1
|
Stanton EW, Manasyan A, Banerjee R, Hong K, Koesters E, Daar DA. Glucagon-Like Peptide-1 Agonists: A Practical Overview for Plastic and Reconstructive Surgeons. Ann Plast Surg 2025; 94:121-127. [PMID: 39293069 DOI: 10.1097/sap.0000000000004089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) agonists, such as exenatide, liraglutide, dulaglutide, semaglutide, and tirzepatide, effectively manage type 2 diabetes by promoting insulin release, suppressing glucagon secretion, and enhancing glucose metabolism. They also aid weight reduction and cardiovascular health, potentially broadening their therapeutic scope. In plastic surgery, they hold promise for perioperative weight management and glycemic control, potentially impacting surgical outcomes. METHODS A comprehensive review was conducted to assess GLP-1 agonists' utilization in plastic surgery. We analyzed relevant studies, meta-analyses, and trials to evaluate their benefits and limitations across surgical contexts, focusing on weight reduction, glycemic control, cardiovascular risk factors, and potential complications. RESULTS Studies demonstrate GLP-1 agonists' versatility, spanning weight management, cardiovascular health, neurological disorders, and metabolic dysfunction-associated liver diseases. Comparative analyses highlight variations in glycemic control, weight loss, and cardiometabolic risk. Meta-analyses reveal significant reductions in hemoglobin A1C levels, especially with high-dose semaglutide (2 mg) and tirzepatide (15 mg). However, increased dosing may lead to gastrointestinal side effects and serious complications like pancreatitis and bowel obstruction. Notably, GLP-1 agonists' efficacy in weight reduction and glycemic control may impact perioperative management in plastic surgery, potentially expanding surgical candidacy for procedures like autologous flap-based breast reconstruction and influencing outcomes related to lymphedema. Concerns persist regarding venous thromboembolism and delayed gastric emptying, necessitating further investigation into bleeding and aspiration risk with anesthesia. CONCLUSIONS GLP-1 agonists offer advantages in perioperative weight management and glycemic control in plastic surgery patients. They may broaden surgical candidacy and mitigate lymphedema risk but require careful consideration of complications, particularly perioperative aspiration risk. Future research should focus on their specific impacts on surgical outcomes to optimize their integration into perioperative protocols effectively. Despite challenges, GLP-1 agonists promise to enhance surgical outcomes and patient care in plastic surgery.
Collapse
Affiliation(s)
| | - Artur Manasyan
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rakhi Banerjee
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kurt Hong
- Division of Internal Medicine, Keck School of Medicine of USC, Los Angeles, CA
| | | | | |
Collapse
|
2
|
Kwon HJ, Santhosh D, Huang Z. A novel monomeric amyloid β-activated signaling pathway regulates brain development via inhibition of microglia. eLife 2024; 13:RP100446. [PMID: 39635981 PMCID: PMC11620749 DOI: 10.7554/elife.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Amyloid β (Aβ) forms aggregates in the Alzheimer's disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer's disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.
Collapse
Affiliation(s)
- Hyo Jun Kwon
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Devi Santhosh
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
3
|
Zhang J, Pandey M, Awe A, Lue N, Kittock C, Fikse E, Degner K, Staples J, Mokhasi N, Chen W, Yang Y, Adikaram P, Jacob N, Greenfest-Allen E, Thomas R, Bomeny L, Zhang Y, Petros TJ, Wang X, Li Y, Simonds WF. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am J Hum Genet 2024; 111:473-486. [PMID: 38354736 PMCID: PMC10940018 DOI: 10.1016/j.ajhg.2024.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gβ5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
Collapse
Affiliation(s)
- Jianhua Zhang
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mritunjay Pandey
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Awe
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Lue
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claire Kittock
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma Fikse
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Degner
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenna Staples
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Mokhasi
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8/Rm 1A11, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- Laboratory of Transplantation Genomics, National Heart Lung and Blood Institute, Bldg. 10/Rm 7S261, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Greenfest-Allen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Bomeny
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaowen Wang
- Partek Incorporated, 12747 Olive Boulevard, St. Louis, MO 63141, USA
| | - Yulong Li
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Antonino M, Marmo P, Freites CL, Quassollo GE, Sánchez MF, Lorenzo A, Bignante EA. Aβ Assemblies Promote Amyloidogenic Processing of APP and Intracellular Accumulation of Aβ42 Through Go/Gβγ Signaling. Front Cell Dev Biol 2022; 10:852738. [PMID: 35445022 PMCID: PMC9013780 DOI: 10.3389/fcell.2022.852738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of aggregated species of amyloid beta (Aβ) in the brain, which leads to progressive cognitive deficits and dementia. Aβ is generated by the successive cleavage of the amyloid precursor protein (APP), first by β-site APP cleaving enzyme 1 (BACE1) and subsequently by the γ-secretase complex. Those conditions which enhace or reduce its clearance predispose to Aβ aggregation and the development of AD. In vitro studies have demonstrated that Aβ assemblies spark a feed-forward loop heightening Aβ production. However, the underlying mechanism remains unknown. Here, we show that oligomers and fibrils of Aβ enhance colocalization and physical interaction of APP and BACE1 in recycling endosomes of human neurons derived from induced pluripotent stem cells and other cell types, which leads to exacerbated amyloidogenic processing of APP and intracellular accumulation of Aβ42. In cells that are overexpressing the mutant forms of APP which are unable to bind Aβ or to activate Go protein, we have found that treatment with aggregated Aβ fails to increase colocalization of APP with BACE1 indicating that Aβ-APP/Go signaling is involved in this process. Moreover, inhibition of Gβγ subunit signaling with βARKct or gallein prevents Aβ-dependent interaction of APP and BACE1 in endosomes, β-processing of APP, and intracellular accumulation of Aβ42. Collectively, our findings uncover a signaling mechanism leading to a feed-forward loop of amyloidogenesis that might contribute to Aβ pathology in the early stages of AD and suggest that gallein could have therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Antonino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Marmo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carlos Leandro Freites
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Alfredo Lorenzo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Elena Anahi Bignante, ; Alfredo Lorenzo,
| | - Elena Anahi Bignante
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
- *Correspondence: Elena Anahi Bignante, ; Alfredo Lorenzo,
| |
Collapse
|
5
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
6
|
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y, Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 2021; 12:721135. [PMID: 34497589 PMCID: PMC8419463 DOI: 10.3389/fendo.2021.721135] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin secretory molecule. GLP-1 receptor agonists (GLP-1RAs) are widely used in the treatment of type 2 diabetes (T2DM) due to their attributes such as body weight loss, protection of islet β cells, promotion of islet β cell proliferation and minimal side effects. Studies have found that GLP-1R is widely distributed on pancreatic and other tissues and has multiple biological effects, such as reducing neuroinflammation, promoting nerve growth, improving heart function, suppressing appetite, delaying gastric emptying, regulating blood lipid metabolism and reducing fat deposition. Moreover, GLP-1RAs have neuroprotective, anti-infectious, cardiovascular protective, and metabolic regulatory effects, exhibiting good application prospects. Growing attention has been paid to the relationship between GLP-1RAs and tumorigenesis, development and prognosis in patient with T2DM. Here, we reviewed the therapeutic effects and possible mechanisms of action of GLP-1RAs in the nervous, cardiovascular, and endocrine systems and their correlation with metabolism, tumours and other diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Minghe Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
7
|
Chatzistavraki M, Papazafiri P, Efthimiopoulos S. Amyloid-β Protein Precursor Regulates Depolarization-Induced Calcium-Mediated Synaptic Signaling in Brain Slices. J Alzheimers Dis 2020; 76:1121-1133. [PMID: 32597808 DOI: 10.3233/jad-200290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coordinated calcium influx upon neuronal depolarization activates pathways that phosphorylate CaMKII, ERKs, and the transcription factor CREB and, therefore, expression of pro-survival and neuroprotective genes. Recent evidence indicates that amyloid-β protein precursor (AβPP) is trafficked to synapses and promotes their formation. At the synapse, AβPP interacts with synaptic proteins involved in vesicle exocytosis and affects calcium channel function. OBJECTIVE Herein, we examined the role of AβPP in depolarization-induced calcium-mediated signaling using acute cerebral slices from wild-type C57bl/6 mice and AβPP-/- C57bl/6 mice. METHODS Depolarization of acute cerebral slices from wild-type C57bl/6 and AβPP-/- C57bl/6 mice was used to induce synaptic signaling. Protein levels were examined by western blot and calcium dynamics were assessed using primary neuronal cultures. RESULTS In the absence of AβPP, decreased pCaMKII and pERKs levels were observed. This decrease was sensitive to the inhibition of N- and P/Q-type Voltage Gated Calcium Channels (N- and P/Q-VGCCs) by ω-conotoxin GVIA and ω-conotoxin MVIIC, respectively, but not to inhibition of L-type VGCCs by nifedipine. However, the absence of AβPP did not result in a statistically significant decrease of pCREB, which is a known substrate of pERKs. Finally, using calcium imaging, we found that down regulation of AβPP in cortical neurons results in a decreased response to depolarization and altered kinetics of calcium response. CONCLUSION AβPP regulates synaptic activity-mediated neuronal signaling by affecting N- and P/Q-VGCCs.
Collapse
Affiliation(s)
- Maria Chatzistavraki
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Panagiota Papazafiri
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Spiros Efthimiopoulos
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| |
Collapse
|
8
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2020; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| |
Collapse
|
9
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, Fà M, Staniszewski A, Calcagno E, Zuccarello E, D’Adamio L, Deng SX, Puzzo D, Arancio O, Fiorito J. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14:26. [PMID: 31248451 PMCID: PMC6598340 DOI: 10.1186/s13024-019-0326-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- DiMi Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Manon van den Berg
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard P.O. Box 8000, Theobald Science Center, room 425, Old Westbury, NY 11568 USA
| |
Collapse
|
11
|
Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun 2019; 78:9-20. [PMID: 30641141 PMCID: PMC6488430 DOI: 10.1016/j.bbi.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
To date, there is no reliable biomarker for the assessment or determination of cognitive dysfunction in Alzheimer's disease and related dementia. Such a biomarker would not only aid in diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged that the hallmarks of Alzheimer's disease, namely, amyloid deposits and neurofibrillary tangles, as well as their precursors and metabolites, are poorly correlated with cognitive function and disease stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a critical step for the formation of memory. This set of processes is a prerequisite for the transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, recent work suggests that the expression of pCREB in peripheral blood mononuclear cells (PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer's patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of cognitive dysfunction, but also that the dysfunction of CREB signaling may not be limited to the brain in AD, and that a link may exist between the regulation of CREB in the blood and in the brain. In this review we consider the evidence suggesting a correlation between the level of CREB signals in the brain and blood, the current knowledge about CREB in PBMC and its association with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that may underlie this communication. This Review will discuss the possibility that peripheral dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer's disease. Diabetes Metab Syndr 2018; 12:469-475. [PMID: 29598932 DOI: 10.1016/j.dsx.2018.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30 amino acid long peptide hormone derived from the proglucagon gene and secreted in the distal small intestine when food enters the duodenum. GLP-1 is also produced in the central nervous system (CNS), predominantly in the brainstem, and subsequently transported to a large number of regions in the CNS. Neuronal cells in nucleus tractus solitarius (NTS) can synthesize GLP-1 and extends to hypothalamus, some thalamic and cortical areas. A G protein coupled receptor (GPCR) provides the majority of GLP-1 actions. GLP-1 receptor activation triggers some in vivo signaling pathways. GLP-1 receptor agonists (GLP-1 RA) are used in the treatment diabetes and obesity. GLP-1 stimulates insulin secretion, inhibits glucagon secretion, decreases food intake, reduces appetite, delays gastric emptying, provides weight reduction, and protects β cells from apoptosis. Alzheimer's disease (AD) is the most prevalent form of dementia. It is characterized by cognitive insufficiencies and behavioral changes that impact memory and learning abilities, daily functioning and quality of life. Hyperinsulinemia and insulin resistance, which are known as pathophysiological features of the T2DM, have also been demonstrated to have significant impact on cognitive impairment. It is thought that GLP-1 affects neurological and cognitive functions, as well as its regulatory effect on glucose metabolism. The pathophysiological relationship between GLP-1 and AD is discussed in this review.
Collapse
Affiliation(s)
- Ilgin Yildirim Simsir
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey.
| | - Utku Erdem Soyaltin
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey
| | - Sevki Cetinkalp
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey
| |
Collapse
|
13
|
Stem Cell Therapies for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:61-84. [PMID: 29754175 DOI: 10.1007/978-3-319-74470-4_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell therapies have been proposed as a treatment option for neurodegenerative diseases, but the best stem cell source and therapeutic efficacy for neuroregeneration remain uncertain. Embryonic stem cells (ESCs) and neural stem cells (NSCs), which can efficiently generate neural cells, could be good candidates but they pose ethical and practical issues. Not only difficult to find the good source of those cells but also they alway pose immunorejection problem since they may not be an autologous cells. Even if we overcome the immunorejection problem, it has also been reported that transplantation of ESCs develop teratoma. Although adult stem cells are more accessible, they have a limited developmental potential. We developed technologies to increase potency of mesenchymal stem cells, which allow them to develop into neural cells, by over expression of the ESC gene, nanog. We also developed a small molecule compound, which significantly increases endogenous NSCs by peripheral administration, eliminating even the necessity of stem cell injection to the brain. These novel technologies may offer neuroregenerative therapies for Alzheimers disease (AD). However, we found that AD pathological condition prevent neurogenesis from NSCs. This chapter discusses how to overcome the problem associated stem cell therapy under AD pathology and introduces exosome as a tool to improve the modification of adult stem cells. These new technologies may open a door for the new era for AD therapy.
Collapse
|
14
|
Bignante EA, Ponce NE, Heredia F, Musso J, Krawczyk MC, Millán J, Pigino GF, Inestrosa NC, Boccia MM, Lorenzo A. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiol Aging 2017; 64:44-57. [PMID: 29331876 DOI: 10.1016/j.neurobiolaging.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/15/2022]
Abstract
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Universitario de Ciencias Biomédicas de Córdoda (IUCBC), Argentina
| | - Nicolás Eric Ponce
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juliana Musso
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Millán
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo F Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
15
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
16
|
Sosa LJ, Cáceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A. The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 2017; 143:11-29. [PMID: 28677143 DOI: 10.1111/jnc.14122] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.
Collapse
Affiliation(s)
- Lucas J Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Cáceres
- Laboratorio Neurobiología, Instituto Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Mariana Oksdath
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Lorenzo
- Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Ramaker JM, Copenhaver PF. Amyloid Precursor Protein family as unconventional Go-coupled receptors and the control of neuronal motility. NEUROGENESIS 2017; 4:e1288510. [PMID: 28321435 PMCID: PMC5345750 DOI: 10.1080/23262133.2017.1288510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that signals via the heterotrimeric G protein Gαo, but evidence for APP-Gαo signaling in vivo has been lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal migration in a Gαo-dependent manner. Recently, we also demonstrated that Manduca Contactin (expressed by glial cells) induces APPL-Gαo retraction responses in migratory neurons, consistent with evidence that mammalian Contactins also interact with APP family members. Preliminary studies using cultured hippocampal neurons suggest that APP-Gαo signaling can similarly regulate growth cone motility. Whether Contactins (or other APP ligands) induce this response within the developing nervous system, and how this pathway is disrupted in AD, remains to be explored.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University , Portland, OR, USA
| |
Collapse
|
18
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
19
|
Preat T, Goguel V. Role of Drosophila Amyloid Precursor Protein in Memory Formation. Front Mol Neurosci 2016; 9:142. [PMID: 28008309 PMCID: PMC5143682 DOI: 10.3389/fnmol.2016.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
The amyloid precursor protein (APP) is a membrane protein engaged in complex proteolytic pathways. APP and its derivatives have been shown to play a central role in Alzheimer’s disease (AD), a progressive neurodegenerative disease characterized by memory decline. Despite a huge effort from the research community, the primary cause of AD remains unclear, making it crucial to better understand the physiological role of the APP pathway in brain plasticity and memory. Drosophila melanogaster is a model system well-suited to address this issue. Although relatively simple, the fly brain is highly organized, sustains several forms of learning and memory, and drives numerous complex behaviors. Importantly, molecules and mechanisms underlying memory processes are conserved from flies to mammals. The fly encodes a single non-essential APP homolog named APP-Like (APPL). Using in vivo inducible RNA interference strategies, it was shown that APPL knockdown in the mushroom bodies (MB)—the central integrative brain structure for olfactory memory—results in loss of memory. Several APPL derivatives, such as secreted and full-length membrane APPL, may play different roles in distinct types of memory phases. Furthermore, overexpression of Drosophila amyloid peptide exacerbates the memory deficit caused by APPL knockdown, thus potentiating memory decline. Data obtained in the fly support the hypothesis that APP acts as a transmembrane receptor, and that disruption of its normal function may contribute to cognitive impairment during early AD.
Collapse
Affiliation(s)
- Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| | - Valérie Goguel
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique (CNRS), ESPCI Paris, PSL Research University Paris, France
| |
Collapse
|
20
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
21
|
Bartolotti N, Bennett DA, Lazarov O. Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 2016; 21:1158-1166. [PMID: 27480489 PMCID: PMC4995548 DOI: 10.1038/mp.2016.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023]
Abstract
Cyclic-AMP response element-binding protein (CREB) signaling has a critical role in the formation of memories. CREB signaling is dysfunctional in the brains of mouse models of Alzheimer's disease (AD), and evidence suggests that CREB signaling may be disrupted in human AD brains as well. Here, we show that both CREB and its activated form pCREB-Ser(133) (pCREB) are reduced in the prefrontal cortex of AD patients. Similarly, the transcription cofactors CREB-binding protein (CBP) and p300 are reduced in the prefrontal cortex of AD patients, indicating additional dysfunction of CREB signaling in AD. Importantly, we show that pCREB expression is reduced in peripheral blood mononuclear cells (PBMC) of AD subjects. In addition, pCREB levels in PBMC positively correlated with pCREB expression in the postmortem brain of persons with AD. These results suggest that pCREB expression in PBMC may be indicative of its expression in the brain, and thus offers the intriguing possibility of pCREB as a biomarker of cognitive function and disease progression in AD.
Collapse
Affiliation(s)
- N Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - O Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
APP Receptor? To Be or Not To Be. Trends Pharmacol Sci 2016; 37:390-411. [PMID: 26837733 DOI: 10.1016/j.tips.2016.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.
Collapse
|
23
|
Bartolotti N, Segura L, Lazarov O. Diminished CRE-Induced Plasticity is Linked to Memory Deficits in Familial Alzheimer's Disease Mice. J Alzheimers Dis 2016; 50:477-489. [PMID: 26682682 PMCID: PMC4927858 DOI: 10.3233/jad-150650] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 11/15/2022]
Abstract
The mechanism underlying impaired learning and memory in Alzheimer's disease is not fully elucidated. The phosphorylation of cyclic-AMP response element binding protein (pCREB) in the hippocampus is thought to be a critical initiating step in the formation of long-term memories. Here, we tested CRE-driven gene expression following learning in mice harboring the familial Alzheimer's disease-linked APPswe/PS1ΔE9 mutations using CRE-β galactosidase reporter. We show that young adult APPswe/PS1ΔE9 mice exhibit impaired recognition memory and reduced levels of pCREB, and its cofactors CREB binding protein (CBP) and p-300 following a learning task, compared to their wild type littermate counterparts. Impairments in learning-induced activation of CREB in these mice are manifested by reduced CRE-driven gene transcription. Importantly, expression of the CRE-driven immediate early gene, Egr-1 (Zif268) is decreased in the CA1 region of the hippocampus. These studies implicate defective CREB-dependent plasticity in the mechanism underlying learning and memory deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Laura Segura
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Decock M, El Haylani L, Stanga S, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio 2015; 5:763-73. [PMID: 26500837 PMCID: PMC4588712 DOI: 10.1016/j.fob.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Amyloid precursor protein (APP) dimerizes more than its C-terminal fragments in cells. Mutations of membrane GXXXG motifs affect Aβ production but not APP dimerization. Deletion of the APP intracellular domain increases APP dimerization.
Alzheimer’s disease (AD) is a neurodegenerative disease that causes progressive loss of cognitive functions, leading to dementia. Two types of lesions are found in AD brains: neurofibrillary tangles and senile plaques. The latter are composed mainly of the β-amyloid peptide (Aβ) generated by amyloidogenic processing of the amyloid precursor protein (APP). Several studies have suggested that dimerization of APP is closely linked to Aβ production. Nevertheless, the mechanisms controlling APP dimerization and their role in APP function are not known. Here we used a new luciferase complementation assay to analyze APP dimerization and unravel the involvement of its three major domains: the ectodomain, the transmembrane domain and the intracellular domain. Our results indicate that within cells full-length APP dimerizes more than its α and β C-terminal fragments, confirming the pivotal role of the ectodomain in this process. Dimerization of the APP transmembrane (TM) domain has been reported to regulate processing at the γ-cleavage site. We show that both non-familial and familial AD mutations in the TM GXXXG motifs strongly modulate Aβ production, but do not consistently change dimerization of the C-terminal fragments. Finally, we found for the first time that removal of intracellular domain strongly increases APP dimerization. Increased APP dimerization is linked to increased non-amyloidogenic processing.
Collapse
Key Words
- AD, Alzheimer’s disease
- AICD, APP intracellular domain
- APP
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid beta peptide
- Aβ, β-amyloid peptide
- CHO, chinese hamster ovary
- CTF, C-terminal fragment
- DAPT, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester
- DTT, dithiothreitol
- Dimerization
- ECL, enzymatic chemi-luminescence
- ECLIA, electro-chemiluminescence immuno-assay
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- GXXXG motifs
- KPI, Kunitz-type protease inhibitor
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PBS, phosphate buffered saline
- PS1/PS2, presenilin1/presenilin2
- RLU, relative light unit
- SP, signal peptide
- Split luciferase
- TM, transmembrane
- YFP, yellow fluorescent protein
- sAPPα, soluble APPα
- sAPPβ, soluble APPβ
Collapse
Affiliation(s)
- Marie Decock
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Laetitia El Haylani
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Serena Stanga
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Ilse Dewachter
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Jean-Noël Octave
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Stefan N Constantinescu
- de Duve Institute and Ludwig Institute for Cancer Research, Université catholique de Louvain, Brussels 1200, Belgium
| | | |
Collapse
|
25
|
Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda U. Oxidative Stress and Aberrant Cell Cycle in Alzheimer’s Disease Lymphocytes: Diagnostic Prospects. J Alzheimers Dis 2015; 46:329-50. [DOI: 10.3233/jad-141977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Chiara Prandelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Angeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
26
|
Liu C, Tan FCK, Xiao ZC, Dawe GS. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem 2015; 290:12048-57. [PMID: 25767117 DOI: 10.1074/jbc.m114.617092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway.
Collapse
Affiliation(s)
- Chao Liu
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Zhi-Cheng Xiao
- the Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031, China, and the Shunxi-Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Gavin S Dawe
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456,
| |
Collapse
|
27
|
Liu FL, Liu TY, Kung FL. FKBP12 regulates the localization and processing of amyloid precursor protein in human cell lines. J Biosci 2014; 39:85-95. [PMID: 24499793 DOI: 10.1007/s12038-013-9400-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the pathological hallmarks of Alzheimer's disease is the presence of insoluble extracellular amyloid plaques. These plaques are mainly constituted of amyloid beta peptide (A beta), a proteolytic product of amyloid precursor protein (APP). APP processing also generates the APP intracellular domain (AICD). We have previously demonstrated that AICD interacts with FKBP12, a peptidyl-prolyl cis-trans isomerase (PPIase) ubiquitous in nerve systems. This interaction was interfered by FK506, a clinically used immunosuppressant that has recently been reported to be neuroprotective. To elucidate the roles of FKBP12 in the pathogenesis of Alzheimer's disease, the effect of FKBP12 overexpression on APP processing was evaluated. Our results revealed that APP processing was shifted towards the amyloidogenic pathway, accompanied by a change in the subcellular localization of APP, upon FKBP12 overexpression. This FKBP12-overexpression-induced effect was reverted by FK506. These findings support our hypothesis that FKBP12 may participate in the regulation of APP processing. FKBP12 overexpression may lead to the stabilization of a certain isomer (presumably the cis form) of the Thr668-Pro669 peptide bond in AICD, therefore change its affinity to flotillin-1 or other raft-associated proteins, and eventually change the localization pattern and cause a shift in the proteolytic processing of APP.
Collapse
Affiliation(s)
- Fan-Lun Liu
- School of Pharmacy, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | | | | |
Collapse
|
28
|
Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1444-53. [DOI: 10.1016/j.bbadis.2014.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
|
29
|
Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway. Cell Death Dis 2014; 5:e1391. [PMID: 25165877 PMCID: PMC4454324 DOI: 10.1038/cddis.2014.352] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/10/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in antagonizing neurotoxic stress: they suggest that cell surface APP mediates sAPPα-induced neuroprotection via G-protein-coupled activation of the Akt pathway.
Collapse
|
30
|
Fogel H, Frere S, Segev O, Bharill S, Shapira I, Gazit N, O'Malley T, Slomowitz E, Berdichevsky Y, Walsh DM, Isacoff EY, Hirsch JA, Slutsky I. APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep 2014; 7:1560-1576. [PMID: 24835997 DOI: 10.1016/j.celrep.2014.04.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/12/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022] Open
Abstract
Accumulation of amyloid-β peptides (Aβ), the proteolytic products of the amyloid precursor protein (APP), induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer's disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD) mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer's disease.
Collapse
Affiliation(s)
- Hilla Fogel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Oshik Segev
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Shashank Bharill
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Neta Gazit
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Tiernan O'Malley
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Republic of Ireland; Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Edden Slomowitz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
31
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
32
|
Boularan C, Kehrl JH. Implications of non-canonical G-protein signaling for the immune system. Cell Signal 2014; 26:1269-82. [PMID: 24583286 DOI: 10.1016/j.cellsig.2014.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/13/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.
Collapse
Affiliation(s)
- Cédric Boularan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
33
|
Crutcher KA, Anderton BH, Barger SW, Ohm TG, Snow AD. Cellular and molecular pathology in alzheimer's disease. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030730] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Keith A. Crutcher
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | | | - Steven W. Barger
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, Kentucky, U.S.A
| | - Thomas G. Ohm
- Zentrum der Morphologie, J. W. Goethe‐Universität, Frankfurt, Germany
| | - Alan D. Snow
- Department of Neuropathology, University of Washington, Seattle, Washington, U.S.A
| |
Collapse
|
34
|
Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 2013; 33:10165-81. [PMID: 23761911 DOI: 10.1523/jneurosci.1146-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) belongs to a family of evolutionarily conserved transmembrane glycoproteins that has been proposed to regulate multiple aspects of cell motility in the nervous system. Although APP is best known as the source of β-amyloid fragments (Aβ) that accumulate in Alzheimer's disease, perturbations affecting normal APP signaling events may also contribute to disease progression. Previous in vitro studies showed that interactions between APP and the heterotrimeric G protein Goα-regulated Goα activity and Go-dependent apoptotic responses, independent of Aβ. However, evidence for authentic APP-Go interactions within the healthy nervous system has been lacking. To address this issue, we have used a combination of in vitro and in vivo strategies to show that endogenously expressed APP family proteins colocalize with Goα in both insect and mammalian nervous systems, including human brain. Using biochemical, pharmacological, and Bimolecular Fluorescence Complementation assays, we have shown that insect APP (APPL) directly interacts with Goα in cell culture and at synaptic terminals within the insect brain, and that this interaction is regulated by Goα activity. We have also adapted a well characterized assay of neuronal migration in the hawkmoth Manduca to show that perturbations affecting APPL and Goα signaling induce the same unique pattern of ectopic, inappropriate growth and migration, analogous to defective migration patterns seen in mice lacking all APP family proteins. These results support the model that APP and its orthologs regulate conserved aspects of neuronal migration and outgrowth in the nervous system by functioning as unconventional Goα-coupled receptors.
Collapse
|
35
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
36
|
Heese K. G proteins, p60TRP, and neurodegenerative diseases. Mol Neurobiol 2013; 47:1103-11. [PMID: 23345134 DOI: 10.1007/s12035-013-8410-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/13/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a complex brain disorder of the limbic system and association cortices. The disease is characterized by the production and deposition of the amyloid β-peptide (Aβ) in the brain, and the neuropathological mechanisms involved must be deciphered to gain further insights into the fundamental aspects of the protein biology responsible for the development and progression of this disease. Aβ is generated by the intramembranous cleavage of the β-amyloid precursor protein, which is mediated by the proteases β- and γ-secretase. Accumulating evidence suggests the importance of the coupling of this cleavage mechanism to G protein signaling. Heterotrimeric G proteins play pivotal roles as molecular switches in signal transduction pathways mediated by G protein-coupled receptors (GPCRs). Extracellular stimuli activate these receptors, which in turn catalyze guanosine triphosphate-guanosine diphosphate exchange on the G protein α-subunit. The activation-deactivation cycles of G proteins underlie their crucial functions as molecular switches for a vast array of biological responses. The novel transcription regulator protein p60 transcription regulator protein and its related GPCR signaling pathways have recently been described as potential targets for the development of alternative strategies for inhibiting the early signaling mechanisms involved in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Klaus Heese
- Department of Biomedical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
37
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.037] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kohli BM, Pflieger D, Mueller LN, Carbonetti G, Aebersold R, Nitsch RM, Konietzko U. Interactome of the amyloid precursor protein APP in brain reveals a protein network involved in synaptic vesicle turnover and a close association with Synaptotagmin-1. J Proteome Res 2012; 11:4075-90. [PMID: 22731840 DOI: 10.1021/pr300123g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowledge of the protein networks interacting with the amyloid precursor protein (APP) in vivo can shed light on the physiological function of APP. To date, most proteins interacting with the APP intracellular domain (AICD) have been identified by Yeast Two Hybrid screens which only detect direct interaction partners. We used a proteomics-based approach by biochemically isolating tagged APP from the brains of transgenic mice and subjecting the affinity-purified complex to mass spectrometric (MS) analysis. Using two different quantitative MS approaches, we compared the protein composition of affinity-purified samples isolated from wild-type mice versus transgenic mice expressing tagged APP. This enabled us to assess truly enriched proteins in the transgenic sample and yielded an overlapping set of proteins containing the major proteins involved in synaptic vesicle endo- and exocytosis. Confocal microscopy analyses of cotransfected primary neurons showed colocalization of APP with synaptic vesicle proteins in vesicular structures throughout the neurites. We analyzed the interaction of APP with these proteins using pulldown experiments from transgenic mice or cotransfected cells followed by Western blotting. Synaptotagmin-1 (Stg1), a resident synaptic vesicle protein, was found to directly bind to APP. We fused Citrine and Cerulean to APP and the candidate proteins and measured fluorescence resonance energy transfer (FRET) in differentiated SH-SY5Y cells. Differentially tagged APPs showed clear sensitized FRET emission, in line with the described dimerization of APP. Among the candidate APP-interacting proteins, again only Stg1 was in close proximity to APP. Our results strongly argue for a function of APP in synaptic vesicle turnover in vivo. Thus, in addition to the APP cleavage product Aβ, which influences synaptic transmission at the postsynapse, APP interacts with the calcium sensor of synaptic vesicles and might thus play a role in the regulation of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Bernhard M Kohli
- Institute of Psychiatry Research and Psychogeriatric Medicine, Faculty of Science, University Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 2012; 4:10. [PMID: 22498202 PMCID: PMC3583130 DOI: 10.1186/alzrt108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and in its familial form is associated with mutations in the amyloid precursor protein (APP) and the presenilins (PSs). Much data regarding the interactions of APP, its proteolytic fragments and PS have been generated, expanding our understanding of the roles of these proteins in mechanisms underlying cognitive function and revealing many complex relationships with wide ranging cellular systems. In this review, we examine the multiple interactions of APP and its proteolytic fragments with other neuronal systems in terms of feedback loops and use these relationships to build a map. We highlight the complexity involved in the APP proteolytic system and discuss alternative perspectives on the roles of APP and its proteolytic fragments in dynamic processes associated with disease progression in AD. We highlight areas where data are missing and suggest potential confounding factors. We suggest that a systems biology approach enhances representations of the data and may be more useful in modelling both normal cognition and disease processes.
Collapse
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| |
Collapse
|
41
|
Mishra M, Heese K. P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med 2012; 15:2462-77. [PMID: 21199326 PMCID: PMC3822957 DOI: 10.1111/j.1582-4934.2010.01248.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the present study, we show that overexpression of the G-protein-coupled receptor (GPCR)-associated sorting protein p60TRP (transcription regulator protein) in neural stem cells (NSCs) and in a transgenic mouse model modulates the phosphorylation and proteolytic processing of amyloid precursor protein (App), N-cadherin (Cdh2), presenilin (Psen) and τ protein (Mapt). Our results suggest that p60TRP is an inhibitor of Bace1 (β-site App cleaving enzyme) and Psen. We performed several apoptosis assays [Annexin-V, TdT-mediated dUTP Nick-End Labeling (TUNEL), caspase-3/7] using NSCs and PC12 cells (overexpressing p60TRP and knockdown of p60TRP) to substantiate the neuroprotective role of p60TRP. Functional analyses, both in vitro and in vivo, revealed that p60TRP promotes neurosynaptogenesis. Characterization of the cognitive function of p60TRP transgenic mice using the radial arm water maze test demonstrated that p60TRP improved memory and learning abilities. The improved cognitive functions could be attributed to increased synaptic connections and plasticity, which was confirmed by the modulation of the γ-aminobutyric acid receptor system and the elevated expression of microtubule-associated protein 2, synaptophysin and Slc17a7 (vesicle glutamate transporter, Vglut1), as well as by the inhibition of Cdh2 cleavage. In conclusion, interference with the p60TRP/ GPCR/secretase signalling pathway might be a new therapeutic target for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Manisha Mishra
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | | |
Collapse
|
42
|
Novel GαS-protein signaling associated with membrane-tethered amyloid precursor protein intracellular domain. J Neurosci 2012; 32:1714-29. [PMID: 22302812 DOI: 10.1523/jneurosci.5433-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous physiological functions, including a role as a cell surface receptor, have been ascribed to Alzheimer's disease-associated amyloid precursor protein (APP). However, detailed analysis of intracellular signaling mediated by APP in neurons has been lacking. Here, we characterized intrinsic signaling associated with membrane-bound APP C-terminal fragments, which are generated following APP ectodomain release by α- or β-secretase cleavage. We found that accumulation of APP C-terminal fragments or expression of membrane-tethered APP intracellular domain results in adenylate cyclase-dependent activation of PKA (protein kinase A) and inhibition of GSK3β signaling cascades, and enhancement of axodendritic arborization in rat immortalized hippocampal neurons, mouse primary cortical neurons, and mouse neuroblastoma. We discovered an interaction between BBXXB motif of APP intracellular domain and the heterotrimeric G-protein subunit Gα(S), and demonstrate that Gα(S) coupling to adenylate cyclase mediates membrane-tethered APP intracellular domain-induced neurite outgrowth. Our study provides clear evidence that APP intracellular domain can have a nontranscriptional role in regulating neurite outgrowth through its membrane association. The novel functional coupling of membrane-bound APP C-terminal fragments with Gα(S) signaling identified in this study could impact several brain functions such as synaptic plasticity and memory formation.
Collapse
|
43
|
Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. J Toxicol 2012; 2012:187297. [PMID: 22496686 PMCID: PMC3306972 DOI: 10.1155/2012/187297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.
Collapse
|
44
|
Madalan A, Yang X, Ferris J, Zhang S, Roman G. G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila. Learn Mem 2011; 19:26-34. [PMID: 22190729 DOI: 10.1101/lm.024802.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in Drosophila. G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory memory. We demonstrate here that the induction of PTX within the α/β and γ lobe MB neurons leads to impaired memory acquisition without affecting memory stability. The induction of PTX within these MB neurons also leads to a significant defect in an optimized positively reinforced short-term memory paradigm; however, this PTX-induced learning deficit is noticeably less severe than found with the negatively reinforced paradigm. Both negatively and positively reinforced memory phenotypes are rescued by the constitutive expression of G(o)α transgenes bearing the Cys(351)Ile mutation. Since this mutation renders the G(o) molecule insensitive to PTX, the results isolate the effect of PTX on both forms of olfactory associative learning to the inhibition of the G(o) activation.
Collapse
Affiliation(s)
- Adrian Madalan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | | | | | | | |
Collapse
|
45
|
XU YX, WANG HQ, ZHAO H, GUO JC, ZHU CQ. Intrahippocampus Injection of Antibodies to Amyloid β-Protein Precursor Causes Cognitive Deficits and Neuronal Degeneration*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 2011; 82:1311-9. [PMID: 21689640 DOI: 10.1016/j.bcp.2011.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.
Collapse
|
47
|
Bordji K, Becerril-Ortega J, Buisson A. Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease. Rev Neurosci 2011; 22:285-94. [PMID: 21568789 DOI: 10.1515/rns.2011.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in this process because of their ability to gate high levels of Ca(2+) influx. These receptors have been extensively studied for their crucial roles in synaptic plasticity that underlies learning and memory but also in neurotoxicity occurring during acute brain injuries and neurodegenerative diseases. For one decade, several studies provided evidence that NMDA receptor activation could have distinct consequences on neuronal fate, depending on their location. Synaptic NMDA receptor activation is neuroprotective, whereas extrasynaptic NMDA receptors trigger neuronal death and/or neurodegenerative processes. Recent data suggest that chronic activation of extrasynaptic NMDA receptors leads to a sustained neuronal amyloid-β release and could be involved in the pathogenesis of Alzheimer's disease. Thus, as for other neurological diseases, therapeutic targeting of extrasynaptic NMDA receptors could be a promising strategy. Following this concept, memantine, unlike other NMDA receptor antagonists was shown, to preferentially target the extrasynaptic NMDA receptor signaling pathways, while relatively sparing normal synaptic activity. This molecular mechanism could therefore explain why memantine is, to date, the only clinically approved NMDA receptor antagonist for the treatment of dementia.
Collapse
Affiliation(s)
- Karim Bordji
- Groupement d'Intérêt Public Cyceron, Centre National de la Recherche Scientifique, UMR 6232-Centre d'Imagerie Neurosciences et d'Applications aux Pathologies, Bd Becquerel, F-14074 Caen, France.
| | | | | |
Collapse
|
48
|
Jiménez-Escrig A, Bianco-Jerez C, Orensanz LM. Molecular biology and genetics of Alzheimer's disease. Eur J Neurol 2011; 2:465-76. [DOI: 10.1111/j.1468-1331.1995.tb00157.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Wiese M, Antebi A, Zheng H. Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS One 2010; 5. [PMID: 20862215 PMCID: PMC2942829 DOI: 10.1371/journal.pone.0012790] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/21/2010] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by the deposition of β-amyloid plaques in the brain. Plaques are composed of the amyloid-β peptide derived from cleavage of the amyloid precursor protein (APP). Mutations in APP lead to the development of Familial Alzheimer's Disease (FAD), however, the normal function of this protein has proven elusive. The organism Caenorhabditis elegans is an attractive model as the amyloid precursor-like protein (APL-1) is the single ortholog of APP, and loss of apl-1 leads to a severe molting defect and early larval lethality. Methodology/Principal Findings We report here that lethality and molting can be rescued by full length APL-1, C-terminal mutations as well as a C-terminal truncation, suggesting that the extracellular region of the protein is essential for viability. RNAi knock-down of apl-1 followed by drug testing on the acetylcholinesterase inhibitor aldicarb showed that loss of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. The aldicarb hypersensitivity can be rescued by full length APL-1 in a dose dependent fashion. At the cellular level, kinesins UNC-104/KIF-1A and UNC-116/kinesin-1 are positive regulators of APL-1 expression in the neurons. Knock-down of the small GTPase rab-5 also leads to a dramatic decrease in the amount of apl-1 expression in neurons, suggesting that trafficking from the plasma membrane to the early endosome is important for apl-1 function. Loss of function of a different small GTPase, UNC-108, on the contrary, leads to the retention of APL-1 in the cell body. Conclusions/Significance Our results reveal novel insights into the intracellular trafficking of APL-1 and we report a functional role for APL-1 in synaptic transmission.
Collapse
Affiliation(s)
- Mary Wiese
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adam Antebi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Aging, Köln, Germany
- * E-mail: (AA); (HZ)
| | - Hui Zheng
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AA); (HZ)
| |
Collapse
|
50
|
Kedikian G, Heredia F, Salvador VR, Raimunda D, Isoardi N, Heredia L, Lorenzo A. Secreted amyloid precursor protein and holo-APP bind amyloid beta through distinct domains eliciting different toxic responses on hippocampal neurons. J Neurosci Res 2010; 88:1795-803. [PMID: 20155808 DOI: 10.1002/jnr.22347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid beta (Abeta) is a metabolic product of Abeta precursor protein (APP). Deposition of Abeta in the brain and neuronal degeneration are characteristic hallmarks of Alzheimer's disease (AD). Abeta induces neuronal degeneration, but the mechanism of neurotoxicity remains elusive. Increasing evidence implicates APP as a receptor-like protein for Abeta fibrils (fAbeta). In this study, we present further experimental support for the direct interaction of APP with fAbeta and for its involvement in Abeta neurotoxicity. Using recombinant purified holo-APP (h-APP), we have shown that it directly binds fAbeta. Employing deletion mutant forms of APP, we show that two different sequences are involved in the binding of APP to fAbeta. One sequence in the n-terminus of APP is required for binding of fAbeta to secreted APP (s-APP) but not to h-APP. In addition, the extracellular juxtamembrane Abeta-sequence mediates binding of fAbeta to h-APP but not to s-APP. Deletion of the extracellular juxtamembrane Abeta sequence abolishes abnormal h-APP accumulation and toxicity induced by fAbeta deposition, whereas deletions in the n-terminus of APP do not affect Abeta toxicity. These experiments show that interaction of toxic Abeta species with its membrane-anchored parental protein promotes toxicity in hippocampal neurons, adding further support to an Abeta-receptor-like function of APP directly implicated in neuronal degeneration in AD.
Collapse
Affiliation(s)
- Gabriela Kedikian
- Laboratory of Experimental Neuropathology, Instituto de Investigación Médica "Mercedes y Martín Ferreyra," INIMEC-CONICET, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|