1
|
Zsidó BZ, Hetényi C. Water in drug design: pitfalls and good practices. Expert Opin Drug Discov 2025; 20:745-764. [PMID: 40289543 DOI: 10.1080/17460441.2025.2497912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Structure-based drug design relies on optimizing drug-target interactions and blocking harmful pathophysiological events at the atomic level. Such events of the human body are modulated by water acting either as a medium or an individual partner in molecular interactions. A precise understanding of the modulatory mechanisms of water is essential for a successful drug design. AREAS COVERED The present review discusses different topographical and networking situations that result in radically different roles of water, a root of various pitfalls of drug design. The review surveys good practices for tackling the problems of determining water structure at atomic resolution. Techniques for quantifying the effects of bulk, networking, and individual water molecules on the stability of drug-target complexes are also discussed. The article is based on a literature search using the PubMed, Web of Science, and Google Scholar databases. EXPERT OPINION With advances in rapid computational algorithms and a better understanding of the physicochemical machinery of complex formation, theoretical approaches have resulted in elegant and cost-effective tools that fill the knowledge gaps left by the limited experimental methods. Overcoming the technical pitfalls of drug design, water transforms from a frustrating challenge into a handy tool for fine-tuning drug-target interactions.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
2
|
Kelly DF. Liquid-Electron Microscopy and the Real-Time Revolution. Annu Rev Biophys 2025; 54:1-15. [PMID: 40327441 DOI: 10.1146/annurev-biophys-071624-095107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Advances in imaging technology enable striking views of life's most minute details. A missing piece of the puzzle, however, is the direct atomic observation of biomolecules in action. Liquid-phase transmission electron microscopy (liquid-EM) is the room-temperature correlate to cryo-electron microscopy, which is leading the resolution revolution in biophysics. This article reviews current challenges and opportunities in the liquid-EM field while discussing technical considerations for specimen enclosures, devices and systems, and scientific data management. Since liquid-EM is gaining traction in the life sciences community, cross talk among the disciplines of materials and life sciences is needed to disseminate knowledge of best practices along with high-level user engagement. How liquid-EM technology is inspiring the real-time revolution in molecular microscopy is also discussed. Looking ahead, the new movement can be better supported through open resource sharing and partnerships among academic, industry, and federal organizations, which may benefit from the scientific equity foundational to the technique.
Collapse
|
3
|
Banari A, Samanta AK, Munke A, Laugks T, Bajt S, Grünewald K, Marlovits TC, Küpper J, Maia FRNC, Chapman HN, Oberthür D, Seuring C. Advancing time-resolved structural biology: latest strategies in cryo-EM and X-ray crystallography. Nat Methods 2025:10.1038/s41592-025-02659-6. [PMID: 40312512 DOI: 10.1038/s41592-025-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Structural biology offers a window into the functionality of molecular machines in health and disease. A fundamental challenge lies in capturing both the high-resolution structural details and dynamic changes that are essential for function. The high-resolution methods of X-ray crystallography and electron cryo-microscopy (cryo-EM) are mainly used to study ensembles of static conformations but can also capture crucial dynamic transition states. Here, we review the latest strategies and advancements in time-resolved structural biology with a focus on capturing dynamic changes. We describe recent technology developments for time-resolved sample preparation and delivery in the cryo-EM and X-ray fields and explore how these technologies could mutually benefit each other to advance our understanding of biology at the molecular and atomic scales.
Collapse
Affiliation(s)
- Amir Banari
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Amit K Samanta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Anna Munke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tim Laugks
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Microbial and Molecular Sciences, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Jochen Küpper
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
- Department of Chemistry, Universität Hamburg, Hamburg, Germany.
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany.
| |
Collapse
|
4
|
Ruma YN, Nannenga BL, Gonen T. Unraveling atomic complexity from frozen samples. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:020901. [PMID: 40255534 PMCID: PMC12009148 DOI: 10.1063/4.0000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cryo-electron microscopy (cryo-EM) is a significant driver of recent advances in structural biology. Cryo-EM is comprised of several distinct and complementary methods, which include single particle analysis, cryo-electron tomography, and microcrystal electron diffraction. In this Perspective, we will briefly discuss the different branches of cryo-EM in structural biology and the current challenges in these areas.
Collapse
Affiliation(s)
| | | | - Tamir Gonen
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
McCann HM, Meade CD, Banerjee B, Penev PI, Dean Williams L, Petrov AS. RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs. J Mol Biol 2024; 436:168556. [PMID: 39237196 DOI: 10.1016/j.jmb.2024.168556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 09/07/2024]
Abstract
RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.gatech.edu.
Collapse
Affiliation(s)
- Holly M McCann
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caeden D Meade
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Biswajit Banerjee
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Stuhrmann HB. Polarised neutron scattering from dynamic polarised nuclei 1972-2022. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:41. [PMID: 37278890 DOI: 10.1140/epje/s10189-023-00295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
With the inauguration of the small-angle instrument D11 of the Institute Laue-Langevin (ILL) in September 1972 neutron scattering revolutionized methods of contrast variation. Very soon D11 was oversubscribed by proposals relying on isotopic substitution of hydrogen isotopes. At the same time in Oxford first experiments of polarised neutron diffraction from dynamic polarised protons in lanthanum magnesium nitrate crystals demonstrated the great utility of this approach. In the early eighties a new type of polarised target material led to a boom of contrast variation by nuclear polarisation. The new samples of frozen solutions of macromolecules lent themselves to small-angle scattering. Often in collaboration with research centres of High Energy Physics various groups in Europe and Japan started experiments of polarized neutron scattering from dynamic polarised protons. Techniques of NMR and EPR considerably enlarged the spectrum of nuclear contrast variation. This is shown with time-resolved polarised neutron scattering from dynamic polarized proton spins of a free radical and of tyrosyl doped catalase using D22 at the ILL.
Collapse
Affiliation(s)
- Heinrich B Stuhrmann
- Institut de Biologie Structurale, 38000, Grenoble, France.
- Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany.
| |
Collapse
|
8
|
Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure 2023; 31:4-19. [PMID: 36584678 PMCID: PMC9825670 DOI: 10.1016/j.str.2022.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022]
Abstract
Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet. Many molecular machines undergo three major steps throughout their functional cycles, including initialization, repetitive processing, and termination. Several of these major states have been elucidated by cryogenic electron microscopy (cryo-EM). However, the individual steps for these machines are unique and multistep processes themselves, and their coordination in time is still elusive. To measure these short-lived intermediate events by cryo-EM, the total reaction time needs to be shortened to enrich for the respective pre-equilibrium states. This approach is termed time-resolved cryo-EM (trEM). In this review, we sum up the methodological development of trEM and its application to a range of biological questions.
Collapse
Affiliation(s)
- Sascha Josef Amann
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Demian Keihsler
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tatyana Bodrug
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David Haselbach
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Institute for Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
9
|
Agrawal RK, Majumdar S. Evolution: Mitochondrial Ribosomes Across Species. Methods Mol Biol 2023; 2661:7-21. [PMID: 37166629 DOI: 10.1007/978-1-0716-3171-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ribosome is among the most complex and ancient cellular macromolecular assemblies that plays a central role in protein biosynthesis in all living cells. Its function of translation of genetic information encoded in messenger RNA into protein molecules also extends to subcellular compartments in eukaryotic cells such as apicoplasts, chloroplasts, and mitochondria. The origin of mitochondria is primarily attributed to an early endosymbiotic event between an alpha-proteobacterium and a primitive (archaeal) eukaryotic cell. The timeline of mitochondrial acquisition, the nature of the host, and their diversification have been studied in great detail and are continually being revised as more genomic and structural data emerge. Recent advancements in high-resolution cryo-EM structure determination have provided architectural details of mitochondrial ribosomes (mitoribosomes) from various species, revealing unprecedented diversifications among them. These structures provide novel insights into the evolution of mitoribosomal structure and function. Here, we present a brief overview of the existing mitoribosomal structures in the context of the eukaryotic evolution tree showing their diversification from their last common ancestor.
Collapse
Affiliation(s)
- Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health Empire State Plaza, Albany, NY, USA.
- Department of Biomedical Sciences, University at Albany, SUNY, Rensselaer, NY, USA.
| | - Soneya Majumdar
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health Empire State Plaza, Albany, NY, USA
| |
Collapse
|
10
|
Kelly DF, DiCecco LA, Jonaid GM, Dearnaley WJ, Spilman MS, Gray JL, Dressel-Dukes MJ. Liquid-EM goes viral - visualizing structure and dynamics. Curr Opin Struct Biol 2022; 75:102426. [PMID: 35868163 DOI: 10.1016/j.sbi.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in recent years by examining key experiments conducted on viral assemblies and host-pathogen interactions. We describe developing workflows for specimen preparation, data collection, and computing processes that led to the first high-resolution virus structures in a liquid environment. Equally important, we review why liquid-electron tomography may become the next big thing in biomedical research due to its ability to monitor live viruses entering cells within seconds. Taken together, we pose the idea that liquid-EM can serve as a dynamic complement to current cryo-EM methods, inspiring the "real-time revolution" in nanoscale imaging.
Collapse
Affiliation(s)
- Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Liza-Anastasia DiCecco
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada. https://twitter.com/LizaDiCecco
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - William J Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA; Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA. https://twitter.com/PennStateMRI
| | - Michael S Spilman
- Direct Electron, LP, San Diego, CA 92128, USA. https://twitter.com/DirectElectron
| | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
11
|
Jonaid GM, Casasanta MA, Dearnaley WJ, Berry S, Kaylor L, Dressel-Dukes MJ, Spilman MS, Gray JL, Kelly DF. Automated Tools to Advance High-Resolution Imaging in Liquid. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 35048845 DOI: 10.1017/s1431927621013921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-electron microscopy (EM), the room-temperature correlate to cryo-EM, is a rapidly growing field providing high-resolution insights of macromolecules in solution. Here, we describe how liquid-EM experiments can incorporate automated tools to propel the field to new heights. We demonstrate fresh workflows for specimen preparation, data collection, and computing processes to assess biological structures in liquid. Adeno-associated virus (AAV) and the SARS-CoV-2 nucleocapsid (N) were used as model systems to highlight the technical advances. These complexes were selected based on their major differences in size and natural symmetry. AAV is a highly symmetric, icosahedral assembly with a particle diameter of ~25 nm. At the other end of the spectrum, N protein is an asymmetric monomer or dimer with dimensions of approximately 5–7 nm, depending upon its oligomerization state. Equally important, both AAV and N protein are popular subjects in biomedical research due to their high value in vaccine development and therapeutic efforts against COVID-19. Overall, we demonstrate how automated practices in liquid-EM can be used to decode molecules of interest for human health and disease.
Collapse
Affiliation(s)
- G M Jonaid
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Michael A Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - William J Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | | | | | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
12
|
Bheemireddy S, Sandhya S, Srinivasan N. Comparative Analysis of Structural and Dynamical Features of Ribosome Upon Association With mRNA Reveals Potential Role of Ribosomal Proteins. Front Mol Biosci 2021; 8:654164. [PMID: 34409066 PMCID: PMC8365230 DOI: 10.3389/fmolb.2021.654164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Ribosomes play a critical role in maintaining cellular proteostasis. The binding of messenger RNA (mRNA) to the ribosome regulates kinetics of protein synthesis. To generate an understanding of the structural, mechanistic, and dynamical features of mRNA recognition in the ribosome, we have analysed mRNA-protein interactions through a structural comparison of the ribosomal complex in the presence and absence of mRNA. To do so, we compared the 3-Dimensional (3D) structures of components of the two assembly structures and analysed their structural differences because of mRNA binding, using elastic network models and structural network-based analysis. We observe that the head region of 30S ribosomal subunit undergoes structural displacement and subunit rearrangement to accommodate incoming mRNA. We find that these changes are observed in proteins that lie far from the mRNA-protein interface, implying allostery. Further, through perturbation response scanning, we show that the proteins S13, S19, and S20 act as universal sensors that are sensitive to changes in the inter protein network, upon binding of 30S complex with mRNA and other initiation factors. Our study highlights the significance of mRNA binding in the ribosome complex and identifies putative allosteric sites corresponding to alterations in structure and/or dynamics, in regions away from mRNA binding sites in the complex. Overall, our work provides fresh insights into mRNA association with the ribosome, highlighting changes in the interactions and dynamics of the ribosome assembly because of the binding.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
13
|
Penev PI, McCann HM, Meade CD, Alvarez-Carreño C, Maddala A, Bernier CR, Chivukula VL, Ahmad M, Gulen B, Sharma A, Williams LD, Petrov AS. ProteoVision: web server for advanced visualization of ribosomal proteins. Nucleic Acids Res 2021; 49:W578-W588. [PMID: 33999189 PMCID: PMC8265156 DOI: 10.1093/nar/gkab351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
ProteoVision is a web server designed to explore protein structure and evolution through simultaneous visualization of multiple sequence alignments, topology diagrams and 3D structures. Starting with a multiple sequence alignment, ProteoVision computes conservation scores and a variety of physicochemical properties and simultaneously maps and visualizes alignments and other data on multiple levels of representation. The web server calculates and displays frequencies of amino acids. ProteoVision is optimized for ribosomal proteins but is applicable to analysis of any protein. ProteoVision handles internally generated and user uploaded alignments and connects them with a selected structure, found in the PDB or uploaded by the user. It can generate de novo topology diagrams from three-dimensional structures. All displayed data is interactive and can be saved in various formats as publication quality images or external datasets or PyMol Scripts. ProteoVision enables detailed study of protein fragments defined by Evolutionary Classification of protein Domains (ECOD) classification. ProteoVision is available at http://proteovision.chemistry.gatech.edu/.
Collapse
Affiliation(s)
- Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Holly M McCann
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caeden D Meade
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Claudia Alvarez-Carreño
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aparna Maddala
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chad R Bernier
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vasanta L Chivukula
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Maria Ahmad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Burak Gulen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aakash Sharma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Chiu W, Schmid MF, Pintilie GD, Lawson CL. Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB. J Biol Chem 2021; 296:100560. [PMID: 33744287 PMCID: PMC8050867 DOI: 10.1016/j.jbc.2021.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Cryogenic electron microscopy (cryo-EM) methods began to be used in the mid-1970s to study thin and periodic arrays of proteins. Following a half-century of development in cryo-specimen preparation, instrumentation, data collection, data processing, and modeling software, cryo-EM has become a routine method for solving structures from large biological assemblies to small biomolecules at near to true atomic resolution. This review explores the critical roles played by the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in partnership with the community to develop the necessary infrastructure to archive cryo-EM maps and associated models. Public access to cryo-EM structure data has in turn facilitated better understanding of structure–function relationships and advancement of image processing and modeling tool development. The partnership between the global cryo-EM community and PDB and EMDB leadership has synergistically shaped the standards for metadata, one-stop deposition of maps and models, and validation metrics to assess the quality of cryo-EM structures. The advent of cryo-electron tomography (cryo-ET) for in situ molecular cell structures at a broad resolution range and their correlations with other imaging data introduce new data archival challenges in terms of data size and complexity in the years to come.
Collapse
Affiliation(s)
- Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, California, USA; Division of CryoEM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA.
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Grigore D Pintilie
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Moore PB. The PDB and the ribosome. J Biol Chem 2021; 296:100561. [PMID: 33744288 PMCID: PMC8038944 DOI: 10.1016/j.jbc.2021.100561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 01/31/2023] Open
Abstract
This essay, which was written to commemorate the 50th anniversary of the Protein Data Bank, opens with some comments about the intentions of the scientists who pressed for its establishment and the nature of services it provides. It includes a brief account of the events that resulted in the determination of the crystal structure of the large ribosomal subunit from Haloarcula marismortui. The magnitude of the challenge the first ribosome crystal structures posed for the PDB is commented upon, and in the description of subsequent developments in the ribosome structure field that follows, it is pointed out that cryo-EM has replaced X-ray crystallography as the method of choice for investigating ribosome structure.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
16
|
Koch M, Włodarczyk-Biegun MK. Faithful scanning electron microscopic (SEM) visualization of 3D printed alginate-based scaffolds. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Van Drie JH, Tong L. Cryo-EM as a powerful tool for drug discovery. Bioorg Med Chem Lett 2020; 30:127524. [PMID: 32890683 PMCID: PMC7467112 DOI: 10.1016/j.bmcl.2020.127524] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The recent revolution in cryo-EM has produced an explosion of structures at near-atomic or better resolution. This has allowed cryo-EM structures to provide visualization of bound small-molecule ligands in the macromolecules, and these new structures have provided unprecedented insights into the molecular mechanisms of complex biochemical processes. They have also had a profound impact on drug discovery, defining the binding modes and mechanisms of action of well-known drugs as well as driving the design and development of new compounds. This review will summarize and highlight some of these structures. Most excitingly, the latest cryo-EM technology has produced structures at 1.2 Å resolution, further solidifying cryo-EM as a powerful tool for drug discovery. Therefore, cryo-EM will play an ever-increasing role in drug discovery in the coming years.
Collapse
Affiliation(s)
- John H Van Drie
- Van Drie Research LLC, 109 Millpond, North Andover, MA 01845, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Koripella RK, Sharma MR, Bhargava K, Datta PP, Kaushal PS, Keshavan P, Spremulli LL, Banavali NK, Agrawal RK. Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nat Commun 2020; 11:3830. [PMID: 32737313 PMCID: PMC7395135 DOI: 10.1038/s41467-020-17715-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) and its associated translational factors have evolved to accommodate greater participation of proteins in mitochondrial translation. Here we present the 2.68-3.96 Å cryo-EM structures of the human 55S mitoribosome in complex with the human mitochondrial elongation factor G1 (EF-G1mt) in three distinct conformational states, including an intermediate state and a post-translocational state. These structures reveal the role of several mitochondria-specific (mito-specific) mitoribosomal proteins (MRPs) and a mito-specific segment of EF-G1mt in mitochondrial tRNA (tRNAmt) translocation. In particular, the mito-specific C-terminal extension in EF-G1mt is directly involved in translocation of the acceptor arm of the A-site tRNAmt. In addition to the ratchet-like and independent head-swiveling motions exhibited by the small mitoribosomal subunit, we discover significant conformational changes in MRP mL45 at the nascent polypeptide-exit site within the large mitoribosomal subunit that could be critical for tethering of the elongating mitoribosome onto the inner-mitochondrial membrane.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Mitochondrial Membranes/metabolism
- Mitochondrial Membranes/ultrastructure
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Mitochondrial/chemistry
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Kalpana Bhargava
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
- High Energy Material Research Lab, Defense Research and Development Organization, Sutarwadi, Pashan, Pune, Maharashtra, 411021, India
| | - Partha P Datta
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Prem S Kaushal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 3, Faridabad, Haryana, 121001, India
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
| | - Linda L Spremulli
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC, USA
| | - Nilesh K Banavali
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, 12201, USA.
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, 12201-0509, USA.
| |
Collapse
|
19
|
Neupane R, Pisareva VP, Rodriguez CF, Pisarev AV, Fernández IS. A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate. eLife 2020; 9:54575. [PMID: 32286223 PMCID: PMC7190351 DOI: 10.7554/elife.54575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.
Collapse
Affiliation(s)
- Ritam Neupane
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States,Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Vera P Pisareva
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Carlos F Rodriguez
- Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
| | - Andrey V Pisarev
- Department of Cell Biology, SUNY Downstate Medical CenterBrooklynUnited States
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
20
|
Li W, Agrawal RK. Joachim Frank's Binding with the Ribosome. Structure 2019; 27:411-419. [PMID: 30595455 PMCID: PMC11062599 DOI: 10.1016/j.str.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
With recent technological advancements, single-particle cryogenic electron microscopy (cryo-EM) is now the technique of choice to study structure and function of biological macromolecules at near-atomic resolution. Many single-particle EM reconstruction methods necessary for these advances were pioneered by Joachim Frank, and were optimized using the ribosome as a benchmark specimen. In doing so, he made several landmark contributions to the understanding of the structure and function of ribosomes. These include the first 3D visualization of ribosome-bound transfer RNAs, the first experimentally derived structures of the primary complexes formed during the bacterial translation elongation cycle, and the critical ribosomal conformational transitions required for translation. Over the years, his laboratory studied many important functional complexes of the ribosome from both eubacterial and eukaryotic systems, including ribosomes from pathogenic organisms. This article presents a brief account of the contributions made by Joachim Frank to the ribosome field.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
21
|
Frank J. Einzelpartikel-Rekonstruktion biologischer Moleküle - Geschichte in einer Probe (Nobel-Aufsatz). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics; Columbia University Medical Center; New York NY USA
- Department of Biological Sciences; Columbia University; USA
| |
Collapse
|
22
|
Frank J. Single-Particle Reconstruction of Biological Molecules-Story in a Sample (Nobel Lecture). Angew Chem Int Ed Engl 2018; 57:10826-10841. [PMID: 29978534 DOI: 10.1002/anie.201802770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 12/24/2022]
Abstract
Pictures tell a thousand words: The development of single-particle cryo-electron microscopy set the stage for high-resolution structure determination of biological molecules. In his Nobel lecture, J. Frank describes the ground-breaking discoveries that have enabled the development of cryo-EM. The method has taken biochemistry into a new era.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, Medical Center, New York, NY, USA.,Department of Biological Sciences, Columbia University, USA
| |
Collapse
|
23
|
Dzuricky M, Roberts S, Chilkoti A. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins. Biochemistry 2018; 57:2405-2414. [PMID: 29683665 DOI: 10.1021/acs.biochem.8b00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Stefan Roberts
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
24
|
Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 Nobel Laureates in Chemistry. Proc Natl Acad Sci U S A 2017; 115:441-444. [PMID: 29196527 DOI: 10.1073/pnas.1718898114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Javed A, Christodoulou J, Cabrita LD, Orlova EV. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr D Struct Biol 2017; 73:509-521. [PMID: 28580913 PMCID: PMC5458493 DOI: 10.1107/s2059798317007446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements - the r-proteins and rRNA that line the tunnel - prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
26
|
Abstract
Translation of the genetic code on the ribosome into protein is a process of extraordinary complexity, and understanding its mechanism has remained one of the major challenges even though x-ray structures have been available since 2000. In the past two decades, single-particle cryo-electron microscopy has contributed a major share of information on structure, binding modes, and conformational changes of the ribosome during its work cycle, but the contributions of this technique in the translation field have recently skyrocketed after the introduction of a new recording medium capable of detecting individual electrons. As many examples in the recent literature over the past three years show, the impact of this development on the advancement of knowledge in this field has been transformative and promises to be lasting.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Frank J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 2017; 12:209-212. [PMID: 28055037 DOI: 10.1038/nprot.2017.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022]
Abstract
In single-particle cryo-electron microscopy (cryo-EM), molecules suspended in a thin aqueous layer are rapidly frozen and imaged at cryogenic temperature in the transmission electron microscope. From the random projection views, a three-dimensional image is reconstructed, enabling the structure of the molecule to be obtained. In this article I discuss technological progress over the past decade, which has, in my own field of study, culminated in the determination of ribosome structure at 2.5-Å resolution. I also discuss likely future improvements in methodology.
Collapse
Affiliation(s)
- Joachim Frank
- Departments of Biochemistry and Molecular Biophysics and of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Abstract
Micro-organisms and higher organisms have evolved together and interact in complex ways. Only a small percentage of microbes are inherently pathogenic. Pathogenicity, the ability of infectious agents to cause disease, must be interpreted in the context of the properties of both transmissible agent and host. Understanding this interplay is important to developing methods to prevent infection and reduce the severity of disease. The initial step in infection is usually adherence, mediated by the interaction of surface structures on the pathogen with host cell membrane proteins or carbohydrates. This often presents excellent targets for immunity. Intracellular pathogens have evolved methods to neutralize the cellular defenses that can destroy invaders.
Collapse
|
29
|
Lange S, Franks WT, Rajagopalan N, Döring K, Geiger MA, Linden A, van Rossum BJ, Kramer G, Bukau B, Oschkinat H. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. SCIENCE ADVANCES 2016; 2:e1600379. [PMID: 27551685 PMCID: PMC4991931 DOI: 10.1126/sciadv.1600379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
Proteins are synthesized in cells by ribosomes and, in parallel, prepared for folding or targeting. While ribosomal protein synthesis is progressing, the nascent chain exposes amino-terminal signal sequences or transmembrane domains that mediate interactions with specific interaction partners, such as the signal recognition particle (SRP), the SecA-adenosine triphosphatase, or the trigger factor. These binding events can set the course for folding in the cytoplasm and translocation across or insertion into membranes. A distinction of the respective pathways depends largely on the hydrophobicity of the recognition sequence. Hydrophobic transmembrane domains stabilize SRP binding, whereas less hydrophobic signal sequences, typical for periplasmic and outer membrane proteins, stimulate SecA binding and disfavor SRP interactions. In this context, the formation of helical structures of signal peptides within the ribosome was considered to be an important factor. We applied dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance to investigate the conformational states of the disulfide oxidoreductase A (DsbA) signal peptide stalled within the exit tunnel of the ribosome. Our results suggest that the nascent chain comprising the DsbA signal sequence adopts an extended structure in the ribosome with only minor populations of helical structure.
Collapse
Affiliation(s)
- Sascha Lange
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - W. Trent Franks
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
| | - Nandhakishore Rajagopalan
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Kristina Döring
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Michel A. Geiger
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - Arne Linden
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
| | - Barth-Jan van Rossum
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany
| | - Hartmut Oschkinat
- Leibniz Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, D-13125 Berlin, Germany
- Freie Universität Berlin, Fachbereich BCP, Takustr. 3, 14195 Berlin, Germany
- Corresponding author.
| |
Collapse
|
30
|
A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking. J Neurosci 2016; 36:3222-30. [PMID: 26985032 DOI: 10.1523/jneurosci.2939-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. SIGNIFICANCE STATEMENT The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release.
Collapse
|
31
|
Frank J. Whither Ribosome Structure and Dynamics Research? (A Perspective). J Mol Biol 2016; 428:3565-9. [PMID: 27178840 DOI: 10.1016/j.jmb.2016.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Columbia University, 116th and Broadway, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
32
|
Kruit P, Hobbs R, Kim CS, Yang Y, Manfrinato V, Hammer J, Thomas S, Weber P, Klopfer B, Kohstall C, Juffmann T, Kasevich M, Hommelhoff P, Berggren K. Designs for a quantum electron microscope. Ultramicroscopy 2016; 164:31-45. [DOI: 10.1016/j.ultramic.2016.03.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022]
|
33
|
Gulen B, Petrov AS, Okafor CD, Vander Wood D, O'Neill EB, Hud NV, Williams LD. Ribosomal small subunit domains radiate from a central core. Sci Rep 2016; 6:20885. [PMID: 26876483 PMCID: PMC4753503 DOI: 10.1038/srep20885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022] Open
Abstract
The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2'OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.
Collapse
Affiliation(s)
- Burak Gulen
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - C Denise Okafor
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Drew Vander Wood
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Eric B O'Neill
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia institute of Technology, Atlanta, Georgia 30332, United States of America
| |
Collapse
|
34
|
Frank J. Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 2016; 65:3-8. [PMID: 26566976 PMCID: PMC4749046 DOI: 10.1093/jmicro/dfv358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.
Collapse
Affiliation(s)
- Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
35
|
Benjamin CJ, Wright KJ, Hyun SH, Krynski K, Yu G, Bajaj R, Guo F, Stauffacher CV, Jiang W, Thompson DH. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:551-9. [PMID: 26726866 PMCID: PMC5310270 DOI: 10.1021/acs.langmuir.5b03445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.
Collapse
Affiliation(s)
- Christopher J Benjamin
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle J Wright
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Seok-Hee Hyun
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle Krynski
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Guimei Yu
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Ruchika Bajaj
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Fei Guo
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Cynthia V Stauffacher
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Wen Jiang
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Zhang L, Jiang H, Sheong F, Pardo-Avila F, Cheung PH, Huang X. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands. Methods Enzymol 2016; 578:343-71. [DOI: 10.1016/bs.mie.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Carroni M, Saibil HR. Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 2015; 95:78-85. [PMID: 26638773 PMCID: PMC5405050 DOI: 10.1016/j.ymeth.2015.11.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023] Open
Abstract
Structural biology. Cryo electron microscopy. Macromolecular complexes. Single particle analysis.
Cryo-electron microscopy (cryo-EM) is a structural molecular and cellular biology technique that has experienced major advances in recent years. Technological developments in image recording as well as in processing software make it possible to obtain three-dimensional reconstructions of macromolecular assemblies at near-atomic resolution that were formerly obtained only by X-ray crystallography or NMR spectroscopy. In parallel, cryo-electron tomography has also benefitted from these technological advances, so that visualization of irregular complexes, organelles or whole cells with their molecular machines in situ has reached subnanometre resolution. Cryo-EM can therefore address a broad range of biological questions. The aim of this review is to provide a brief overview of the principles and current state of the cryo-EM field.
Collapse
Affiliation(s)
- Marta Carroni
- ISMB, Birkbeck College, Malet St, London WC1E 7HX, UK
| | | |
Collapse
|
38
|
Doris SM, Smith DR, Beamesderfer JN, Raphael BJ, Nathanson JA, Gerbi SA. Universal and domain-specific sequences in 23S-28S ribosomal RNA identified by computational phylogenetics. RNA (NEW YORK, N.Y.) 2015; 21:1719-1730. [PMID: 26283689 PMCID: PMC4574749 DOI: 10.1261/rna.051144.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/07/2015] [Indexed: 06/01/2023]
Abstract
Comparative analysis of ribosomal RNA (rRNA) sequences has elucidated phylogenetic relationships. However, this powerful approach has not been fully exploited to address ribosome function. Here we identify stretches of evolutionarily conserved sequences, which correspond with regions of high functional importance. For this, we developed a structurally aligned database, FLORA (full-length organismal rRNA alignment) to identify highly conserved nucleotide elements (CNEs) in 23S-28S rRNA from each phylogenetic domain (Eukarya, Bacteria, and Archaea). Universal CNEs (uCNEs) are conserved in sequence and structural position in all three domains. Those in regions known to be essential for translation validate our approach. Importantly, some uCNEs reside in areas of unknown function, thus identifying novel sequences of likely great importance. In contrast to uCNEs, domain-specific CNEs (dsCNEs) are conserved in just one phylogenetic domain. This is the first report of conserved sequence elements in rRNA that are domain-specific; they are largely a eukaryotic phenomenon. The locations of the eukaryotic dsCNEs within the structure of the ribosome suggest they may function in nascent polypeptide transit through the ribosome tunnel and in tRNA exit from the ribosome. Our findings provide insights and a resource for ribosome function studies.
Collapse
Affiliation(s)
- Stephen M Doris
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Deborah R Smith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Julia N Beamesderfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Benjamin J Raphael
- Department of Computer Science and Center for Computational Molecular Biology, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Judith A Nathanson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island 02912, USA
| |
Collapse
|
39
|
Lin MH, Sugiyama N, Ishihama Y. Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation. Sci Signal 2015; 8:rs10. [DOI: 10.1126/scisignal.aaa3117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Nogales E, Scheres SHW. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Mol Cell 2015; 58:677-89. [PMID: 26000851 DOI: 10.1016/j.molcel.2015.02.019] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
3D cryo-electron microscopy (cryo-EM) is an expanding structural biology technique that has recently undergone a quantum leap progression in its achievable resolution and its applicability to the study of challenging biological systems. Because crystallization is not required, only small amounts of sample are needed, and because images can be classified in a computer, the technique has the potential to deal with compositional and conformational mixtures. Therefore, cryo-EM can be used to investigate complete and fully functional macromolecular complexes in different functional states, providing a richness of biological insight. In this review, we underlie some of the principles behind the cryo-EM methodology of single particle analysis and discuss some recent results of its application to challenging systems of paramount biological importance. We place special emphasis on new methodological developments that are leading to an explosion of new studies, many of which are reaching resolutions that could only be dreamed of just a couple of years ago.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, UC Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, UC Berkeley, Berkeley, CA 94720-3220, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
41
|
Dysregulated COL3A1 and RPL8, RPS16, and RPS23 in Disc Degeneration Revealed by Bioinformatics Methods. Spine (Phila Pa 1976) 2015; 40:E745-51. [PMID: 25893343 DOI: 10.1097/brs.0000000000000939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Bioinformatics analysis of published microarray data. OBJECTIVE This study aimed to reveal the possible genes and pathways related to the pathogenesis of disc degeneration (DD) by analyzing the microarray data. SUMMARY OF BACKGROUND DATA DD is one of the main causes of low back pain, which has become an enormous economic burden for society. METHODS Gene expression data of annulus cells and nucleus pulposus cells from patients with DD and controls subjects were downloaded from Gene Expression Omnibus. T test and enrichment analysis were used to identify differentially expressed genes (DEGs) and DEGs-associated functions and pathways in DD, respectively. Protein-protein interaction network and module were constructed to analyze the key nodes associated with this disease. RESULTS A total of 326 DEGs and 35 DEGs were obtained from the annulus cells and nucleus pulposus cells, respectively. The DEGs of DD in annulus cells were mainly involved in translation, cell adhesion, cell death regulation, and skeletal system development whereas the DEGs in nucleus pulposus cells were mainly related to the biological processes of vascular system development, skeletal system development, and enzyme-linked receptor protein signaling pathway. COL3A1 was the common DEG in both annulus cells and nucleus pulposus cells. The genes encode ribosomal proteins (RPL8, RPS16, and RPS23) in module were enriched in biological processes of translation, translation elongation, and RNA processing. CONCLUSION The results revealed the involvement of COL3A1 in skeletal system process and RPL8, RPS16, and RPS23 in the protein synthesis processes in the progression of DD, suggesting their potential use in the diagnosis and therapy of DD. LEVEL OF EVIDENCE N/A.
Collapse
|
42
|
Kirmizialtin S, Loerke J, Behrmann E, Spahn CMT, Sanbonmatsu KY. Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions. Methods Enzymol 2015; 558:497-514. [PMID: 26068751 DOI: 10.1016/bs.mie.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An explosion of new data from high-resolution cryo-electron microscopy (cryo-EM) studies has produced a large number of data sets for many species of ribosomes in various functional states over the past few years. While many methods exist to produce structural models for lower resolution cryo-EM reconstructions, high-resolution reconstructions are often modeled using crystallographic techniques and extensive manual intervention. Here, we present an automated fitting technique for high-resolution cryo-EM data sets that produces all-atom models highly consistent with the EM density. Using a molecular dynamics approach, atomic positions are optimized with a potential that includes the cross-correlation coefficient between the structural model and the cryo-EM electron density, as well as a biasing potential preserving the stereochemistry and secondary structure of the biomolecule. Specifically, we use a hybrid structure-based/ab initio molecular dynamics potential to extend molecular dynamics fitting. In addition, we find that simulated annealing integration, as opposed to straightforward molecular dynamics integration, significantly improves performance. We obtain atomistic models of the human ribosome consistent with high-resolution cryo-EM reconstructions of the human ribosome. Automated methods such as these have the potential to produce atomistic models for a large number of ribosome complexes simultaneously that can be subsequently refined manually.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry, New York University, Abu Dhabi, United Arab Emirates; New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elmar Behrmann
- Structural Dynamics of Proteins, Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karissa Y Sanbonmatsu
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| |
Collapse
|
43
|
Abstract
Although the basic facts about the ribosome were already known 40 years ago, elucidating its atomic structure and molecular mechanisms required sheer persistence and the innovative use of new technology and methods. These advances have transformed our understanding of translation in the cell.
Collapse
Affiliation(s)
- V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
44
|
Pan Y, Peng T, Gao X, Zhang L, Yang C, Xi J, Xin X, Bi R, Shang Q. Transcriptomic comparison of thiamethoxam-resistance adaptation in resistant and susceptible strains of Aphis gossypii Glover. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:10-5. [DOI: 10.1016/j.cbd.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/28/2022]
|
45
|
The identification of high-affinity G protein-coupled receptor ligands from large combinatorial libraries using multicolor quantum dot-labeled cell-based screening. Future Med Chem 2015; 6:809-23. [PMID: 24941874 DOI: 10.4155/fmc.14.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which are involved in virtually every biological process, constitute the largest family of transmembrane receptors. Many top-selling and newly approved drugs target GPCRs. In this review, we aim to recapitulate efforts and progress in combinatorial library-assisted GPCR ligand discovery, particularly focusing on one-bead-one-compound library synthesis and quantum dot-labeled cell-based assays, which both effectively enhance the rapid identification of GPCR ligands with higher affinity and specificity.
Collapse
|
46
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
47
|
Purdy MD, Bennett BC, McIntire WE, Khan AK, Kasson PM, Yeager M. Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Curr Opin Struct Biol 2014; 27:138-48. [PMID: 25238653 PMCID: PMC6387792 DOI: 10.1016/j.sbi.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
Abstract
Three vignettes exemplify the potential of combining EM and X-ray crystallographic data with molecular dynamics (MD) simulation to explore the architecture, dynamics and functional properties of multicomponent, macromolecular complexes. The first two describe how EM and X-ray crystallography were used to solve structures of the ribosome and the Arp2/3-actin complex, which enabled MD simulations that elucidated functional dynamics. The third describes how EM, X-ray crystallography, and microsecond MD simulations of a GPCR:G protein complex were used to explore transmembrane signaling by the β-adrenergic receptor. Recent technical advancements in EM, X-ray crystallography and computational simulation create unprecedented synergies for integrative structural biology to reveal new insights into heretofore intractable biological systems.
Collapse
Affiliation(s)
- Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brad C Bennett
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William E McIntire
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ali K Khan
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Peter M Kasson
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Membrane Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Richman TR, Rackham O, Filipovska A. Mitochondria: Unusual features of the mammalian mitoribosome. Int J Biochem Cell Biol 2014; 53:115-20. [PMID: 24842111 DOI: 10.1016/j.biocel.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Mitochondria are responsible for generating most of the energy required by the cell. The oxidative phosphorylation (OXPHOS) system that produces the energy is composed of nuclear and mitochondrial encoded polypeptides. The 13 polypeptides encoded by the mitochondrial genome are synthesized by mitochondrial ribosomes (mitoribosomes). The evolutionary divergence of mitoribosomes has seen a reduction in their rRNA content and an increase in ribosomal proteins compared to their bacterial and cytoplasmic counterparts. Recent advances in cryo-electron microscopy (cryo-EM) mapping have revealed not all of these proteins simply replace the roles of the rRNA and that many have new roles. The mitoribosome has unique features that include a gatelike structure at the mRNA entrance that may facilitate recruitment of leaderless mitochondrial mRNAs and also a polypeptide exit tunnel that has an unusual nascent-polypeptide exit mechanism. Defects in the mitochondrial translation machinery are a common contributor to multi-system disorders known as mitochondrial diseases for which currently there are no cures or effective treatments.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
49
|
Graifer D, Malygin A, Zharkov DO, Karpova G. Eukaryotic ribosomal protein S3: A constituent of translational machinery and an extraribosomal player in various cellular processes. Biochimie 2014; 99:8-18. [DOI: 10.1016/j.biochi.2013.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/05/2013] [Indexed: 01/26/2023]
|
50
|
Application of Markov State Models to Simulate Long Timescale Dynamics of Biological Macromolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:29-66. [DOI: 10.1007/978-3-319-02970-2_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|