with the level of clinical functioning, assessed with coma recovery scale-revised. We propose a classification of the patient's response based on the presence of low-level and high-level activations, combined with the patient's functional level. These findings support the use of action observation and listening as possible stimulation strategies in patients with disorders of consciousness and highlight the relevance of combined methods based on functional assessment and brain imaging to provide more detailed neuroanatomical specificity about residual activated areas at both cortical and subcortical levels.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Stefania Ferraro
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Greta Demichelis
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pinardi
- Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Neurosciences Department ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Davide Sattin
- Istituti Clinici Scientifici Maugeri IRCCS, 20138 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ludovico D’Incerti
- Neuroradiology Unit, Children’s Hospital A. Meyer—University of Florence, 50139 Florence, Italy
| | - Eleonora Catricalà
- ICoN Cognitive Neuroscience Center, IUSS, Institute for Advances Studies, 27100 Pavia, Italy
| | - Matilde Leonardi
- Disability Unit and Coma Research Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
33
|
Lamontagne A, Gaunet F. Behavioural Synchronisation between Dogs and Humans: Unveiling Interspecific Motor Resonance? Animals (Basel) 2024; 14:548. [PMID: 38396516 PMCID: PMC10886274 DOI: 10.3390/ani14040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Dogs' behavioural synchronisation with humans is of growing scientific interest. However, studies lack a comprehensive exploration of the neurocognitive foundations of this social cognitive ability. Drawing parallels from the mechanisms underlying behavioural synchronisation in humans, specifically motor resonance and the recruitment of mirror neurons, we hypothesise that dogs' behavioural synchronisation with humans is underpinned by a similar mechanism, namely interspecific motor resonance. Based on a literature review, we argue that dogs possess the prerequisites for motor resonance, and we suggest that interspecific behavioural synchronisation relies on the activation of both human and canine mirror neurons. Furthermore, interspecific behavioural studies highlight certain characteristics of motor resonance, including motor contagion and its social modulators. While these findings strongly suggest the potential existence of interspecific motor resonance, direct proof remains to be established. Our analysis thus paves the way for future research to confirm the existence of interspecific motor resonance as the neurocognitive foundation for interspecific behavioural synchronisation. Unravelling the neurocognitive mechanisms underlying this behavioural adjustment holds profound implications for understanding the evolutionary dynamics of dogs alongside humans and improving the day-to-day management of dog-human interactions.
Collapse
Affiliation(s)
- Angélique Lamontagne
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
- Association Agir pour la Vie Animale (AVA), 76220 Cuy-Saint-Fiacre, France
| | - Florence Gaunet
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
| |
Collapse
|
34
|
Bianco V, Finisguerra A, Urgesi C. Contextual Priors Shape Action Understanding before and beyond the Unfolding of Movement Kinematics. Brain Sci 2024; 14:164. [PMID: 38391738 PMCID: PMC10887018 DOI: 10.3390/brainsci14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Previous studies have shown that contextual information may aid in guessing the intention underlying others' actions in conditions of perceptual ambiguity. Here, we aimed to evaluate the temporal deployment of contextual influence on action prediction with increasing availability of kinematic information during the observation of ongoing actions. We used action videos depicting an actor grasping an object placed on a container to perform individual or interpersonal actions featuring different kinematic profiles. Crucially, the container could be of different colors. First, in a familiarization phase, the probability of co-occurrence between each action kinematics and color cues was implicitly manipulated to 80% and 20%, thus generating contextual priors. Then, in a testing phase, participants were asked to predict action outcome when the same action videos were occluded at five different timeframes of the entire movement, ranging from when the actor was still to when the grasp of the object was fully accomplished. In this phase, all possible action-contextual cues' associations were equally presented. The results showed that for all occlusion intervals, action prediction was more facilitated when action kinematics deployed in high- than low-probability contextual scenarios. Importantly, contextual priors shaped action prediction even in the latest occlusion intervals, where the kinematic cues clearly unveiled an action outcome that was previously associated with low-probability scenarios. These residual contextual effects were stronger in individuals with higher subclinical autistic traits. Our findings highlight the relative contribution of kinematic and contextual information to action understanding and provide evidence in favor of their continuous integration during action observation.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | | | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, 33037 Udine, Italy
| |
Collapse
|
35
|
Bindels KL, Verhoeff MC, Su N, Knijn FV, Aarab G, Fuh JL, Lin CS, Lobbezoo F. Swallowing performance in older adults: Associated cognitive, neuroanatomical and demographic factors. J Oral Rehabil 2024; 51:296-304. [PMID: 37705384 DOI: 10.1111/joor.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/09/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Swallowing problems are frequently seen in older adults, especially in individuals with cognitive impairment (CI). The brain plays a crucial role in both cognition and swallowing. Using magnetic resonance imaging (MRI) data, researchers identified regions associated with swallowing. However, it is not yet fully elucidated which factors influence the swallowing performance in older adults. OBJECTIVES The current study investigated which factors, such as cognitive function, neuroanatomical factors (e.g., the cortical thickness and volume of specific brain regions) and demographical factors are associated with swallowing performance in older adults. Secondly, it was investigated whether there is a difference in neuroanatomical factors between individuals with and without CI. RESEARCH DESIGN AND METHODS In total, 15 CI individuals (73.1 ± 9.1 years; 46.7% male) and 48 non-CI controls (69.0 ± 5.1 years; 29.2% male) were included. The repetitive saliva swallowing test (RSST) was performed, and an MRI scan was acquired from the participants. RESULTS Multivariate linear regression analysis showed that the cortical thickness of the right supramarginal gyrus and female gender were positively associated, and a higher age was negatively associated with the RSST in older adults (p < .05). CI was not significantly associated with swallowing performance. Furthermore, it was found that the cortical volume differs more frequently between CI and non-CI than the cortical thickness. CONCLUSION A thinner cortex of the right supramarginal gyrus and being an older female are associated with poorer swallowing performance. Secondly, cortical volume was more often found to differ between CI and non-CI individuals than cortical thickness.
Collapse
Affiliation(s)
- K L Bindels
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M C Verhoeff
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - N Su
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Oral Public Health, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
| | - F V Knijn
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Aarab
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J L Fuh
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C-S Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - F Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Buchanan JJ, Cordova A. Spontaneity competes with intention to influence the coordination dynamics of interpersonal performance tendencies. Hum Mov Sci 2024; 93:103160. [PMID: 38000349 DOI: 10.1016/j.humov.2023.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Research has shown that spontaneous visual coupling supports frequency entrainment, phase attraction, and intermittent interpersonal coordination when co-actors are switched from a no-vision (NV) to vision (V) context. In two experiments, co-actors started in a NV context while producing the same or different amplitude movements. The same amplitude resulted in similar self-paced frequencies, while different amplitudes resulted in disparate frequencies. In experiment 1, co-actors were instructed to maintain amplitude while receiving no instructions to coordinate their actions. Frequency and phase entrainment was limited in the V context even when co-actors started the NV context with the same amplitude. In experiment 2, co-actors were instructed to maintain amplitude and intentionally coordinate together, but not at a specific pattern. Significant frequency modulations occurred to maintain amplitude as the co-actors sought to coordinate their actions. With the open-ended instructions, co-actors produced in-phase and anti-phase coordination along with intermittent performance exhibited by shifts between a variety of stable relative phase patterns. The proposed hypotheses and findings are discussed within the context of a shared manifold representation for joint action contexts, with the coordination dynamics expressed by the HKB model of relative phase serving to conceptualization the representations in the shared manifold.
Collapse
Affiliation(s)
- John J Buchanan
- Texas A&M University, Department of Kinesiology and Sport Management, Perception-Action Dynamics Lab, School of Education and Human Development, College Station, TX 77843, USA.
| | - Alberto Cordova
- University of Texas at San Antonio, College for Health, Community and Policy, Department of Kinesiology, San Antonio, TX 78249, USA
| |
Collapse
|
37
|
Cancer A, Pirola C, Fogassi L, Antonietti A. Influence of sport expertise in facilitating and inhibiting the recognition of the opponent's intentions in sailing. Front Hum Neurosci 2024; 17:1285963. [PMID: 38259331 PMCID: PMC10800822 DOI: 10.3389/fnhum.2023.1285963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Starting from the proposed role of the mirror neuron system in the recognition of the intention underlying the actions of others, an experimental paradigm was implemented to test the role of sailing motor expertise in predicting the outcome of a competitor's action. It was hypothesized that subjects with experience in sailing would correctly interpret the maneuver performed due to the activation of domain specific motor representations of the same movements and that subjects who practiced a sport different from sailing would perform worse because of the activation of irrelevant motor patterns. For doing so, a series of video clips, in which a professional sailor performed a tack or a feint, have been manipulated so that the video clips would stop at the moment of the dunkin, namely, when the boat acquires speed to tack or continue straight ahead. The task consisted in predicting whether the action following the dunkin was an actual tack or a feint. The performance of 87 subjects, divided into three subgroups (sailors, tennis players, sedentary), was evaluated in terms of accuracy in identifying the sailor's intentions and correlated to age, gender, manual dominance, education, job, hours spent weekly playing videogames, and experience in playing sports. Results showed that the percentage of correct identifications of the intention to do a tack or feint was the highest in the group of sailors and the lowest in tennis players. An inverse relation between tennis experience and ability in recognizing the sailor's intention was found in the group of tennis players. Gender, age, manual dominance, education, job, and experience with videogames were not found to be correlated with performance. Findings support the possible implication of the mirror neuron system in maneuver detection in sailing and may be a starting point for the development of psychological training in this sport.
Collapse
Affiliation(s)
- Alice Cancer
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Chiara Pirola
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
38
|
Japee S, Jordan J, Licht J, Lokey S, Chen G, Snow J, Jabs EW, Webb BD, Engle EC, Manoli I, Baker C, Ungerleider LG. Inability to move one's face dampens facial expression perception. Cortex 2023; 169:35-49. [PMID: 37852041 PMCID: PMC10836030 DOI: 10.1016/j.cortex.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 10/20/2023]
Abstract
Humans rely heavily on facial expressions for social communication to convey their thoughts and emotions and to understand them in others. One prominent but controversial view is that humans learn to recognize the significance of facial expressions by mimicking the expressions of others. This view predicts that an inability to make facial expressions (e.g., facial paralysis) would result in reduced perceptual sensitivity to others' facial expressions. To test this hypothesis, we developed a diverse battery of sensitive emotion recognition tasks to characterize expression perception in individuals with Moebius Syndrome (MBS), a congenital neurological disorder that causes facial palsy. Using computer-based detection tasks we systematically assessed expression perception thresholds for static and dynamic face and body expressions. We found that while MBS individuals were able to perform challenging perceptual control tasks and body expression tasks, they were less efficient at extracting emotion from facial expressions, compared to matched controls. Exploratory analyses of fMRI data from a small group of MBS participants suggested potentially reduced engagement of the amygdala in MBS participants during expression processing relative to matched controls. Collectively, these results suggest a role for facial mimicry and consequent facial feedback and motor experience in the perception of others' facial expressions.
Collapse
Affiliation(s)
- Shruti Japee
- Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
| | - Jessica Jordan
- Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Judith Licht
- Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Savannah Lokey
- Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, USA
| | - Joseph Snow
- Office of the Clinical Director, NIMH, NIH, Bethesda, MD, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Division of Genetics and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Irini Manoli
- Medical Genomics and Metabolic Genetics, NHGRI, NIH, Bethesda, MD, USA
| | - Chris Baker
- Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Dai C, Peng Z, Wang L, Song T, Xu L, Xu M, Shao Y. Total sleep deprivation reduces the table tennis anticipation performance of young men: A functional magnetic resonance imaging study. iScience 2023; 26:107973. [PMID: 37822501 PMCID: PMC10562798 DOI: 10.1016/j.isci.2023.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/31/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
This study explored whether and how sleep deprivation (SD) affects sport-related anticipation. Twenty table tennis players and 28 non-athletes completed a table tennis anticipation task before and after 36 h SD. Functional magnetic resonance imaging (fMRI) data were acquired simultaneously. The results showed that, compared with the non-athletes, table tennis players had higher neural efficiency, manifested by their higher anticipation accuracy and lower frontal lobe activation. SD impaired anticipation performance, accompanied by decreased activation of the occipital and temporal lobes. Compensatory activation occurred in the left hippocampus and orbital part of the right inferior frontal gyrus (IFG) after SD in the table tennis player group, but not in the non-athlete group. The decreased accuracy of non-athletes was positively correlated with decreased activation of orbital part of the right IFG. This study's findings improve the understanding of the cognitive neuroscience mechanisms by which SD affects sport-related anticipation.
Collapse
Affiliation(s)
- Cimin Dai
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Tao Song
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
40
|
Vannuscorps G, Caramazza A. Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Soc Cogn Affect Neurosci 2023; 18:nsad046. [PMID: 37688518 PMCID: PMC10576201 DOI: 10.1093/scan/nsad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Observing other people acting activates imitative motor plans in the observer. Whether, and if so when and how, such 'effector-specific motor simulation' contributes to action recognition remains unclear. We report that individuals born without upper limbs (IDs)-who cannot covertly imitate upper-limb movements-are significantly less accurate at recognizing degraded (but not intact) upper-limb than lower-limb actions (i.e. point-light animations). This finding emphasizes the need to reframe the current controversy regarding the role of effector-specific motor simulation in action recognition: instead of focusing on the dichotomy between motor and non-motor theories, the field would benefit from new hypotheses specifying when and how effector-specific motor simulation may supplement core action recognition processes to accommodate the full variety of action stimuli that humans can recognize.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Avenue E. Mounier 53, Brussels 1200, Belgium
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
- CIMEC (Center for Mind-Brain Sciences), University of Trento, Via delle Regole 101, Mattarello TN 38123, Italy
| |
Collapse
|
41
|
Labaune O, Deroche T, Castanier C, Berret B. On the perception of movement vigour. Q J Exp Psychol (Hove) 2023; 76:2329-2345. [PMID: 36376994 DOI: 10.1177/17470218221140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is common to get the impression that someone moves rather slowly or quickly in everyday life. In motor control, the natural pace of movement is captured by the concept of vigour, which is often quantified from the speed or duration of goal-directed actions. A common phenomenon, here referred to as the vigour law, is that preferred speed and duration idiosyncratically increase with the magnitude of the motion. According to the direct-matching hypothesis, this vigour law could thus underlie the judgement of someone else's movement vigour. We conducted a series of three experiments (N = 80) to test whether the vigour law also exists in perception and whether it is linked to that of action. In addition to measuring participants' vigour, we also asked them to judge the quickness of stimuli representing horizontal arm reaching movements varying through amplitudes, speeds, and durations. Results showed that speed and duration of movements perceived as neither fast nor slow (i.e., natural pace) increased with amplitude, thereby indicating that the vigour law holds when an observer judges the natural pace of others' movements. Results also revealed that this judgement was population-based (related to the average vigour of all participants) rather than individual-based (participant's own vigour).
Collapse
Affiliation(s)
- Ombeline Labaune
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Thomas Deroche
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Carole Castanier
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
42
|
Aizu N, Sudo T, Oouchida Y, Izumi SI. Facilitation of imitative movement in patients with chronic hemiplegia triggered by illusory ownership. Sci Rep 2023; 13:16143. [PMID: 37752335 PMCID: PMC10522677 DOI: 10.1038/s41598-023-43410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
The sense of body ownership, the feeling that one's body belongs to oneself, is a crucial subjective conscious experience of one's body. Recent methodological advances regarding crossmodal illusions have provided novel insights into how multisensory interactions shape human perception and cognition, underpinning conscious experience, particularly alteration of body ownership. Moreover, in post-stroke rehabilitation, encouraging the use of the paretic limb in daily life is considered vital, as a settled sense of ownership and attentional engagement toward the paralyzed body part may promote increased frequency of its use and prevent learned nonuse. Therefore, in addition to traditional methods, novel interventions using neurorehabilitation techniques that induce self-body recognition are needed. This study investigated whether the illusory experience of a patient's ownership alterations of their paretic hand facilitates the enhancement in the range of motion of succeeding imitation movements. An experiment combining a modified version of the rubber hand illusion with imitation training was conducted with chronic hemiplegia. A larger imitation movement of the paretic hand was observed in the illusion-induced condition, indicating that the feeling of ownership toward the observed limb promotes the induction of intrinsic potential for motor performance. This training, using subjective experience, may help develop new post-stroke rehabilitation interventions.
Collapse
Affiliation(s)
- Naoki Aizu
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Tamami Sudo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Computer and Information Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Collective Intelligence Research Laboratory, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yutaka Oouchida
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Education, Osaka Kyoiku University, Osaka, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
43
|
Proietti R, Pezzulo G, Tessari A. An active inference model of hierarchical action understanding, learning and imitation. Phys Life Rev 2023; 46:92-118. [PMID: 37354642 DOI: 10.1016/j.plrev.2023.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
We advance a novel active inference model of the cognitive processing that underlies the acquisition of a hierarchical action repertoire and its use for observation, understanding and imitation. We illustrate the model in four simulations of a tennis learner who observes a teacher performing tennis shots, forms hierarchical representations of the observed actions, and imitates them. Our simulations show that the agent's oculomotor activity implements an active information sampling strategy that permits inferring the kinematic aspects of the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic inference supports higher-level inferences about deeper aspects of the observed actions: proximal goals and intentions. Finally, the inferred action representations can steer imitative responses, but interfere with the execution of different actions. Our simulations show that hierarchical active inference provides a unified account of action observation, understanding, learning and imitation and helps explain the neurobiological underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms.
Collapse
Affiliation(s)
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Alessia Tessari
- Department of Psychology, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Labaune O, Berret B. The vigor law as a kinematic invariant at work in perceptual-cognitive processes: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:1-4. [PMID: 37210934 DOI: 10.1016/j.plrev.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Ombeline Labaune
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France; CIAMS, Université d'Orléans, Orléans, France.
| |
Collapse
|
45
|
Smit S, Moerel D, Zopf R, Rich AN. Vicarious touch: Overlapping neural patterns between seeing and feeling touch. Neuroimage 2023; 278:120269. [PMID: 37423272 DOI: 10.1016/j.neuroimage.2023.120269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Simulation theories propose that vicarious touch arises when seeing someone else being touched triggers corresponding representations of being touched. Prior electroencephalography (EEG) findings show that seeing touch modulates both early and late somatosensory responses (measured with or without direct tactile stimulation). Functional Magnetic Resonance Imaging (fMRI) studies have shown that seeing touch increases somatosensory cortical activation. These findings have been taken to suggest that when we see someone being touched, we simulate that touch in our sensory systems. The somatosensory overlap when seeing and feeling touch differs between individuals, potentially underpinning variation in vicarious touch experiences. Increases in amplitude (EEG) or cerebral blood flow response (fMRI), however, are limited in that they cannot test for the information contained in the neural signal: seeing touch may not activate the same information as feeling touch. Here, we use time-resolved multivariate pattern analysis on whole-brain EEG data from people with and without vicarious touch experiences to test whether seen touch evokes overlapping neural representations with the first-hand experience of touch. Participants felt touch to the fingers (tactile trials) or watched carefully matched videos of touch to another person's fingers (visual trials). In both groups, EEG was sufficiently sensitive to allow decoding of touch location (little finger vs. thumb) on tactile trials. However, only in individuals who reported feeling touch when watching videos of touch could a classifier trained on tactile trials distinguish touch location on visual trials. This demonstrates that, for people who experience vicarious touch, there is overlap in the information about touch location held in the neural patterns when seeing and feeling touch. The timecourse of this overlap implies that seeing touch evokes similar representations to later stages of tactile processing. Therefore, while simulation may underlie vicarious tactile sensations, our findings suggest this involves an abstracted representation of directly felt touch.
Collapse
Affiliation(s)
- Sophie Smit
- Perception in Action Research Centre & School of Psychological Sciences, Macquarie University, 16 University Ave, NSW 2109, Australia.
| | - Denise Moerel
- Perception in Action Research Centre & School of Psychological Sciences, Macquarie University, 16 University Ave, NSW 2109, Australia; School of Psychology, The University of Sydney, Griffith Taylor Building A19, Camperdown, NSW 2050, Australia
| | - Regine Zopf
- Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena 07743, Federal Republic of Germany
| | - Anina N Rich
- Perception in Action Research Centre & School of Psychological Sciences, Macquarie University, 16 University Ave, NSW 2109, Australia
| |
Collapse
|
46
|
Straulino E, Scarpazza C, Spoto A, Betti S, Chozas Barrientos B, Sartori L. The Spatiotemporal Dynamics of Facial Movements Reveals the Left Side of a Posed Smile. BIOLOGY 2023; 12:1160. [PMID: 37759560 PMCID: PMC10525663 DOI: 10.3390/biology12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Humans can recombine thousands of different facial expressions. This variability is due to the ability to voluntarily or involuntarily modulate emotional expressions, which, in turn, depends on the existence of two anatomically separate pathways. The Voluntary (VP) and Involuntary (IP) pathways mediate the production of posed and spontaneous facial expressions, respectively, and might also affect the left and right sides of the face differently. This is a neglected aspect in the literature on emotion, where posed expressions instead of genuine expressions are often used as stimuli. Two experiments with different induction methods were specifically designed to investigate the unfolding of spontaneous and posed facial expressions of happiness along the facial vertical axis (left, right) with a high-definition 3-D optoelectronic system. The results showed that spontaneous expressions were distinguished from posed facial movements as revealed by reliable spatial and speed key kinematic patterns in both experiments. Moreover, VP activation produced a lateralization effect: compared with the felt smile, the posed smile involved an initial acceleration of the left corner of the mouth, while an early deceleration of the right corner occurred in the second phase of the movement, after the velocity peak.
Collapse
Affiliation(s)
- Elisa Straulino
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; (C.S.); (A.S.)
| | - Cristina Scarpazza
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; (C.S.); (A.S.)
- Translational Neuroimaging and Cognitive Lab, IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy
| | - Andrea Spoto
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; (C.S.); (A.S.)
| | - Sonia Betti
- Department of Psychology, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Beatriz Chozas Barrientos
- Department of Chiropractic Medicine, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008 Zürich, Switzerland;
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy; (C.S.); (A.S.)
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| |
Collapse
|
47
|
Lonardo L, Völter CJ, Lamm C, Huber L. Dogs Rely On Visual Cues Rather Than On Effector-Specific Movement Representations to Predict Human Action Targets. Open Mind (Camb) 2023; 7:588-607. [PMID: 37840756 PMCID: PMC10575556 DOI: 10.1162/opmi_a_00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
The ability to predict others' actions is one of the main pillars of social cognition. We investigated the processes underlying this ability by pitting motor representations of the observed movements against visual familiarity. In two pre-registered eye-tracking experiments, we measured the gaze arrival times of 16 dogs (Canis familiaris) who observed videos of a human or a conspecific executing the same goal-directed actions. On the first trial, when the human agent performed human-typical movements outside dogs' specific motor repertoire, dogs' gaze arrived at the target object anticipatorily (i.e., before the human touched the target object). When the agent was a conspecific, dogs' gaze arrived to the target object reactively (i.e., upon or after touch). When the human agent performed unusual movements more closely related to the dogs' motor possibilities (e.g., crawling instead of walking), dogs' gaze arrival times were intermediate between the other two conditions. In a replication experiment, with slightly different stimuli, dogs' looks to the target object were neither significantly predictive nor reactive, irrespective of the agent. However, when including looks at the target object that were not preceded by looks to the agents, on average dogs looked anticipatorily and sooner at the human agent's action target than at the conspecific's. Looking times and pupil size analyses suggest that the dogs' attention was captured more by the dog agent. These results suggest that visual familiarity with the observed action and saliency of the agent had a stronger influence on the dogs' looking behaviour than effector-specific movement representations in anticipating action targets.
Collapse
Affiliation(s)
- Lucrezia Lonardo
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Christoph J. Völter
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
BORAN HE, KILINÇ H, CENGİZ B. Mirror neuron activity depending on the content and stage of the observed action: a TMS study. Turk J Med Sci 2023; 53:1428-1437. [PMID: 38813024 PMCID: PMC10763779 DOI: 10.55730/1300-0144.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/26/2023] [Accepted: 08/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The firing rate of the mirror neuron system in monkeys decreases systematically with more repetitions. The aim of this study is to investigate whether the activity of the mirror neuron system varies based on the observed movement and the contents of the action, as well as whether there is inhibition in the mirror neuron system when humans observe repeated actions. If inhibition is present, the second question of the study is whether it is related to the organization of the observed action. Materials and methods Fourteen healthy volunteers participated in the study. Transcranial magnetic stimulation was applied to the left primary motor cortex and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous and abductor pollicis brevis muscles while the participants were watching videos specially prepared for the study. Results There were no significant changes in MEP amplitudes compared to baseline MEPs while observing aimless action. However, while participants watched the repeated action video, the mean MEP amplitude increased at the beginning of the movement, but neither facilitation nor inhibition was detected when the participants watched the phase of grasping the object of the action compared to the baseline MEP amplitude. On the other hand, while participants were watching different activities, an increased MEP amplitude was observed at the beginning of the movement and in the grasping of the object of the action. Additionally, there was no significant reduction in MEP amplitude during any movement stages while observing the repeated action video. Conclusion The findings of this study suggest that the activation of the mirror neuron system in humans depends on the content and stages of the observed movement. Additionally, there was no inhibition or systematic reduction in MEP amplitudes while watching a repeated action.
Collapse
Affiliation(s)
- H. Evren BORAN
- Department of Neurology and Division of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence, Ankara,
Turkiye
| | - Hasan KILINÇ
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence, Ankara,
Turkiye
| | - Bülent CENGİZ
- Department of Neurology and Division of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence, Ankara,
Turkiye
| |
Collapse
|
49
|
Albergoni A, Biggio M, Faelli E, Ruggeri P, Avanzino L, Bove M, Bisio A. Aging deteriorates the ability to discriminate the weight of an object during an action observation task. Front Aging Neurosci 2023; 15:1216304. [PMID: 37609031 PMCID: PMC10440420 DOI: 10.3389/fnagi.2023.1216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
The ability to predict the weight of objects is important for skilled and dexterous manipulation during activities of daily living. The observation of other people moving objects might represent an important source of information on object features and help to plan the correct motor interaction with it. In aging, an impaired ability to evaluate the object weight might have negative drawbacks in term of the safety of the person. The aim of this study was to investigate the role of aging in the ability to discriminate the object weight during action observation. Twenty older adults (Old) and twenty young subjects (Young) performed a two-interval forced-choice task consisting in the observation of a couple of videos showing an actor moving a box of different weights. The observer had to evaluate which video showed the heavier box. Handgrip strength was acquired from all subjects. Sensitivity analysis was performed and psychometric curves were built on participants' responses. The results showed a diminished sensitivity in the object weight discrimination in Old than in Young group. The analysis of the psychometric curves revealed that this impairment pertained both the light and heavy boxes and the minimum difference to discriminate different weights was greater in Old than in Young. At last, the sensitivity and the discrimination ability significantly correlated with individuals' handgrip strength. These findings allow us to deeply characterize the impairments older adults have in discriminating the weight of an object moved by another individual.
Collapse
Affiliation(s)
- Andrea Albergoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, Università Degli Studi di Genova, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
| | - Emanuela Faelli
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
| | - Piero Ruggeri
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Ambra Bisio
- Centro Polifunzionale di Scienze Motorie, Università Degli Studi di Genova, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, Università Degli Studi di Genova, Genoa, Italy
| |
Collapse
|
50
|
Pomper JK, Shams M, Wen S, Bunjes F, Thier P. Non-shared coding of observed and executed actions prevails in macaque ventral premotor mirror neurons. eLife 2023; 12:e77513. [PMID: 37458338 PMCID: PMC10411969 DOI: 10.7554/elife.77513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
According to the mirror mechanism the discharge of F5 mirror neurons of a monkey observing another individual performing an action is a motor representation of the observed action that may serve to understand or learn from the action. This hypothesis, if strictly interpreted, requires mirror neurons to exhibit an action tuning that is shared between action observation and execution. Due to insufficient data it remains contentious if this requirement is met. To fill in the gaps, we conducted an experiment in which identical objects had to be manipulated in three different ways in order to serve distinct action goals. Using three methods, including cross-task classification, we found that at most time points F5 mirror neurons did not encode observed actions with the same code underlying action execution. However, in about 20% of neurons there were time periods with a shared code. These time periods formed a distinct cluster and cannot be considered a product of chance. Population classification yielded non-shared coding for observed actions in the whole population, which was at times optimal and consistently better than shared coding in differentially selected subpopulations. These results support the hypothesis of a representation of observed actions based on a strictly defined mirror mechanism only for small subsets of neurons and only under the assumption of time-resolved readout. Considering alternative concepts and recent findings, we propose that during observation mirror neurons represent the process of a goal pursuit from the observer's viewpoint. Whether the observer's goal pursuit, in which the other's action goal becomes the observer's action goal, or the other's goal pursuit is represented remains to be clarified. In any case, it may allow the observer to use expectations associated with a goal pursuit to directly intervene in or learn from another's action.
Collapse
Affiliation(s)
- Jörn K Pomper
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Mohammad Shams
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 , GermanyTübingenGermany
- Department of Psychology, York UniversityTorontoCanada
| | - Shengjun Wen
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 , GermanyTübingenGermany
| | - Friedemann Bunjes
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Peter Thier
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|