1
|
Zhang X, Xiao Y, You X, Sun S, Sui SF. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. Nat Commun 2024; 15:7201. [PMID: 39169020 PMCID: PMC11339077 DOI: 10.1038/s41467-024-51460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
Collapse
Affiliation(s)
- Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yanan Xiao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
3
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
4
|
Espinoza-Corral R, Iwai M, Zavřel T, Lechno-Yossef S, Sutter M, Červený J, Niyogi KK, Kerfeld CA. Phycobilisome protein ApcG interacts with PSII and regulates energy transfer in Synechocystis. PLANT PHYSIOLOGY 2024; 194:1383-1396. [PMID: 37972281 PMCID: PMC10904348 DOI: 10.1093/plphys/kiad615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Drásov 470, CZ-66424 Drásov, Czech Republic
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Garcia NS, Du M, Guindani M, McIlvin MR, Moran DM, Saito MA, Martiny AC. Proteome trait regulation of marine Synechococcus elemental stoichiometry under global change. THE ISME JOURNAL 2024; 18:wrae046. [PMID: 38513256 PMCID: PMC11020310 DOI: 10.1093/ismejo/wrae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.
Collapse
Affiliation(s)
- Nathan S Garcia
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Mingyu Du
- Department of Statistics, University of California, Irvine, Irvine, CA 92697, United States
| | - Michele Guindani
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, United States
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
6
|
Liu R, Zhen ZH, Li W, Ge B, Qin S. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:39-52. [PMID: 38030044 DOI: 10.1016/j.pbiomolbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.
Collapse
Affiliation(s)
- Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhang-He Zhen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Baosheng Ge
- China University of Petroleum (HUADONG), Qingdao, Shandong, 266580, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
7
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
9
|
Yang M, Wenner N, Dykes GF, Li Y, Zhu X, Sun Y, Huang F, Hinton JCD, Liu LN. Biogenesis of a bacterial metabolosome for propanediol utilization. Nat Commun 2022; 13:2920. [PMID: 35614058 PMCID: PMC9132943 DOI: 10.1038/s41467-022-30608-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the β-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.
Collapse
Affiliation(s)
- Mengru Yang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Xiaojun Zhu
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. Int J Mol Sci 2021; 22:ijms222312799. [PMID: 34884601 PMCID: PMC8657923 DOI: 10.3390/ijms222312799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Biosorption refers to a physicochemical process where substances are removed from the solution by a biological material (live or dead) via adsorption processes governed by mechanisms such as surface complexation, ion exchange, and precipitation. This study aimed to evaluate the adsorption of Zn2+ in seawater using the microalgal biomass of Tetraselmis marina AC16-MESO “in vivo” and “not alive” at different concentrations of Zn2+ (0, 5, 10, and 20 mg L−1) at 72 h. Analysis was carried out by using the Langmuir isotherms and by evaluating the autofluorescence from microalgae. The maximum adsorption of Zn2+ by the Langmuir model using the Qmax parameter in the living microalgal biomass (Qmax = 0.03051 mg g−1) was more significant than the non-living microalgal biomass of T. marine AC16-MESO (Qmax = 0.02297 mg g−1). Furthermore, a decrease in fluorescence was detected in cells from T. marina AC16-MESO, in the following order: Zn2+ (0 < 20 < 5 < 10) mg L−1. Zn2+ was adsorbed quickly by living cells from T. marine AC16-MESO compared to the non-living microalgal biomass, with a decrease in photosystem II activities from 0 to 20 mg L−1 Zn2+ in living cells.
Collapse
|
11
|
Zhang N, Li K, Xie BB, Chen XL, Zhou BC, Su HN, Zhang YZ. Fluorescence recovery after photobleaching: analyses of cyanobacterial phycobilisomes reveal intrinsic fluorescence recovery. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:427-433. [PMID: 37073268 PMCID: PMC10077209 DOI: 10.1007/s42995-021-00104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/08/2021] [Indexed: 05/03/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) has been used to study the dynamics of the cyanobacterial photosynthesis apparatus since 1997. Fluorescence recovery of cyanobacteria during FRAP was conventionally interpreted as a result of phycobilisome (PBS) diffusion on the surface of the thylakoid membrane. The mechanism of state transition in cyanobacteria has been widely attributed to PBS diffusion. However, in red algae, another PBS-containing group, the intrinsic photoprocess was found to contribute greatly to the fluorescence recovery of PBS, which raises questions concerning the role of FRAP in red algal PBS. Therefore, it is important to re-evaluate the nature of PBS fluorescence recovery in cyanobacteria. In the present study, four cyanobacterial strains with different phenotypes and PBS compositions were used to investigate their FRAP characteristics. Fluorescence recovery of PBS was observed in wholly photobleached cells in all four cyanobacterial strains, in which the contribution of PBS diffusion to the fluorescence recovery was not possible. Moreover, the fluorescence recovered in isolated PBSs and PBS-thylakoid membranes after photobleaching further demonstrated the intrinsic photoprocess nature of fluorescence recovery. These findings suggest that the intrinsic photoprocess contributed to the fluorescence recovery following photobleaching when measured by the FRAP method.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Kang Li
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237 China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
12
|
Bhatti AF, Kirilovsky D, van Amerongen H, Wientjes E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. PLANT PHYSIOLOGY 2021; 186:569-580. [PMID: 33576804 PMCID: PMC8154081 DOI: 10.1093/plphys/kiab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 05/28/2023]
Abstract
State transitions are a low-light acclimation response through which the excitation of Photosystem I (PSI) and Photosystem II (PSII) is balanced; however, our understanding of this process in cyanobacteria remains poor. Here, picosecond fluorescence kinetics was recorded for the cyanobacterium Synechococcus elongatus using fluorescence lifetime imaging microscopy (FLIM), both upon chlorophyll a and phycobilisome (PBS) excitation. Fluorescence kinetics of single cells obtained using FLIM were compared with those of ensembles of cells obtained with time-resolved fluorescence spectroscopy. The global distribution of PSI and PSII and PBSs was mapped making use of their fluorescence kinetics. Both radial and lateral heterogeneity were found in the distribution of the photosystems. State transitions were studied at the level of single cells. FLIM results show that PSII quenching occurs in all cells, irrespective of their state (I or II). In S. elongatus cells, this quenching is enhanced in State II. Furthermore, the decrease of PSII fluorescence in State II was homogeneous throughout the cells, despite the inhomogeneous PSI/PSII ratio. Finally, some disconnected PBSs were resolved in most State II cells. Taken together our data show that PSI is enriched in the inner thylakoid, while state transitions occur homogeneously throughout the cell.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
13
|
Dark adaptation and ability of pulse-amplitude modulated (PAM) fluorometry to identify nutrient limitation in the bloom-forming cyanobacterium, Microcystis aeruginosa (Kützing). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112186. [PMID: 33892284 DOI: 10.1016/j.jphotobiol.2021.112186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
Harmful algal blooms in inland waters are widely linked to excess phosphorus (P) loading, but increasing evidence shows that their growth and formation can also be influenced by nitrogen (N) and iron (Fe). Deficiency in N, P, and Fe differentially affects cellular photosystems and is manifested as changes in photosynthetic yield (Fv/Fm). While Fv/Fm has been increasingly used as a rapid and convenient in situ gauge of nutrient deficiency, there are few rigorous comparisons of instrument sensitivity and ability to resolve specific nutrient stresses. This study evaluated the application of Fv/Fm to cyanobacteria using controlled experiments on a single isolate and tested three hypotheses: i) single Fv/Fm measurements taken with different PAM fluorometers can distinguish among limitation by different nutrients, ii) measurements of Fv/Fm made by the addition of DCMU are comparable to PAM fluorometers, and iii) dark adaptation is not necessary for reliable Fv/Fm measurements. We compared Fv/Fm taken from the bloom-forming Microcystis aeruginosa (UTEX LB 3037) grown in nutrient-replete treatment (R) and N-, P-, and Fe-limited treatments (LN, LP, LFe, respectively), using three pulse-amplitude modulated (PAM) fluorometers and the chemical photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and evaluated the effects of dark adaptation prior to PAM measurement. There were significant differences in Fv/Fm estimates among PAM fluorometers for light- versus dark-adapted cell suspensions over the whole experiment (21 days), which were all significantly higher than the DCMU-based measurements. However, dark adaptation had no effect on Fv/Fm when comparing PAM-based values across a single nutrient treatment. All Fv/Fm methods could distinguish LN and LP from R and LFe treatments but none were able to resolve LFe from R, or LN from LP cultures. These results indicated that for most PAM applications, dark adaptation is not necessary, and furthermore that single measurements of Fv/Fm do not provide a robust measurement of nutrient limitation in Microcystis aeruginosa UTEX LB 3037, and potentially other, common freshwater cyanobacteria.
Collapse
|
14
|
Ogawa T, Suzuki K, Sonoike K. Respiration Interacts With Photosynthesis Through the Acceptor Side of Photosystem I, Reflected in the Dark-to-Light Induction Kinetics of Chlorophyll Fluorescence in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2021; 12:717968. [PMID: 34394172 PMCID: PMC8355559 DOI: 10.3389/fpls.2021.717968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 05/08/2023]
Abstract
In cyanobacteria, the photosynthetic prokaryotes, direct interaction between photosynthesis and respiration exists at plastoquinone (PQ) pool, which is shared by the two electron transport chains. Another possible point of intersection of the two electron transport chains is NADPH, which is the major electron donor to the respiratory chain as well as the final product of the photosynthetic chain. Here, we showed that the redox state of NADPH in the dark affected chlorophyll fluorescence induction in the cyanobacterium Synechocystis sp. PCC 6803 in a quantitative manner. Accumulation of the reduced NADPH in the dark due to the defect in type 1 NAD(P)H dehydrogenase complex in the respiratory chain resulted in the faster rise to the peak in the dark-to-light induction of chlorophyll fluorescence, while depletion of NADPH due to the defect in pentose phosphate pathway resulted in the delayed appearance of the initial peak in the induction kinetics. There was a strong correlation between the dark level of NADPH determined by its fluorescence and the peak position of the induction kinetics of chlorophyll fluorescence. These results indicate that photosynthesis interacts with respiration through NADPH, which enable us to monitor the redox condition of the acceptor side of photosystem I by simple measurements of chlorophyll fluorescence induction in cyanobacteria.
Collapse
|
15
|
Kaňa R, Steinbach G, Sobotka R, Vámosi G, Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life (Basel) 2020; 11:life11010015. [PMID: 33383642 PMCID: PMC7823997 DOI: 10.3390/life11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023] Open
Abstract
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
Collapse
Affiliation(s)
- Radek Kaňa
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
- Correspondence:
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Center, 6726 Szeged, Hungary;
| | - Roman Sobotka
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Josef Komenda
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| |
Collapse
|
16
|
|
17
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation. PHOTOSYNTHESIS RESEARCH 2020; 146:259-278. [PMID: 32734447 DOI: 10.1007/s11120-020-00774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 μmol photons m-2s-1) and moderate (1000 μmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
18
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
19
|
Vajravel S, Laczkó-Dobos H, Petrova N, Herman É, Kovács T, Zakar T, Todinova S, Taneva S, Kovács L, Gombos Z, Tóth T, Krumova S. Phycobilisome integrity and functionality in lipid unsaturation and xanthophyll mutants in Synechocystis. PHOTOSYNTHESIS RESEARCH 2020; 145:179-188. [PMID: 32720110 DOI: 10.1007/s11120-020-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The major light-harvesting system in cyanobacteria, the phycobilisome, is an essential component of the photosynthetic apparatus that regulates the utilization of the natural light source-the Sun. Earlier works revealed that the thylakoid membrane composition and its physical properties might have an important role in antennas docking. Polyunsaturated lipids and xanthophylls are among the most significant modulators of the physical properties of thylakoid membranes. In the nature, the action of these molecules is orchestrated in response to environmental stimuli among which the growth temperature is the most influential. In order to further clarify the significance of thylakoid membrane physical properties for the phycobilisomes assembly (i.e. structural integrity) and their ability to efficiently direct the excitation energy towards the photosynthetic complexes, in this work, we utilize cyanobacterial Synechocystis sp. PCC 6803 mutants deficient in polyunsaturated lipids (AD mutant) and xanthophylls (RO mutant), as well as a strain depleted of both xanthophylls and polyunsaturated lipids (ROAD multiple mutant). For the first time, we discuss the effect of those mutations on the phycobilisomes assembly, integrity and functionality at optimal (30 °C) and moderate low (25 °C) and high (35 °C) temperatures. Our results show that xanthophyll depletion exerts a much stronger effect on both phycobilisome's integrity and the response of cells to growth at suboptimal temperatures than lipid unsaturation level. The strongest effects were observed for the combined ROAD mutant, which exhibited thermally destabilized phycobilisomes and a population of energetically uncoupled phycocyanin units.
Collapse
Affiliation(s)
- Sindhujaa Vajravel
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Éva Herman
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Terézia Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Tomas Zakar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague, Czech Republic
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lászlo Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Zoltan Gombos
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Tünde Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
20
|
Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, van Amerongen H. State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148255. [PMID: 32619427 DOI: 10.1016/j.bbabio.2020.148255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | | | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
21
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
22
|
Luimstra VM, Verspagen JMH, Xu T, Schuurmans JM, Huisman J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 2020; 101:e02951. [PMID: 31840230 PMCID: PMC7079016 DOI: 10.1002/ecy.2951] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
The color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent. Can we advance ecological theory to predict how these differences in light-harvesting strategy affect competition between phytoplankton species? Here, we develop a new resource competition model in which the absorption and utilization efficiency of different colors of light are varied independently. The model was parameterized using monoculture experiments with a freshwater cyanobacterium and green alga, as representatives of phytoplankton with phycobilisome-based vs. chlorophyll-based light-harvesting antennae. The parameterized model was subsequently tested in a series of competition experiments. In agreement with the model predictions, the green alga won the competition in blue light whereas the cyanobacterium won in red light, irrespective of the initial relative abundances of the species. These results are in line with observed changes in phytoplankton community structure in response to lake brownification. Similarly, in marine waters, the model predicts dominance of Prochlorococcus with chlorophyll-based light-harvesting complexes in blue light but dominance of Synechococcus with phycobilisomes in green light, with a broad range of coexistence in between. These predictions agree well with the known biogeographical distributions of these two highly abundant marine taxa. Our results offer a novel trait-based approach to understand and predict competition between phytoplankton species with different photosynthetic pigments and light-harvesting strategies.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
- WetsusEuropean Centre of Excellence for Sustainable Water TechnologyOostergoweg 9Leeuwarden8911 MAThe Netherlands
| | - Jolanda M. H. Verspagen
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| |
Collapse
|
23
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
24
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, Tichý M, Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148053. [PMID: 31344362 DOI: 10.1016/j.bbabio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/03/2023]
Abstract
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
Collapse
Affiliation(s)
- A Strašková
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Steinbach
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - G Konert
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - E Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - J Komenda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - M Tichý
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - R Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
26
|
Cao P, Wall D. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria. Nat Commun 2019; 10:3073. [PMID: 31300643 PMCID: PMC6626042 DOI: 10.1038/s41467-019-11108-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Many organisms regulate their social life through kin recognition, but the underlying mechanisms are poorly understood. Here, we use a social bacterium, Myxococcus xanthus, to investigate kin recognition at the molecular level. By direct visualization of a cell surface receptor, TraA, we show how these myxobacteria identify kin and transition towards multicellularity. TraA is fluid on the cell surface, and homotypic interactions between TraA from juxtaposed cells trigger the receptors to coalesce, representing a ‘molecular handshake’. Polymorphisms within TraA govern social recognition such that receptors cluster only between individuals bearing compatible alleles. TraA clusters, which resemble eukaryotic gap junctions, direct the robust exchange of cellular goods that allows heterogeneous populations to transition towards homeostasis. This work provides a conceptual framework for how microbes use a fluid outer membrane receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue. Many organisms, including the bacterium Myxococcus xanthus, regulate their social life through kin recognition. Here, Cao and Wall show that these bacteria use a polymorphic and fluid cell-surface receptor to recognize and assemble kin cells into a cooperative multicellular community that resembles a tissue.
Collapse
Affiliation(s)
- Pengbo Cao
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA.
| |
Collapse
|
27
|
Calzadilla PI, Muzzopappa F, Sétif P, Kirilovsky D. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:488-498. [PMID: 31029593 DOI: 10.1016/j.bbabio.2019.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
The phycobilisome, the cyanobacterial light harvesting complex, is a huge phycobiliprotein containing extramembrane complex, formed by a core from which rods radiate. The phycobilisome has evolved to efficiently absorb sun energy and transfer it to the photosystems via the last energy acceptors of the phycobilisome, ApcD and ApcE. ApcF also affects energy transfer by interacting with ApcE. In this work we studied the role of ApcD and ApcF in energy transfer and state transitions in Synechococcus elongatus and Synechocystis PCC6803. Our results demonstrate that these proteins have different roles in both processes in the two strains. The lack of ApcD and ApcF inhibits state transitions in Synechocystis but not in S. elongatus. In addition, lack of ApcF decreases energy transfer to both photosystems only in Synechocystis, while the lack of ApcD alters energy transfer to photosystem I only in S. elongatus. Thus, conclusions based on results obtained in one cyanobacterial strain cannot be systematically transferred to other strains and the putative role(s) of phycobilisomes in state transitions need to be reconsidered.
Collapse
Affiliation(s)
- Pablo I Calzadilla
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
28
|
Stamatakis K, Broussos PI, Panagiotopoulou A, Gast RJ, Pelecanou M, Papageorgiou GC. Light-adaptive state transitions in the Ross Sea haptophyte Phaeocystis antarctica and in dinoflagellate cells hosting kleptoplasts derived from it. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:102-110. [PMID: 30414926 DOI: 10.1016/j.bbabio.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
Abstract
Light state transitions (STs) is a reversible physiological process that oxygenic photosynthetic organisms use in order to minimize imbalances in the electronic excitation delivery to the reaction centers of Photosystems I and II, and thus to optimize photosynthesis. STs have been studied extensively in plants, green algae, red algae and cyanobacteria, but sparsely in algae with secondary red algal plastids, such as diatoms and haptophytes, despite their immense ecological significance. In the present work, we examine whether the haptophyte alga Phaeocystis antarctica, and dinoflagellate cells that host kleptoplasts derived from P. antarctica, both endemic in the Ross Sea, Antarctica, are capable of light adaptive STs. In these organisms, Chl a fluorescence can be excited either by direct light absorption, or indirectly by electronic excitation (EE) transfer from ultraviolet light absorbing mycosporine-like amino acids (MAAs) to Chl a (Stamatakis et al., Biochim. Biophys. Acta 1858 [2017] 189-195). Here we show that, on adaptation to PS II-selective light, dark-adapted P. antarctica cells shift from light state 1 (ST1; more EE ending up in PS II) to light state 2 (ST2; more EE ending up in PS I), as revealed by the spectral distribution of directly-excited Chl a fluorescence and by changes in the macro-organization of pigment-protein complexes evidenced by circular dichroism (CD) spectroscopy. In contrast, no STs are clearly detected in the case of the kleptoplast-hosting dinoflagellate cells, and in the case of indirectly excited Chls a, via MAAs, in P. antarctica cells.
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece.
| | - Panayiotis-Ilias Broussos
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - Rebecca J Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Maria Pelecanou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| | - George C Papageorgiou
- Institute of Biosciences and Applications, NCSR "Demokritos", 15310, Aghia Paraskevi Attikis, Greece
| |
Collapse
|
29
|
Santamarï A-Gï Mez J, Mariscal V, Luque I. Mechanisms for Protein Redistribution in Thylakoids of Anabaena During Cell Differentiation. PLANT & CELL PHYSIOLOGY 2018; 59:1860-1873. [PMID: 29878163 DOI: 10.1093/pcp/pcy103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Thylakoid membranes are far from being homogeneous in composition. On the contrary, compositional heterogeneity of lipid and protein content is well known to exist in these membranes. The mechanisms for the confinement of proteins at a particular membrane domain have started to be unveiled, but we are far from a thorough understanding, and many issues remain to be elucidated. During the differentiation of heterocysts in filamentous cyanobacteria of the Anabaena and Nostoc genera, thylakoids undergo a complete reorganization, separating into two membrane domains of different appearance and subcellular localization. Evidence also indicates different functionality and protein composition for these two membrane domains. In this work, we have addressed the mechanisms that govern the specific localization of proteins at a particular membrane domain. Two classes of proteins were distinguished according to their distribution in the thylakoids. Our results indicate that the specific accumulation of proteins of the CURVATURE THYLAKOID 1 (CURT1) family and proteins containing the homologous CAAD domain at subpolar honeycomb thylakoids is mediated by multiple mechanisms including a previously unnoticed phenomenon of thylakoid membrane migration.
Collapse
Affiliation(s)
- Javier Santamarï A-Gï Mez
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Vicente Mariscal
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| | - Ignacio Luque
- Instituto de Bioqu�mica Vegetal y Fotos�ntesis, CSIC and Universidad de Sevilla, Avda Am�rico Vespucio 49, Seville E-41092, Spain
| |
Collapse
|
30
|
Bar-Zvi S, Lahav A, Harris D, Niedzwiedzki DM, Blankenship RE, Adir N. Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:544-553. [DOI: 10.1016/j.bbabio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
|
31
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Ogawa T, Sonoike K. Evaluation of the Condition of Respiration and Photosynthesis by Measuring Chlorophyll Fluorescence in Cyanobacteria. Bio Protoc 2018; 8:e2834. [DOI: 10.21769/bioprotoc.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/02/2022] Open
|
33
|
Casella S, Huang F, Mason D, Zhao GY, Johnson GN, Mullineaux CW, Liu LN. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. MOLECULAR PLANT 2017; 10:1434-1448. [PMID: 29017828 PMCID: PMC5683893 DOI: 10.1016/j.molp.2017.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 05/18/2023]
Abstract
The structural dynamics and flexibility of cell membranes play fundamental roles in the functions of the cells, i.e., signaling, energy transduction, and physiological adaptation. The cyanobacterial thylakoid membrane represents a model membrane that can conduct both oxygenic photosynthesis and respiration simultaneously. In this study, we conducted direct visualization of the global organization and mobility of photosynthetic complexes in thylakoid membranes from a model cyanobacterium, Synechococcus elongatus PCC 7942, using high-resolution atomic force, confocal, and total internal reflection fluorescence microscopy. We visualized the native arrangement and dense packing of photosystem I (PSI), photosystem II (PSII), and cytochrome (Cyt) b6f within thylakoid membranes at the molecular level. Furthermore, we functionally tagged PSI, PSII, Cyt b6f, and ATP synthase individually with fluorescent proteins, and revealed the heterogeneous distribution of these four photosynthetic complexes and determined their dynamic features within the crowding membrane environment using live-cell fluorescence imaging. We characterized red light-induced clustering localization and adjustable diffusion of photosynthetic complexes in thylakoid membranes, representative of the reorganization of photosynthetic apparatus in response to environmental changes. Understanding the organization and dynamics of photosynthetic membranes is essential for rational design and construction of artificial photosynthetic systems to underpin bioenergy development. Knowledge of cyanobacterial thylakoid membranes could also be extended to other cell membranes, such as chloroplast and mitochondrial membranes.
Collapse
Affiliation(s)
- Selene Casella
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Guo-Yan Zhao
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Life Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Giles N Johnson
- School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
34
|
Ueno Y, Aikawa S, Niwa K, Abe T, Murakami A, Kondo A, Akimoto S. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. PHOTOSYNTHESIS RESEARCH 2017; 133:235-243. [PMID: 28185041 DOI: 10.1007/s11120-017-0345-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Shimpei Aikawa
- Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Kyosuke Niwa
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Akashi, Hyogo, 674-0093, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji, 656-2401, Japan
| | - Akihiko Kondo
- Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
35
|
Ogawa T, Misumi M, Sonoike K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. PHOTOSYNTHESIS RESEARCH 2017; 133:63-73. [PMID: 28283890 DOI: 10.1007/s11120-017-0367-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v/F m, some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.
Collapse
Affiliation(s)
- Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masahiro Misumi
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan.
| |
Collapse
|
36
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Mackey KRM, Post AF, McIlvin MR, Saito MA. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ Microbiol 2017; 19:2348-2365. [PMID: 28371229 DOI: 10.1111/1462-2920.13744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Marine Synechococcus thrive over a range of light regimes in the ocean. We examined the proteomic, genomic and physiological responses of seven Synechococcus isolates to moderate irradiances (5-80 μE m-2 s-1 ), and show that Synechococcus spans a continuum of light responses ranging from low light optimized (LLO) to high light optimized (HLO). These light responses are linked to phylogeny and pigmentation. Marine sub-cluster 5.1A isolates with higher phycouribilin: phycoerythrobilin ratios fell toward the LLO end of the continuum, while sub-cluster 5.1B, 5.2 and estuarine Synechococcus with less phycouribilin fell toward the HLO end of the continuum. Global proteomes were highly responsive to light, with > 50% of abundant proteins varying more than twofold between the lowest and highest irradiance. All strains downregulated phycobilisome proteins with increasing irradiance. Regulation of proteins involved in photosynthetic electron transport, carbon fixation, oxidative stress protection (superoxide dismutases) and iron and nitrogen metabolism varied among strains, as did the number of high light inducible protein (Hlip) and DNA photolyase genes in their genomes. All but one LLO strain possessed the photoprotective orange carotenoid protein (OCP). The unique combinations of light responses in each strain gives rise to distinct photophysiological phenotypes that may affect Synechococcus distributions in the ocean.
Collapse
Affiliation(s)
| | - Anton F Post
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02536, USA
| | - Mak A Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02536, USA
| |
Collapse
|
38
|
Voloshina OV, Bolychevtseva YV, Kuzminov FI, Gorbunov MY, Elanskaya IV, Fadeev VV. Photosystem II Activity of Wild Type Synechocystis PCC 6803 and Its Mutants with Different Plastoquinone Pool Redox States. BIOCHEMISTRY (MOSCOW) 2016; 81:858-70. [PMID: 27677553 DOI: 10.1134/s000629791608006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox(-) mutant with naturally reduced PQ is characterized by slower QA(-) reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH(-) mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox(-) mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox(-) mutant. Continuous illumination of Ox(-) mutant cells with low-intensity blue light, that accelerates QA(-) reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH(-) mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.
Collapse
Affiliation(s)
- O V Voloshina
- Lomonosov Moscow State University, International Laser Center, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Markou G, Depraetere O, Muylaert K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: A study on chlorophyll fluorescence and electron transport. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Kataoka-Hamai C, Kaizuka Y, Taguchi T. Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1250-1258. [PMID: 26735125 DOI: 10.1021/acs.langmuir.5b04302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Binding of amphiphilic molecules to supported lipid bilayers (SLBs) often results in lipid fibril extension from the SLBs. Previous studies proposed that amphiphiles with large and flexible hydrophilic regions trigger lipid fibril formation in SLBs by inducing membrane curvature via their hydrophilic regions. However, no experimental studies have verified this mechanism of fibril formation. In this work, we investigated the binding of lipopolysaccharide (LPS) and cholesterol-modified gelatin to SLBs using fluorescence microscopy. SLBs with restricted and unrestricted bilayer areas were employed to identify the mechanism of fibril generation. We show that the main cause of lipid fibril formation is an approximately 20% expansion in the bilayer area rather than increased membrane curvature. The data indicate that bilayer area confinement plays a critical role in morphological changes of SLBs even when bound amphiphilic molecules have a large hydrophilic domain. We also show that bilayer area change after LPS insertion is dependent on the patch shape of the SLB. When an SLB patch consists of a broad bilayer segment connected to a long thin streak, bilayer area expansion mainly occurs within the bilayer streak. The results indicate that LPS insertion causes net lipid flow from the broad bilayer region to the streak area. The differential increase in area is explained by the instability of planar bilayer streaks that originate from the large energetic contribution of line tension arising along the bilayer edge.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshihisa Kaizuka
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tetsushi Taguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
41
|
Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells. Sci Rep 2016; 6:19627. [PMID: 26790980 PMCID: PMC4726155 DOI: 10.1038/srep19627] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.
Collapse
|
42
|
Liu LN. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:256-65. [PMID: 26619924 PMCID: PMC4756276 DOI: 10.1016/j.bbabio.2015.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022]
Abstract
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Cyanobacterial thylakoid membranes carry out both oxygenic photosynthesis and respiration. Electron transport components are located in the thylakoid membrane and functionally coordinate with each other. Distribution and dynamics of electron transport components are physiologically regulated in response to environmental change.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
43
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|
44
|
Bolychevtseva YV, Kuzminov FI, Elanskaya IV, Gorbunov MY, Karapetyan NV. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. BIOCHEMISTRY (MOSCOW) 2015; 80:50-60. [PMID: 25754039 DOI: 10.1134/s000629791501006x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To better understand how photosystem (PS) activity is regulated during state transitions in cyanobacteria, we studied photosynthetic parameters of photosystem II (PSII) and photosystem I (PSI) in Synechocystis PCC 6803 wild type (WT) and its mutants deficient in oxidases (Ox(-)) or succinate dehydrogenase (SDH(-)). Dark-adapted Ox(-) mutant, lacking the oxidation agents, is expected to have a reduced PQ pool, while in SDH(-) mutant the PQ pool after dark adaptation will be more oxidized due to partial inhibition of the respiratory chain electron carriers. In this work, we tested the hypothesis that control of balance between linear and cyclic electron transport by the redox state of the PQ pool will affect PSII photosynthetic activity during state transition. We found that the PQ pool was reduced in Ox(-) mutant, but oxidized in SDH(-) mutant after prolonged dark adaptation, indicating different states of the photosynthetic apparatus in these mutants. Analysis of variable fluorescence and 77K fluorescence spectra revealed that the WT and SDH(-) mutant were in State 1 after dark adaptation, while the Ox(-) mutant was in State 2. State 2 was characterized by ~1.5 time lower photochemical activity of PSII, as well as high rate of P700 reduction and the low level of P700 oxidation, indicating high activity of cyclic electron transfer around PSI. Illumination with continuous light 1 (440 nm) along with flashes of light 2 (620 nm) allowed oxidation of the PQ pool in the Ox(-) mutant, thus promoting it to State 1, but it did not affect PSII activity in dark adapted WT and SDH(-) mutant. State 1 in the Ox(-) mutant was characterized by high variable fluorescence and P700(+) levels typical for WT and the SDH(-) mutant, indicating acceleration of linear electron transport. Thus, we show that PSII of cyanobacteria has a higher photosynthetic activity in State 1, while it is partially inactivated in State 2. This process is controlled by the redox state of PQ in cyanobacteria through enhancement/inhibition of electron transport on the acceptor side of PSII.
Collapse
Affiliation(s)
- Y V Bolychevtseva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
45
|
Kang M, Andreani M, Kenworthy AK. Validation of Normalizations, Scaling, and Photofading Corrections for FRAP Data Analysis. PLoS One 2015; 10:e0127966. [PMID: 26017223 PMCID: PMC4446327 DOI: 10.1371/journal.pone.0127966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/22/2015] [Indexed: 01/14/2023] Open
Abstract
Fluorescence Recovery After Photobleaching (FRAP) has been a versatile tool to study transport and reaction kinetics in live cells. Since the fluorescence data generated by fluorescence microscopy are in a relative scale, a wide variety of scalings and normalizations are used in quantitative FRAP analysis. Scaling and normalization are often required to account for inherent properties of diffusing biomolecules of interest or photochemical properties of the fluorescent tag such as mobile fraction or photofading during image acquisition. In some cases, scaling and normalization are also used for computational simplicity. However, to our best knowledge, the validity of those various forms of scaling and normalization has not been studied in a rigorous manner. In this study, we investigate the validity of various scalings and normalizations that have appeared in the literature to calculate mobile fractions and correct for photofading and assess their consistency with FRAP equations. As a test case, we consider linear or affine scaling of normal or anomalous diffusion FRAP equations in combination with scaling for immobile fractions. We also consider exponential scaling of either FRAP equations or FRAP data to correct for photofading. Using a combination of theoretical and experimental approaches, we show that compatible scaling schemes should be applied in the correct sequential order; otherwise, erroneous results may be obtained. We propose a hierarchical workflow to carry out FRAP data analysis and discuss the broader implications of our findings for FRAP data analysis using a variety of kinetic models.
Collapse
Affiliation(s)
- Minchul Kang
- School of Science, Technology & Engineering Management, St. Thomas University, Miami Gardens, Florida, USA
- * E-mail:
| | - Manuel Andreani
- School of Science, Technology & Engineering Management, St. Thomas University, Miami Gardens, Florida, USA
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Tran-Ba KH, Higgins DA, Ito T. Fluorescence Recovery after Photobleaching and Single-Molecule Tracking Measurements of Anisotropic Diffusion within Identical Regions of a Cylinder-Forming Diblock Copolymer Film. Anal Chem 2015; 87:5802-9. [PMID: 25923826 DOI: 10.1021/acs.analchem.5b01041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This work demonstrates ensemble and single-molecule diffusion measurements within identical regions of a cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) film using fluorescence recovery after photobleaching (FRAP) and single-molecule tracking (SMT). A PS-b-PEO film (∼4 μm thick) with aligned cylindrical PEO microdomains containing 10 μM sulforhodamine B (SRB) was prepared by directional solvent-vapor penetration (SVP) of 1,4-dioxane. The ensemble diffusion behavior of SRB in the microdomains was assessed in FRAP studies of circular photobleached regions (∼7 μm in diameter). The SRB concentration was subsequently reduced by additional photobleaching, and the diffusion of individual SRB molecules was explored using SMT in the identical area (∼16 × 16 μm(2)). The FRAP data showed anisotropic fluorescence recovery, yielding the average microdomain orientation. The extent of fluorescence recovery observed (∼90%) demonstrated long-range microdomain connectivity, while the recovery time dependence provided an ensemble measurement of the SRB diffusion coefficient within the cylindrical microdomains. The SMT data exhibited one-dimensional diffusion of individual SRB molecules along the SVP direction across the entire film thickness, as consistent with the FRAP results. Importantly, the average of the single-molecule diffusion coefficients was close to the value obtained from FRAP in the identical area. In some cases, SMT offered smaller diffusion coefficients than FRAP, possibly due to contributions from SRB molecules confined within short PEO microdomains. The implementation of FRAP and SMT measurements in identical areas provides complementary information on molecular diffusion with minimal influence of sample heterogeneity, permitting direct comparison of ensemble and single-molecule diffusion behavior.
Collapse
Affiliation(s)
- Khanh-Hoa Tran-Ba
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| | - Takashi Ito
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
47
|
Sacharz J, Bryan SJ, Yu J, Burroughs NJ, Spence EM, Nixon PJ, Mullineaux CW. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol Microbiol 2015; 96:448-62. [PMID: 25601560 PMCID: PMC4949578 DOI: 10.1111/mmi.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones.
Collapse
Affiliation(s)
- Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
49
|
Stirbet A, Riznichenko GY, Rubin AB, Govindjee. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. BIOCHEMISTRY (MOSCOW) 2015; 79:291-323. [PMID: 24910205 DOI: 10.1134/s0006297914040014] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.
Collapse
Affiliation(s)
- A Stirbet
- 204 Anne Burras Lane, Newport News, VA 23606, USA.
| | | | | | - Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
50
|
Badri H, Monsieurs P, Coninx I, Wattiez R, Leys N. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiologyopen 2015; 4:187-207. [PMID: 25678338 PMCID: PMC4398503 DOI: 10.1002/mbo3.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium.,Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| |
Collapse
|