1
|
Espinosa-Vinals C, Holubova J, Stanek O, Osicka R, Masin J, Arellano Herencia FE, Sebo P. Intranasal application of a bifunctional pertactin-RTX fusion antigen elicits protection of mouse airway mucosa against Bordetella pertussis colonization. mSphere 2025:e0095924. [PMID: 40162794 DOI: 10.1128/msphere.00959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
The adenylate cyclase toxin (ACT, AC-Hly, or CyaA) plays a key role in airway infections by Bordetella pertussis and ablates the oxidative burst and opsonophagocytic capacity of sentinel phagocytes. CyaA fragments eliciting toxin-neutralizing antibodies are considered prime antigen candidates for improved acellular pertussis (aP) vaccines but their contribution to aP-mediated protection against B. pertussis infection awaits demonstration. We explored whether hybrid antigens inducing simultaneously CyaA-neutralizing and anti-Prn opsonizing antibody responses can enhance aP-elicited protection of mouse airways from infection. Fusion to the N-terminus of an RTX908 antigen derived from CyaA enabled an accelerated folding of the pertactin passenger domain (rPrn) in function of calcium loading of the RTX908 moiety and conferred on the rPrn-RTX908 fusion antigen a superior capacity to induce functional anti-Prn IgG antibodies. The rPrn-RTX908 fusion antigen also elicited CyaA neutralizing anti-RTX antibodies that relieved the toxin-imposed inhibition of oxidative burst and opsonophagocytic uptake of B. pertussis bacteria by HL-60 cells exposed to physiological concentrations of the CyaA toxin. Intranasal immunization of mice with the rPrn-RTX908 antigen admixed into a PT and FHA-based aP vaccine elicited specific sIgA responses in mucosal secretions (saliva) and conferred a significantly enhanced protection of mouse lung and nose mucosa against B. pertussis infection, yielding a significantly accelerated clearance of bacteria from the infected lungs within a single day from infection. These results demonstrate the added value of anti-CyaA antibodies elicited by intranasal application of the rPrn-RTX908 fusion antigen in the protection of the airway against B. pertussis infection. IMPORTANCE Despite high vaccine coverage, unexpectedly massive whooping cough outbreaks are currently resurging in the most developed countries using the acellular pertussis (aP) vaccine. Accelerated development of improved aP vaccines, conferring a more complete and longer-lasting protection of the airway from Bordetella pertussis infection, is sorely needed. The highly immunosuppressive RTX adenylate cyclase toxin (CyaA) was proposed as a prime antigen candidate for inclusion into improved aP vaccines. We show here that a soluble RTX-derived antigen fused to the major opsonizing antibody target pertactin (rPrn-RTX908 hybrid) elicits opsonizing and toxin-neutralizing antibody responses that relieve the CyaA-imposed block of bactericidal opsonophagocytic uptake capacities of sentinel phagocytes. Intranasal immunization with the rPrn-RTX908 hybrid antigen then enables a significantly accelerated clearance of B. pertussis bacteria from mouse lungs and superior protection of mouse nasal mucosa from bacterial infection. These results unravel the added value of RTX antigen inclusion into the next generation of aP vaccines.
Collapse
Affiliation(s)
- Carlos Espinosa-Vinals
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Holubova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radim Osicka
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Masin
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Fresia Esther Arellano Herencia
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Adewunmi Y, Doering J, Kumar P, Pablo JV, Teng AA, Huynh V, Secrist K, Volkin DB, Joshi SB, Campo JJ, Mantis NJ. Antibody signatures elicited by potent and subpotent whole-cell pertussis vaccines in mice. Microbiol Spectr 2025:e0325324. [PMID: 40130856 DOI: 10.1128/spectrum.03253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 03/26/2025] Open
Abstract
Inactivated, whole-cell pertussis (wP) vaccines remain at the frontline in the global fight against the resurgence of whooping cough, especially in low- and middle-income countries. However, the reliance on the intracerebral mouse potency test (ic-MPT or Kendrick assay) as the standard batch release assay is extremely burdensome for commercial wP vaccine production. The ic-MPT is technically challenging, labor intensive, and incongruous with modern animal welfare guidelines. Replacing the ic-MPT with a whole-cell Bordetella pertussis enzyme-linked immunosorbent assay, the so-called pertussis serology potency test, has shown promise but has been difficult to implement in practice. In this report, we tested the hypothesis that potent and subpotent wP vaccines have distinct serological profiles in mice that could be developed as a substitute for the ic-MPT. We established an accelerated decay (thermal stress) protocol in which wP, in the context of diphtheria-tetanus-whole-cell pertussis, was rendered >10-fold less effective than unstressed vaccine when evaluated in a mouse model of B. pertussis lung clearance following intranasal challenge. We then screened immune sera on a limited B. pertussis Tahoma I proteome array and identified >30 antigens whose antibody reactivity profiles either increased, decreased, or were unchanged as a function of wP potency. Moreover, virtually all the "indicator" antigens identified are known virulence factors or reactive with human convalescent sera, thereby establishing a potential link between wP potency and pertussis infection and immunity. These results support the development of a limited B. pertussis antigen array as a stability-indicating surrogate potency assay for the ic-MPT. IMPORTANCE Whooping cough (pertussis) is a highly contagious respiratory disease caused by the Gram-negative bacterium, Bordetella pertussis. Globally, tens of millions of whole-cell pertussis (wP) vaccines are administered annually. Whole-cell pertussis vaccines are logistically complex to manufacture and get to market because of the need for each batch of vaccine to be evaluated in a highly laborious and challenging potency test known as the Kendrick assay, which involves mouse intracerebral challenges with B. pertussis. In this report, we describe efforts to develop a serology-based substitute for the Kendrick assay that relies on profiling antibody responses to wP vaccines.
Collapse
Affiliation(s)
- Yetunde Adewunmi
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | | | - Andy A Teng
- Antigen Discovery, Inc., Irvine, California, USA
| | - Vu Huynh
- Antigen Discovery, Inc., Irvine, California, USA
| | - Kathryn Secrist
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | | | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
3
|
Liu S, Su T, Xia X, Zhou ZH. Native DGC structure rationalizes muscular dystrophy-causing mutations. Nature 2025; 637:1261-1271. [PMID: 39663457 PMCID: PMC11936492 DOI: 10.1038/s41586-024-08324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality1,2. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC)3-9. The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive. Here we determined the native cryo-electron microscopy structure of rabbit DGC and conducted biochemical analyses to reveal its intricate molecular configuration. An unexpected β-helix comprising β-, γ- and δ-sarcoglycan forms an extracellular platform that interacts with α-dystroglycan, β-dystroglycan and α-sarcoglycan, allowing α-dystroglycan to contact the extracellular matrix. In the membrane, sarcospan anchors β-dystroglycan to the β-, γ- and δ-sarcoglycan trimer, while in the cytoplasm, β-dystroglycan's juxtamembrane fragment binds dystrophin's ZZ domain. Through these interactions, the DGC links laminin 2 to intracellular actin. Additionally, dystrophin's WW domain, along with its EF-hand 1 domain, interacts with α-dystrobrevin. A disease-causing mutation mapping to the WW domain weakens this interaction, as confirmed by deletion of the WW domain in biochemical assays. Our findings rationalize more than 110 mutations affecting single residues associated with various muscular dystrophy subtypes and contribute to ongoing therapeutic developments, including protein restoration, upregulation of compensatory genes and gene replacement.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiantian Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Luan Q, Clark PL. Discovery of an on-pathway protein folding intermediate illuminates the kinetic competition between folding and misfolding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628475. [PMID: 39868219 PMCID: PMC11761020 DOI: 10.1101/2024.12.14.628475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape. Previously, we reported extremely slow folding rates for the 539 aa β-helical passenger domain of pertactin (P.69T), including conditions that favor the formation of a kinetically trapped, off-pathway partially folded state (PFS). The existence of an on-pathway intermediate for P.69T folding was speculated but its characterization remained elusive. In this work, we exploited the extremely slow kinetics of PFS unfolding to develop a double-jump "denaturant challenge" assay. With this assay, we identified a transient unfolding intermediate, PFS*, that adopts a similar structure to PFS, including C-terminal folded structure and a disordered N-terminus, yet unfolds much more quickly than PFS. Additional experiments revealed that PFS* also functions as an on-pathway intermediate for P.69T folding. Collectively, these results support a two-step, C-to-N-terminal model for P.69T folding: folding initiates in the C-terminus with the rate-limiting formation of the transient on-pathway PFS* intermediate, which sits at the junction of the kinetic competition between folding and misfolding. Notably, processive folding from C-to-N-terminus also occurs during C-to-N-terminal translocation of P.69T across the bacterial outer membrane. These results illuminate the crucial role of kinetics when navigating a complex energy landscape for protein folding.
Collapse
Affiliation(s)
- Qing Luan
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
5
|
Zhou X, Hu Z, Ji X. Synthesis of Adhesive Polyrotaxanes Through Sequential Self-Assembly via Supramolecular Interactions and Dynamic Covalent Interactions. Chemistry 2024; 30:e202402156. [PMID: 39140795 DOI: 10.1002/chem.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Self-assembly is an effective approach to construct complicated structures. Polyrotaxanes (PRs) as one of the typical polymer types with complex structure, own interlocked structures and dynamic components, in which it results in unique characteristics and functions. Currently, the synthesis of which involves covalent reactions to hinder the development of polyrotaxanes. Herein, we employed supramolecular interactions as well as dynamic covalent bonds to synthesize PRs by sequential self-assembly. First, we prepared M1 possessing two diamine structures and M2 of a bisammonium salt with two dibenzylammonium (DBA) units modified by two stoppers at its ends, then M1 and M2 self-assembled into supramolecular polymers stemming from hydrogen bonding of [N+-H ⋅ ⋅ ⋅ O] under high concentrations. After adding 2,6-pyridinedicarboxaldehyde (M3), the imine bond formation enabled the generation of macrocycles, transforming supramolecular polymers into PRs. Besides, the solution of polyrotaxanes was applied as the adhesive for diverse hard and soft materials. This strategy provides an important approach for synthesizing PRs, accelerating the advances of mechanically interlocked polymers.
Collapse
Affiliation(s)
- Xiaohe Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| | - Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 43007, China
| |
Collapse
|
6
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Burnim AA, Dufault-Thompson K, Jiang X. The three-sided right-handed β-helix is a versatile fold for glycan interactions. Glycobiology 2024; 34:cwae037. [PMID: 38767844 PMCID: PMC11129586 DOI: 10.1093/glycob/cwae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Collapse
Affiliation(s)
- Audrey A Burnim
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| |
Collapse
|
8
|
Xing Y, Clark JR, Chang JD, Zulk JJ, Chirman DM, Piedra FA, Vaughan EE, Hernandez Santos HJ, Patras KA, Maresso AW. Progress toward a vaccine for extraintestinal pathogenic E. coli (ExPEC) II: efficacy of a toxin-autotransporter dual antigen approach. Infect Immun 2024; 92:e0044023. [PMID: 38591882 PMCID: PMC11075464 DOI: 10.1128/iai.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Haroldo J. Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Pang YT, Hazel AJ, Gumbart JC. Uncovering the folding mechanism of pertactin: A comparative study of isolated and vectorial folding. Biophys J 2023; 122:2988-2995. [PMID: 36960532 PMCID: PMC10398254 DOI: 10.1016/j.bpj.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Autotransporters are a large family of virulence factors found in Gram-negative bacteria that play important roles in their pathogenesis. The passenger domain of autotransporters is almost always composed of a large β-helix, with only a small portion of it being relevant to its virulence function. This has led to the hypothesis that the folding of the β-helical structure aids the secretion of the passenger domain across the Gram-negative outer membrane. In this study, we used molecular dynamics simulations and enhanced sampling methods to investigate the stability and folding of the passenger domain of pertactin, an autotransporter from Bordetella pertussis. Specifically, we employed steered molecular dynamics to simulate the unfolding of the entire passenger domain as well as self-learning adaptive umbrella sampling to compare the energetics of folding rungs of the β-helix independently ("isolated folding") versus folding rungs on top of a previously folded rung ("vectorial folding"). Our results showed that vectorial folding is highly favorable compared with isolated folding; moreover, our simulations showed that the C-terminal rung of the β-helix is the most resistant to unfolding, in agreement with previous studies that found the C-terminal half of the passenger domain to be more stable than the N-terminal one. Overall, this study provides new insights into the folding process of an autotransporter passenger domain and its potential role in secretion across the outer membrane.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Anthony J Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA.
| |
Collapse
|
10
|
Reichhardt C. The Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Has Similarities to Other Fibrillar Adhesin Proteins. J Bacteriol 2023; 205:e0001923. [PMID: 37098957 PMCID: PMC10210978 DOI: 10.1128/jb.00019-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The ability of bacteria to adhere to each other and both biotic and abiotic surfaces is key to biofilm formation, and one way that bacteria adhere is using fibrillar adhesins. Fibrillar adhesins share several key characteristics, including (i) they are extracellular, surface-associated proteins, (ii) they contain an adhesive domain as well as a repetitive stalk domain, and (iii) they are either a monomer or homotrimer (i.e., identical, coiled-coil) of a high molecular weight protein. Pseudomonas aeruginosa uses the fibrillar adhesin called CdrA to promote bacterial aggregation and biofilm formation. Here, the current literature on CdrA is reviewed, including its transcriptional and posttranslational regulation by the second messenger c-di-GMP as well as what is known about its structure and ability to interact with other molecules. I highlight its similarities to other fibrillar adhesins and discuss open questions that remain to be answered toward a better understanding of CdrA.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Hor L, Pilapitiya A, McKenna JA, Panjikar S, Anderson MA, Desvaux M, Paxman JJ, Heras B. Crystal structure of a subtilisin-like autotransporter passenger domain reveals insights into its cytotoxic function. Nat Commun 2023; 14:1163. [PMID: 36859523 PMCID: PMC9977779 DOI: 10.1038/s41467-023-36719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Autotransporters (ATs) are a large family of bacterial secreted and outer membrane proteins that encompass a wide range of enzymatic activities frequently associated with pathogenic phenotypes. We present the structural and functional characterisation of a subtilase autotransporter, Ssp, from the opportunistic pathogen Serratia marcescens. Although the structures of subtilases have been well documented, this subtilisin-like protein is associated with a 248 residue β-helix and itself includes three finger-like protrusions around its active site involved in substrate interactions. We further reveal that the activity of the subtilase AT is required for entry into epithelial cells as well as causing cellular toxicity. The Ssp structure not only provides details about the subtilase ATs, but also reveals a common framework and function to more distantly related ATs. As such these findings also represent a significant step forward toward understanding the molecular mechanisms underlying the functional divergence in the large AT superfamily.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - James A McKenna
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia
| | - Mickaël Desvaux
- INRAE, Université Clermont Auvergne, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
12
|
Development of an In Vitro Test Method to Replace an Animal-Based Potency Test for Pertactin Antigen in Multivalent Vaccines. Vaccines (Basel) 2023; 11:vaccines11020275. [PMID: 36851153 PMCID: PMC9965796 DOI: 10.3390/vaccines11020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
There is increasing interest to replace animal-based potency assays used routinely to test vaccines, since they are highly variable, are costly, and present ethical concerns. The development of relevant in vitro assays is part of the solution. Using pertactin (PRN) antigen as an example in DTaP-IPV (diphtheria, tetanus, acellular pertussis, and inactivated poliovirus) vaccines, a PRN antigenicity ELISA was developed using two monoclonal antibodies with a high affinity to unique PRN epitopes, relevance to human immune responses, and evidence of functionality. The ELISA measured consistent PRN antigenicity between the vaccine lots and was validated to demonstrate its accuracy, precision, linearity, and specificity. Notably, the PRN antigenicity ELISA was more sensitive than the mouse-based potency test and could more effectively differentiate between degraded and intact vaccine lots compared to the in vivo test. From these studies, the PRN antigenicity ELISA is proposed as an in vitro replacement for the in vivo potency test for PRN in DTaP-IPV-based formulations. Important considerations in this study included comprehensive antibody characterization, testing of multiple vaccine lots, method validation, and comparison to animal-based potency. Together, these factors form part of an overall strategy that ensures reliable and relevant in vitro assays are developed to replace animal tests.
Collapse
|
13
|
Felice AG, Santos LNQ, Kolossowski I, Zen FL, Alves LG, Rodrigues TCV, Prado LCS, Jaiswal AK, Tiwari S, Miranda FM, Ramos RTJ, Azevedo V, Oliveira CJF, Benevides LJ, Soares SC. Comparative genomics of Bordetella pertussis and prediction of new vaccines and drug targets. J Biomol Struct Dyn 2022; 40:10136-10152. [PMID: 34155952 DOI: 10.1080/07391102.2021.1940279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrei G Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leonardo N Q Santos
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ian Kolossowski
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Felipe L Zen
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro G Alves
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís C V Rodrigues
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ligia C S Prado
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fábio M Miranda
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rommel T J Ramos
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlo J F Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro J Benevides
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
14
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
15
|
Vo JL, Ortiz GCM, Totsika M, Lo AW, Hancock SJ, Whitten AE, Hor L, Peters KM, Ageorges V, Caccia N, Desvaux M, Schembri MA, Paxman JJ, Heras B. Variation of Antigen 43 self-association modulates bacterial compacting within aggregates and biofilms. NPJ Biofilms Microbiomes 2022; 8:20. [PMID: 35396507 PMCID: PMC8993888 DOI: 10.1038/s41522-022-00284-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure–function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gabriela C Martínez Ortiz
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, QLD, 4006, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Valentin Ageorges
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Silva RP, DiVenere AM, Amengor D, Maynard JA. Antibodies binding diverse pertactin epitopes protect mice from B. pertussis infection. J Biol Chem 2022; 298:101715. [PMID: 35151691 PMCID: PMC8931430 DOI: 10.1016/j.jbc.2022.101715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin's role in infection and understand the impact of antipertactin antibodies on bacterial fitness.
Collapse
|
17
|
Zhu S, Liuni P, Chen T, Houy C, Wilson DJ, James DA. Epitope screening using Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS): An accelerated workflow for evaluation of lead monoclonal antibodies. Biotechnol J 2021; 17:e2100358. [PMID: 34747565 DOI: 10.1002/biot.202100358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Epitope mapping is an increasingly important aspect of biotherapeutic and vaccine development. Recent advances in therapeutic antibody design and production have enabled candidate mAbs to be identified at a rapidly increasing rate, resulting in a significant bottleneck in the characterization of "structural" epitopes, that are challenging to determine using existing high throughput epitope mapping tools. Here, a Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) epitope screening workflow was introduced that is well suited for accelerated characterization of epitopes with a common antigen. MAIN METHODS AND MAJOR RESULTS The method is demonstrated on set of six candidate mAbs targeting Pertactin (PRN). Using this approach, five of the six epitopes were unambiguously determined using two HDX mixing timepoints in 24 h total run time, which is equivalent to the instrument time required to map a single epitope using the conventional workflow. CONCLUSION An accelerated HDX-MS epitope screening workflow was developed. The "screening" workflow successfully characterized five (out of six attempted) novel epitopes on the PRN antigen; information that can be used to support vaccine antigenicity assays.
Collapse
Affiliation(s)
- Shaolong Zhu
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Peter Liuni
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Tricia Chen
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Camille Houy
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Derek J Wilson
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - D Andrew James
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
19
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
20
|
Ma L, Caulfield A, Dewan KK, Harvill ET. Pertactin-Deficient Bordetella pertussis, Vaccine-Driven Evolution, and Reemergence of Pertussis. Emerg Infect Dis 2021; 27:1561-1566. [PMID: 34014152 PMCID: PMC8153889 DOI: 10.3201/eid2706.203850] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent reemergence of pertussis (whooping cough) in highly vaccinated populations and rapid expansion of Bordetella pertussis strains lacking pertactin (PRN), a common acellular vaccine antigen, have raised the specter of vaccine-driven evolution and potential return of what was once the major killer of children. The discovery that most circulating B. pertussis strains in the United States have acquired new and independent disruptive mutations in PRN is compelling evidence of strong selective pressure. However, the other 4 antigens included in acellular vaccines do not appear to be selected against so rapidly. We consider 3 aspects of PRN that distinguish it from other vaccine antigens, which might, individually or collectively, explain why only this antigen is being precipitously eliminated. An understanding of the increase in PRN-deficient strains should provide useful information for the current search for new protective antigens and provide broader lessons for the design of improved subunit vaccines.
Collapse
|
21
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
22
|
Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front Cell Infect Microbiol 2021; 11:607610. [PMID: 33987105 PMCID: PMC8111173 DOI: 10.3389/fcimb.2021.607610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Adhesion to host cells is a key step for successful infection of many bacterial pathogens and may define tropism to different host tissues. To do so, bacteria display adhesins on their surfaces. Brucella is an intracellular pathogen capable of proliferating in a wide variety of cell types. It has been described that BmaC, a large protein that belongs to the classical (type Va) autotransporter family, is required for efficient adhesion of Brucella suis strain 1330 to epithelial cells and fibronectin. Here we show that B. suis 1330 harbors two other type Va autotransporters (BmaA and BmaB), which, although much smaller, share significant sequence similarities with BmaC and contain the essential domains to mediate proper protein translocation to the bacterial surface. Gain and loss of function studies indicated that BmaA, BmaB, and BmaC contribute, to a greater or lesser degree, to adhesion of B. suis 1330 to different cells such as synovial fibroblasts, osteoblasts, trophoblasts, and polarized epithelial cells as well as to extracellular matrix components. It was previously shown that BmaC localizes to a single bacterial pole. Interestingly, we observed here that, similar to BmaC, the BmaB adhesin is localized mostly at a single cell pole, reinforcing the hypothesis that Brucella displays an adhesive pole. Although Brucella species have strikingly similar genomes, they clearly differ in their host preferences. Mainly, the differences identified between species appear to be at loci encoding surface proteins. A careful in silico analysis of the putative type Va autotransporter orthologues from several Brucella strains showed that the bmaB locus from Brucella abortus and both, the bmaA and bmaC loci from Brucella melitensis are pseudogenes in all strains analyzed. Results reported here evidence that all three autotransporters play a role in the adhesion properties of B. suis 1330. However, Brucella spp. exhibit extensive variations in the repertoire of functional adhesins of the classical autotransporter family that can be displayed on the bacterial surface, making them an interesting target for future studies on host preference and tropism.
Collapse
Affiliation(s)
- Magalí G Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Mariana C Ferrero
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Diana M Posadas
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina
| | - Pablo C Baldi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Duprez J, Kalbfleisch K, Deshmukh S, Payne J, Haer M, Williams W, Durowoju I, Kirkitadze M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput Struct Biotechnol J 2020; 19:439-447. [PMID: 33489011 PMCID: PMC7804342 DOI: 10.1016/j.csbj.2020.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The goal of this study was to characterize an acellular pertussis vaccine (Tdap) containing genetically modified pertussis toxin (gdPT) and TLR agonist adsorbed to AlOOH adjuvant. METHODS Several analytical tools including nanoDSF, FTIR, and LD were used to examine the conformation of novel gdPT and the composition of AlOOH adjuvant formulations adsorbed to pertussis vaccine. RESULTS DLS particle size results were 9.3 nm and 320 nm for gdPT. For pertussis toxoid (PT), the DLS particle size results were larger at ~440 nm. After adsorption to AlOOH, which was driven by the protein antigen, the size distribution ranged from 3.5 to 22 µm. Two thermal transitions were observed by DSC for gdPT at 70 °C and 102 °C. The main thermal transition was confirmed to be at 72 °C by nanoDSF. All three vaccine formulations showed one thermal transition: Tdap-AlOOH had a thermal transition of 74.6 °C, Tdap-E6020-AlOOH had a thermal transition at 74.2 °C, and Tdap-CpG-AlOOH had a thermal transition at 77.0 °C. Analysis of pertussis toxin (PTx) and gdPT was also performed by FTIR spectroscopy for the purpose of comparison. The second derivative of the FTIR spectra showed an additional feature for PTx at 1685 cm-1 compared to gdPT. The antigen's amide I and II regions were largely unchanged after adsorption to AlOOH adjuvant as shown by FTIR, suggesting that there were no significant changes in the secondary structure. CONCLUSION gdPT conformation was successfully characterized using an array of analytical methods. All three Tdap formulations have similar thermal stability as shown by nanoDSF, similar size distribution as shown by LD, and similar overall secondary structure as shown by FTIR. In-line particle sizing and IR can be used as in-process characterization tools to monitor consistency of adsorbed vaccine and to confirm product identity.
Collapse
Affiliation(s)
- Jessica Duprez
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Kristen Kalbfleisch
- Department of Physiology & Pharmacology, and Paediatrics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Sasmit Deshmukh
- SGS Canada, Biopharmaceutical Services, 6490 Vipond Drive, Mississauga, Ontario, Canada
| | - Jessie Payne
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Manjit Haer
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Wayne Williams
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Ibrahim Durowoju
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Marina Kirkitadze
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Umatheva U, Sweeting B, Sauvaget L, Rosa ND, Riley J, Tamer M, Ghosh R. Purification of bacterial virulence factor pertactin using high affinity ligands. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Xie R, Shao N, Zheng J. Integrated Co-functional Network Analysis on the Resistance and Virulence Features in Acinetobacter baumannii. Front Microbiol 2020; 11:598380. [PMID: 33224132 PMCID: PMC7667040 DOI: 10.3389/fmicb.2020.598380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is one of the most troublesome bacterial pathogens that pose major public health threats due to its rapidly increasing drug resistance property. It is not only derived from clinic setting but also emerges from aquaculture as a fish pathogen, which could pass the resistant genes in the food chain. Understanding the mechanism of antibiotic resistance development and pathogenesis will aid our battle with the infections caused by A. baumannii. In this study, we constructed a co-functional network by integrating multiple sources of data from A. baumannii and then used the k-shell decomposition to analyze the co-functional network. We found that genes involving in basic cellular physiological function, including genes for antibiotic resistance, tended to have high k-shell values and locate in the internal layer of our network. In contrast, the non-essential genes, such as genes associated with virulence, tended to have lower k-shell values and locate in the external layer. This finding allows us to fish out the potential antibiotic resistance factors and virulence factors. In addition, we constructed an online platform ABviresDB (https://acba.shinyapps.io/ABviresDB/) for visualization of the network and features of each gene in A. baumannii. The network analysis in this study will not only aid the study on A. baumannii but also could be referenced for the research of antibiotic resistance and pathogenesis in other bacteria.
Collapse
Affiliation(s)
- Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Ningyi Shao
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| |
Collapse
|
26
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
27
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
The virulence domain of Shigella IcsA contains a subregion with specific host cell adhesion function. PLoS One 2020; 15:e0227425. [PMID: 31910229 PMCID: PMC6946128 DOI: 10.1371/journal.pone.0227425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella species cause bacillary dysentery, especially among young individuals. Shigellae target the human colon for invasion; however, the initial adhesion mechanism is poorly understood. The Shigella surface protein IcsA, in addition to its role in actin-based motility, acts as a host cell adhesin through unknown mechanism(s). Here we confirmed the role of IcsA in cell adhesion and defined the region required for IcsA adhesin activity. Purified IcsA passenger domain was able block S. flexneri adherence and was also used as a molecular probe that recognised multiple components from host cells. The region within IcsA's functional passenger domain (aa 138-148) was identified by mutagenesis. Upon the deletion of this region, the purified IcsAΔ138-148 was found to no longer block S. flexneri adherence and had reduced ability to interact with host molecules. Furthermore, S. flexneri expressing IcsAΔ138-148 was found to be significantly defective in both cell adherence and invasion. Taken together, our data identify an adherence region within the IcsA functional domain and provides useful information for designing therapeutics for Shigella infection.
Collapse
|
29
|
Sequential Translocation of Polypeptides across the Bacterial Outer Membrane through the Trimeric Autotransporter Pathway. mBio 2019; 10:mBio.01973-19. [PMID: 31641085 PMCID: PMC6805991 DOI: 10.1128/mbio.01973-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four β strands to a single 12-stranded β barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the β barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.
Collapse
|
30
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Paxman JJ, Lo AW, Sullivan MJ, Panjikar S, Kuiper M, Whitten AE, Wang G, Luan CH, Moriel DG, Tan L, Peters KM, Phan MD, Gee CL, Ulett GC, Schembri MA, Heras B. Unique structural features of a bacterial autotransporter adhesin suggest mechanisms for interaction with host macromolecules. Nat Commun 2019; 10:1967. [PMID: 31036849 PMCID: PMC6488583 DOI: 10.1038/s41467-019-09814-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core β-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter β-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.
Collapse
Affiliation(s)
- Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Santosh Panjikar
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, 3800, VIC, Australia
| | - Michael Kuiper
- Molecular & Materials Modelling group Data61, CSIRO, Docklands, Melbourne, 8012, VIC, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, 2234, NSW, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, 60208, IL, USA
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Christine L Gee
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia.
| |
Collapse
|
32
|
Abstract
In vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection. Bordetella pertussis causes the disease whooping cough through coordinated control of virulence factors by the Bordetella virulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describe in vitro gene expression profiles of B. pertussis and other pathogens. In previous studies, we have analyzed the in vitro gene expression profiles of B. pertussis, and we hypothesize that the infection transcriptome profile in vivo is significantly different from that under laboratory growth conditions. To study the infection transcriptome of B. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing the in vitro and in vivo gene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical for B. pertussis survival in vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile of B. pertussis during infection, and this method will facilitate efforts to understand how this pathogen causes infection. IMPORTANCEIn vitro growth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” of B. pertussis in the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.
Collapse
|
33
|
Abstract
Type V, or "autotransporter," secretion is a term used to refer to several simple protein export pathways that are found in a wide range of Gram-negative bacteria. Autotransporters are generally single polypeptides that consist of an extracellular ("passenger") domain and a β barrel domain that anchors the protein to the outer membrane (OM). Although it was originally proposed that the passenger domain is secreted through a channel formed solely by the covalently linked β barrel domain, experiments performed primarily on the type Va, or "classical," autotransporter pathway have challenged this hypothesis. Several lines of evidence strongly suggest that both the secretion of the passenger domain and the membrane integration of the β barrel domain are catalyzed by the barrel assembly machinery (Bam) complex, a conserved hetero-oligomer that plays an essential role in the assembly of most integral OM proteins. The secretion reaction appears to be driven at least in part by the folding of the passenger domain in the extracellular space. Although many aspects of autotransporter biogenesis remain to be elucidated, it will be especially interesting to determine whether the different classes of proteins that fall under the type V rubric-most of which have not been examined in detail-are assembled by the same basic mechanism as classical autotransporters.
Collapse
Affiliation(s)
- Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
34
|
Kalbfleisch K, Deshmukh S, Mei C, Ore M, Williams W, Durowoju I, Duprez J, Morin S, Carpick B, Kirkitadze M. Identity, Structure and Compositional Analysis of Aluminum Phosphate Adsorbed Pediatric Quadrivalent and Pentavalent Vaccines. Comput Struct Biotechnol J 2018; 17:14-20. [PMID: 30581540 PMCID: PMC6297905 DOI: 10.1016/j.csbj.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
PURPOSE The goal of this study is to set an empirical baseline to map the structure-function relation of the antigens from the commercialized vaccine products. METHODS To study the structural changes of protein antigens after adsorption several analytical tools including DLS, FTIR, Fluorescence, LD, and SEM have been used. RESULTS All antigens have shown wide range of hydrodynamic diameter from 7 nm to 182 nm. Upon adjuvantation, the size distribution has become narrow, ranging from 10 to 12 μm, and has been driven by the derived diameter of aluminum phosphate (AlPO4) adjuvant. Further to examine size and morphology of adsorbed antigens, SEM has been used. The SEM results have demonstrated that the AlPO4 adjuvant suspension and adsorbed proteins consist of submicron particles that form a continuous porous surface. Diphtheria Toxoid (DT), Tetanus Toxoid (TT), and chemically-modified Filamentous Haemagglutinin (FHA) have shown surface adsorption to AlPO4. Secondary structure alpha-helix and beta-sheet content of DT and TT has increased after adsorption to AlPO4 adjuvant as shown by FTIR, whereas no significant changes were noted for other protein antigens. The results from Intrinsic Fluorescence have shown a structural rearrangement in DT and TT, consistent with the FTIR results. Multivalent vaccine product identity has been determined by FTIR as unique fingerprint spectrum. CONCLUSION The globular proteins such as DT and TT have shown changes in secondary structure upon adsorption to AlPO4, whereas fibrillar protein FHA has not been affected by adsorption. FTIR can be used as a lean technique to confirm product identity at different manufacturing sites.
Collapse
Affiliation(s)
- Kristen Kalbfleisch
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Sasmit Deshmukh
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
- SGS Canada, Biopharmaceutical Services, 6490 Vipond Drive, Mississauga, Ontario, Canada
| | - Carmen Mei
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Moriam Ore
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Wayne Williams
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Ibrahim Durowoju
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Jessica Duprez
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Sylvie Morin
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Bruce Carpick
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Marina Kirkitadze
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| |
Collapse
|
35
|
van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application. FEMS Microbiol Lett 2018; 365:5061625. [DOI: 10.1093/femsle/fny165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Katinka M Zinner
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Abera Bioscience AB, SE-111 45 Stockholm, Sweden
| |
Collapse
|
36
|
Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. J Mol Biol 2018; 430:3631-3641. [PMID: 30017921 DOI: 10.1016/j.jmb.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of "functional amyloids" expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.
Collapse
|
37
|
Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor. Emerg Microbes Infect 2018; 7:39. [PMID: 29559630 PMCID: PMC5861065 DOI: 10.1038/s41426-018-0039-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates. Knowledge on the effect that Prn deficiency has on infection and immunity to B. pertussis is crucial for the development of new strategies to control this disease. Here, we characterized the effect of Prn production by B. pertussis on human and murine dendritic cell (DC) maturation as well as in a murine model for pertussis infection. We incubated human monocyte-derived DCs (moDCs) with multiple isogenic Prn knockout (Prn-KO) and corresponding parental B. pertussis strains constructed either in laboratory reference strains with a Tohama I background or in a recently circulating clinical isolate. Results indicate that, compared to the parental strains, Prn-KO strains induced an increased production of pro-inflammatory cytokines by moDCs. This pro-inflammatory phenotype was also observed upon stimulation of murine bone marrow-derived DCs. Moreover, RNA sequencing analysis of lungs from mice infected with B. pertussis Prn-KO revealed increased expression of genes involved in cell death. These in vitro and in vivo findings indicate that B. pertussis strains which do not produce Prn induce a stronger pro-inflammatory response and increased cell death upon infection, suggesting immunomodulatory properties for Prn.
Collapse
|
38
|
Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706-E2715. [PMID: 29507249 PMCID: PMC5866549 DOI: 10.1073/pnas.1715016115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.
Collapse
|
39
|
Roterman I, Banach M, Konieczny L. Propagation of Fibrillar Structural Forms in Proteins Stopped by Naturally Occurring Short Polypeptide Chain Fragments. Pharmaceuticals (Basel) 2017; 10:E89. [PMID: 29144442 PMCID: PMC5748646 DOI: 10.3390/ph10040089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amyloids characterized by unbounded growth of fibrillar structures cause many pathological processes. Such unbounded propagation is due to the presence of a propagating hydrophobicity field around the fibril's main axis, preventing its closure (unlike in globular proteins). Interestingly, similar fragments, commonly referred to as solenoids, are present in many naturally occurring proteins, where their propagation is arrested by suitably located "stopper" fragments. In this work, we analyze the distribution of hydrophobicity in solenoids and in their corresponding "stoppers" from the point of view of the fuzzy oil drop model (called FOD in this paper). This model characterizes the unique linear propagation of local hydrophobicity in the solenoid fragment and allows us to pinpoint "stopper" sequences, where local hydrophobicity quite closely resembles conditions encountered in globular proteins. Consequently, such fragments perform their function by mediating entropically advantageous contact with the water environment. We discuss examples of amyloid-like structures in solenoids, with particular attention to "stop" segments present in properly folded proteins found in living organisms.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, 31-034 Krakow, Poland.
| |
Collapse
|
40
|
Li Z, Zhang C, Zhang Y, Liu Y, Li X, Ma G, Luo J, Su Z. Prevention of aggregate formation through mechanism analysis in refolding of recombinant pertactin from Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Outer Membrane Protein OmpB Methylation May Mediate Bacterial Virulence. Trends Biochem Sci 2017; 42:936-945. [PMID: 29037863 DOI: 10.1016/j.tibs.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Methylation of outer membrane proteins (OMPs) has been implicated in bacterial virulence. Lysine methylation in rickettsial OmpB is correlated with rickettsial virulence, and N- and O-methylations are also observed in virulence-relevant OMPs from several pathogenic bacteria that cause typhus, leptospirosis, tuberculosis, and anaplasmosis. We summarize recent findings on the structure of methylated OmpB, biochemical characterization, and crystal structures of OmpB methyltransferases. Native rickettsial OmpB purified from highly virulent strains contains multiple clusters of trimethyllysine, in contrast with mostly monomethyllysine, and no trimethyllysine is found in an avirulent strain. Crystal structure of the methyltransferases reveals mechanistic insights for catalysis, and a working model is discussed for this unusual post-translational modification.
Collapse
|
42
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
43
|
Application of the Fuzzy Oil Drop Model Describes Amyloid as a Ribbonlike Micelle. ENTROPY 2017. [DOI: 10.3390/e19040167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Leupold S, Büsing P, Mas PJ, Hart DJ, Scrima A. Structural insights into the architecture of the Shigella flexneri virulence factor IcsA/VirG and motifs involved in polar distribution and secretion. J Struct Biol 2017; 198:19-27. [PMID: 28268178 DOI: 10.1016/j.jsb.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
IcsA/VirG is a key virulence factor of the human pathogen Shigella flexneri, acting as both an adhesin and actin-polymerizing factor during infection. We identified a soluble expression construct of the IcsA/VirG α-domain using the ESPRIT library screening system and determined its structure to 1.9Å resolution. In addition to the previously characterized autochaperone domain, our structure reveals a new domain, which shares a common fold with the autochaperone domains of various autotransporters. We further provide insight into the previously structurally uncharacterized β-helix domain that harbors the polar targeting motif and passenger-associated transport repeat. This structure is the first of any member of the recently identified passenger-associated transport repeat-containing autotransporters. Thus, it provides new insights into the overall architecture of this class of autotransporters, the function of the identified additional autochaperone domain and the structural properties of motifs involved in polar targeting and secretion of the Shigella flexneri virulence factor IcsA/VirG.
Collapse
Affiliation(s)
- Stefan Leupold
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Petra Büsing
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Philippe J Mas
- European Molecular Biology Laboratory Grenoble Outstation and Unit of Virus Host-Cell Interactions, University Grenoble Alpes-CNRS-EMBL, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Darren J Hart
- European Molecular Biology Laboratory Grenoble Outstation and Unit of Virus Host-Cell Interactions, University Grenoble Alpes-CNRS-EMBL, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Andrea Scrima
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
45
|
Kessler J, Yamamoto S, Bouř P. Establishing the link between fibril formation and Raman optical activity spectra of insulin. Phys Chem Chem Phys 2017; 19:13614-13621. [DOI: 10.1039/c7cp01556a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular dynamics and density functional simulations are used to explain changes in Raman optical activity accompanying the formation of insulin fibrils.
Collapse
Affiliation(s)
- Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Physical and Macromolecular Chemistry
| | - Shigeki Yamamoto
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| |
Collapse
|
46
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
47
|
Itoh T, Hibi T, Suzuki F, Sugimoto I, Fujiwara A, Inaka K, Tanaka H, Ohta K, Fujii Y, Taketo A, Kimoto H. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery. PLoS One 2016; 11:e0167310. [PMID: 27907169 PMCID: PMC5132251 DOI: 10.1371/journal.pone.0167310] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/13/2016] [Indexed: 12/03/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus sp. str. FPU-7 effectively hydrolyzes chitin by using a number of chitinases. A unique chitinase with two catalytic domains, ChiW, is expressed on the cell surface of this bacterium and has high activity towards various chitins, even crystalline chitin. Here, the crystal structure of ChiW at 2.1 Å resolution is presented and describes how the enzyme degrades chitin on the bacterial cell surface. The crystal structure revealed a unique multi-modular architecture composed of six domains to function efficiently on the cell surface: a right-handed β-helix domain (carbohydrate-binding module family 54, CBM-54), a Gly-Ser-rich loop, 1st immunoglobulin-like (Ig-like) fold domain, 1st β/α-barrel catalytic domain (glycoside hydrolase family 18, GH-18), 2nd Ig-like fold domain and 2nd β/α-barrel catalytic domain (GH-18). The structure of the CBM-54, flexibly linked to the catalytic region of ChiW, is described here for the first time. It is similar to those of carbohydrate lyases but displayed no detectable carbohydrate degradation activities. The CBM-54 of ChiW bound to cell wall polysaccharides, such as chin, chitosan, β-1,3-glucan, xylan and cellulose. The structural and biochemical data obtained here also indicated that the enzyme has deep and short active site clefts with endo-acting character. The affinity of CBM-54 towards cell wall polysaccharides and the degradation pattern of the catalytic domains may help to efficiently decompose the cell wall chitin through the contact surface. Furthermore, we clarify that other Gram-positive bacteria possess similar cell-surface-expressed multi-modular enzymes for cell wall polysaccharide degradation.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
- * E-mail: (TI); (HK)
| | - Takao Hibi
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Fumiko Suzuki
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Ikumi Sugimoto
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Akihiro Fujiwara
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Koji Inaka
- Maruwa Foods and Biosciences Inc., Yamatokoriyama, Nara, Japan
| | | | - Kazunori Ohta
- Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Yutaka Fujii
- Department of Molecular Biology and Chemistry, Faculty of Medicine, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Akira Taketo
- Department of Environmental and Biotechnological Frontier Engineering, Fukui University of Technology, Fukui, Fukui, Japan
| | - Hisashi Kimoto
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
- * E-mail: (TI); (HK)
| |
Collapse
|
48
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
49
|
Baclayon M, Ulsen PV, Mouhib H, Shabestari MH, Verzijden T, Abeln S, Roos WH, Wuite GJL. Mechanical Unfolding of an Autotransporter Passenger Protein Reveals the Secretion Starting Point and Processive Transport Intermediates. ACS NANO 2016; 10:5710-9. [PMID: 27219538 DOI: 10.1021/acsnano.5b07072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The backbone of secreted autotransporter passenger proteins generally attains a stable β-helical structure. The secretion of passengers across the outer membrane was proposed to be driven by sequential folding of this structure at the cell surface. This mechanism would require a relatively stable intermediate as starting point. Here, we investigated the mechanics of secreted truncated versions of the autotransporter hemoglobin protease (Hbp) of Escherichia coli using atomic force microscopy. The data obtained reveal a β-helical structure at the C terminus that is very stable. In addition, several other distinct metastable intermediates are found which are connected during unfolding by multiroute pathways. Computational analysis indicates that these intermediates correlate to the β-helical rungs in the Hbp structure which are clamped by stacked aromatic residues. Our results suggest a secretion mechanism that is initiated by a stable C-terminal structure and driven forward by several folding intermediates that build up the β-helical backbone.
Collapse
Affiliation(s)
- Marian Baclayon
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Peter van Ulsen
- Molecular Microbiology & Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Halima Mouhib
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
- Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany
| | - Maryam Hashemi Shabestari
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Timo Verzijden
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Sanne Abeln
- Computer Science & Bioinformatics, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Wouter H Roos
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen , 9712 CP Groningen, The Netherlands
| | - Gijs J L Wuite
- Physics of Living Systems & LaserLaB Amsterdam, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
50
|
Subdomain 2 of the Autotransporter Pet Is the Ligand Site for Recognizing the Pet Receptor on the Epithelial Cell Surface. Infect Immun 2016; 84:2012-2021. [PMID: 27113356 DOI: 10.1128/iai.01528-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/15/2016] [Indexed: 02/02/2023] Open
Abstract
Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed β-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent β-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed β-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin.
Collapse
|