1
|
Bracher A, Paul SS, Wang H, Wischnewski N, Hartl FU, Hayer-Hartl M. Structure and conformational cycle of a bacteriophage-encoded chaperonin. PLoS One 2020; 15:e0230090. [PMID: 32339190 PMCID: PMC7185714 DOI: 10.1371/journal.pone.0230090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Chaperonins are ubiquitous molecular chaperones found in all domains of life. They form ring-shaped complexes that assist in the folding of substrate proteins in an ATP-dependent reaction cycle. Key to the folding cycle is the transient encapsulation of substrate proteins by the chaperonin. Here we present a structural and functional characterization of the chaperonin gp146 (ɸEL) from the phage EL of Pseudomonas aeruginosa. ɸEL, an evolutionarily distant homolog of bacterial GroEL, is active in ATP hydrolysis and prevents the aggregation of denatured protein in a nucleotide-dependent manner. However, ɸEL failed to refold the encapsulation-dependent model substrate rhodanese and did not interact with E. coli GroES, the lid-shaped co-chaperone of GroEL. ɸEL forms tetradecameric double-ring complexes, which dissociate into single rings in the presence of ATP. Crystal structures of ɸEL (at 3.54 and 4.03 Å) in presence of ATP•BeFx revealed two distinct single-ring conformational states, both with open access to the ring cavity. One state showed uniform ATP-bound subunit conformations (symmetric state), whereas the second combined distinct ATP- and ADP-bound subunit conformations (asymmetric state). Cryo-electron microscopy of apo-ɸEL revealed a double-ring structure composed of rings in the asymmetric state (3.45 Å resolution). We propose that the phage chaperonin undergoes nucleotide-dependent conformational switching between double- and single rings and functions in aggregation prevention without substrate protein encapsulation. Thus, ɸEL may represent an evolutionarily more ancient chaperonin prior to acquisition of the encapsulation mechanism.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| | - Simanta S. Paul
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Huping Wang
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Nadine Wischnewski
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| |
Collapse
|
2
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
3
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|
4
|
Boddington KF, Graether SP. Binding of a Vitis riparia dehydrin to DNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110172. [PMID: 31481220 DOI: 10.1016/j.plantsci.2019.110172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Plants must protect themselves from abiotic stresses such as drought, cold, and high salinity. The common thread of all three stresses is that they cause dehydration, which in turn promotes the formation of reactive oxygen species (ROS). Dehydrin proteins (dehydrins) are a large family of proteins that have been identified in nearly all land plants, and whose presence is correlated with plant protection from abiotic stresses. Several dehydrin studies have shown that some dehydrins localize to the nucleus, as well as the cytoplasm, but a functional role for nuclear dehydrins has not yet been determined. We show here that the Vitis riparia dehydrin VrDHN1 localizes to the nucleus and is able to bind to DNA to protect it from damage caused by hydrogen peroxide, an ROS source. We also show that the binding to DNA is not DNA-sequence specific, suggesting that the protein is able to protect any exposed DNA without interfering with its normal function. NMR studies show that the binding is largely driven by the lysine-rich nature of dehydrins located in the conserved K-segments. Unlike other, previously studied dehydrins, VrDHN1 binding to DNA is not enhanced through the presence of metals. Lastly, we demonstrate that the Y-segment does not bind ATP, as has long been proposed.
Collapse
Affiliation(s)
- Kelly F Boddington
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Yuan Y, Du C, Sun C, Zhu J, Wu S, Zhang Y, Ji T, Lei J, Yang Y, Gao N, Nie G. Chaperonin-GroEL as a Smart Hydrophobic Drug Delivery and Tumor Targeting Molecular Machine for Tumor Therapy. NANO LETTERS 2018; 18:921-928. [PMID: 29287145 DOI: 10.1021/acs.nanolett.7b04307] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeted delivery of hydrophobic therapeutic drugs to tumors is one of the major challenges in drug development. The use of natural proteins as drug delivery vehicles holds great promise due to various functionalities of proteins. In the current study, we exploited a natural protein, GroEL, which possesses a double layer cage structure, as a hydrophobic drug container, which is switchable by ATP binding to a hydrophilic status, to design a novel and intelligent hydrophobic drug delivery molecular machine with a controlled drug release profile. When loaded with the hydrophobic antitumor drug, Doxorubicin (Dox), GroEL was able to shield the drug from the aqueous phase of blood, releasing the drug once in the presence of a critical concentration of ATP at the tumor site. Unexpectedly, we found that GroEL has a specific affinity for the cell structural protein, plectin, which is expressed at abnormally elevated levels on the membranes of tumor cells but not in normal cells. This finding, in combination with the ATP sensitivity, makes GroEL a superior natural tumor targeting nanocarrier. Our data show that GroEL-Dox is able to effectively, and highly selectively, deliver the hydrophobic drug to fast growing tumors without overt adverse effects on the major organs. GroEL is therefore a promising drug delivery platform that can overcome the obstacles to hydrophobic drug targeting and delivery.
Collapse
Affiliation(s)
- Yi Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Chong Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- Department of General Surgery, Peking University First Hospital , Beijing 100034, China
| | - Cuiji Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Jin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Shan Wu
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- College of Pharmaceutical Science, Jilin University , Changchun 130021, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
| | - Jianlin Lei
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital , Beijing 100034, China
| | - Ning Gao
- Beijing Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University , Beijing 100871, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beiyitiao 11, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Richard Strimbeck G. Hiding in plain sight: the F segment and other conserved features of seed plant SK n dehydrins. PLANTA 2017; 245:1061-1066. [PMID: 28321577 PMCID: PMC5393156 DOI: 10.1007/s00425-017-2679-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION An 11-residue amino acid sequence, DRGLFDFLGKK, is highly conserved in a subset of dehydrins found across the full spectrum of seed plants and here given the name F-segment. An 11-residue amino acid sequence, DRGLFDFLGKK, is highly conserved in identity and polarity in 130 non-redundant dehydrin sequences representing conifers and all major angiosperm groups. This newly described motif is here given the name F segment based on the pair of hydrophobic F residues at the core of the sequence. The majority of dehydrins previously classified as SKn dehydrins contain one F segment N terminal to the S and K segments and can accordingly be reclassified as FSKn dehydrins. A cysteine-containing variant, GCGMFDFLKK, occurs in a few rosid and asterid taxa. The S segment in this and other dehydrin types also includes previously overlooked conserved features, including a KLHR prefix and charged or G residues within and following the characteristic string of S residues. Secondary structure prediction models indicate that the F segment and S segment prefix may form amphipathic helices that could be involved in membrane or protein binding.
Collapse
Affiliation(s)
- G Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
8
|
Xu D, Sun L, Liu S, Zhang L, Ru X, Zhao Y, Yang H. Molecular cloning of heat shock protein 10 (Hsp10) and 60 (Hsp60) cDNAs and their expression analysis under thermal stress in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2014; 171:49-57. [DOI: 10.1016/j.cbpb.2014.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/25/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022]
|
9
|
Rajaram H, Chaurasia AK, Apte SK. Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology (Reading) 2014; 160:647-658. [DOI: 10.1099/mic.0.073478-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria constitute a morphologically diverse group of oxygenic photoautotrophic microbes which range from unicellular to multicellular, and non-nitrogen-fixing to nitrogen-fixing types. Sustained long-term exposure to changing environmental conditions, during their three billion years of evolution, has presumably led to their adaptation to diverse ecological niches. The ability to maintain protein conformational homeostasis (folding–misfolding–refolding or aggregation–degradation) by molecular chaperones holds the key to the stress adaptability of cyanobacteria. Although cyanobacteria possess several genes encoding DnaK and DnaJ family proteins, these are not the most abundant heat-shock proteins (Hsps), as is the case in other bacteria. Instead, the Hsp60 family of proteins, comprising two phylogenetically conserved proteins, and small Hsps are more abundant during heat stress. The contribution of the Hsp100 (ClpB) family of proteins and of small Hsps in the unicellular cyanobacteria (Synechocystis and Synechococcus) as well as that of Hsp60 proteins in the filamentous cyanobacteria (Anabaena) to thermotolerance has been elucidated. The regulation of chaperone genes by several cis-elements and trans-acting factors has also been well documented. Recent studies have demonstrated novel transcriptional and translational (mRNA secondary structure) regulatory mechanisms in unicellular cyanobacteria. This article provides an insight into the heat-shock response: its organization, and ecophysiological regulation and role of molecular chaperones, in unicellular and filamentous nitrogen-fixing cyanobacterial strains.
Collapse
Affiliation(s)
- Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Akhilesh Kumar Chaurasia
- Samsung Biomedical Research Institute, School of Medicine, SKKU, Suwon, 440-746 Republic of Korea
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| |
Collapse
|
10
|
Vaseva II, Anders I, Feller U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:213-24. [PMID: 24054754 DOI: 10.1016/j.jplph.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/08/2023]
Abstract
Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
11
|
Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. FRONTIERS IN PLANT SCIENCE 2014; 5:576. [PMID: 25400646 PMCID: PMC4215689 DOI: 10.3389/fpls.2014.00576] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins.
Collapse
Affiliation(s)
- Steffen P. Graether
- *Correspondence: Steffen P. Graether, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada e-mail:
| | | |
Collapse
|
12
|
Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel. PLoS One 2012; 7:e48725. [PMID: 23144945 PMCID: PMC3492408 DOI: 10.1371/journal.pone.0048725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.
Collapse
Affiliation(s)
- Olga B. Popova
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tina P. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tri Le
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at “Evolution Canyon”, Israel. Genetica 2012; 139:1429-38. [DOI: 10.1007/s10709-012-9641-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
14
|
Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ. Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 2011; 36:223-8. [PMID: 21654076 DOI: 10.1007/s12038-011-9058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.
Collapse
Affiliation(s)
- Lei Su
- College of Life Science, Shandong Normal University, Jinan 250014, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Aguilar X, F. Weise C, Sparrman T, Wolf-Watz M, Wittung-Stafshede P. Macromolecular Crowding Extended to a Heptameric System: The Co-chaperonin Protein 10. Biochemistry 2011; 50:3034-44. [DOI: 10.1021/bi2002086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ximena Aguilar
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Christoph F. Weise
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
16
|
Liu PF, Kihara D, Park C. Energetics-based discovery of protein-ligand interactions on a proteomic scale. J Mol Biol 2011; 408:147-62. [PMID: 21338610 DOI: 10.1016/j.jmb.2011.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 01/09/2023]
Abstract
Biochemical functions of proteins in cells frequently involve interactions with various ligands. Proteomic methods for the identification of proteins that interact with specific ligands such as metabolites, signaling molecules, and drugs are valuable in investigating the regulatory mechanisms of cellular metabolism, annotating proteins with unknown functions, and elucidating pharmacological mechanisms. Here we report an energetics-based target identification method in which target proteins in a cell lysate are identified by exploiting the effect of ligand binding on their stabilities. Urea-induced unfolding of proteins in cell lysates is probed by a short pulse of proteolysis, and the effect of a ligand on the amount of folded protein remaining is monitored on a proteomic scale. As proof of principle, we identified proteins that interact with ATP in the Escherichia coli proteome. Literature and database mining confirmed that a majority of the identified proteins are indeed ATP-binding proteins. Four identified proteins that were previously not known to interact with ATP were cloned and expressed to validate the result. Except for one protein, the effects of ATP on urea-induced unfolding were confirmed. Analyses of the protein sequences and structure models were also employed to predict potential ATP binding sites in the identified proteins. Our results demonstrate that this energetics-based target identification approach is a facile method to identify proteins that interact with specific ligands on a proteomic scale.
Collapse
Affiliation(s)
- Pei-Fen Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
17
|
Popovic Z, Templeton DM. Inhibition of an iron-responsive element/iron regulatory protein-1 complex by ATP binding and hydrolysis. FEBS J 2007; 274:3108-19. [PMID: 17521334 DOI: 10.1111/j.1742-4658.2007.05843.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron regulatory protein-1 binding to the iron-responsive element of mRNA is sensitive to iron, oxidative stress, NO, and hypoxia. Each of these agents changes the level of intracellular ATP, suggesting a link between iron levels and cellular energy metabolism. Furthermore, restoration of iron regulatory protein-1 aconitase activity after NO removal has been shown to require mitochondrial ATP. We demonstrate here that the iron-responsive element-binding activity of iron regulatory protein is ATP-dependent in HepG2 cells. Iron cannot decrease iron regulatory protein binding activity in cell extracts if they are simultaneously treated with an uncoupler of oxidative phosphorylation. Physiologic concentrations of ATP inhibit iron-responsive element/iron regulatory protein binding in cell extracts and binding of iron-responsive element to recombinant iron regulatory protein-1. ADP has the same effect, in contrast to the nonhydrolyzable analog adenosine 5'-(beta,gamma-imido)triphosphate, indicating that in order to inhibit iron regulatory protein-1 binding activity, ATP must be hydrolyzed. Indeed, recombinant iron regulatory protein-1 binds ATP with a Kd of 86+/-17 microM in a filter-binding assay, and can be photo-crosslinked to azido-ATP. Upon binding, ATP is hydrolyzed. The kinetic parameters [Km=5.3 microM, Vmax=3.4 nmol.min(-1).(mg protein)(-1)] are consistent with those of a number of other ATP-hydrolyzing proteins, including the RNA-binding helicases. Although the iron-responsive element does not itself hydrolyze ATP, its presence enhances iron regulatory protein-1's ATPase activity, and ATP hydrolysis results in loss of the complex in gel shift assays.
Collapse
Affiliation(s)
- Zvezdana Popovic
- Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | |
Collapse
|
18
|
Zheng S, Ponder MA, Shih JYJ, Tiedje JM, Thomashow MF, Lubman DM. A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 2007; 28:467-88. [PMID: 17177241 DOI: 10.1002/elps.200600173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Psychrobacter 273-4 was isolated from a 20,000-40,000-year-old Siberian permafrost core, which is characterized by low temperature, low water activity, and high salinity. To explore how 273-4 survives in the permafrost environment, proteins in four 273-4 samples cultured at 4 and 22 degrees C in media with and without 5% sodium chloride were profiled and comparatively studied using 2-D HPLC and MS. The method used herein involved fractionation via a pH gradient using chromatofocusing followed by nonporous silica (NPS) RP-HPLC and on-line electrospray mass mapping. It was observed that 33 proteins were involved in the adaptation to low temperature in the cells grown in the nonsaline media while there were only 14 proteins involved in the saline media. There were 45 proteins observed differentially expressed in response to salt at 22 degrees C while there were 22 proteins at 4 degrees C. In addition, 5% NaCl and 4 degrees C showed a combination effect on protein expression. A total of 56 proteins involved in the adaptation to low temperature and salt were identified using MS and database searching. The differentially expressed proteins were classified into different functional categories where the response of the regulation system to stress appears to be very elaborate. The evidence shows that the adaptation of 273-4 is based primarily on the control of translation and transcription, the synthesis of proteins (chaperones) to facilitate RNA and protein folding, and the regulation of metabolic pathways.
Collapse
Affiliation(s)
- Suping Zheng
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
19
|
Perham M, Wittung-Stafshede P. Folding and assembly of co-chaperonin heptamer probed by forster resonance energy transfer. Arch Biochem Biophys 2007; 464:306-13. [PMID: 17521602 DOI: 10.1016/j.abb.2007.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
The ring-shaped heptameric co-chaperonin protein 10 (cpn10) is one of few oligomeric beta-sheet proteins that unfold and disassemble reversibly in vitro. Here, we labeled human mitochondrial cpn10 with donor and acceptor dyes to obtain FRET signals. Cpn10 mixed in a 1:1:5 ratio of donor:acceptor:unlabeled monomers form heptamers that are active in an in vitro functional assay. Monomer-monomer affinity, as well as thermal and chemical stability, of the labeled cpn10 is similar to the unlabeled protein, demonstrating that the labels do not perturb the system. Using changes in FRET, we then probed for the first time cpn10 heptamer-monomer assembly/disassembly kinetics. Heptamer dissociation is very slow (1/k(diss) approximately 3h; 20 degrees C, pH 7) corresponding to an activation energy of approximately 50kJ/mol. Ring-ring mixing experiments reveal that cpn10 heptamer dissociation is rate limiting; subsequent associations events are faster. Kinetic inertness explains how cpn10 cycles on and off cpn60 as an intact heptamer in vivo.
Collapse
Affiliation(s)
- Michael Perham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77251, United States
| | | |
Collapse
|
20
|
Luke K, Perham M, Wittung-Stafshede P. Kinetic Folding and Assembly Mechanisms Differ for Two Homologous Heptamers. J Mol Biol 2006; 363:729-42. [PMID: 16979655 DOI: 10.1016/j.jmb.2006.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/22/2022]
Abstract
Here we investigate the time-resolved folding and assembly mechanism of the heptameric co-chaperonin protein 10 (cpn10) in vitro. The structure of cpn10 is conserved throughout nature: seven beta-barrel subunits are non-covalently assembled through beta-strand pairings in an overall doughnut-like shape. Kinetic folding/assembly experiments of chemically denatured cpn10 from Homo sapiens (hmcpn10) and Aquifex aeolicus (Aacpn10) were monitored by far-UV circular dichroism and fluorescence. We find the processes to be complex, involving several kinetic steps, and to differ between the mesophilic and hyper-thermophilic proteins. The hmcpn10 molecules partition into two parallel pathways, one involving polypeptide folding before protein-protein assembly and another in which inter-protein interactions take place prior to folding. In contrast, the Aacpn10 molecules follow a single sequential path that includes initial monomer misfolding, relaxation to productive intermediates and, subsequently, final folding and heptamer assembly. An A. aeolicus variant lacking the unique C-terminal extension of Aacpn10 displays the same kinetic mechanism as Aacpn10, signifying that the tail is not responsible for the rapid misfolding step. This study demonstrates that molecular details can overrule similarity of native-state topology in defining apparent protein-biophysical properties.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | |
Collapse
|
21
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
22
|
Luke K, Apiyo D, Wittung-Stafshede P. Dissecting homo-heptamer thermodynamics by isothermal titration calorimetry: entropy-driven assembly of co-chaperonin protein 10. Biophys J 2005; 89:3332-6. [PMID: 16100270 PMCID: PMC1366829 DOI: 10.1529/biophysj.105.067223] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 08/01/2005] [Indexed: 11/18/2022] Open
Abstract
Normally, isothermal titration calorimetry (ITC) is used to study binding reactions between two different biomolecules. Self-association processes leading to homo-oligomeric complexes have usually not been studied by ITC; instead, methods such as spectroscopy and analytical ultracentrifugation, which only provide affinity and Gibbs-free energy (i.e., K(D) and DeltaG), are employed. We here demonstrate that complete thermodynamic descriptions (i.e., K(D), DeltaG, DeltaH, and DeltaS) for self-associating systems can be obtained by ITC-dilution experiments upon proper analysis. We use this approach to probe the dissociation (and thus association) equilibrium for the heptameric co-chaperonin proteins 10 (cpn10) from Aquifex aeolicus (Aacpn10-del25) and human mitochondria (hmcpn10). We find that the midpoints for the heptamer-monomer equilibrium occur at 0.51 +/- 0.03 microM and 3.5 +/- 0.1 microM total monomer concentration (25 degrees C), for Aacpn10-del25 and hmcpn10, respectively. For both proteins, association involves endothermic enthalpy and positive entropy changes; thus, the reactions are driven by the entropy increase. This is in accord with the release of ordered water molecules and, for the thermophilic variant, a relaxation of monomer-tertiary structure when the heptamers form.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Keck Center for Structural Computational Biology, and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | |
Collapse
|
23
|
Brown C, Liao J, Wittung-Stafshede P. Interface mutation in heptameric co-chaperonin protein 10 destabilizes subunits but not interfaces. Arch Biochem Biophys 2005; 439:175-83. [PMID: 15978542 DOI: 10.1016/j.abb.2005.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022]
Abstract
We here report on a human mitochondrial co-chaperonin protein 10 (cpn10) variant in which the conserved interface residue leucine-96 is replaced with glycine (Leu96Gly cpn10). According to analytical ultracentrifugation, the mutation does not perturb the ability to assemble into a heptamer and electron microscopy reveals that Leu96Gly cpn10 is ring-shaped like wild-type cpn10. Despite elimination of a hydrophobic residue, the subunit-subunit affinity is essentially identical in Leu96Gly cpn10 and in wild-type cpn10. This is explained by a compensating rearrangement in Leu96Gly cpn10, evident from cross-linking and gel-filtration experiments. As a direct result of lower monomer stability, Leu96Gly cpn10 is dramatically less stable towards chemical and thermal perturbations as compared to wild-type cpn10. We conclude that leucine-96 is an interface residue preserved to guarantee stable cpn10 monomers. Our study demonstrates that the cpn10 interfaces can adapt to structural alterations without loss of either subunit-subunit affinity or heptamer specificity.
Collapse
Affiliation(s)
- Christopher Brown
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | |
Collapse
|
24
|
Stürzenbaum SR, Arts MSJ, Kammenga JE. Molecular cloning and characterization of Cpn60 in the free-living nematode Plectus acuminatus. Cell Stress Chaperones 2005; 10:79-85. [PMID: 16038405 PMCID: PMC1176475 DOI: 10.1379/csc-84r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins (Hsps) have provoked interest not only because of their involvement in human diseases but also for their potential as biomarkers of environmental pollution. Whereas the former interest is covered by numerous reports, the latter is an exciting new field of research. We report the isolation of the full-length cpn60 messenger ribonucleic acid (mRNA) and partial genomic deoxyribonucleic acid from the free-living, environmental sentinel nematode Plectus acuminatus, a species used in classical ecotoxicity tests. Although the primary sequence displays high identity scores to other nematodes and human Cpn60 (75% and 70%, respectively), the intron-exon structure differs markedly. Furthermore, although mRNA levels remained constant after exposure to ZnCl2 (0-330 microM) under laboratory conditions, protein levels increased significantly in a dose-dependent manner. In conclusion, this first account of molecular genetic similarities and differences of Cpn60 in a neglected nematode taxon provides a valuable insight into its potential uses in gene-based ecotoxicological risk assessment exercises.
Collapse
Affiliation(s)
- S R Stürzenbaum
- Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK.
| | | | | |
Collapse
|
25
|
Abstract
Small monomeric proteins often fold in apparent two-state processes with folding speeds dictated by their native-state topology. Here we test, for the first time, the influence of monomer topology on the folding speed of an oligomeric protein: the heptameric cochaperonin protein 10 (cpn10), which in the native state has seven beta-barrel subunits noncovalently assembled through beta-strand pairing. Cpn10 is a particularly useful model because equilibrium-unfolding experiments have revealed that the denatured state in urea is that of a nonnative heptamer. Surprisingly, refolding of the nonnative cpn10 heptamer is a simple two-state kinetic process with a folding-rate constant in water (2.1 sec(-1); pH 7.0, 20 degrees C) that is in excellent agreement with the prediction based on the native-state topology of the cpn10 monomer. Thus, the monomers appear to fold as independent units, with a speed that correlates with topology, although the C and N termini are trapped in beta-strand pairing with neighboring subunits. In contrast, refolding of unfolded cpn10 monomers is dominated by a slow association step.
Collapse
Affiliation(s)
- Neil Bascos
- Molecular and Cellular Biology Graduate Program, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
26
|
Guidry J, Wittung-Stafshede P. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus. Biochem Biophys Res Commun 2004; 317:176-80. [PMID: 15047164 DOI: 10.1016/j.bbrc.2004.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 11/26/2022]
Abstract
All known co-chaperonin protein 10 (cpn10) molecules are heptamers of seven identical subunits that are linked together by beta-strand interactions. Here, we report the first characterization of a cpn10 protein from a thermophilic organism: Aquifex aeolicus. Primary-structure alignment of A. aeolicus cpn10 (Aaecpn10) shows high homology with mesophilic cpn10 sequences, except for a unique 25-residue C-terminal extension not found in any other cpn10. Recombinant Aaecpn10 adopts a heptameric structure in solution at pH values above 4 (20 degrees C). Both monomers and heptamers are folded at 20 degrees C, although the thermal stability of the monomers (pH 3; Tm approximately 58 degrees C) is lower than that of the heptamers (pH 7; Tm approximately 115 degrees C). Aaecpn10 functions in a GroEL-dependent in vitro activity assay. Taken together, Aaecpn10 appears similar in secondary, tertiary, and quaternary structure, as well as in many biophysical features, to its mesophilic counterparts despite a functional temperature of 90 degrees C.
Collapse
Affiliation(s)
- Jesse Guidry
- Department of Pharmacology and Experimental Therapeutics, LSU Health Science Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
27
|
Guidry JJ, Shewmaker F, Maskos K, Landry S, Wittung-Stafshede P. Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified. BMC BIOCHEMISTRY 2003; 4:14. [PMID: 14525625 PMCID: PMC270013 DOI: 10.1186/1471-2091-4-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/02/2003] [Indexed: 11/21/2022]
Abstract
Background The co-chaperonin protein 10 (cpn10) assists cpn60 in the folding of nonnative polypeptides in a wide range of organisms. All known cpn10 molecules are heptamers of seven identical subunits that are linked together by β-strand interactions at a large and flexible interface. Unfolding of human mitochondrial cpn10 in urea results in an unfolded heptameric state whereas GuHCl additions result in unfolded monomers. To address the role of specific interface residues in the assembly of cpn10 we prepared two point-mutated variants, in each case removing a hydrophobic residue positioned at the subunit-subunit interface. Results Replacing valine-100 with a glycine (Val100Gly cpn10) results in a wild-type-like protein with seven-fold symmetry although the thermodynamic stability is decreased and the unfolding processes in urea and GuHCl both result in unfolded monomers. In sharp contrast, replacing phenylalanine-8 with a glycine (Phe8Gly cpn10) results in a protein that has lost the ability to assemble. Instead, this protein exists mostly as unfolded monomers. Conclusions We conclude that valine-100 is a residue important to adopt an oligomeric unfolded state but it does not affect the ability to assemble in the folded state. In contrast, phenylalanine-8 is required for both heptamer assembly and monomer folding and therefore this mutation results in unfolded monomers at physiological conditions. Despite the plasticity and large size of the cpn10 interface, our observations show that isolated interface residues can be crucial for both the retention of a heptameric unfolded structure and for subunit folding.
Collapse
Affiliation(s)
- Jesse J Guidry
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Frank Shewmaker
- Chemistry Department, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Karol Maskos
- Coordinated Instrumentation Facility, Tulane University, New Orleans, 70118 Louisiana, USA
| | - Samuel Landry
- Biochemistry Department, Tulane University, New Orleans, 70112 Louisiana, USA
| | | |
Collapse
|
28
|
Giordani T, Natali L, Cavallini A. Analysis of a dehydrin encoding gene and its phylogenetic utility in Helianthus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:316-325. [PMID: 12709785 DOI: 10.1007/s00122-003-1249-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Accepted: 02/03/2003] [Indexed: 05/24/2023]
Abstract
Dehydrins are ubiquitous plant proteins, synthesized in late stages of plant embryo development and following any environmental stress involving dehydration. With the aim to study the evolution of such a stress-responsive gene within Helianthus and to test the possibility of using this gene for phylogenetic studies, fragments of the same dehydrin gene were isolated by PCR and sequenced in 16 wild Helianthus species or subspecies. All isolated sequences included the typical dehydrin domains (Y, S and K), a portion of 3'-UTR and an intron, inserted in the same position within the S domain-encoding region. The number of nucleotide substitutions (both synonymous and nonsynonymous) was calculated keeping separate the different gene regions, and differences occur even among coding domains, indicating that evolutionary constraints act differently on each region. The occurrence of indels and/or insertions was also observed. At the deduced protein level, the calculation of isoelectric point, molecular weight and the percentage of alpha-helix showed a diversification of biochemical properties of this protein between annual and perennial Helianthus species. Phylogenetic trees were built by the maximum-likelihood, maximum-parsimony, and neighbor-joining methods. In all cases the same topology was observed; perennial and annual species form a supported clade, and H. annuus was separated from the other annuals and from perennials. These data support the use of this stress-responsive gene to study the phylogeny of Helianthus.
Collapse
Affiliation(s)
- T Giordani
- Department of Agricultural Plant Biology, Genetics Section, Via Matteotti 1/B, I-56124 Pisa, Italy
| | | | | |
Collapse
|
29
|
Shiwa M, Murayama T, Ogawa Y. Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am J Physiol Regul Integr Comp Physiol 2002; 282:R727-37. [PMID: 11832393 DOI: 10.1152/ajpregu.00519.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unfertilized eggs of sea urchins (Hemicentrotus pulcherrimus) demonstrated cyclic ADP-ribose (cADPR)-induced Ca(2+) release and caffeine-induced Ca(2+) release, both of which were considered to be mediated through the ryanodine receptor (RyR). We cloned cDNAs for sea urchin egg RyR (suRyR), which encode a 597-kDa protein of 5,317 amino acids. suRyR shares common structural features with known RyRs: the well-conserved COOH-terminal domain, which forms a functional Ca(2+) channel, and a large hydrophilic NH2-terminal domain. suRyR shows amino acid sequence identity (43-45%) similar to the three mammalian RyR isoforms. Phylogenetic analysis indicates that suRyR branched from three isoforms of vertebrates before they diverged, suggesting that suRyR may be the only RyR isoform in the sea urchin. Four in-frame insertions were found in suRyR cDNAs, one of which was novel and unique, in that it had a cluster of serine residues. The transcripts with and without these insertions were found in the egg RNA. These results suggest that suRyR may be expressed as a functional Ca(2+)-induced Ca(2+) release channel, which might also be involved in cADPR-induced Ca(2+) release.
Collapse
Affiliation(s)
- Mieko Shiwa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | |
Collapse
|
30
|
Du GG, Oyamada H, Khanna VK, MacLennan DH. Mutations to Gly2370, Gly2373 or Gly2375 in malignant hyperthermia domain 2 decrease caffeine and cresol sensitivity of the rabbit skeletal-muscle Ca2+-release channel (ryanodine receptor isoform 1). Biochem J 2001; 360:97-105. [PMID: 11695996 PMCID: PMC1222206 DOI: 10.1042/0264-6021:3600097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations G2370A, G2372A, G2373A, G2375A, Y3937A, S3938A, G3939A and K3940A were made in two potential ATP-binding motifs (amino acids 2370-2375 and 3937-3940) in the Ca(2+)-release channel of skeletal-muscle sarcoplasmic reticulum (ryanodine receptor or RyR1). Activation of [(3)H]ryanodine binding by Ca(2+), caffeine and ATP (adenosine 5'-[beta,gamma-methylene]triphosphate, AMP-PCP) was used as an assay for channel opening, since ryanodine binds only to open channels. Caffeine-sensitivity of channel opening was also assayed by caffeine-induced Ca(2+) release in HEK-293 cells expressing wild-type and mutant channels. Equilibrium [(3)H]ryanodine-binding properties and EC(50) values for Ca(2+) activation of high-affinity [(3)H]ryanodine binding were similar between wild-type RyR1 and mutants. In the presence of 1 mM AMP-PCP, Ca(2+)-activation curves were shifted to higher affinity and maximal binding was increased to a similar extent for wild-type RyR1 and mutants. ATP sensitivity of channel opening was also similar for wild-type and mutants. These observations apparently rule out sequences 2370-2375 and 3937-3940 as ATP-binding motifs. Caffeine or 4-chloro-m-cresol sensitivity, however, was decreased in mutants G2370A, G2373A and G2375A, whereas the other mutants retained normal sensitivity. Amino acids 2370-2375 lie within a sequence (amino acids 2163-2458) in which some eight RyR1 mutations have been associated with malignant hyperthermia and shown to be hypersensitive to caffeine and 4-chloro-m-cresol activation. By contrast, mutants G2370A, G2373A and G2375A are hyposensitive to caffeine and 4-chloro-m-cresol. Thus amino acids 2163-2458 form a regulatory domain (malignant hyperthermia regulatory domain 2) that regulates caffeine and 4-chloro-m-cresol sensitivity of RyR1.
Collapse
Affiliation(s)
- G G Du
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
31
|
Abstract
The synthesis, purification, and chemical analysis of two covalent conjugates between ATP and undecagold are described, one in which gold is attached to the ribose moiety of ATP and the other in which it is attached to the N-6 position of the adenine base. The former probe was then used to bind to two ATP binding proteins, the helicase DnaB and the chaperone DnaK. After purification from unbound gold by column chromatography, binding was measured by UV-Vis spectroscopy, then the protein and gold were visualized by scanning transmission electron microscopy. Binding was observed with the conjugates, and virtually no binding occurred in the control of undecagold without the ATP attached. This new probe may be useful for studying nucleotide binding sites on proteins or for labeling nucleic acids or oligonucleotides directly.
Collapse
Affiliation(s)
- J F Hainfeld
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | |
Collapse
|
32
|
Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F. Review: The Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199605)12:6<523::aid-yea962>3.0.co;2-c] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
33
|
Gerhardt B, Kordas TJ, Thompson CM, Patel P, Vida T. The vesicle transport protein Vps33p is an ATP-binding protein that localizes to the cytosol in an energy-dependent manner. J Biol Chem 1998; 273:15818-29. [PMID: 9624182 DOI: 10.1074/jbc.273.25.15818] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular mechanisms of vesicle transport between the prevacuolar compartment and the vacuole in yeast or the lysosome in mammalian cells are poorly understood. To learn more about the specificity of this intercompartmental step, we have examined the subcellular localization of a SEC1 homologue, Vps33p, a protein implicated to function in transport between the prevacuolar compartment and the vacuole. Following short pulses, 80-90% of newly synthesized Vps33p cofractionated with a cytosolic enzyme marker after making permeabilized yeast cells. However, during a chase, 20-40% of Vps33p fractionated with permeabilized cell membranes in a time-dependent fashion with a half-time of approximately 40 min. Depletion of cellular ATP increased the association rate to a half-time of approximately 4 min and caused 80-90% of newly synthesized Vps33p to be associated with permeabilized cell membranes. The association of Vps33p with permeabilized cell membranes was reversible after restoring cells with glucose before permeabilization. The N-ethylmaleimide-sensitive fusion protein homologue, Sec18p, a protein with known ATP binding and hydrolysis activity, displayed the same reversible energy-dependent sedimentation characteristics as Vps33p. We determined that the photosensitive analog, 8-azido-[alpha-32P]ATP, could bind directly to Vps33p with low affinity. Interestingly, excess unlabeled ATP could enhance photoaffinity labeling of 8-azido-[alpha-32P]ATP to Vps33p, suggesting cooperative binding, which was not observed with excess GTP. Importantly, we did not detect significant photolabeling after deleting amino acid regions in Vps33p that show similarity to ATP interaction motifs. We visualized these events in living yeast cells after fusing the jellyfish green fluorescent protein (GFP) to the C terminus of full-length Vps33p. In metabolically active cells, the fully functional Vps33p-GFP fusion protein appeared to stain throughout the cytoplasm with one or two very bright fluorescent spots near the vacuole. After depleting cellular ATP, Vps33p-GFP appeared to localize with a punctate morphology, which was also reversible upon restoring cells with glucose. Overall, these data support a model where Vps33p cycles between soluble and particulate forms in an ATP-dependent manner, which may facilitate the specificity of transport vesicle docking or targeting to the yeast lysosome/vacuole.
Collapse
Affiliation(s)
- B Gerhardt
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Schönfeld HJ, Behlke J. Molecular chaperones and their interactions investigated by analytical ultracentrifugation and other methodologies. Methods Enzymol 1998; 290:269-96. [PMID: 9534169 DOI: 10.1016/s0076-6879(98)90025-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H J Schönfeld
- Pharmaceutical Research-Infectious Diseases, F. Hoffmann-La Roche Limited, Basel, Switzerland
| | | |
Collapse
|
35
|
Martin J. Role of the GroEL chaperonin intermediate domain in coupling ATP hydrolysis to polypeptide release. J Biol Chem 1998; 273:7351-7. [PMID: 9516431 DOI: 10.1074/jbc.273.13.7351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of the Escherichia coli chaperonin GroEL with N-ethylmaleimide at residue Cys138 affects the structural and functional integrity of the complex. Nucleotide affinity and ATPase activity of the modified chaperonin are increased, whereas cooperativity of ATP hydrolysis and affinity for GroES are reduced. As a consequence, release and folding of substrate proteins are strongly impaired and uncoupled from ATP hydrolysis in a temperature-dependent manner. Folding of dihydrofolate reductase at 25 degrees C becomes dependent on GroES, whereas folding of typically GroES-dependent proteins is blocked completely. At 37 degrees C, GroES binding is restored to normal levels, and the modified GroEL regains its chaperone activity to some extent. These results assign a central role to the intermediate GroEL domain for transmitting conformational changes between apical and central domains, and for coupling ATP hydrolysis to productive protein release.
Collapse
Affiliation(s)
- J Martin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J2, Providence, Rhode Island 02912, USA.
| |
Collapse
|
36
|
Bramhall EA, Cross RL, Rospert S, Steede NK, Landry SJ. Identification of amino acid residues at nucleotide-binding sites of chaperonin GroEL/GroES and cpn10 by photoaffinity labeling with 2-azido-adenosine 5'-triphosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:627-34. [PMID: 9119033 DOI: 10.1111/j.1432-1033.1997.00627.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the chaperonin GroEL/GroES complex binds and hydrolyzes ATP, its structure is unlike other known ATPases. In order to better characterize its nucleotide binding sites, we have photolabeled the complex with the affinity analog 2-azido-ATP. Three residues of GroEL, Pro137, Cys138 and Thr468, are labeled by the probe. The location of these residues in the GroEL crystal structure [Braig, K., Otwinowski, Z., Hedge, R., Boisvert, D., Joachimiak, A., Horwich, A. & Sigler, P. (1994) Nature 371, 578-586: Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler, P. B. (1996) Nat. Struct. Biol. 3, 170-177] suggests that 2-azido-ATP binds to an alternative conformer of GroEL in the presence of GroES. The labeled site appears to be located at the GroEL/GroEL subunit interface since modification of Pro137 and Cys138 is most readily explained by attack of a probe molecule bound to the adjacent GroEL subunit. Labeling of the co-chaperonin, GroES, is clearly demonstrated on gels and the covalent tethering of nucleotide allows detection of a GroES dimer in the presence of SDS. However, no stable peptide derivative of GroES could be purified for sequencing. In contrast, the GroES homolog, yeast cpn10, does give a stable derivative. The modified amino acid is identified as the conserved Pro13, which corresponds to Pro5 in Escherichia coli GroES.
Collapse
Affiliation(s)
- E A Bramhall
- Department of Biochemistry and Molecular Biology, State University of New York, Health Science Center at Syracuse 13210, USA
| | | | | | | | | |
Collapse
|
37
|
Llorca O, Schneider K, Carrascosa JL, Méndez E, Valpuesta JM. Role of the amino terminal domain in GroES oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:47-56. [PMID: 9003436 DOI: 10.1016/s0167-4838(96)00106-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Digestions of the GroES oligomer with trypsin, chymotrypsin and Glu-C protease from Staphylococcus aureus V8 (V8) have helped to locate three regions in the GroES sequence that are sensitive to limited proteolysis and have provided information of the GroES domains involved in monomer-monomer and GroEL interaction. The removal of the first 20 or 27 amino acids of the N-terminal region of each GroES monomer by trypsin or chymotrypsin respectively, abolish the oligomerization of the GroES complex and its binding to GroEL. The V8-treatment of GroES promotes the breakage of the peptide bond between Glu18 and Thr19 but not the liberation of the N-terminal fragment from the GroES oligomer, which is capable of forming with GroEL a complex active in protein folding. It is deduced from these results that the N-terminal region of the GroES monomer is involved in monomer-monomer interaction, providing experimental evidence that relates some biochemical properties of GroES with its three-dimensional structure at atomic resolution.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotechnología, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Meisenheimer KM, Koch TH. Photocross-linking of nucleic acids to associated proteins. Crit Rev Biochem Mol Biol 1997; 32:101-40. [PMID: 9145285 DOI: 10.3109/10409239709108550] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photocross-linking is a useful technique for the partial definition of the nucleic acid-protein interface of nucleoprotein complexes. It can be accomplished by one or two photon excitations of wild-type nucleoprotein complexes or by one photon excitation of nucleoprotein complexes bearing one or more substitutions with photoreactive chromophores. Chromophores that have been incorporated into nucleic acids for this purpose include aryl azides, 5-azidouracil, 8-azidoadenine, 8-azidoguanine, 4-thiouracil, 5-bromouracil, 5-iodouracil, and 5-iodocytosine. The various techniques and chromophores are described and compared, with attention to the photochemical mechanism.
Collapse
Affiliation(s)
- K M Meisenheimer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
39
|
Krauss O, Gore MG. Refolding and reassociation of glycerol dehydrogenase from Bacillus stearothermophilus in the absence and presence of GroEL. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:538-45. [PMID: 8917453 DOI: 10.1111/j.1432-1033.1996.00538.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The refolding of the tetrameric, metalloenzyme glycerol dehydrogenase (GDH) from Bacillus stearothermophilus has been investigated using stopped-flow fluorescence and circular dichroism spectroscopy. The effects of metal ions on the refolding of the native enzyme and the refolding of a monomeric mutant ([A208]GDH) have also been studied. The refolding process of the wild-type enzyme is at least biphasic; 70% of the respective signal changes occur in the first 2 ms followed by a slower process with a half-life of 3 s. The presence of the metal ion does not affect the slowest biphasic refolding rate, which is virtually the same for all three versions of the enzyme. The presence of GroEL slows down the first phase of refolding. The reassociation of subunits was examined by measuring the regain in catalytic activity and the enhancement in the fluorescence emission from NADH on binding to the oligomeric form of the enzyme. The rate and extent of reassociation is dependent on enzyme concentration and the extent of reactivation is dependent on the presence of the metal ion. The reassociation process was more efficient in the presence of NADH particularly for the metal-depleted enzyme (apo-GDH). The presence of GroEL or GroEL plus ATP leads to a higher yield of reassociation and therefore catalytically active enzyme. The additional presence of Mg-ATP does not affect the extent of reassociation, but has a small positive effect on the rate of reassociation. These data suggest that GDH is bound weakly to GroEL and that GroES is not required for release of the protein.
Collapse
Affiliation(s)
- O Krauss
- Department of Biochemistry, University of Southampton, England
| | | |
Collapse
|
40
|
Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F. Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 1996; 12:523-9. [PMID: 8771707 DOI: 10.1002/(sici)1097-0061(199605)12:6%3c523::aid-yea962%3e3.0.co;2-c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All eight of the CCT1-CCT8 genes encoding the subunits of the Cct chaperonin complex in Saccharomyces cerevisiae have been identified, including three that were uncovered by the systematic sequencing of the yeast genome. Although most of the properties of the eukaryotic Cct chaperonin have been elucidated with mammalian systems in vitro, studies with S. cerevisiae conditional mutants revealed that Cct is required for assembly of microtubules and actin in vivo. Cct subunits from the other yeasts, Candida albicans and Schizosaccharomyces pombe, also have been identified from partial and complete DNA sequencing of genes. Cct8p from C. albicans, the only other completely sequenced Cct protein from a fungal species other than S. cerevisiae, is 72% and 61% similar to the S. cerevisiae and mouse Cct8 proteins, respectively.
Collapse
Affiliation(s)
- V Stoldt
- Heinrich-Heine-Universität, Institut für Mikrobiologie, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Lin Z, Eisenstein E. Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL. Proc Natl Acad Sci U S A 1996; 93:1977-81. [PMID: 8700870 PMCID: PMC39894 DOI: 10.1073/pnas.93.5.1977] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action.
Collapse
Affiliation(s)
- Z Lin
- Center for Advanced Research in Biotechnology, University of the Maryland Biotechnology Institute, Rockville, MD, 20850, USA
| | | |
Collapse
|
42
|
Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. NATURE STRUCTURAL BIOLOGY 1996; 3:170-7. [PMID: 8564544 DOI: 10.1038/nsb0296-170] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GroEL is a bacterial chaperonin of 14 identical subunits required to help fold newly synthesized proteins. The crystal structure of GroEL with ATP gamma S bound to each subunit shows that ATP binds to a novel pocket, whose primary sequence is highly conserved among chaperonins. Interaction of Mg2+ and ATP involves phosphate oxygens of the alpha-, beta- and gamma-phosphates, which is unique for known structures of nucleotide-binding proteins. Although bound ATP induces modest conformational shifts in the equatorial domain, the stereochemistry that functionally coordinates GroEL's affinity for nucleotides, polypeptide, and GroES remains uncertain.
Collapse
Affiliation(s)
- D C Boisvert
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Affiliation(s)
- M Mayhew
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Bertsch U, Soll J. Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis. PLANT MOLECULAR BIOLOGY 1995; 29:1039-1055. [PMID: 8555447 DOI: 10.1007/bf00014976] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The possibilities of independent function of the two chaperonin 10 (cpn10) domains of the cpn10 homologue from spinach chloroplasts and the role of five conserved amino acid residues in the N-terminal cpn10 unit were investigated. Recombinant single domain proteins and complete chloroplast cpn10 proteins carrying amino acid exchanges of conserved residues in their N-terminal cpn10 domain were expressed in Escherichia coli and partially purified. The function of the recombinant proteins was tested using GroEL as chaperonin 60 (cpn60) partner for in vitro refolding of denatured ribulose-1,5-bisphosphate carboxylase (Rubisco). Interaction with cpn60 was also monitored by the ability to inhibit GroEL ATPase activity. In vitro both isolated cpn10 domains were found to be incapable of co-chaperonin function. All mutants were also severely impaired in cpn10 function. The results are interpreted in terms of an essential role of the exchanged amino acid residues for the interaction between co-chaperonin and cpn60 partner and in terms of a functional coupling of both cpn10 domains. To test the function of mutant chloroplast cpn10 proteins in vivo the cpn10 deficiency of E. coli strain CG712 resulting in an inability to assemble lambda-phage was exploited in a complementation assay. Transformation with plasmids directing the expression of mutant chloroplas cpn10 proteins in two cases restored lambda-phage assembly in this bacterial strain to the same extent as did transformation with a plasmid encoding wild-type cpn10 protein. In contrast a plasmid encoded third mutant and truncated forms of chloroplast cpn10 showed significantly reduced complementation efficiencies.
Collapse
Affiliation(s)
- U Bertsch
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | | |
Collapse
|
46
|
Abstract
This review surveys the processes leading to loss of protein function and the types of molecular interaction that help stabilize proteins. It considers the effects of organic solvents on stability and the special features of thermophilic proteins. The deliberate manipulation of stability by protein engineering is discussed using the enzyme subtilisin as example. Both random and rational mutations of this protein have led to variants with greatly improved tolerances of high temperatures and organic solvents. One can also use chemical modification to modify protein stability and some of the main approaches are reviewed. The chemical and genetic strategies are complementary and have been combined to stabilize cytochrome c by metal-mediated cross-linking following site-specific mutagenesis. The article concludes by summarizing the beneficial effects of certain additives on protein stability.
Collapse
Affiliation(s)
- C O Fágáin
- School of Biological Sciences, Dublin City University, Ireland
| |
Collapse
|
47
|
Zondlo J, Fisher KE, Lin Z, Ducote KR, Eisenstein E. Monomer-heptamer equilibrium of the Escherichia coli chaperonin GroES. Biochemistry 1995; 34:10334-9. [PMID: 7654686 DOI: 10.1021/bi00033a003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In an effort to clarify the role of GroES in chaperonin-facilitated protein folding, a plasmid-encoding expression system for GroES incorporating a histidine-tagged, thrombin-cleavable, N-terminal sequence was constructed. This approach facilitated the rapid purification of native-like, histidine-cleaved GroES (HC-GroES). The addition of NaSCN to purification buffers to mildly promote subunit dissociation enabled the complete separation of chromosomally encoded, wild-type GroES chains from recombinant chains, allowing the production of homogeneous mutant variants of GroES. A substitution of histidine-7 to tryptophan in GroES was used to demonstrate the concentration-dependent modulation of the heptameric quaternary structure of the chaperonin. Fluorescence and light scattering studies of this mutant suggest that GroES heptamers dissociate to monomers upon dilution with half-times of 2-4 min. Sedimentation equilibrium experiments using either wild-type or HC-GroES can best be described by a monomer--heptamer equilibrium, yielding dissociation constants of 1 x 10(-38) M6 for native GroES and 2 x 10(-32) M6 for HC-GroES. These results are supported by subunit exchange experiments using mixtures of native or HC-GroES and GroES containing the complete N-terminal histidine tail. Native polyacrylamide gel electrophoresis demonstrates that these mixtures form an eight-membered hybrid set within minutes. The studies described here suggest a dynamic equilibrium for the quaternary structure of GroES, which may be an important feature for its role in GroEL-mediated protein folding reactions.
Collapse
Affiliation(s)
- J Zondlo
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | | | |
Collapse
|
48
|
Hayer-Hartl MK, Martin J, Hartl FU. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 1995; 269:836-41. [PMID: 7638601 DOI: 10.1126/science.7638601] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chaperonins GroEL and GroES of Escherichia coli facilitate protein folding in an adenosine triphosphate (ATP)-dependent reaction cycle. The kinetic parameters for the formation and dissociation of GroEL-GroES complexes were analyzed by surface plasmon resonance. Association of GroES and subsequent ATP hydrolysis in the interacting GroEL toroid resulted in the formation of a stable GroEL:ADP:GroES complex. The complex dissociated as a result of ATP hydrolysis in the opposite GroEL toroid, without formation of a symmetrical GroEL:(GroES)2 intermediate. Dissociation was accelerated by the addition of unfolded polypeptide. Thus, the functional chaperonin unit is an asymmetrical GroEL:GroES complex, and substrate protein plays an active role in modulating the chaperonin reaction cycle.
Collapse
Affiliation(s)
- M K Hayer-Hartl
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
49
|
Valencia A, Hubbard TJ, Muga A, Bañuelos S, Llorca O, Carrascosa JL, Valpuesta JM. Prediction of the structure of GroES and its interaction with GroEL. Proteins 1995; 22:199-209. [PMID: 7479694 DOI: 10.1002/prot.340220302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-dimensional structure of the GroES monomer and its interaction with GroEL has been predicted using a combination of prediction tools and experimental data obtained by biophysical [electron microscope (EM), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR)] and biochemical techniques. The GroES monomer, according to the prediction, is composed of eight beta-strands forming a beta-barrel with loose ends. In the model, beta-strands 5-8 run along the outer surface of GroES, forming an antiparallel beta-sheet with beta 4 loosely bound to one of the edges. beta-strands 1-3 would then be parallel and placed in the interior of the molecule. Loops 1-3 would face the internal cavity of the GroEL-GroES complex, and together with conserved residues in loops 5 and 7, would form the active surface interacting with GroEL.
Collapse
Affiliation(s)
- A Valencia
- Centro Nacional de Biotecnología, C.S.I.C. Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Servant P, Mazodier P. Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein. J Bacteriol 1995; 177:2998-3003. [PMID: 7768794 PMCID: PMC176985 DOI: 10.1128/jb.177.11.2998-3003.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Streptomyces albus during the heat shock response, a small heat shock protein of 18 kDa is dramatically induced. This protein was purified, and internal sequences revealed that S. albus HSP18 showed a marked homology with proteins belonging to the family of small heat shock proteins. The corresponding gene was isolated and sequenced. DNA sequence analysis confirmed that the hsp18 gene product is an analog of the 18-kDa antigen of Mycobacterium leprae. No hsp18 mRNA could be detected at 30 degrees C, but transcription of this gene was strongly induced following heat shock. The transcription initiation site was determined by nuclease S1 protection. A typical streptomycete vegetative promoter sequence was identified upstream from the initiation site. Disruption mutagenesis of hsp18 showed that HSP18 is not essential for growth in the 30 to 42 degrees C temperature range. However, HSP18 is involved in thermotolerance at extreme temperatures.
Collapse
Affiliation(s)
- P Servant
- Unité de Biochimie Microbienne, Institut Pasteur, Paris, France
| | | |
Collapse
|