1
|
Su L, Deng Z, Santos-Fernandez M, Jeanne Dit Fouque K, Chapagain P, Chambers J, Fernandez-Lima F, Leng F. Inhibition of HMGA2 binding to AT-rich DNA by its negatively charged C-terminus. Nucleic Acids Res 2025; 53:gkaf035. [PMID: 39873271 PMCID: PMC11773362 DOI: 10.1093/nar/gkaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus. This suggests that the negatively charged C-terminus may inhibit DNA binding by interacting with the positively charged 'AT-hooks.' In this paper, we demonstrate that the C-terminus significantly influences HMGA2's DNA-binding properties. For example, the C-terminal deletion mutant HMGA2Δ95-108 binds more tightly to the AT-rich DNA oligomer FL814 than wild-type HMGA2. Additionally, a synthetic peptide derived from the C-terminus (the C-terminal motif peptide or CTMP) strongly inhibits HMGA2's binding to FL814, likely by interacting with the 'AT-hooks,' as shown by various biochemical and biophysical assays. Molecular modeling demonstrates that electrostatic interactions and hydrogen bonding are the primary forces driving CTMP's binding to the 'AT-hooks.' Intriguingly, we found that hydration does not play a role in HMGA2-DNA binding. These results suggest that the highly negatively charged C-terminus of HMGA2 plays a critical role in regulating its DNA-binding capacity through autoinhibition, likely facilitating the target search process for AT-rich DNA sequences.
Collapse
Affiliation(s)
- Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Zifang Deng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Miguel Santos-Fernandez
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Kevin Jeanne Dit Fouque
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Prem P Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Jeremy W Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, United States
- Department of Biology & Microbiology, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, United States
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
2
|
de Lima-Souza RA, Vieira GDS, Kimura TDC, Scarini JF, Lavareze L, Maciel TF, Gonçalves MWA, Egal ESA, Altemani A, Mariano FV. Insights into the molecular alterations of PLAG1 and HMGA2 associated with malignant phenotype acquisition in pleomorphic adenoma. Crit Rev Oncol Hematol 2024; 204:104494. [PMID: 39278426 DOI: 10.1016/j.critrevonc.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Pleomorphic adenoma (PA) is the most common neoplasm of the salivary gland, presenting with a variety of histological features. In some cases, PA can undergo malignant transformation to carcinoma ex pleomorphic adenoma (CXPA). The transition from PA to CXPA is associated with complex molecular alterations, particularly involving the pleomorphic adenoma gene 1 (PLAG1) and high mobility group protein gene (HMGA2). This review investigates the molecular alterations of PLAG1 and HMGA2 in all domains in the malignant transformation of PA. Our analysis highlights that these markers are key alterations in the etiopathogenesis of PA and CXPA, with gene fusion and amplification being frequently reported mechanisms. Although the exact role of PLAG1 and HMGA2 in the oncogenic process remains unclear, further studies on the HMGA2 and PLAG1, are needed particularly in HMGA2-PLAG1-IGF2 which is proving to be a potential pathway for the development of clinically applicable therapies, especially for CXPA management.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tayná Figueiredo Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erika Said Abu Egal
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Cao X, Ling C, Liu Y, Gu Y, Huang J, Sun W. Pleiotropic Gene HMGA2 Regulates Myoblast Proliferation and Affects Body Size of Sheep. Animals (Basel) 2024; 14:2721. [PMID: 39335310 PMCID: PMC11428621 DOI: 10.3390/ani14182721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Uncovering genes associated with muscle growth and body size will benefit the molecular breeding of meat Hu sheep. HMGA2 has proven to be an important gene in mouse muscle growth and is associated with the body size of various species. However, its roles in sheep are still limited. Using sheep myoblast as a cell model, the overexpression of HMGA2 significantly promoted sheep myoblast proliferation, while interference with HMGA2 expression inhibited proliferation, indicated by qPCR, EdU, and CCK-8 assays. Furthermore, the dual-luciferase reporter system indicated that the region NC_056056.1: 154134300-154134882 (-618 to -1200 bp upstream of the HMGA2 transcription start site) was one of the habitats of the HMGA2 core promoter, given the observation that this fragment led to a ~3-fold increase in luciferase activity. Interestingly, SNP rs428001129 (NC_056056.1:g.154134315 C>A) was detected in this fragment by Sanger sequencing of the PCR product of pooled DNA from 458 crossbred sheep. This SNP was found to affect the promoter activity and was significantly associated with chest width at birth and two months old, as well as chest depth at two and six months old. The data obtained in this study demonstrated the phenotypic regulatory role of the HMGA2 gene in sheep production traits and the potential of rs428001129 in marker-assisted selection for sheep breeding in terms of chest width and chest depth.
Collapse
Affiliation(s)
- Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Chen Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongqi Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
5
|
Nguyen TD, Van Dang L, Tran PNN, Van Nguyen D, Bui APN. Molecular detection and association of 12.1 kb deletion within the high mobility AT-hook 2 gene in the Netherlands dwarf rabbit ( Oryctolagus Cuniculus). ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300050. [PMID: 39221002 PMCID: PMC11361364 DOI: 10.1002/ansa.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 09/04/2024]
Abstract
Rabbits are mainly bred for human consumption and medical research. However, it has been recently showed that several rabbit breeds are also kept as pets for human leisure. The Netherlands dwarf rabbit is currently in the immense interest of many Vietnamese customers due to its personality and miniature stature. However, 12.1 kb deletion from position 44,709,089 to 44,721,236 bp in the high mobility AT-hook 2 (HMGA2) gene on chromosome 4 was identified as the structural variant causing dwarfism and altered craniofacial development in this breed. It has been documented that HMGA2 plays an important role in regulating growth and individuals with genotype HMGA2 del/del are fatal several days after birth. Despite the economically high value of the Netherlands dwarf rabbit, there has been no study on the genetic survey of lethal alleles in this breed in Vietnam. The aim of this study is to develop a fast and reliable method to screen the frequency of lethal alleles of HMGA2 in the South of Vietnam. Rabbit saliva was collected, and DNA extraction was followed. Multiplex polymerase chain reaction (PCR) with three primers was optimized and performed to detect the presence of 12.1 kb deletion within the HMGA2 sequence. Our data showed that the 12.1 kb deletion in the Netherlands dwarf rabbit population was detected by our optimized multiplex PCR. In 100 rabbit animals, 34 and 16 individuals were homozygous wild type (+/+) and homozygous mutant (del/del), respectively, while 50 rabbits were heterozygous. The frequency of HMGA2 lethal allele carrier was 66% (66/100 individuals). Our results indicated that we successfully developed a fast, accurate multiplex PCR to detect carrier individuals. Verification of the genotypes was followed by sequencing. We recommend implementing our multiplex PCR procedure in genetic selection for carrier and homozygous wild-type animals in the mating scheme to prevent the lethality of the rabbit offspring. Additionally, awareness should be raised among rabbit breeders to monitor the genetic makeup of the Netherlands dwarf rabbit populations. However, due to the limitation of the sample size, more samples should be taken in future studies to obtain the genetic frequency of the HMGA2 lethal allele more accurately.
Collapse
Affiliation(s)
- Tai Duc Nguyen
- Animal Genetics Laboratory, Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam
| | - Lam Van Dang
- Animal Genetics Laboratory, Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam
| | - Phuong Nhu Nguyen Tran
- Animal Genetics Laboratory, Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam
| | - Dai Van Nguyen
- Animal Genetics Laboratory, Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam
| | - Anh Phu Nam Bui
- Animal Genetics Laboratory, Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam
| |
Collapse
|
6
|
Li C, Wang X, Li H, Ahmed Z, Luo Y, Qin M, Yang Q, Long Z, Lei C, Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Anim Genet 2024; 55:575-587. [PMID: 38806279 DOI: 10.1111/age.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.
Collapse
Affiliation(s)
- Chuanqing Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianglin Wang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Mao Qin
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Qiong Yang
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Zhangcheng Long
- Animal Husbandry and Aquatic Products Affairs Center of Xiangxi Autonomous Prefecture, Jishou, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| |
Collapse
|
7
|
Andersen RE, Alkuraya IF, Ajeesh A, Sakamoto T, Mena EL, Amr SS, Romi H, Kenna MA, Robson CD, Wilch ES, Nalbandian K, Piña-Aguilar R, Walsh CA, Morton CC. Rare germline disorders implicate long non-coding RNAs disrupted by chromosomal structural rearrangements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.16.24307499. [PMID: 38946951 PMCID: PMC11213069 DOI: 10.1101/2024.06.16.24307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, in 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of two individuals with BCAs and additionally highlight six individuals with likely developmental etiologies due to lncRNA disruptions.
Collapse
Affiliation(s)
- Rebecca E. Andersen
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ibrahim F. Alkuraya
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Abna Ajeesh
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tyler Sakamoto
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Elijah L. Mena
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sami S. Amr
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hila Romi
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Margaret A. Kenna
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
| | - Caroline D. Robson
- Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Ellen S. Wilch
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Katarena Nalbandian
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Raul Piña-Aguilar
- Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Manton Center for Orphan Diseases, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Cynthia C. Morton
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- University of Manchester, Manchester Center for Audiology and Deafness, UK
| |
Collapse
|
8
|
Maharaj AV, Cottrell E, Thanasupawat T, Joustra SD, Triggs-Raine B, Fujimoto M, Kant SG, van der Kaay D, Clement-de Boers A, Brooks AS, Aguirre GA, Martín del Estal I, Castilla de Cortázar Larrea MI, Massoud A, van Duyvenvoorde HA, De Bruin C, Hwa V, Klonisch T, Hombach-Klonisch S, Storr HL. Characterization of HMGA2 variants expands the spectrum of Silver-Russell syndrome. JCI Insight 2024; 9:e169425. [PMID: 38516887 PMCID: PMC11063932 DOI: 10.1172/jci.insight.169425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.
Collapse
Affiliation(s)
- Avinaash V. Maharaj
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sjoerd D. Joustra
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Masanobu Fujimoto
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Sarina G. Kant
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Danielle van der Kaay
- Division of Paediatric Endocrinology, Department of Paediatrics, Erasmus University Medical Centre, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Agnes Clement-de Boers
- Department of Paediatrics, Juliana Children’s Hospital/Haga Teaching Hospital, The Hague, Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Ahmed Massoud
- Department of Paediatrics and Child Health, HCA Healthcare UK, London, United Kingdom
| | - Hermine A. van Duyvenvoorde
- Laboratory for Diagnostic Genome analysis (LDGA), Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Christiaan De Bruin
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, and
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, QMUL, London, United Kingdom
| |
Collapse
|
9
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
10
|
Lin S, Shen R, Huang J, Liu Y, Li H, Xu Q. Identification of genomic-wide genetic links between cutaneous melanoma and obesity-related physical traits via cFDR. Genes Genomics 2023; 45:1549-1562. [PMID: 37768517 DOI: 10.1007/s13258-023-01446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Both epidemiological and clinical studies have suggested the comorbidity between cutaneous melanoma (CM) and obesity-related physical traits. However, it remains unclear about their shared genetic architecture. OBJECTIVE To determine the shared genetic architecture between CM and obesity-related physical traits through conditional false discovery rate (cFDR) analysis. METHOD Quantile-quantile plots were firstly built to assess the pleiotropic enrichment of shared single nucleotide polymorphisms between CM and each trait. Then, cFDR and conjunctional cFDR (ccFDR) were used to identify the shared risk loci between CM and each trait. Moreover, the functional evaluation of shared risk genes was carried out through analyses of expression quantitative trait loci (eQTL), Kyoto Encyclopedia of Genes and Genomes and gene ontology, respectively. Finally, single-cell sequence analysis was performed to locate the expression of eQTL-mapped genes in tissues. RESULTS Successive pleiotropic enrichment was found between CM and 5 obesity-related traits or height. 24 shared risk loci were identified between CM and 13 traits except appendicular lean mass using ccFDR analysis, with 17 novel and 4 validated loci. The functions of ccFDR-identified and eQTL-mapped genes were revealed to be mainly involved in cellular senescence, proliferation, meiotic nuclear division, cell cycle, and the metabolism of lipid, cholesterol and glucose. Single-cell sequence analysis showed that keratinocytes contribute to the occurrence and aggressiveness of CM through secreting paracrine cytokines. CONCLUSION Our findings demonstrate the significant genetic correlation between CM and obesity-related physical traits, which may provide a novel genetical basis for the pathogenesis and treatment of CM.
Collapse
Affiliation(s)
- Shen Lin
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Runnan Shen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhan Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Selionova M, Aibazov M, Sermyagin A, Belous A, Deniskova T, Mamontova T, Zharkova E, Zinovieva N. Genome-Wide Association and Pathway Analysis of Carcass and Meat Quality Traits in Karachai Young Goats. Animals (Basel) 2023; 13:3237. [PMID: 37893961 PMCID: PMC10603756 DOI: 10.3390/ani13203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. The work aimed to search for candidate genes related to body measurements and body weight of Karachai goats and develop an experimental PCR-RV test system for genotyping significant SNPs. Comparison of GWAS results for ages 4 and 8 months revealed 58 common SNPs for significant genotypes. 11 common SNPs were identified for body weight, 4 SNPs-for group of traits withers height, rump height, body length, 2 SNPs-for withers height and rump height, 1 SNP-for body length and chest depth. Structural annotation of genomic regions covering a window of ±0.20 Mb showed the presence of 288 genes; 52 of them had the described functions in accordance with gene ontology. The main molecular functions of proteins encoded by these genes are the regulation of transcription, cell proliferation, angiogenesis, body growth, fatty acid and lipid metabolism, nervous system development, and spermatogenesis. SNPs common to body weight and localized within a window of ±200 kb from the structural genes CRADD, HMGA2, MSRB3, FUT8, MAX, and RAB15 were selected to create a test system. The study of meat productivity after slaughter and chemical analysis of muscle tissue in Karachai goats at the age of 8 months of different genotypes according to the identified SNPs revealed that rs268269710 is the most promising for further research and use in breeding. The GG genotype is associated with a larger live weight of animals, a larger carcass yield, the content of the boneless part in it, and the ratio of protein and adipose tissue in meat preferred for dietary nutrition. These results will contribute to the genetic improvement of Karachai goats.
Collapse
Affiliation(s)
- Marina Selionova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Magomet Aibazov
- North Caucasian Agrarian Center, Zootechnicheski 15, 355017 Stavropol, Russia;
| | - Alexander Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Anna Belous
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Deniskova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Mamontova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Ekaterina Zharkova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Natalia Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| |
Collapse
|
12
|
Yankee TN, Oh S, Winchester EW, Wilderman A, Robinson K, Gordon T, Rosenfeld JA, VanOudenhove J, Scott DA, Leslie EJ, Cotney J. Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes. Nat Commun 2023; 14:4623. [PMID: 37532691 PMCID: PMC10397224 DOI: 10.1038/s41467-023-40363-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Craniofacial disorders arise in early pregnancy and are one of the most common congenital defects. To fully understand how craniofacial disorders arise, it is essential to characterize gene expression during the patterning of the craniofacial region. To address this, we performed bulk and single-cell RNA-seq on human craniofacial tissue from 4-8 weeks post conception. Comparisons to dozens of other human tissues revealed 239 genes most strongly expressed during craniofacial development. Craniofacial-biased developmental enhancers were enriched +/- 400 kb surrounding these craniofacial-biased genes. Gene co-expression analysis revealed that regulatory hubs are enriched for known disease causing genes and are resistant to mutation in the normal healthy population. Combining transcriptomic and epigenomic data we identified 539 genes likely to contribute to craniofacial disorders. While most have not been previously implicated in craniofacial disorders, we demonstrate this set of genes has increased levels of de novo mutations in orofacial clefting patients warranting further study.
Collapse
Affiliation(s)
- Tara N Yankee
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Sungryong Oh
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | | | - Andrea Wilderman
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tia Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
13
|
Sun J, Jin X, Zhang X, Zhang B. HMGA2 knockdown alleviates the progression of nonalcoholic fatty liver disease (NAFLD) by downregulating SNAI2 expression. Cell Signal 2023:110741. [PMID: 37268162 DOI: 10.1016/j.cellsig.2023.110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex disease that is considered as the next major health epidemic with alarmingly increasing global prevalence. To explore the pathogenesis of NAFLD, data from GSE118892 were analyzed. High mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, is declined in liver tissues of NAFLD rats. However, its role in NAFLD remains unknown. This study attempted to identify the multiple roles of HMGA2 in NAFLD process. NAFLD was induced in rats using a high-fat diet (HFD). In vivo, HMGA2 knockdown using adenovirus system attenuated liver injury and liver lipid deposition, accompanied by decreased NAFLD score, increased liver function, and decreased CD36 and FAS, indicating the deceleration of NAFLD progression. Moreover, HMGA2 knockdown restrained liver inflammation by decreasing the expression of related inflammatory factors. Importantly, HMGA2 knockdown attenuated liver fibrosis via downregulating the expression of fibrous proteins, and inhibiting the activation of TGF-β1/SMAD signaling pathway. In vitro, HMGA2 knockdown relieved palmitic acid (PA)-induced hepatocyte injury and attenuated TGF-β1-induced liver fibrosis, consistent with in vivo findings. Strikingly, HMGA2 activated the transcription of SNAI2, which was evidenced by the dual luciferase assays. Moreover, HMGA2 knockdown largely downregulated SNAI2 levels. Indeed, SNAI2 overexpression effectively blocked the inhibitory effect of HMGA2 knockdown on NAFLD. Totally, our findings reveal that HMGA2 knockdown alleviates the progression of NAFLD by directly regulating the transcription of SNAI2. HMGA2 inhibition may emerge as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| | - Xiuli Jin
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xinhe Zhang
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Cheng J, Cao X, Wang X, Wang J, Yue B, Sun W, Huang Y, Lan X, Ren G, Lei C, Chen H. Dynamic chromatin architectures provide insights into the genetics of cattle myogenesis. J Anim Sci Biotechnol 2023; 14:59. [PMID: 37055796 PMCID: PMC10103417 DOI: 10.1186/s40104-023-00855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. Although genome-wide interaction data of several livestock species have already been produced, the genome structure states and its regulatory rules in cattle muscle are still limited. RESULTS Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic enhancer near a strong sweep region on primary bovine myoblast proliferation. CONCLUSIONS Our data provide key insights of the regulatory function of high order chromatin structure and cattle myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610225, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China.
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
15
|
Aberrant HMGA2 Expression Sustains Genome Instability That Promotes Metastasis and Therapeutic Resistance in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15061735. [PMID: 36980621 PMCID: PMC10046046 DOI: 10.3390/cancers15061735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide, accounting for nearly ~10% of all cancer diagnoses and deaths. Current therapeutic approaches have considerably increased survival for patients diagnosed at early stages; however, ~20% of CRC patients are diagnosed with late-stage, metastatic CRC, where 5-year survival rates drop to 6–13% and treatment options are limited. Genome instability is an enabling hallmark of cancer that confers increased acquisition of genetic alterations, mutations, copy number variations and chromosomal rearrangements. In that regard, research has shown a clear association between genome instability and CRC, as the accumulation of aberrations in cancer-related genes provides subpopulations of cells with several advantages, such as increased proliferation rates, metastatic potential and therapeutic resistance. Although numerous genes have been associated with CRC, few have been validated as predictive biomarkers of metastasis or therapeutic resistance. A growing body of evidence suggests a member of the High-Mobility Group A (HMGA) gene family, HMGA2, is a potential biomarker of metastatic spread and therapeutic resistance. HMGA2 is expressed in embryonic tissues and is frequently upregulated in aggressively growing cancers, including CRC. As an architectural, non-histone chromatin binding factor, it initiates chromatin decompaction to facilitate transcriptional regulation. HMGA2 maintains the capacity for stem cell renewal in embryonic and cancer tissues and is a known promoter of epithelial-to-mesenchymal transition in tumor cells. This review will focus on the known molecular mechanisms by which HMGA2 exerts genome protective functions that contribute to cancer cell survival and chemoresistance in CRC.
Collapse
|
16
|
Markman S, Zada M, David E, Giladi A, Amit I, Zelzer E. A single-cell census of mouse limb development identifies complex spatiotemporal dynamics of skeleton formation. Dev Cell 2023; 58:565-581.e4. [PMID: 36931270 DOI: 10.1016/j.devcel.2023.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/20/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Limb development has long served as a model system for coordinated spatial patterning of progenitor cells. Here, we identify a population of naive limb progenitors and show that they differentiate progressively to form the skeleton in a complex, non-consecutive, three-dimensional pattern. Single-cell RNA sequencing of the developing mouse forelimb identified three progenitor states: naive, proximal, and autopodial, as well as Msx1 as a marker for the naive progenitors. In vivo lineage tracing confirmed this role and localized the naive progenitors to the outer margin of the limb, along the anterior-posterior axis. Sequential pulse-chase experiments showed that the progressive transition of Msx1+ naive progenitors into proximal and autopodial progenitors coincides with their differentiation to Sox9+ chondroprogenitors, which occurs along all the forming skeletal segments. Indeed, tracking the spatiotemporal sequence of differentiation showed that the skeleton forms progressively in a complex pattern. These findings suggest an alternative model for limb skeleton development.
Collapse
Affiliation(s)
- Svetlana Markman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
17
|
Qi LN, Ma L, Wu FX, Chen YY, Xu JX, Peng YC, Chen ZS, Gong WF, Yang CL, Wei HW, Qin SL, Shang JJ, Wang QY, Yu HP, Peng T, Huang YW, Ling YC, Tang WZ, Xiang BD, Li LQ. Clinical implications and biological features of a novel postoperative recurrent HCC classification: A multi-centre study. Liver Int 2022; 42:2283-2298. [PMID: 35810457 DOI: 10.1111/liv.15363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The multiplicity of hepatocellular carcinoma (HCC) recurrence patterns is the most important determinant of patients' postsurgical survival. A systematic HCC recurrence classification is needed to help prevent and treat postoperative HCC recurrence in the era of precision medicine. METHODS A total of 1319 patients with recurrent HCC from four hospitals were enrolled and divided into a development cohort (n = 916), internal validation cohort (n = 225) and external validation cohort (n = 178). A comprehensive study of patients' clinicopathological factors and biological features was conducted. RESULTS Four subtypes of recurrence were identified, which integrated recurrence features, survival, effects on systemic and liver function and potential therapeutics after recurrence: type I (solitary-intrahepatic oligorecurrence); type II (multi-intrahepatic oligorecurrence); type III (progression recurrence) and type IV (hyper-progression recurrence). Type III~IV recurrence indicated exceptionally poor prognosis. Subsequently, two nomogram models were established for type III~IV recurrence prediction, and both demonstrated excellent predictive performance and applicability of pre and postoperative strategy formulation. Multiple biological analyses revealed that HCC cases with type III~IV recurrence were characterized by enrichment in p53 mutations, CCND1 amplification, high proliferation/metastasis potential, inactive metabolism and immune exhaustion features. Over-expression of high mobility group protein 2 (HMGA2) enhanced the highly malignant behaviour of HCC through multiple molecular pathways, making it a potential prognostic predictor and therapeutic target. CONCLUSIONS This 'recurrent HCC classification' has important potential value in identifying patients with surgical benefit, predicting postsurgical survival and guiding treatment strategies. Multidimensional biological insights also increased knowledge of factors associated with HCC recurrence.
Collapse
Affiliation(s)
- Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Fei-Xiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Yu-Chong Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Zu-Shun Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Wen-Feng Gong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Hao-Wen Wei
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Shui-Ling Qin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Jin-Jie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qiu-Yan Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong-Ping Yu
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.,Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Peng
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying-Wu Huang
- Department of Hepatobiliary Surgery, Chongzuo People's Hospital, Chongzuo, Guangxi, China
| | - Yong-Chi Ling
- Department of Surgery, Fusui County People's Hospital of Guangxi, Chongzuo, Guangxi, China
| | - Wei-Zhong Tang
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China.,Department of Colorectal & Anal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
18
|
Easa AA, Selionova M, Aibazov M, Mamontova T, Sermyagin A, Belous A, Abdelmanova A, Deniskova T, Zinovieva N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes (Basel) 2022; 13:genes13101773. [PMID: 36292658 PMCID: PMC9601913 DOI: 10.3390/genes13101773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to identify the SNPs and candidate genes related to body weight and seven body conformation traits at the age of 8 months in the Russian aboriginal Karachai goats (n = 269) by conducting genome-wide association studies (GWAS), using genotypes generated by Goat SNP BeadChip (Illumina Inc., USA). We identified 241 SNPs, which were significantly associated with the studied traits, including 47 genome-wide SNPs (p < 10−5) and 194 suggestive SNPs (p < 10−4), distributed among all goat autosomes except for autosome 23. Fifty-six SNPs were common for two and more traits (1 SNP for six traits, 2 SNPs for five traits, 12 SNPs for four traits, 20 SNPs for three traits, and 21 SNPs for two traits), while 185 SNPs were associated with single traits. Structural annotation within a window of 0.4 Mb (±0.2 Mb from causal SNPs) revealed 238 candidate genes. The largest number of candidate genes was identified at Chr13 (33 candidate genes for the five traits). The genes identified in our study were previously reported to be associated with growth-related traits in different livestock species. The most significant genes for body weight were CRADD, HMGA2, MSRB3, MAX, HACL1 and RAB15, which regulate growth processes, body sizes, fat deposition, and average daily gains. Among them, the HMGA2 gene is a well-known candidate for prenatal and early postnatal development, and the MSRB3 gene is proposed as a candidate gene affecting the growth performance. APOB, PTPRK, BCAR1, AOAH and ASAH1 genes associated with withers height, rump height and body length, are involved in various metabolic processes, including fatty acid metabolism and lipopolysaccharide catabolism. In addition, WDR70, ZBTB24, ADIPOQ, and SORCS3 genes were linked to chest width. KCNG4 was associated with rump height, body length and chest perimeter. The identified candidate genes can be proposed as molecular markers for growth trait selection for genetic improvement in Karachai goats.
Collapse
Affiliation(s)
- Ahmed A. Easa
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (A.A.E.); (N.Z.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Magomet Aibazov
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Tatiana Mamontova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Alexander Sermyagin
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anna Belous
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Alexandra Abdelmanova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Tatiana Deniskova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Natalia Zinovieva
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
- Correspondence: (A.A.E.); (N.Z.)
| |
Collapse
|
19
|
Maruyama T, Saito K, Higurashi M, Ishikawa F, Kohno Y, Mori K, Shibanuma M. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells. Cancer Sci 2022; 114:152-163. [PMID: 36102493 PMCID: PMC9807519 DOI: 10.1111/cas.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.
Collapse
Affiliation(s)
- Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Koji Saito
- Department of PathologyShowa University School of MedicineTokyoJapan,Department of PathologyTeikyo University HospitalTokyoJapan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Yohko Kohno
- Showa University Koto Toyosu HospitalTokyoJapan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| |
Collapse
|
20
|
Divisato G, Chiariello AM, Esposito A, Zoppoli P, Zambelli F, Elia MA, Pesole G, Incarnato D, Passaro F, Piscitelli S, Oliviero S, Nicodemi M, Parisi S, Russo T. Hmga2 protein loss alters nuclear envelope and 3D chromatin structure. BMC Biol 2022; 20:171. [PMID: 35918713 PMCID: PMC9344646 DOI: 10.1186/s12915-022-01375-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function. RESULTS We demonstrated that Hmga2 KO pluripotent stem cells fail to develop into EpiLCs. By using this experimental system, we studied the chromatin changes that take place upon the induction of EpiLCs and we observed that the loss of Hmga2 affects the histone mark H3K27me3, whose levels are higher in Hmga2 KO cells. Accordingly, a sustained expression of polycomb repressive complex 2 (PRC2), responsible for H3K27me3 deposition, was observed in KO cells. However, gene expression differences between differentiating wt vs Hmga2 KO cells did not show any significant enrichments of PRC2 targets. Similarly, endogenous Hmga2 association to chromatin in epiblast stem cells did not show any clear relationships with gene expression modification observed in Hmga2 KO. Hmga2 ChIP-seq confirmed that this protein preferentially binds to the chromatin regions associated with nuclear lamina. Starting from this observation, we demonstrated that nuclear lamina underwent severe alterations when Hmga2 KO or KD cells were induced to exit from the naïve state and this phenomenon is accompanied by a mislocalization of the heterochromatin mark H3K9me3 within the nucleus. As nuclear lamina (NL) is involved in the organization of 3D chromatin structure, we explored the possible effects of Hmga2 loss on this phenomenon. The analysis of Hi-C data in wt and Hmga2 KO cells allowed us to observe that inter-TAD (topologically associated domains) interactions in Hmga2 KO cells are different from those observed in wt cells. These differences clearly show a peculiar compartmentalization of inter-TAD interactions in chromatin regions associated or not to nuclear lamina. CONCLUSIONS Overall, our results indicate that Hmga2 interacts with heterochromatic lamin-associated domains, and highlight a role for Hmga2 in the crosstalk between chromatin and nuclear lamina, affecting the establishment of inter-TAD interactions.
Collapse
Affiliation(s)
- Giuseppina Divisato
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy
| | - Pietro Zoppoli
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università di Milano Statale, Milan, Italy
| | - Maria Antonietta Elia
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Graziano Pesole
- Dipartimento Di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari A. Moro and IBIOM CNR, Bari, Italy
| | - Danny Incarnato
- University of Groningen, GBB Institute, Groningen, The Netherlands
| | - Fabiana Passaro
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Silvia Piscitelli
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino and IIGM Candiolo, Turin, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Naples, Italy.,Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.,CNR-SPIN, Naples, Italy
| | - Silvia Parisi
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy.
| | - Tommaso Russo
- Dipartimento di Medicina molecolare e biotecnologie mediche, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
21
|
Sipe SN, Jeanne Dit Fouque K, Garabedian A, Leng F, Fernandez-Lima F, Brodbelt JS. Exploring the Conformations and Binding Location of HMGA2·DNA Complexes Using Ion Mobility Spectrometry and 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1092-1102. [PMID: 35687872 PMCID: PMC9274541 DOI: 10.1021/jasms.2c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.
Collapse
Affiliation(s)
- Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| |
Collapse
|
22
|
Jeanne Dit Fouque K, Sipe SN, Garabedian A, Mejia G, Su L, Hossen ML, Chapagain PP, Leng F, Brodbelt JS, Fernandez-Lima F. Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1103-1112. [PMID: 35687119 PMCID: PMC9280850 DOI: 10.1021/jasms.2c00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is an intrinsically disordered DNA-binding protein expressed during embryogenesis. In the present work, the conformational and binding dynamics of HMGA2 and HMGA2 in complex with a 22-nt (DNA22) and a 50-nt (DNA50) AT-rich DNA hairpin were investigated using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) under native starting solvent conditions (e.g., 100 mM aqueous NH4Ac) and collision-induced unfolding/dissociation (CIU/CID) as well as solution fluorescence anisotropy to assess the role of the DNA ligand when binding to the HMGA2 protein. CIU-TIMS-CID-MS/MS experiments showed a significant reduction of the conformational space and charge-state distribution accompanied by an energy stability increase of the native HMGA2 upon DNA binding. Fluorescence anisotropy experiments and CIU-TIMS-CID-MS/MS demonstrated for the first time that HMGA2 binds with high affinity to the minor groove of AT-rich DNA oligomers and with lower affinity to the major groove of AT-rich DNA oligomers (minor groove occupied by a minor groove binder Hoechst 33258). The HMGA2·DNA22 complex (18.2 kDa) 1:1 and 1:2 stoichiometry suggests that two of the AT-hook sites are accessible for DNA binding, while the other AT-hook site is probably coordinated by the C-terminal motif peptide (CTMP). The HMGA2 transition from disordered to ordered upon DNA binding is driven by the interaction of the three basic AT-hook residues with the minor and/or major grooves of AT-rich DNA oligomers.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Sarah N Sipe
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - German Mejia
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Md Lokman Hossen
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712 United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
23
|
Wyss P, Song C, Bina M. Along the Bos taurus genome, uncover candidate imprinting control regions. BMC Genomics 2022; 23:478. [PMID: 35764919 PMCID: PMC9241299 DOI: 10.1186/s12864-022-08694-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In mammals, Imprinting Control Regions (ICRs) regulate a subset of genes in a parent-of-origin-specific manner. In both human and mouse, previous studies identified a set of CpG-rich motifs occurring as clusters in ICRs and germline Differentially Methylated Regions (gDMRs). These motifs consist of the ZFP57 binding site (ZFBS) overlapping a subset of MLL binding units known as MLL morphemes. MLL or MLL1 (Mixed Lineage Leukemia 1) is a relatively large multidomain protein that plays a central role in the regulation of transcription. The structures of both MLL1 and MLL2 include a domain (MT) that binds CpG-rich DNA and a conserved domain (SET) that methylates lysine 4 in histone H3 producing H3K4me3 marks in chromatin. RESULTS Since genomic imprinting impacts many developmental and key physiological processes, we followed a previous bioinformatics strategy to pinpoint ICR positions in the Bos taurus genome. Initial genome-wide analyses involved finding the positions of ZFP57 binding sites, and the CpG-rich motifs (ZFBS-morph overlaps) along cattle chromosomal DNA. By creating plots displaying the density of ZFBS-morph overlaps, we removed background noise and thus improved signal detection. With the density-plots, we could view the positions of peaks locating known and candidate ICRs in cattle DNA. Our evaluations revealed the correspondence of peaks in plots to reported known and inferred ICRs/DMRs in cattle. Beside peaks pinpointing such ICRs, the density-plots also revealed additional peaks. Since evaluations validated the robustness of our approach, we inferred that the additional peaks may correspond to candidate ICRs for imprinted gene expression. CONCLUSION Our bioinformatics strategy offers the first genome-wide approach for systematically localizing candidate ICRs. Furthermore, we have tailored our datasets for upload onto the UCSC genome browser so that researchers could find known and candidate ICRs with respect to a wide variety of annotations at all scales: from the positions of Single Nucleotide Polymorphisms (SNPs), to positions of genes, transcripts, and repeated DNA elements. Furthermore, the UCSC genome browser offers tools to produce enlarged views: to uncover the genes in the vicinity of candidate ICRs and thus discover potential imprinted genes for experimental validations.
Collapse
Affiliation(s)
- Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Carol Song
- Information Technology, Purdue University, West Lafayette, IN, 47907, USA
| | - Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
25
|
Li Z, Pi Y, Fan J, Yang X, Zhai C, Chen H, Wang F, Ding J, Gu T, Li Y, Wu H. High mobility group A3 enhances transcription of the DNA demethylase gene SlDML2 to promote tomato fruit ripening. PLANT PHYSIOLOGY 2022; 189:315-328. [PMID: 35171288 PMCID: PMC9070846 DOI: 10.1093/plphys/kiac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 05/27/2023]
Abstract
DNA methylation plays an important role in regulating tomato (Solanum lycopersicum) fruit ripening. Although SlDML2, a DNA demethylase (DML) gene, is critically involved in tomato fruit ripening, little is known about genes that regulate its expression. Using yeast one-hybrid screening, we identified a High Mobility Group A protein, named SlHMGA3, and demonstrated its binding activity to the AT-rich region of the SlDML2 promoter. We produced slhmga3 tomato mutants using CRISPR/Cas9 and observed that slhmga3 fruit reached the breaker stage much later than fruit from the wild-type. We further demonstrated that at the initiation stage of fruit ripening, the increased expression of SlDML2 and ethylene biosynthetic and signaling genes was significantly delayed in slhmga3 fruit, along with delays in ethylene production and demethylation and activation of ripening-associated transcription factor genes. Our results demonstrate that SlHMGA3 plays a role in enhancing SlDML2 expression, and its effects on tomato fruit ripening are largely through DNA demethylation of ripening-associated transcription factor genes.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Pi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changsheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Han Wu
- Author for correspondence:
| |
Collapse
|
26
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Pan X, Zhang M, Tian A, Chen L, Sun Z, Wang L, Chen P. Exploring the genetic correlation between obesity-related traits and regional brain volumes: Evidence from UK Biobank cohort. Neuroimage Clin 2022; 33:102870. [PMID: 34872017 PMCID: PMC8648807 DOI: 10.1016/j.nicl.2021.102870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine whether there is a correlation between obesity-related variants and regional brain volumes. METHODS Based on a mixed linear model (MLM), we analyzed the association between 1,498 obesity-related SNPs in the GWAS Catalog and 164 regional brain volumes from 29,420 participants (discovery cohort N = 19,997, validation cohort N = 9,423) in UK Biobank. The statistically significant brain regions in association analysis were classified into 6 major neural networks (dopamine (DA) motive system, central autonomic network (CAN), cognitive emotion regulation, visual object recognition network, auditory object recognition network, and sensorimotor system). We summarized the association between obesity-related variants (metabolically healthy obesity variants, metabolically unhealthy obesity variants, and unclassified obesity-related variants) and neural networks. RESULTS From association analysis, we determined that 17 obesity-related SNPs were associated with 51 regional brain volumes. Several single SNPs (e.g., rs13107325-T (SLC39A8), rs1876829-C (CRHR1), and rs1538170-T (CENPW)) were associated with multiple regional brain volumes. In addition, several single brain regions (e.g., the white matter, the grey matter in the putamen, subcallosal cortex, and insular cortex) were associated with multiple obesity-related variants. The metabolically healthy obesity variants were mainly associated with the regional brain volumes in the DA motive system, sensorimotor system and cognitive emotion regulation neural networks, while metabolically unhealthy obesity variants were mainly associated with regional brain volumes in the CAN and total tissue volumes. In addition, unclassified obesity-related variants were mainly associated with auditory object recognition network and total tissue volumes. The results of MeSH (medical subject headings) enrichment analysis showed that obesity genes associated with brain structure pointed to the functional relatedness with 5-Hydroxytryptamine receptor 4 (5-HT4), growth differentiation factor 5 (GDF5), and high mobility group protein AT-hook 2 (HMGA2 protein). CONCLUSION In summary, we found that obesity-related variants were associated with different brain volume measures. On the basis of the multiple SNPs, we found that metabolically healthy and unhealthy obesity-related SNPs were associated with different brain neural networks. Based on our enrichment analysis, modifications of the 5-HT4 pathway might be a promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Xingchen Pan
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Miaoran Zhang
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Aowen Tian
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lanlan Chen
- School of Clinical Medicine, Jilin University, Changchun, 130000, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
28
|
Lee MO, Li J, Davis BW, Upadhyay S, Al Muhisen HM, Suva LJ, Clement TM, Andersson L. Hmga2 deficiency is associated with allometric growth retardation, infertility, and behavioral abnormalities in mice. G3 (BETHESDA, MD.) 2022; 12:6456304. [PMID: 34878116 PMCID: PMC9210324 DOI: 10.1093/g3journal/jkab417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The high mobility group AT-hook 2 (HMGA2) protein works as an architectural regulator by binding AT-rich DNA sequences to induce conformational changes affecting transcription. Genomic deletions disrupting HMGA2 coding sequences and flanking noncoding sequences cause dwarfism in mice and rabbits. Here, CRISPR/Cas9 was used in mice to generate an Hmga2 null allele that specifically disrupts only the coding sequence. The loss of one or both alleles of Hmga2 resulted in reduced body size of 20% and 60%, respectively, compared to wild-type littermates as well as an allometric reduction in skull length in Hmga2-/- mice. Both male and female Hmga2-/- mice are infertile, whereas Hmga2+/- mice are fertile. Examination of reproductive tissues of Hmga2-/- males revealed a significantly reduced size of testis, epididymis, and seminal vesicle compared to controls, and 70% of knock-out males showed externalized penis, but no cryptorchidism was observed. Sperm analyses revealed severe oligospermia in mutant males and slightly decreased sperm viability, increased DNA damage but normal sperm chromatin compaction. Testis histology surprisingly revealed a normal seminiferous epithelium, despite the significant reduction in testis size. In addition, Hmga2-/- mice showed a significantly reduced exploratory behavior. In summary, the phenotypic effects in mouse using targeted mutagenesis confirmed that Hmga2 is affecting prenatal and postnatal growth regulation, male reproductive tissue development, and presents the first indication that Hmga2 function is required for normal mouse behavior. No specific effect, despite an allometric reduction, on craniofacial development was noted in contrast to previous reports of an altered craniofacial development in mice and rabbits carrying deletions of both coding and noncoding sequences at the 5' part of Hmga2.
Collapse
Affiliation(s)
- Mi Ok Lee
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Jingyi Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hadil M Al Muhisen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Tracy M Clement
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- Corresponding author: Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Vet Med Research Bldg., 588 Raymond Stotzer Pw, TX 77843, USA.
| |
Collapse
|
29
|
Negishi T, Mihara N, Chiba T, D'Armiento J, Chada K, Maeda M, Igarashi M, Imai K. High mobility group AT-hook 2 regulates osteoblast differentiation and facial bone development. Biochem Biophys Res Commun 2022; 590:68-74. [PMID: 34973532 DOI: 10.1016/j.bbrc.2021.12.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022]
Abstract
The mutation and deletion of high mobility group AT-hook 2 (Hmga2) gene exhibit skeletal malformation, but almost nothing is known about the mechanism. This study examined morphological anomaly of facial bone in Hmga2-/- mice and osteoblast differentiation of pre-osteoblast MC3T3-E1 cells with Hmga2 gene knockout (A2KO). Hmga2-/- mice showed the size reduction of anterior frontal part of facial bones. Hmga2 protein and mRNA were expressed in mesenchymal cells at ossification area of nasal bone. A2KO cells differentiation into osteoblasts after reaching the proliferation plateau was strongly suppressed by alizarin red and alkaline phosphatase staining analyses. Expression of osteoblast-related genes, especially Osterix, was down-regulated in A2KO cells. These results demonstrate a close association of Hmga2 with osteoblast differentiation of mesenchymal cells and bone growth. Although future studies are needed, the present study suggests an involvement of Hmga2 in osteoblast-genesis and bone growth.
Collapse
Affiliation(s)
- Tsubasa Negishi
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Nozomi Mihara
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Tadashige Chiba
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Jeanine D'Armiento
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Kiran Chada
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Munehiro Maeda
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Masaru Igarashi
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan
| | - Kazushi Imai
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, 102-8159, Japan.
| |
Collapse
|
30
|
Garabedian A, Jeanne Dit Fouque K, Chapagain PP, Leng F, Fernandez-Lima F. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2431-2439. [PMID: 35212375 PMCID: PMC8934665 DOI: 10.1093/nar/gkac115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/30/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as ‘AT-hooks’, are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three ‘AT-hook’ peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, ‘key-locked’ conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
| | | |
Collapse
|
31
|
miR-142-3p simultaneously targets HMGA1, HMGA2, HMGB1, and HMGB3 and inhibits tumorigenic properties and in-vivo metastatic potential of human cervical cancer cells. Life Sci 2021; 291:120268. [PMID: 34973275 DOI: 10.1016/j.lfs.2021.120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
AIMS High-mobility group (HMG) proteins are oncogenic in different cancers, including cervical cancer; silencing their individual expression using sh-RNAs, siRNAs, and miRNAs has had anti-tumorigenic effects, but the consequences of their collective downregulation are not known. Since multiple gene targeting is generally very effective in cancer therapy, the present study highlighted the consequences of silencing the expression of HMGA1, A2, B1, and B3 using sh-RNAs or miR-142-3p (that can potentially target HMGA1, A2, B1, and B3) in cervical cancer cell lines. MAIN METHODS 3' UTR luciferase reporter assays were performed to validate HMGA1, A2, B1, and B3 as targets of miR-142-3p in human cervical cancer cells. Annexin V/PI dual staining and flow cytometry analyses were used to detect apoptotic cells. miR-142-3p-mediated regulation of cell death, colony formation, migration, and invasion was investigated in human cervical cancer cells together with in vivo metastasis in zebrafish. KEY FINDINGS Concurrent knockdown of HMGA1, A2, B1, and B3 through their corresponding sh-RNAs inhibited cell viability and colony formation but induced apoptosis, and these effects were relatively reduced upon their individual knockdown. miR-142-3p targeted HMGA1, A2, B1, and B3 by binding to their 3'UTRs and induced apoptosis but inhibited proliferation, migration, and invasion of human cervical cancer cells. In addition, miR-142-3p expression decreased phospho-p65 and EMT-related proteins in cervical cancer cells and their in vivo metastatic potential upon implantation in zebrafish. SIGNIFICANCE These findings suggest that miR-142-3p acts as a tumor-suppressive miRNA by targeting HMGA1, A2, B1, and B3 and may serve as a potential therapeutic agent in human cervical cancer.
Collapse
|
32
|
Wang Y, Zheng X, Cheng R, Han J, Ma X, Xu W, Gao L, Lei A, Liu J, Quan F, Zhang Y, Liu X. Asymmetric expression of maternal mRNA governs first cell-fate decision. FASEB J 2021; 35:e22006. [PMID: 34694646 DOI: 10.1096/fj.202101196r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
The goal of preimplantation development is to establish the fates of the embryonic and extra-embryonic cells. However, when and how cell fates are determined during early mammalian embryonic development remains unclear. We report that the high mobility group (HMG) protein family member HMGA1 was distributed differentially in mouse two-cell blastomeres. Knockdown of Hmga1 expression in one of the two cells reduced the number of cells contributing to the inner cell mass (ICM), suggesting that differential distribution of HMGA1 in the blastomeres in two-cell mouse embryos affected the selection of embryonic cell lineages. Mechanistically, HMGA1 promotes the expression of the ICM-specific gene Sox2. The results of this study show that mouse embryos demonstrate heterogeneity as early as the two-cell stage, and that these differences are related to cell-fate differentiation in early mouse embryos.
Collapse
Affiliation(s)
- Yingmei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xiaoman Zheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Rui Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Jing Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xing Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Wenjun Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Lu Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Center, Northwest A&F University, Yangling, PR China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| | - Xu Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, PR China
| |
Collapse
|
33
|
Deng R, McCalman MT, Bossuyt TP, Barakat TS. Case Report: Two New Cases of Chromosome 12q14 Deletions and Review of the Literature. Front Genet 2021; 12:716874. [PMID: 34539745 PMCID: PMC8441011 DOI: 10.3389/fgene.2021.716874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Interstitial deletions on the long arm of chromosome 12 (12q deletions) are rare, and are associated with intellectual disability, developmental delay, failure to thrive and congenital anomalies. The precise genotype-phenotype correlations of different deletions has not been completely resolved. Ascertaining individuals with overlapping deletions and complex phenotypes may help to identify causative genes and improve understanding of 12q deletion syndromes. We here describe two individuals with non-overlapping 12q14 deletions encountered at our clinical genetics outpatient clinic and perform a review of all previously published interstitial 12q deletions to further delineate genotype-phenotype correlations. Both individuals presented with a neurodevelopmental disorder with various degrees of intellectual disability, failure to thrive and dysmorphic features. Previously, larger deletions overlapping large parts of the deletions encountered in both individuals have been described. Whereas, individual 1 seems to fit into the previously described phenotypic spectrum of the 12q14 microdeletion syndrome, individual 2 displays more severe neurological symptoms, which are likely caused by haploinsufficiency of the BAF complex member SMARCC2, which is included in the deletion. We furthermore perform a review of all previously published interstitial 12q deletions which we found to cluster amongst 5 regions on chromosome 12, to further delineate genotype-phenotype correlations, and we discuss likely disease relevant genes for each of these deletion clusters. Together, this expands knowledge on deletions on chromosome 12q which might facilitate patient counseling. Also, it illustrates that re-analysis of previously described microdeletions syndromes in the next generation sequencing era can be useful to delineate genotype-phenotype correlations and identify disease relevant genes in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Melysia T McCalman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Thomas P Bossuyt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Chen H, Guan Q, Guo H, Miao L, Zhuo Z. The Genetic Changes of Hepatoblastoma. Front Oncol 2021; 11:690641. [PMID: 34367972 PMCID: PMC8335155 DOI: 10.3389/fonc.2021.690641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However, no precise exposures or genetic events are reported to hepatoblastoma occurrence. During the past decade, significant advances have been made in the understanding of etiology leading to hepatoblastoma, and several important genetic events that appear to be important for the development and progression of this tumor have been identified. Advances in our understanding of the genetic changes that underlie hepatoblastoma may translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have been generally applied in the research of etiology's exploration, disease treatment, and prognosis assessment. Here, we reviewed and discussed the molecular epidemiology, especially SNPs progresses in hepatoblastoma, to provide references for future studies and promote the study of hepatoblastoma's etiology.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Liu HH, Lee CH, Hsieh YC, Hsu DW, Cho EC. Multiple myeloma driving factor WHSC1 is a transcription target of oncogene HMGA2 that facilitates colon cancer proliferation and metastasis. Biochem Biophys Res Commun 2021; 567:183-189. [PMID: 34166916 DOI: 10.1016/j.bbrc.2021.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
Colon cancer is a common human cancer worldwide. The survival rate of late staged or metastatic colon cancer patients remains low even though the effectiveness of treatment in colon cancer has greatly improved. Research on tumorigenesis mechanisms and discovery of novel molecular target for treating colon cancer is critical. The promotion roles of WHSC1 in multiple myeloma have been demonstrated previously, yet, the regulation of WHSC1 in other cancers is largely unknown, especially in colon cancer. Here, in this study, we analyzed and identified WHSC1 while studying the genetic regulations of HMGA2 in colon cancer cells by microarray analysis, and investigated the HMGA2-WHSC1 interaction. We then applied CRISPR technology to establish stable WHSC1 knockout cells, to address the functional regulation of WHSC1 in colon cancer. In summary, our results for the first time identified the HMGA2-WHSC1 interaction in colon cancer. Moreover, we discovered that WHSC1 promotes cancer proliferation, facilitates resistance of chemotherapy agent, and promotes metastatic capacity of colon cancer.
Collapse
Affiliation(s)
- Hou-Hsien Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Applied Molecular Epidemiology, School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shenjhong Road, Yanchao District, Kaohsiung 82444, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
37
|
Prater M, Hamilton RS, Wa Yung H, Sharkey AM, Robson P, Abd Hamid NE, Jauniaux E, Charnock-Jones DS, Burton GJ, Cindrova-Davies T. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol Open 2021; 10:268993. [PMID: 34100896 PMCID: PMC8214423 DOI: 10.1242/bio.058222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment.
Collapse
Affiliation(s)
- Malwina Prater
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Andrew M Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Paul Robson
- The Jackson Laboratory, The JAX Center for Genetics of Fertility and Reproduction, 10 Discovery Drive, Farmington, CT 06032, USA.,Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Eric Jauniaux
- Department of Obstetrics and Gynaecology, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, UK
| | - D Stephen Charnock-Jones
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, CB2 0SW, UK.,National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
38
|
Matsubara K, Matsubara Y, Uchikura Y, Takagi K, Yano A, Sugiyama T. HMGA1 Is a Potential Driver of Preeclampsia Pathogenesis by Interference with Extravillous Trophoblasts Invasion. Biomolecules 2021; 11:biom11060822. [PMID: 34072941 PMCID: PMC8227282 DOI: 10.3390/biom11060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia (PE) is a serious disease that can be fatal for the mother and fetus. The two-stage theory has been proposed as its cause, with the first stage comprising poor placentation associated with the failure of fertilized egg implantation. Successful implantation and placentation require maternal immunotolerance of the fertilized egg as a semi-allograft and appropriate extravillous trophoblast (EVT) invasion of the decidua and myometrium. The disturbance of EVT invasion during implantation in PE results in impaired spiral artery remodeling. PE is thought to be caused by hypoxia during remodeling failure-derived poor placentation, which results in chronic inflammation. High-mobility group protein A (HMGA) is involved in the growth and invasion of cancer cells and likely in the growth and invasion of trophoblasts. Its mechanism of action is associated with immunotolerance. Thus, HMGA is thought to play a pivotal role in successful pregnancy, and its dysfunction may be related to the pathogenesis of PE. The evaluation of HMGA function and its changes in PE might confirm that it is a reliable biomarker of PE and provide prospects for PE treatment through the induction of EVT proliferation and invasion during the implantation.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Graduate School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan
- Correspondence:
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Katsuko Takagi
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Akiko Yano
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Ehime University, Ehime, Toon-shi 791-0295, Shitsukawa, Japan; (Y.M.); (Y.U.); (K.T.); (A.Y.); (T.S.)
| |
Collapse
|
39
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
40
|
Wu Z, Bortoluzzi C, Derks MFL, Liu L, Bosse M, Hiemstra SJ, Groenen MAM, Crooijmans RPMA. Heterogeneity of a dwarf phenotype in Dutch traditional chicken breeds revealed by genomic analyses. Evol Appl 2021; 14:1095-1108. [PMID: 33897823 PMCID: PMC8061282 DOI: 10.1111/eva.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
The growth of animals is a complex trait, in chicken resulting in a diverse variety of forms, caused by a heterogeneous genetic basis. Bantam chicken, known as an exquisite form of dwarfism, has been used for crossbreeding to create corresponding dwarf counterparts for native fowls in the Dutch populations. Here, we demonstrate the heterogeneity of the bantam trait in Dutch chickens and reveal the underlying genetic causes, using whole-genome sequence data from matching pairs of bantam and normal-sized breeds. During the bantam-oriented crossbreeding, various bantam origins were used to introduce the bantam phenotype, and three major bantam sources were identified and clustered. The genome-wide association studies revealed multiple genetic variants and genes associated with bantam phenotype, including HMGA2 and PRDM16, genes involved in body growth and stature. The comparison of associated variants among studies illustrated differences related to divergent bantam origins, suggesting a clear heterogeneity among bantam breeds. We show that in neo-bantam breeds, the bantam-related regions underwent a strong haplotype introgression from the bantam source, outcompeting haplotypes from the normal-sized counterpart. The bantam heterogeneity is further confirmed by the presence of multiple haplotypes comprising associated alleles, which suggests the selection of the bantam phenotype is likely subject to a convergent direction across populations. Our study demonstrates that the diverse history of human-mediated crossbreeding has contributed to the complexity and heterogeneity of the bantam phenotype.
Collapse
Affiliation(s)
- Zhou Wu
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Chiara Bortoluzzi
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Martijn F. L. Derks
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Langqing Liu
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | - Sipke Joost Hiemstra
- Centre for Genetic Resources, the Netherlands (CGN) of Wageningen University & ResearchWageningenThe Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and GenomicsWageningenThe Netherlands
| | | |
Collapse
|
41
|
Zhang X, Deng HW, Shen H, Ehrlich M. Prioritization of Osteoporosis-Associated Genome-wide Association Study (GWAS) Single-Nucleotide Polymorphisms (SNPs) Using Epigenomics and Transcriptomics. JBMR Plus 2021; 5:e10481. [PMID: 33977200 PMCID: PMC8101624 DOI: 10.1002/jbm4.10481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic risk factors for osteoporosis, a prevalent disease associated with aging, have been examined in many genome-wide association studies (GWASs). A major challenge is to prioritize transcription-regulatory GWAS-derived variants that are likely to be functional. Given the critical role of epigenetics in gene regulation, we have used an unusual epigenetics-based and transcription-based approach to identify some of the credible regulatory single-nucleotide polymorphisms (SNPs) relevant to osteoporosis from 38 reported bone mineral density (BMD) GWASs. Using Roadmap databases, we prioritized SNPs based upon their overlap with strong enhancer or promoter chromatin preferentially in osteoblasts relative to 12 heterologous cell culture types. We also required that these SNPs overlap open chromatin (Deoxyribonuclease I [DNaseI]-hypersensitive sites) and DNA sequences predicted to bind to osteoblast-relevant transcription factors in an allele-specific manner. From >50,000 GWAS-derived SNPs, we identified 14 novel and credible regulatory SNPs (Tier-1 SNPs) for osteoporosis risk. Their associated genes, BICC1, LGR4, DAAM2, NPR3, or HMGA2, are involved in osteoblastogenesis or bone homeostasis and regulate cell signaling or enhancer function. Four of these genes are preferentially expressed in osteoblasts. BICC1, LGR4, and DAAM2 play important roles in canonical Wnt signaling, a pathway critical for bone formation and repair. The transcription factors predicted to bind to the Tier-1 SNP-containing DNA sequences also have bone-related functions. We present evidence that some of the Tier-1 SNPs exert their effects on BMD risk indirectly through little-studied long noncoding RNA (lncRNA) genes, which may, in turn, control the nearby bone-related protein-encoding gene. Our study illustrates a method to identify novel BMD-related causal regulatory SNPs for future study and to prioritize candidate regulatory GWAS-derived SNPs, in general. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA.,Tulane Cancer Center and Hayward Genetics Center Tulane University New Orleans LA USA
| |
Collapse
|
42
|
Ahmed SS, Lim JCT, Thike AA, Iqbal J, Tan PH. Epithelial-mesenchymal transition and cancer stem cell interactions in breast phyllodes tumours: immunohistochemical evaluation of EZH2, EZR, HMGA2, CD24 and CD44 in correlation with outcome analysis. J Clin Pathol 2021; 75:316-323. [PMID: 33627375 DOI: 10.1136/jclinpath-2020-207068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 01/23/2021] [Indexed: 11/04/2022]
Abstract
AIM Phyllodes tumours (PTs) categorised as benign, borderline and malignant, account for 1% of all breast tumours. Histological assessment does not always predict tumour behaviour, hindering determination of the clinical course and management.Epithelial-mesenchymal transition (EMT) is an important process during embryogenesis. Dysregulation of EMT causes loss of cell polarity, decreased intercellular adhesion, increased motility and invasiveness, promoting tumour progression. Similarly, cancer stem cells (CSCs) promote tumour growth, resistance and recurrence. The aim of this study is to evaluate expression of CSC markers; enhancer of zeste homolog 2 (EZH2), CD24 and CD44 and EMT associated proteins; ezrin (EZR) and high-mobility group AT-hook 2 (HMGA2) in PTs. METHOD Uing tissue microarray sections, immunohistochemistry was performed on 360 PTs. Epithelial and stromal expressions of EZH2, EZR, HMGA2, CD24 and CD44 were evaluated to assess their impact on disease progression and behaviour in correlation with clinicopathological parameters. RESULTS Stromal expression of EZH2, EZR and HMGA2 was observed in 73 (20.3%), 53 (14.7%) and 28 (7.8%) of tumours, epithelial expression in 121 (35.9%), 3 (0.8%) and 351 (97.5%) tumours, respectively. CD24 and CD44 staining was absent in both components. CONCLUSION Expression of biomarkers correlated significantly with aggressive tumour traits such as stromal hypercellularity, atypia, mitoses and permeative tumour borders.Stromal expression of EZH2 and EZR shortened disease-free survival and overall survival; HMGA2 expression did not alter patient survival. EZH2 and EZR may thus be useful in predicting PT behaviour.
Collapse
Affiliation(s)
| | | | - Aye Aye Thike
- Anatomical Pathology, Singapore General Hospital, Division of Pathology, Singapore
| | - Jabed Iqbal
- Anatomical Pathology, Singapore General Hospital, Division of Pathology, Singapore
| | - Puay Hoon Tan
- Pathology, Singapore General Hospital, Division of Pathology, Singapore
| |
Collapse
|
43
|
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The Roles of mitochondrial dysfunction and Reactive Oxygen Species in Aging and Senescence. Curr Mol Med 2021; 22:37-49. [PMID: 33602082 DOI: 10.2174/1566524021666210218112616] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran. Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand. Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
44
|
Positioning of nucleosomes containing γ-H2AX precedes active DNA demethylation and transcription initiation. Nat Commun 2021; 12:1072. [PMID: 33594057 PMCID: PMC7886895 DOI: 10.1038/s41467-021-21227-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023] Open
Abstract
In addition to nucleosomes, chromatin contains non-histone chromatin-associated proteins, of which the high-mobility group proteins are the most abundant. Chromatin-mediated regulation of transcription involves DNA methylation and histone modifications. However, the order of events and the precise function of high-mobility group proteins during transcription initiation remain unclear. Here we show that high-mobility group AT-hook 2 protein (HMGA2) induces DNA nicks at the transcription start site, which are required by the histone chaperone FACT complex to incorporate nucleosomes containing the histone variant H2A.X. Further, phosphorylation of H2A.X at S139 (γ-H2AX) is required for repair-mediated DNA demethylation and transcription activation. The relevance of these findings is demonstrated within the context of TGFB1 signaling and idiopathic pulmonary fibrosis, suggesting therapies against this lethal disease. Our data support the concept that chromatin opening during transcriptional initiation involves intermediates with DNA breaks that subsequently require DNA repair mechanisms to ensure genome integrity. The order of DNA methylation and histone modifications during transcription remained unclear. Here the authors show that HMGA2 induces DNA nicks at TGFB1-responsive genes, promoting nucleosome incorporation containing γ-H2AX, which is required for repair-mediated DNA demethylation and transcription.
Collapse
|
45
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
46
|
Wei T, Liu H, Chu B, Blasco P, Liu Z, Tian R, Li DX, Li X. Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chem Biol 2021; 28:722-732.e8. [PMID: 33545070 DOI: 10.1016/j.chembiol.2021.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
As a typical member of intrinsically disordered proteins (IDPs), HMGA1a carries many post-translational modifications (PTMs). To study the undefined function of acidic tail phosphorylations, seven HMGA1a proteins with site-specific modification(s) were chemically synthesized via Ser/Thr ligation. We found that the phosphorylations significantly inhibit HMGA1a-P53 interaction and the phosphorylations can induce conformational change of HMGA1a from an "open state" to a "close state." Notably, the positively charged lysine-arginine (KR) clusters are responsible for modulating HMGA1a conformation via electrostatic interaction with the phosphorylated acidic tail. Finally, we used a synthetic protein-affinity purification mass spectrometry (SP-AP-MS) methodology to profile the specific interactors, which further supported the function of HMGA1a phosphorylation. Collectively, this study highlights a mechanism for regulating IDPs' conformation and function by phosphorylation of non-protein-binding domain and showcases that the protein chemical synthesis in combination with mass spectrometry can serve as an efficient tool to study the IDPs' PTMs.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Bizhu Chu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Pilar Blasco
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, P. R. China
| | - David Xiang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
47
|
Su L, Bryan N, Battista S, Freitas J, Garabedian A, D'Alessio F, Romano M, Falanga F, Fusco A, Kos L, Chambers J, Fernandez-Lima F, Chapagain PP, Vasile S, Smith L, Leng F. Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Sci Rep 2020; 10:18850. [PMID: 33139812 PMCID: PMC7606612 DOI: 10.1038/s41598-020-75890-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.
Collapse
Affiliation(s)
- Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Nadezda Bryan
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Sabrina Battista
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via Pansini 5, 80131, Naples, Italy
| | - Juliano Freitas
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alyssa Garabedian
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Federica D'Alessio
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Miriam Romano
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Fabiana Falanga
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Alfredo Fusco
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jeremy Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem P Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Layton Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
48
|
Cheng J, Zhuo Z, Yang L, Zhao P, Zhang J, Zhou H, He J, Li P. HMGA2 gene polymorphisms and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biotechnol Appl Biochem 2020; 67:939-945. [PMID: 31746066 DOI: 10.1002/bab.1857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023]
Abstract
Wilms tumor is a kidney malignancy that typically occurs in children. Aberrant expression of HMGA2 gene is commonly seen in many malignant tumors. Yet, HMGA2 gene polymorphisms on Wilms tumor risk are not established. We carried out the first four-center case-control study with 355 patients and 1,070 controls to assess the association of HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C, and rs968697 T>C) with Wilms tumor risk. All of these three polymorphisms in single could not impact Wilms tumor risk. Stratified analysis revealed a contributing Wilms tumor risk role of rs968697 TC/CC in subgroup of male (TC/CC vs. TT: adjusted odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.03-2.08, P = 0.035). However, we found that presence of 1-3 protective genotypes were less likely to develop tumor in subgroup of female (adjusted OR = 0.69, 95% CI = 0.48-0.99, P = 0.045). Our findings suggest that HMGA2 gene polymorphisms might influence Wilms tumor predisposition in a weak manner, under certain circumstances.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liu Yang
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Ha W, Hinde A, Xie L, Trager MH, Liu L. Biomarker function of HMGA2 in ultraviolet-induced skin cancer development. Exp Dermatol 2020; 29:1021-1026. [PMID: 32780494 DOI: 10.1111/exd.14174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
The high mobility group AT-hook 2 (HMGA2) gene encodes a transcription factor that is expressed during embryonic development but down-regulated in adult tissues. Its re-expression in adult tissues is often associated with tumorigenesis. In this study, we found that HMGA2 is highly expressed in human cutaneous squamous cell carcinoma (SCC) cell lines and primary SCC tumors, but not in adjacent normal skin. In non-ultraviolet (UV)-irradiated mouse skin, baseline Hmga2 expression was detected in the epidermis but not in hair follicles. Following chronic UV exposure, we found activation of Hmga2 in hair follicles. UV-induced mouse skin SCC tumors displayed a ubiquitous increase in Hmga2 expression compared to non-tumor-bearing adjacent skin. In human SCC cells, decreased HMGA2 expression was linked with reduced cell proliferation following depletion of FOXM1 and TRIP13, two UV master regulator genes. Taken together, these findings highlight an important biomarker function of HMGA2 expression in UV-induced skin tumorigenesis and cell proliferation.
Collapse
Affiliation(s)
- Wootae Ha
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Amanda Hinde
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lillian Xie
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Megan H Trager
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.,Department of Dermatology, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Takahashi T, Kawaji H, Murakawa Y, Hayashizaki Y, Murakami T, Yabushita Y, Homma Y, Kumamoto T, Matsuyama R, Endo I. Significance of HMGA2 expression as independent poor prognostic marker in perihilar and distal cholangiocarcinoma resected with curative intent. Eur J Surg Oncol 2020; 47:394-400. [PMID: 32878723 DOI: 10.1016/j.ejso.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma requires invasive surgery and is associated with poor prognosis; thus, a prognostic biomarker is highly needed. Extrahepatic cholangiocarcinoma is sub-classified into two types based on their location, namely perihilar and distal. Perihilar cholangiocarcinoma requires lobectomy as curative surgical resection, whereas the distal requires pancreatoduodenectomy. HMGA2 overexpression is reported to correlate with progression, aggressiveness, dissemination and poor prognosis in several types of cancers. Although its association with extrahepatic cholangiocarcinoma has been reported, none of the previous studies assessed its significance in each subtype. METHODS We assessed the expression of HMGA2 protein in surgical specimens after curative intent surgery in 80 patients including 41 with perihilar cholangiocarcinoma and 39 with distal cholangiocarcinoma by immunohistochemistry. We then examined its association with clinicopathological findings and patient survival outcomes. RESULTS We found that HMGA2 was expressed in 51% (21 of 41) of perihilar cholangiocarcinoma and 41% (16 of 39) of distal cholangiocarcinoma samples. In perihilar cholangiocarcinoma, we found significant correlations between expression and vascular invasion and perineural invasion. In distal cholangiocarcinoma, we found that protein levels correlated with tumor grade. Univariate and multivariate analyses demonstrated that HMGA2 expression was an independent poor prognostic factor for patients with both subtypes of disease. CONCLUSIONS Our results revealed that HMGA2 expression as an independent prognostic marker for both perihilar and distal cholangiocarcinoma that were resected with curative intent.
Collapse
Affiliation(s)
- Tomoaki Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan; RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan; RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; RIKEN-HMC Clinical Omics Unit, RIKEN Baton Zone Program, Yokohama, Japan
| | | | - Takashi Murakami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takafumi Kumamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|