1
|
Yu C, Caothien R, Pham A, Tam L, Alcantar T, Bacarro N, Reyes J, Jackson M, Nakao B, Roose-Girma M. ASIS-Seq: Transgene Insertion Site Mapping by Nanopore Adaptive Sampling. Methods Mol Biol 2023; 2631:135-153. [PMID: 36995666 DOI: 10.1007/978-1-0716-2990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481-1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494-505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies' (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.
Collapse
Affiliation(s)
- Charles Yu
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Roger Caothien
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Anna Pham
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Lucinda Tam
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Tuija Alcantar
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Natasha Bacarro
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Juan Reyes
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Marques Jackson
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Brian Nakao
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA.
| |
Collapse
|
2
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Montoliu L. Historical DNA Manipulation Overview. Methods Mol Biol 2022; 2495:3-28. [PMID: 35696025 DOI: 10.1007/978-1-0716-2301-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The history of DNA manipulation for the creation of genetically modified animals began in the 1970s, using viruses as the first DNA molecules microinjected into mouse embryos at different preimplantation stages. Subsequently, simple DNA plasmids were used to microinject into the pronuclei of fertilized mouse oocytes and that method became the reference for many years. The isolation of embryonic stem cells together with advances in genetics allowed the generation of gene-specific knockout mice, later on improved with conditional mutations. Cloning procedures expanded the gene inactivation to livestock and other non-model mammalian species. Lentiviruses, artificial chromosomes, and intracytoplasmic sperm injections expanded the toolbox for DNA manipulation. The last chapter of this short but intense history belongs to programmable nucleases, particularly CRISPR-Cas systems, triggering the development of genomic-editing techniques, the current revolution we are living in.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Brosh R, Laurent JM, Ordoñez R, Huang E, Hogan MS, Hitchcock AM, Mitchell LA, Pinglay S, Cadley JA, Luther RD, Truong DM, Boeke JD, Maurano MT. A versatile platform for locus-scale genome rewriting and verification. Proc Natl Acad Sci U S A 2021; 118:e2023952118. [PMID: 33649239 PMCID: PMC7958457 DOI: 10.1073/pnas.2023952118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.
Collapse
Affiliation(s)
- Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jon M Laurent
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raquel Ordoñez
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | | | - Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - John A Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raven D Luther
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - David M Truong
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
- Department of Pathology, NYU Langone Health, New York, NY 10016
| |
Collapse
|
5
|
Seruggia D, Josa S, Fernández A, Montoliu L. The structure and function of the mouse tyrosinase locus. Pigment Cell Melanoma Res 2020; 34:212-221. [DOI: 10.1111/pcmr.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
- Division of Hematology/Oncology Boston Children's HospitalHarvard Medical School Boston MA USA
| | - Santiago Josa
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| |
Collapse
|
6
|
Heintz N, Gong S. Working with Bacterial Artificial Chromosomes (BACs) and Other High-Capacity Vectors. Cold Spring Harb Protoc 2020; 2020:2020/10/pdb.top097998. [PMID: 33004554 DOI: 10.1101/pdb.top097998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic targeting of specific cell types is fundamentally important for modern molecular-genetic studies. The development of simple methods to engineer high-capacity vectors-in particular, bacterial artificial chromosomes (BACs)-for the preparation of transgenic lines that accurately express a gene of interest has resulted in commonplace usage of transgenic techniques in a wide variety of experimental systems. Here we provide a brief description of each of the four major types of large-capacity vectors, with a focus on the use of BAC vectors.
Collapse
|
7
|
Seruggia D, Fernández A, Cantero M, Fernández-Miñán A, Gomez-Skarmeta JL, Pelczar P, Montoliu L. Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression. Sci Rep 2020; 10:15494. [PMID: 32968154 PMCID: PMC7511308 DOI: 10.1038/s41598-020-72543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5' and 3' boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.
Collapse
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - José Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
- CIBERER-ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Zheng M, Mitra RN, Weiss ER, Han Z. Rhodopsin Genomic Loci DNA Nanoparticles Improve Expression and Rescue of Retinal Degeneration in a Model for Retinitis Pigmentosa. Mol Ther 2019; 28:523-535. [PMID: 31879189 DOI: 10.1016/j.ymthe.2019.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
The use of gene therapy may allow replacement of the defective gene. Minigenes, such as cDNAs, are often used. However, these may not express normal physiological genetic profiles due to lack of crucial endogenous regulatory elements. We constructed DNA nanoparticles (NPs) that contain either the mouse or human full-length rhodopsin genomic locus, including endogenous promoters, all introns, and flanking regulatory sequences of the 15-16 kb genomic rhodopsin DNA inserts. We transduced the NPs into primary retinal cell cultures from the rhodopsin knockout (RKO) mouse in vitro and into the RKO mouse in vivo and compared the effects on different functions to plasmid cDNA NP counterparts that were driven by ubiquitous promoters. Our results demonstrate that genomic DNA vectors resulted in long-term high levels of physiological transgene expression over a period of 5 months. In contrast, the cDNA counterparts exhibited low levels of expression with sensitivity to the endoplasmic reticulum (ER) stress mechanism using the same transgene copy number both in vitro and in vivo. This study demonstrates for the first time the transducing of the rhodopsin genomic locus using compacted DNA NPs.
Collapse
Affiliation(s)
- Min Zheng
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|
10
|
Kurome M, Leuchs S, Kessler B, Kemter E, Jemiller EM, Foerster B, Klymiuk N, Zakhartchenko V, Wolf E. Direct introduction of gene constructs into the pronucleus-like structure of cloned embryos: a new strategy for the generation of genetically modified pigs. Transgenic Res 2016; 26:309-318. [PMID: 27943082 DOI: 10.1007/s11248-016-0004-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/23/2016] [Indexed: 02/05/2023]
Abstract
Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed "nuclear injection". To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.
Collapse
Affiliation(s)
- Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany.
| | - Simon Leuchs
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Eva-Maria Jemiller
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Beatrix Foerster
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| |
Collapse
|
11
|
Seruggia D, Fernández A, Cantero M, Pelczar P, Montoliu L. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res 2015; 43:4855-67. [PMID: 25897126 PMCID: PMC4446435 DOI: 10.1093/nar/gkv375] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022] Open
Abstract
Newly developed genome-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, allow simple and rapid genetic modification in most model organisms and human cell lines. Here, we report the production and analysis of mice carrying the inactivation via deletion of a genomic insulator, a key non-coding regulatory DNA element found 5' upstream of the mouse tyrosinase (Tyr) gene. Targeting sequences flanking this boundary in mouse fertilized eggs resulted in the efficient deletion or inversion of large intervening DNA fragments delineated by the RNA guides. The resulting genome-edited mice showed a dramatic decrease in Tyr gene expression as inferred from the evident decrease of coat pigmentation, thus supporting the functionality of this boundary sequence in vivo, at the endogenous locus. Several potential off-targets bearing sequence similarity with each of the two RNA guides used were analyzed and found to be largely intact. This study reports how non-coding DNA elements, even if located in repeat-rich genomic sequences, can be efficiently and functionally evaluated in vivo and, furthermore, it illustrates how the regulatory elements described by the ENCODE and EPIGENOME projects, in the mouse and human genomes, can be systematically validated.
Collapse
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| | - Pawel Pelczar
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus Cantoblanco, Darwin 3, 28049 Madrid, Spain CIBERER-ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Pelosi B, Migliarini S, Pacini G, Pratelli M, Pasqualetti M. Generation of Pet1210-Cre transgenic mouse line reveals non-serotonergic expression domains of Pet1 both in CNS and periphery. PLoS One 2014; 9:e104318. [PMID: 25098329 PMCID: PMC4123907 DOI: 10.1371/journal.pone.0104318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic Pet1 cell lineages.
Collapse
Affiliation(s)
- Barbara Pelosi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Sara Migliarini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Giulia Pacini
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Marta Pratelli
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- * E-mail:
| |
Collapse
|
13
|
Smith HW, Muller WJ. Transgenic mouse models--a seminal breakthrough in oncogene research. Cold Spring Harb Protoc 2013; 2013:1099-1108. [PMID: 24298026 DOI: 10.1101/pdb.top069765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Transgenic mouse models are an integral part of modern cancer research, providing a versatile and powerful means of studying tumor initiation and progression, metastasis, and therapy. The present repertoire of these models is very diverse, with a wide range of strategies used to induce tumorigenesis by expressing dominant-acting oncogenes or disrupting the function of tumor-suppressor genes, often in a highly tissue-specific manner. Much of the current technology used in the creation and characterization of transgenic mouse models of cancer will be discussed in depth elsewhere. However, to gain a complete appreciation and understanding of these complex models, it is important to review the history of the field. Transgenic mouse models of cancer evolved as a new and, compared with the early cell-culture-based techniques, more physiologically relevant approach for studying the properties and transforming capacities of oncogenes. Here, we will describe early transgenic mouse models of cancer based on tissue-specific expression of oncogenes and discuss their impact on the development of this still rapidly growing field.
Collapse
Affiliation(s)
- Harvey W Smith
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | |
Collapse
|
14
|
Iwata T, Kaneko S, Shiwa Y, Enomoto T, Yoshikawa H, Hirota J. Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis. BMC Genomics 2013; 14:300. [PMID: 23642015 PMCID: PMC3648488 DOI: 10.1186/1471-2164-14-300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
Background The Bacillus subtilis genome (BGM) vector is a novel cloning system for large DNA fragments, in which the entire 4.2 Mb genome of B. subtilis functions as a vector. The BGM vector system has several attractive properties, such as a large cloning capacity of over 3 Mb, stable propagation of cloned DNA and various modification strategies using RecA-mediated homologous recombination. However, genetic modifications using the BGM vector system have not been fully established, and this system has not been applied to transgenesis. In this study, we developed important additions to the genetic modification methods of the BGM vector system. To explore the potential of the BGM vector, we focused on the fish-like odorant receptor (class I OR) gene family, which consists of 158 genes and forms a single gene cluster. Although a cis-acting locus control region is expected to regulate transcription, this has not yet been determined experimentally. Results Using two contiguous bacterial artificial chromosome clones containing several class I OR genes, we constructed two transgenes in the BGM vector by inserting a reporter gene cassette into one class I OR gene. Because they were oriented in opposite directions, we performed an inversion modification to align their orientation and then fused them to enlarge the genomic structure. DNA sequencing revealed that no mutations occurred during gene manipulations with the BGM vector. We further demonstrated that the modified, reconstructed genomic DNA fragments could be used to generate transgenic mice. Transgenic mice carrying the enlarged transgene recapitulated the expression and axonal projection patterns of the target class I OR gene in the main olfactory system. Conclusion We offer a complete genetic modification method for the BGM vector system, including insertion, deletion, inversion and fusion, to engineer genomic DNA fragments without any trace of modifications. In addition, we demonstrate that this system can be used for mouse transgenesis. Thus, the BGM vector system can be an alternative platform for engineering large DNA fragments in addition to conventional systems such as bacterial and yeast artificial chromosomes. Using this system, we provide the first experimental evidence of a cis-acting element for a class I OR gene.
Collapse
|
15
|
Nakajima K, Nakajima T, Takase M, Yaoita Y. Generation of albino Xenopus tropicalis using zinc-finger nucleases. Dev Growth Differ 2012; 54:777-84. [PMID: 23106502 DOI: 10.1111/dgd.12006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/07/2012] [Accepted: 09/09/2012] [Indexed: 01/23/2023]
Abstract
To generate albino lines of Xenopus tropicalis, we injected fertilized eggs with mRNAs encoding zinc-finger nucleases (ZFNs) targeting the tyrosinase coding region. Surprisingly, vitiligo was observed on the skin of F0 frogs that had been injected with ZFN mRNAs, indicating that both tyrosinase genes in the genome were disrupted in all melanocytes within the vitiligo patches. Mutation analysis using genomic DNA from the skin revealed that two mosaic F0 frogs underwent spatially complex tyrosinase gene mutations. The data implies that the ZFN-induced tyrosinase gene ablations occurred randomly over space and time throughout the entire body, possibly until the young tadpole stage, and that melanocyte precursors lacking functional tyrosinase proliferated and formed vitiligo patches. Several albino X. tropicalis, which are compound heterozygotes for biallelic tyrosinase mutations, were obtained by mating the mosaic F0 frogs. To our knowledge, this is the first report of the albino vertebrates generated by the targeted gene knockout.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | | | | | | |
Collapse
|
16
|
Watanabe M, Kurome M, Matsunari H, Nakano K, Umeyema K, Shiota A, Nakauchi H, Nagashima H. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res 2011; 21:605-18. [PMID: 22038447 DOI: 10.1007/s11248-011-9561-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
In most transgenic (Tg) animals created to date, a transgene consisting of the minimum promoter region linked to a cDNA has been used. However, transgenes on small plasmids are susceptible to the position effect, increasing the difficulty of controlling transgene expression. In this study, we attempted to create Tg pigs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) using two large genomic transgenes derived from a bacterial artificial chromosome (BAC) containing the full genomic region encoding two human proteins, type I collagen and albumin. The production efficiencies (Tg piglets/live offspring) of type I collagen and albumin Tg pigs were 11.8% (6/51) and 18.2% (2/11), respectively. In all of the Tg pigs examined by real-time PCR analysis, tissue-specific expression of the transgene was confirmed (type I collagen: skin, tendon, vessels, genitalia; albumin: liver). The production of human proteins derived from BAC transgenes was also confirmed. Fluorescence in situ hybridization analysis indicated that the BAC transgenes transferred into porcine oocytes by ICSI-MGT were integrated into single or multiple sites on the host chromosomes. These data demonstrate that Tg pigs expressing human proteins in a tissue-specific manner can be created using a BAC transgenic construct and the ICSI-MGT method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Nakauchi Stem Cell and Organ Regeneration Project, Japan Science and Technology Agency (JST), ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zurborg S, Piszczek A, Martínez C, Hublitz P, Al Banchaabouchi M, Moreira P, Perlas E, Heppenstall PA. Generation and characterization of an Advillin-Cre driver mouse line. Mol Pain 2011; 7:66. [PMID: 21906401 PMCID: PMC3185264 DOI: 10.1186/1744-8069-7-66] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/11/2011] [Indexed: 12/15/2022] Open
Abstract
Progress in the somatosensory field has been restricted by the limited number of genetic tools available to study gene function in peripheral sensory neurons. Here we generated a Cre-driver mouse line that expresses Cre-recombinase from the locus of the sensory neuron specific gene Advillin. These mice displayed almost exclusive Cre-mediated recombination in all peripheral sensory neurons. As such, the Advillin-Cre-driver line will be a powerful tool for targeting peripheral neurons in future investigations.
Collapse
Affiliation(s)
- Sandra Zurborg
- Mouse Biology Unit, European Molecular Biology Laboratory, Via Ramarini 32, 00016 Monterotondo (Roma), Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Niemann H, Halter R, Espanion G, Wrenzycki C, Herrmann D, Lemme E, Carnwath JW, Paul D. Expression of human blood clotting factor VIII (FVIII) constructs in the mammary gland of transgenic mice and sheep. J Anim Breed Genet 2011. [DOI: 10.1111/j.1439-0388.1996.tb00634.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Galli C, Perota A, Brunetti D, Lagutina I, Lazzari G, Lucchini F. Genetic engineering including superseding microinjection: new ways to make GM pigs. Xenotransplantation 2010; 17:397-410. [DOI: 10.1111/j.1399-3089.2010.00590.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Takahashi RI, Ueda M. Generation of transgenic rats using YAC and BAC DNA constructs. Methods Mol Biol 2010; 597:93-108. [PMID: 20013228 DOI: 10.1007/978-1-60327-389-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Transgenic rats with a simple plasmid vector smaller than 20 Kb show insufficient expression and tissue specificity of the introduced transgene. Vectors derived from yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC), consisting of DNA fragments up to approximately 1 Mb (YAC) and approximately 200 Kb (BAC), respectively, and containing various endogenous regulatory sequences, were expected to work well and showed expression profiles comparable to their endogenous counterparts in transgenic animals. While attempting to make transgenic rats using YAC and BAC vectors, we faced two problems: how to prepare sufficiently concentrated intact DNA and how to reliably microinject a large DNA fragment into the fragile pronuclear ova of the rat. After solving these problems, we were able to make transgenic rats by introducing YAC/BAC gene constructs (YACs/BACs) into the pronuclear ova. And then we examined the relative transcription rates of these genes in the transgenic rats. In this chapter, we focus on this injection process.
Collapse
|
21
|
Interference RNA for in vivo Knock-down of gene expression or genome-wide screening using shRNA. Methods Mol Biol 2010; 597:189-209. [PMID: 20013235 DOI: 10.1007/978-1-60327-389-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the lack of tools available to manipulate the rat genome, alternative technologies have been investigated to generate loss-of-function rat models by gene invalidation. The recent demonstration that RNA interference (RNAi)-mediated gene silencing occurs in rodents has opened new opportunities for rat functional genetics. In this chapter, we provide some practical guidelines for RNAi working in rat, based on the recent design and development of mice and rat Knock down models.
Collapse
|
22
|
Weber T, Böhm G, Hermann E, Schütz G, Schönig K, Bartsch D. Inducible gene manipulations in serotonergic neurons. Front Mol Neurosci 2009; 2:24. [PMID: 19936315 PMCID: PMC2779094 DOI: 10.3389/neuro.02.024.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/14/2009] [Indexed: 01/30/2023] Open
Abstract
An impairment of the serotonergic (5-HT) system has been implicated in the etiology of many neuropsychiatric disorders. Despite the considerable genetic evidence, the exact molecular and pathophysiological mechanisms underlying this dysfunction remain largely unknown. To address the lack of instruments for the molecular dissection of gene function in serotonergic neurons we have developed a new mouse transgenic tool that allows inducible Cre-mediated recombination of genes selectively in 5-HT neurons of all raphe nuclei. In this transgenic mouse line, the tamoxifen-inducible CreERT2 recombinase is expressed under the regulatory control of the mouse tryptophan hydroxylase 2 (Tph2) gene locus (177 kb). Tamoxifen treatment efficiently induced recombination selectively in serotonergic neurons with minimal background activity in vehicle-treated mice. These genetic manipulations can be initiated at any desired time during embryonic development, neonatal stage or adulthood. To illustrate the versatility of this new tool, we show that Brainbow-1.0L(TPH2-CreERT2) mice display highly efficient recombination in serotonergic neurons with individual 5-HT neurons labeling with multiple distinct fluorescent colors. This labeling is well suited for visualization and tracing of serotonergic neurons and their network architecture. Finally, the applicability of TPH2-CreERT2 for loxP-flanked candidate gene manipulation is evidenced by our successful knockout induction of the ubiquitously expressed glucocorticoid-receptor exclusively in 5-HT neurons of adult mice. The TPH2-CreERT2 line will allow detailed analysis of gene function in both developing and adult serotonergic neurons.
Collapse
Affiliation(s)
- Tillmann Weber
- Department of Molecular Biology, Central Institute of Mental Health, Heidelberg University Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Murillo-Cuesta S, Contreras J, Zurita E, Cediel R, Cantero M, Varela-Nieto I, Montoliu L. Melanin precursors prevent premature age-related and noise-induced hearing loss in albino mice. Pigment Cell Melanoma Res 2009; 23:72-83. [PMID: 19843244 DOI: 10.1111/j.1755-148x.2009.00646.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 2009; 18:769-85. [PMID: 19396621 DOI: 10.1007/s11248-009-9271-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/14/2009] [Indexed: 11/27/2022]
Abstract
Transgenic mice are widely used in biomedical research to study gene expression, developmental biology, and gene therapy models. Bacterial artificial chromosome (BAC) transgenes direct gene expression at physiological levels with the same developmental timing and expression patterns as endogenous genes in transgenic animal models. We generated 707 transgenic founders from 86 BAC transgenes purified by three different methods. Transgenesis efficiency was the same for all BAC DNA purification methods. Polyamine microinjection buffer was essential for successful integration of intact BAC transgenes. There was no correlation between BAC size and transgenic rate, birth rate, or transgenic efficiency. A narrow DNA concentration range generated the best transgenic efficiency. High DNA concentrations reduced birth rates while very low concentrations resulted in higher birth rates and lower transgenic efficiency. Founders with complete BAC integrations were observed in all 47 BACs for which multiple markers were tested. Additional founders with BAC fragment integrations were observed for 65% of these BACs. Expression data was available for 79 BAC transgenes and expression was observed in transgenic founders from 63 BACs (80%). Consistent and reproducible success in BAC transgenesis required the combination of careful DNA purification, the use of polyamine buffer, and sensitive genotyping assays.
Collapse
Affiliation(s)
- Margaret L Van Keuren
- Transgenic Animal Model Core, University of Michigan Medical School, 2560 MSRB II, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
25
|
Montoliu L, Roy R, Regales L, García-Díaz Á. Design of vectors for transgene expression: The use of genomic comparative approaches. Comp Immunol Microbiol Infect Dis 2009; 32:81-90. [DOI: 10.1016/j.cimid.2007.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 02/03/2023]
|
26
|
Kotzamanis G, Abdulrazzak H, Gifford-Garner J, Haussecker PL, Cheung W, Grillot-Courvalin C, Harris A, Kittas C, Kotsinas A, Gorgoulis VG, Huxley C. CFTR expression from a BAC carrying the complete human gene and associated regulatory elements. J Cell Mol Med 2008; 13:2938-48. [PMID: 18657227 PMCID: PMC4498948 DOI: 10.1111/j.1582-4934.2008.00433.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The use of genomic DNA rather than cDNA or mini-gene constructs in gene therapy might be advantageous as these contain intronic and long-range control elements vital for accurate expression. For gene therapy of cystic fibrosis though, no bacterial artificial chromosome (BAC), containing the whole CFTR gene is available. We have used Red homologous recombination to add a to a previously described vector to construct a new BAC vector with a 250.3-kb insert containing the whole coding region of the CFTR gene along with 40.1 kb of DNA 5′ to the gene and 25 kb 3′ to the gene. This includes all the known control elements of the gene. We evaluated expression by RT-PCR in CMT-93 cells and showed that the gene is expressed both from integrated copies of the BAC and also from episomes carrying the oriP/EBNA-1 element. Sequencing of the human CFTR mRNA from one clone showed that the BAC is functional and can generate correctly spliced mRNA in the mouse background. The BAC described here is the only CFTR genomic construct available on a convenient vector that can be readily used for gene expression studies or in vivo studies to test its potential application in gene therapy for cystic fibrosis.
Collapse
Affiliation(s)
- George Kotzamanis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reeves RH, Cabin DE, Lamb B. Introduction of large insert DNA into mammalian cells and embryos. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.12. [PMID: 18428286 DOI: 10.1002/0471142905.hg0512s30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit provides a set of protocols for introducing large insert DNA into cultured mammalian cells and embryos. Two different methods, spheroplast fusion and lipofection, are described for effecting transfer of YACs or gel-purified YAC DNA into cells. Additional protocols discuss preparing and transferring BACs into cells by lipofection and into embryos by microinjection.
Collapse
Affiliation(s)
- R H Reeves
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
28
|
Peterson KR. Preparation of intact yeast artificial chromosome DNA for transgenesis of mice. Nat Protoc 2008; 2:3009-15. [PMID: 18007637 DOI: 10.1038/nprot.2007.449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenesis with large DNA molecules such as yeast artificial chromosomes (YACs) has an advantage over smaller constructs in that an entire locus and all its flanking cis-regulatory elements are included. The key to obtaining animals bearing full-length transgenes is to avoid physical shearing of the DNA during purification and microinjection. This protocol details how to prepare intact YAC DNA for transgenesis of mice and involves separation of YAC DNA from yeast chromosomal DNA by pulsed field gel electrophoresis, concentration to a range suitable for microinjection by second dimension electrophoresis and enzymatic digestion of matrix-embedded YAC DNA to produce a solution that can be injected. The YAC is maintained in an agarose gel matrix to avoid damage until the final steps before microinjection. Special precautions are also taken during the microinjection protocol. Transgenesis efficiency is approximately 15%; most animals carry 1-5 copies of the desired locus. This method takes 6 d for completion.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
29
|
Inducible gene inactivation in neurons of the adult mouse forebrain. BMC Neurosci 2007; 8:63. [PMID: 17683525 PMCID: PMC1955451 DOI: 10.1186/1471-2202-8-63] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/02/2007] [Indexed: 11/10/2022] Open
Abstract
Background The analysis of the role of genes in important brain functions like learning, memory and synaptic plasticity requires gene inactivation at the adult stage to exclude developmental effects, adaptive changes or even lethality. In order to achieve temporally controlled somatic mutagenesis, the Cre/loxP-recombination system has been complemented with the tamoxifen-inducible fusion protein consisting of Cre recombinase and the mutated ligand binding domain of the human estrogen receptor (CreERT2). To induce recombination of conditional alleles in neurons of the adult forebrain, we generated a bacterial artificial chromosome-derived transgene expressing the CreERT2 fusion protein under control of the regulatory elements of the CaMKIIα gene (CaMKCreERT2 transgene). Results We established three mouse lines harboring one, two and four copies of the CaMKCreERT2 transgene. The CaMKCreERT2 transgene displayed reliable and copy number-dependent expression of Cre recombinase specifically in neurons of the adult forebrain. Using Cre reporter mice we show very low background activity of the transgene in absence of the ligand and efficient induction of recombination upon tamoxifen treatment in all three lines. In addition, we demonstrate in mice harboring two conditional glucocorticoid receptor (GR) alleles and the CaMKCreERT2 transgene spatially restricted loss of GR protein expression in neurons of the adult forebrain upon tamoxifen treatment. Conclusion This is to our knowledge the first approach allowing highly efficient inducible gene inactivation in neurons of the adult mouse forebrain. This new approach will be a useful tool to dissect the function of specific genes in the adult forebrain. Effects of gene inactivation on pre- and postnatal brain development and compensatory mechanisms elicited by an early onset of gene inactivation can now be excluded.
Collapse
|
30
|
Vasiliou AS, MacKenzie A, Morris R, McLaughlin L, Bubb VJ, Haddley K, Quinn JP. Generation of a transgenic model to address regulation and function of the human neurokinin 1 receptor (NK1R). Neuropeptides 2007; 41:195-205. [PMID: 17576012 DOI: 10.1016/j.npep.2007.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/16/2007] [Accepted: 04/25/2007] [Indexed: 11/24/2022]
Abstract
We have generated mouse transgenic lines using yeast artificial chromosome (YAC) technology which demonstrate expression from the human NK1 receptor (NK1R) locus. We introduced a 380 kb fragment encompassing the human NK1R gene and flanking regions which we hoped would recapitulate the expected endogenous expression of the human gene. To visualise this expression the NK1 locus co-expresses the green fluorescence protein gene (GFP) under the control of an internal ribosome entry site (IRES) sequence. We have generated five mouse lines that express the human NK1 receptor gene with and without the marker gene. All the lines incorporating the marker gene appear to exhibit the same expression pattern in analysis of selected anatomical regions throughout the mouse. The lack of a human specific NK1R antibody determined that we could not distinguish between expression of the transgene and endogenous NK1R. Our analysis has shown transgene expression in brain areas known to express NK1R in human such as the hippocampus and caudate putamen. The majority of these cells were also positive for GFP fluorescence. These transgenic lines may prove a good pre-clinical model as drugs can be addressed against both the human receptor and modulators of its expression in vivo.
Collapse
Affiliation(s)
- A S Vasiliou
- Physiology Laboratory, School of Biomedical Science, University of Liverpool L69 3BX, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
31
|
Oberto A, Acquadro E, Bus T, Sprengel R, Eva C. Expression patterns of promoters for NPY Y1 and Y5 receptors in Y5RitTA and Y1RVenus BAC-transgenic mice. Eur J Neurosci 2007; 26:155-70. [PMID: 17614946 DOI: 10.1111/j.1460-9568.2007.05631.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the rat brain, neuropeptide Y (NPY) Y(1) and Y(5) receptors are coexpressed in various forebrain regions where they mediate several NPY-activated functions, including feeding behaviour, anxiety, neuronal excitability and hormone secretion. We studied the distribution pattern and cellular colocalization of the Y(1) and the Y(5) receptor gene expression in the mouse brain by using transgenic mice with genomically integrated BAC clones, where the coding regions of the Y(1) and Y(5) receptor genes were replaced by Venus and the synthetic transcription factor itTA reporter genes, respectively (Tg(Y5RitTA/Y1RVenus) mice). Analysis of Venus fluorescence and itTA-mediated activation of Cre recombinase revealed copy number-dependent expression levels, between the lines, but similar expression patterns. In three transgenic lines the BAC encoded Y(5) receptor promoter induced strong Cre expression in the olfactory system, cerebral cortex, hippocampus and basal ganglia. Weaker expression was found in most of the hypothalamic nuclei of line 25, the highest-expressing transgenic line. Activation of Cre was itTA-dependent and could be regulated by doxycycline. The Y(1) receptor promoter-induced Venus fluorescence was intense, widely present through the brain and colocalized with Cre immunostaining in neurons of distinct brain regions, including the cerebral cortex, basolateral amygdala, dentate gyrus and paraventricular nucleus. These data provide a detailed and comparative mapping of Y(1) and Y(5) receptor promoter activity within cells of the mouse brain. The Tg(Y5RitTA/Y1RVenus)-transgenic mice generated here also represent a genetic tool for conditional mutagenesis via the Cre lox system, particularly of genes involved in feeding behaviour, neuronal excitability and hormone secretion.
Collapse
Affiliation(s)
- Alessandra Oberto
- Dipartimento di Anatomia, Farmacologia e Medicina Legale, Sezione di Farmacologia, Via Pietro Giuria 13, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
32
|
Turiault M, Parnaudeau S, Milet A, Parlato R, Rouzeau JD, Lazar M, Tronche F. Analysis of dopamine transporter gene expression pattern -- generation of DAT-iCre transgenic mice. FEBS J 2007; 274:3568-3577. [PMID: 17565601 DOI: 10.1111/j.1742-4658.2007.05886.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dopamine transporter is an essential component of the dopaminergic synapse. It is located in the presynaptic neurons and regulates extracellular dopamine levels. We generated a transgenic mouse line expressing the Cre recombinase under the control of the regulatory elements of the dopamine transporter gene, for investigations of gene function in dopaminergic neurons. The codon-improved Cre recombinase (iCre) gene was inserted into the dopamine transporter gene on a bacterial artificial chromosome. The pattern of expression of the bacterial artificial chromosome-dopamine transporter-iCre transgene was similar to that of the endogenous dopamine transporter gene, as shown by immunohistochemistry. Recombinase activity was further studied in mice carrying both the bacterial artificial chromosome-dopamine transporter-iCre transgene and a construct expressing the beta-galactosidase gene after Cre-mediated recombination. In situ studies showed that beta-galactosidase (5-bromo-4-chloroindol-3-yl beta-D-galactoside staining) and the dopamine transporter (immunofluorescence) had identical distributions in the ventral midbrain. We used this animal model to study the distribution of dopamine transporter gene expression in hypothalamic nuclei in detail. The expression profile of tyrosine hydroxylase (an enzyme required for dopamine synthesis) was broader than that of beta-galactosidase in A12 to A15. Thus, only a fraction of neurons synthesizing dopamine expressed the dopamine transporter gene. The bacterial artificial chromosome-dopamine transporter-iCre transgenic line is a unique tool for targeting Cre/loxP-mediated DNA recombination to dopamine neurons for studies of gene function or for labeling living cells, following the crossing of these mice with transgenic Cre reporter lines producing fluorescent proteins.
Collapse
Affiliation(s)
- Marc Turiault
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Sébastien Parnaudeau
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Aude Milet
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Rosanna Parlato
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Denis Rouzeau
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Monique Lazar
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - François Tronche
- CNRS UMR7148, Molecular Genetics, Neurophysiology and Behavior, Collège de France, Institut de Biologie, Paris, France Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
33
|
Moreira PN, Pozueta J, Pérez-Crespo M, Valdivieso F, Gutiérrez-Adán A, Montoliu L. Improving the generation of genomic-type transgenic mice by ICSI. Transgenic Res 2007; 16:163-8. [PMID: 17372844 DOI: 10.1007/s11248-007-9075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Transgenes included in genomic-type constructs, such as yeast artificial chromosomes (YAC), P1-derived artificial chromosomes, or bacterial artificial chromosomes (BAC), are normally correctly expressed, according to the endogenous expression pattern of the homologous locus, because their large size usually ensures the inclusion of all regulatory elements required for proper gene expression. The use of these large genomic-type transgenes is therefore the method of choice to overcome most position effects, commonly associated with standard-type transgenes, and to guarantee the faithful transgene expression. However, in spite of the different methods available, including pronuclear microinjection and the use of embryonic stem cells as vehicles for genomic transgenes, the generation of transgenic animals with BACs and, particularly, with YACs can be demanding, because of the low efficiencies requiring extensive microinjection sessions and/or higher number of oocytes. Recently, we have explored the use of intracytoplasmic sperm injection (ICSI) into metaphase II oocytes as an alternative method for the generation of YAC transgenic mice. Our results suggest that the use of transgenic strategies based on ICSI significantly enhances the efficiency of YAC transgenesis by at least one order of magnitude.
Collapse
Affiliation(s)
- Pedro N Moreira
- Department of Animal Reproduction, INIA, Madrid, 28040, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Heaney JD, Bronson SK. Artificial chromosome-based transgenes in the study of genome function. Mamm Genome 2006; 17:791-807. [PMID: 16897340 DOI: 10.1007/s00335-006-0023-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/06/2006] [Indexed: 12/01/2022]
Abstract
The transfer of large DNA fragments to the mouse genome in the form of bacterial, yeast or phage artificial chromosomes is an important process in the definition of transcription units, the modeling of inherited disease states, the dissection of candidate regions identified by linkage analysis and the construction of in vivo reporter genes. However, as with small recombinant transgenes, the transferred sequences are usually integrated randomly often with accompanying genomic alterations and variable expression of the introduced genes due to the site of integration and/or copy number. Therefore, alternative methods of integrating large genomic transgenes into the genome have been developed to avoid the variables associated with random integration. This review encourages the reader to imagine the large variety of applications where artificial chromosome transgenes can facilitate in vivo and ex vivo studies in the mouse and provides a context for making the necessary decisions regarding the specifics of experimental design.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
35
|
Lavado A, Jeffery G, Tovar V, de la Villa P, Montoliu L. Ectopic expression of tyrosine hydroxylase in the pigmented epithelium rescues the retinal abnormalities and visual function common in albinos in the absence of melanin. J Neurochem 2006; 96:1201-11. [PMID: 16445854 DOI: 10.1111/j.1471-4159.2006.03657.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Albino mammals have profound retinal abnormalities, including photoreceptor deficits and misrouted hemispheric pathways into the brain, demonstrating that melanin or its precursors are required for normal retinal development. Tyrosinase, the primary enzyme in melanin synthesis commonly mutated in albinism, oxidizes l-tyrosine to l-dopaquinone using l-3,4-dihydroxyphenylalanine (L-DOPA) as an intermediate product. L-DOPA is known to signal cell cycle exit during retinal development and plays an important role in the regulation of retinal development. Here, we have mimicked L-DOPA production by ectopically expressing tyrosine hydroxylase in mouse albino retinal pigment epithelium cells. Tyrosine hydroxylase can only oxidize l-tyrosine to L-DOPA without further progression towards melanin. The resulting transgenic animals remain phenotypically albino, but their visual abnormalities are corrected, with normal photoreceptor numbers and hemispheric pathways and improved visual function, assessed by an increase of spatial acuity. Our results demonstrate definitively that only early melanin precursors, L-DOPA or its metabolic derivatives, are vital in the appropriate development of mammalian retinae. They further highlight the value of substituting independent but biochemically related enzymes to overcome developmental abnormalities.
Collapse
Affiliation(s)
- Alfonso Lavado
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Abstract
Transgenic animal technology is one of the most fascinating technologies developed in the last two decades. It allows us to address questions in life sciences that no other methods have achieved. The impact on biomedical and biological research, as well as commercial interests are overwhelming. The questions accompanying this fast growing technology and its diversified applications attract the attention from a variety of entities. Still, one of the most fundamental problems remaining is the search for an efficient and reliable gene delivery system for creating transgenic animals. The traditional method of pronuclear microinjection has displayed great variability in success among species. While an acceptable efficiency in the production of transgenic mice has been attained, the relative low efficiency (<1%) in creating transgenic livestock has become one of the barriers for its application. In the past decades, improvements in producing transgenic livestock have made a slow progression, however, the recent advancement in cloning technology and the ability to create transgenic livestock in a highly efficient manner, have opened the gate to a new era in transgenic technology. Discoveries of new gene delivery systems have created an enthusiastic atmosphere that has made this technology so unique. This review focuses on gene delivery strategies as well as various approaches that may assist the advancement of transgenic efficiency in large animals.
Collapse
Affiliation(s)
- A W Chan
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
37
|
Lavado A, Matheu A, Serrano M, Montoliu L. A strategy to study tyrosinase transgenes in mouse melanocytes. BMC Cell Biol 2005; 6:18. [PMID: 15826307 PMCID: PMC1087481 DOI: 10.1186/1471-2121-6-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 04/12/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of transgenic mice carrying different deletions in the Locus Control Region (LCR) of the mouse tyrosinase (Tyr) gene have been developed and analysed in our laboratory. We require melanocytes from these mice, to further study, at the cellular level, the effect of these deletions on the expression of the Tyr transgene, without potential interference with or from the endogenous Tyr alleles. It has been previously reported that it is possible to obtain and immortalize melanocyte cell cultures from postnatal mouse skin. RESULTS Here, we describe the efforts towards obtaining melanocyte cultures from our Tyr transgenic mice. We have bred our Tyr transgenic mice into Tyr c-32DSD mutant background, lacking the endogenous Tyr locus. In these conditions, we failed to obtain immortalized melanocytes. We decided to include the inactivation of the Ink4a-Arf locus to promote melanocyte immortalisation. For this purpose, we report the segregation of the Ink4a-Arf null allele from the brown (Tyrp1b) mutation in mice. Finally, we found that Ink4a-Arf +/- and Ink4a-Arf -/- melanocytes had undistinguishable tyrosine hydroxylase activities, although the latter showed reduced cellular pigmentation content. CONCLUSION The simultaneous presence of precise genomic deletions that include the tyrosinase locus, such as the Tyr c-32DSD allele, the Tyr transgene itself and the inactivated Ink4a-Arf locus in Tyrp1B genetic background appear as the crucial combination to perform forthcoming experiments. We cannot exclude that Ink4a-Arf mutations could affect the melanin biosynthetic pathway. Therefore, subsequent experiments with melanocytes will have to be performed in a normalized genetic background regarding the Ink4a-Arf locus.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Molecular and Cellular Biology Centro Nacional de Biotecnología (CNB-CSIC) Campus de Cantoblanco, C/ Darwin, 3 28049 Madrid, Spain
- St Jude Children's Research Hospital 332 N. Laudardale Memphis TN 38105, USA
| | - Ander Matheu
- Spanish National Cancer Centre (CNIO) C/ Melchor Fernández Almagro 3 28029 Madrid, Spain
| | - Manuel Serrano
- Spanish National Cancer Centre (CNIO) C/ Melchor Fernández Almagro 3 28029 Madrid, Spain
| | - Lluís Montoliu
- Department of Molecular and Cellular Biology Centro Nacional de Biotecnología (CNB-CSIC) Campus de Cantoblanco, C/ Darwin, 3 28049 Madrid, Spain
| |
Collapse
|
38
|
Giménez E, Lavado A, Jeffery G, Montoliu L. Regional abnormalities in retinal development are associated with local ocular hypopigmentation. J Comp Neurol 2005; 485:338-47. [PMID: 15803509 DOI: 10.1002/cne.20495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The retinal pigment epithelium (RPE) plays a key role in regulating retinal development. The critical enzyme in pigment production is tyrosinase. Transgenic mice with a tyrosinase construct where the locus control region was deleted (YRT4) display a variegated phenotype of tyrosinase expression. Their central retina is largely pigment free, whereas more peripheral regions are heavily pigmented. We have used this model to ask whether the influence of pigmented RPE over the retina during development is fundamentally governed by local interactions or is global. Our data show that YRT4 eyes have intermediate melanin content and relatively low tyrosinase activity compared with wild-type and albino animals. Rod counts are comparable to those in pigmented mice in peripheral regions but similar to those in albinos centrally. Anterograde labelling of retinal pathways demonstrates the presence of relatively normal ipsilateral chiasmatic projection in YRT4 mice, comparable with that in pigmented animals and consistent with the peripheral pigmented origin of this pathway. Examination of cellular proliferation levels during retinal development reveals that YRT4 mice display an extended period of mitosis, similar to that found in albinos. Hence, our results show that the regulatory influence of the RPE over the developing retina depends on localized interactions between these tissues.
Collapse
Affiliation(s)
- Estela Giménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Heaney JD, Rettew AN, Bronson SK. Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 2005; 83:1072-82. [PMID: 15177560 DOI: 10.1016/j.ygeno.2003.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
The hypoxanthine phosphoribosyltransferase (Hprt) locus has been shown to have minimal influence on transgene expression when used as a surrogate site in the mouse genome. We have developed a method to transfer bacterial artificial chromosomes (BACs) as a single copy into the partially deleted Hprt locus of embryonic stem cells. BACs were modified by Cre/loxP recombination to contain the sequences necessary for homologous recombination into and complementation of the partially deleted Hprt locus. Modified BACs were shown to undergo homologous recombination into the genome intact, to be stably transmitted through the germ line of transgenic mice, and to be expressed in the proper tissue-specific manner. This technology will facilitate many studies in which correct interpretation of data depends on developmentally appropriate transgene expression in the absence of rearrangements or deletions of endogenous DNA.
Collapse
Affiliation(s)
- Jason D Heaney
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine H166, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
40
|
Lavado A, Olivares C, García-Borrón JC, Montoliu L. Molecular basis of the extreme dilution mottled mouse mutation: a combination of coding and noncoding genomic alterations. J Biol Chem 2004; 280:4817-24. [PMID: 15572362 DOI: 10.1074/jbc.m410399200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tyrosinase is the rate-limiting enzyme in melanin biosynthesis. It is an N-glycosylated, copper-containing transmembrane protein, whose post-translational processing involves intracytoplasmic movement from the endoplasmic reticulum to the Golgi and, eventually, to the melanosome. The expression of the tyrosinase (Tyr) gene is controlled by several regulatory regions including a locus control region (LCR) located 15 kb upstream from the promoter region. The extreme dilution mottled mutant mice (Tyrc-em) arose spontaneously at the MRC Institute in Harwell (United Kingdom) from a chinchilla-mottled mutant (Tyrc-m) stock, whose molecular basis corresponds to a rearrangement of 5'-upstream regulatory sequences including the LCR of the Tyr gene. Tyrc-em mice display a variegated pigmentation pattern in coat and eyes, in agreement with the LCR translocation, but also show a generalized hypopigmented phenotype, not seen in Tyrc-m mice. Genomic analyses of Tyrc-em mice showed a C1220T nucleotide substitution within the Tyr encoding region, resulting in a T373I amino acid change, which abolishes an N-glycosylation sequon located in the second metal ion binding site of the enzyme. Tyrosinase from Tyrc-em displayed a reduced enzymatic activity in vivo and in vitro, compared with wild-type enzyme. Deglycosylation studies showed that the mutant protein has an abnormal glycosylation pattern and is partially retained in the endoplasmic reticulum. We conclude that the phenotype of the extreme dilution mottled mouse mutant is caused by a combination of coding and noncoding genomic alterations resulting in several abnormalities that include suboptimal gene expression, abnormal protein processing, and reduced enzymatic activity.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Campus de Cantoblanco, C/Darwin 3, Madrid 28049
| | | | | | | |
Collapse
|
41
|
Moreira PN, Giraldo P, Cozar P, Pozueta J, Jiménez A, Montoliu L, Gutiérrez-Adán A. Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol Reprod 2004; 71:1943-7. [PMID: 15286029 DOI: 10.1095/biolreprod.104.032904] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The production of animals with large transgenes is an increasingly valuable tool in biotechnology and for genetic studies, including the characterization and manipulation of large genes and polygenic traits. In the present study, we describe an intracytoplasmic sperm injection (ICSI) method for the stable incorporation and phenotypic expression of large yeast artificial chromosomes (YAC) constructs of submegabase and megabase magnitude. By coinjecting spermatozoa and YACs into metaphase II oocytes, we were able to produce founders exhibiting germline transmission of an intact and functional transgene of 250 kilobases, carrying the mouse tyrosinase locus, used here as a reporter gene to rescue the albinism of recipient mice. More than 35% transgenesis was obtained for this YAC transgene. When compared with the pronuclear microinjection standard method, the efficiency of the ICSI-mediated YAC transfer system was significantly greater. In summary, we describe, for the first time, stable incorporation in the host genome and correct phenotypic expression of large DNA constructs mediated by ICSI.
Collapse
Affiliation(s)
- Pedro N Moreira
- Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Regales L, Giraldo P, García-Díaz A, Lavado A, Montoliu L. Identification and functional validation of a 5' upstream regulatory sequence in the human tyrosinase gene homologous to the locus control region of the mouse tyrosinase gene. ACTA ACUST UNITED AC 2004; 16:685-92. [PMID: 14629727 DOI: 10.1046/j.1600-0749.2003.00100.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.
Collapse
Affiliation(s)
- Lucía Regales
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol 2004; 4:8. [PMID: 15102338 PMCID: PMC406510 DOI: 10.1186/1472-6750-4-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/21/2004] [Indexed: 11/11/2022] Open
Abstract
Background Mutagenesis of yeast artificial chromosomes (YACs) often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
44
|
Thrasher AJ, Edwards RG. Averting abnormal inheritance: potential of gene therapy and preimplantation diagnosis. Reprod Biomed Online 2004; 8:99-106. [PMID: 14759296 DOI: 10.1016/s1472-6483(10)60503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Serious inherited disease in children can be averted by preimplantation genetic diagnosis (PGD) and potentially by gene therapy in addition to prenatal diagnosis. PGD is now well established and provides a secure, if expensive and complex form of care. Gene therapy has been practised only in animals, although its success in alleviating various conditions in adults and newborns, together with the scientific drive of the genome project, make it a highly likely approach over coming years. Pros and cons of both approaches are contrasted and compared. Newer reproductive techniques such as somatic cell hybridization promise to add new dimensions to gene therapy, and could be combined with PGD. This paper discusses the finer details of these options, their safety and the ethical issues they have raised.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Consultant in Paediatric Immunology, Molecular Immunology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
45
|
Giraldo P, Martínez A, Regales L, Lavado A, García-Díaz A, Alonso A, Busturia A, Montoliu L. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity. Nucleic Acids Res 2003; 31:6290-305. [PMID: 14576318 PMCID: PMC275449 DOI: 10.1093/nar/gkg793] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Locus control regions (LCRs) are complex high-order chromatin structures harbouring several regulatory elements, including enhancers and boundaries. We have analysed the mouse tyrosinase LCR functions, in vitro, in cell lines and, in vivo, in transgenic mice and flies. The LCR-core (2.1 kb), located at -15 kb and carrying a previously described tissue-specific DNase I hypersensitive site, operates as a transcriptional enhancer that efficiently transactivates heterologous promoters in a cell-specific orientation-independent manner. Furthermore, we have investigated the boundary activity of these sequences in transgenic animals and cells. In mice, the LCR fragment (3.7 kb) rescued a weakly expressed reference construct that displays position effects. In Drosophila, the LCR fragment and its core insulated the expression of a white minigene reporter construct from chromosomal position effects. In cells, sequences located 5' from the LCR-core displayed putative boundary activities. We have obtained genomic sequences surrounding the LCR fragment and found a LINE1 repeated element at 5'. In B16 melanoma and L929 fibroblast mouse cells, this element was found heavily methylated, supporting the existence of putative boundary elements that could prevent the spreading of condensed chromatin from the LINE1 sequences into the LCR fragment, experimentally shown to be in an open chromatin structure.
Collapse
Affiliation(s)
- Patricia Giraldo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fryer JP, Oetting WS, King RA. Identification and Characterization of a DNase Hypersensitive Region of the Human Tyrosinase Gene. ACTA ACUST UNITED AC 2003; 16:679-84. [PMID: 14629726 DOI: 10.1046/j.1600-0749.2003.00099.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations of the tyrosinase gene produce oculocutaneous albinism type 1 (OCA1). Most affected individuals are compound heterozygotes with different maternal and paternal mutations, but a substantial number of presumed tyrosinase alleles in these individuals have no identifiable mutation in the coding or proximal promoter region of the gene. This suggests that mutations in other regions of the gene, such as regulatory regions that are removed from the direct proximity of the coding sequence, may account for these currently unidentifiable mutations. The mouse tyrosinase gene has a distal enhancer or locus control region (LCR) that provides position-independent stimulation of gene expression, and a homologous regulatory region (HR) of the human gene could be the site of some of these mutations. We report a region 9 kb upstream of the human tyrosinase transcriptional start site that may be involved in regulation of this gene. Analysis of this region shows DNase I hypersensitivity in a cell lineage-specific pattern, a pattern indicative of regulatory regions of a gene. This region also has significant enhancer function when reporter vectors containing it are transfected into either human or mouse melanocyte cell lines, and elimination of specific sequences with homology to the mouse core enhancer in this region extinguishes the enhancer function. We believe that this region of homology contains sequences critical in the regulation of the human tyrosinase gene and is a candidate for the location of OCA1 mutations.
Collapse
Affiliation(s)
- James P Fryer
- Department of Medicine and Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
47
|
Abstract
Microinjection of foreign DNA into pronuclei of a fertilized oocyte has predominantly been used for the generation of transgenic livestock. This technology works reliably, but is inefficient and results in random integration and variable expression patterns in the transgenic offspring. Nevertheless, remarkable achievements have been made with this technology. By targeting expression to the mammary gland, numerous heterologous recombinant human proteins have been produced in large amounts which could be purified from milk of transgenic goats, sheep, cattle and rabbit. Products such as human anti-thrombin III, alpha-anti-trypsin and tissue plasminogen activator are currently in advanced clinical trials and are expected to be on the market within the next few years. Transgenic pigs that express human complement regulating proteins have been tested in their ability to serve as donors in human organ transplantation (i.e. xenotransplantation). In vitro and in vivo data convincingly show that the hyperacute rejection response can be overcome in a clinically acceptable manner by successful employing this strategy. It is anticipated that transgenic pigs will be available as donors for functional xenografts within a few years. Similarly, pigs may serve as donors for a variety of xenogenic cells and tissues. The recent developments in nuclear transfer and its merger with the growing genomic data allow a targeted and regulatable transgenic production. Systems for efficient homologous recombination in somatic cells are being developed and the adaptation of sophisticated molecular tools, already explored in mice, for transgenic livestock production is underway. The availability of these technologies are essential to maintain "genetic security" and to ensure absence of unwanted side effects.
Collapse
Affiliation(s)
- Heiner Niemann
- Department of Biotechnology, Institut für Tierzucht Mariensee, FAL, 31535 Neustadt, Germany.
| | | |
Collapse
|
48
|
Giménez E, Lavado A, Giraldo P, Montoliu L. Tyrosinase gene expression is not detected in mouse brain outside the retinal pigment epithelium cells. Eur J Neurosci 2003; 18:2673-6. [PMID: 14622170 DOI: 10.1046/j.1460-9568.2003.02992.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosinase is the rate-limiting enzyme for melanin synthesis. Its gene is expressed in two cell types: melanocytes, derived from migrating neural crest cells, and, in the CNS, retinal pigment epithelium cells, derived from the optic cup. Its absence from the eye results in profound pathway selection errors of optic fibres at the chiasm and, hence, it has been implicated as a developmental regulator of CNS pathway selection. Recently, it has been proposed that tyrosinase can also be expressed in the developing and adult brain, although the methods used were indirect. Its presence in the brain could be very significant in terms of a potentially wider role in pathway finding. Here, we have evaluated the presence of tyrosinase expression in mouse developing, perinatal and adult brain by in situ hybridization in whole-mount embryos and histological sections and by real-time reverse transcription-polymerase chain reaction. We find no evidence for tyrosinase gene expression in the CNS outside the retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Estela Giménez
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Kaneko S, Tsuge K, Takeuchi T, Itaya M. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector. Nucleic Acids Res 2003; 31:e112. [PMID: 12954788 PMCID: PMC203338 DOI: 10.1093/nar/gng114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasmid by a recombinational transfer method developed for B.subtilis. DNA manipulation previously considered difficult is argued with respect to DNA size and accuracy.
Collapse
Affiliation(s)
- Shinya Kaneko
- Mitsubishi Kagaku Institute of Life Science, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
50
|
Abrahams BS, Chong ACO, Nisha M, Milette D, Brewster DA, Berry ML, Muratkhodjaev F, Mai S, Rajcan-Separovic E, Simpson EM. Metaphase FISHing of transgenic mice recommended: FISH and SKY define BAC-mediated balanced translocation. Genesis 2003; 36:134-41. [PMID: 12872244 DOI: 10.1002/gene.10205] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolving trend to use larger transgenes and their associated increased chance of unexpected genetic events mandates more careful characterization of transgenic mice. In characterizing our five new mouse strains transgenic for the BAC, bEMS4, we have identified the highest copy number reported to date: the stable incorporation of approximately 40 copies of a 194-kb expressed transgene in a single insertion site. We caution, however, that standard molecular techniques failed to identify a balanced translocation in another strain, and an inappropriate site of insertion in a third. Molecular cytogenetic analysis using metaphase FISH was the minimum level of characterization needed to reveal these unexpected genetic events. In addition, we combined FISH and SKY to identify the transgene at the breakpoints of the balanced translocation, t(3;9). This is the first description of a BAC-mediated chromosomal rearrangement and the first application of SKY to identify transgene-induced chromosomal rearrangements.
Collapse
Affiliation(s)
- Brett S Abrahams
- Graduate Program in Neuroscience, Department of Medical Genetics, University of Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|