1
|
Chen Q, Yang D, Chen M, Xiong J, Huang J, Ding W, Gao K, Lai B, Zheng L, Tang Z, Zhang M, Yan T, He Z. Smad4 and FoxH1 potentially interact to regulate cyp19a1a promoter in the ovary of ricefield eel (Monopterus albus). Biol Sex Differ 2024; 15:60. [PMID: 39080808 PMCID: PMC11290265 DOI: 10.1186/s13293-024-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-β signaling. Smad4 and FoxH1 are downstream effectors of TGF-β signaling and may play important roles in ovarian development in M. albus. METHODS We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays. RESULTS We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity. CONCLUSIONS This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-β signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.
Collapse
Affiliation(s)
- Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
4
|
He Z, Chen Q, Xiong J, Chen M, Gao K, Lai B, Ding W, Huang J, Zheng L, Pu Y, Tang Z, Zhang M, Yang D, Yan T. FoxH1 Represses the Promoter Activity of cyp19a1a in the Ricefield Eel ( Monopterus albus). Int J Mol Sci 2023; 24:13712. [PMID: 37762014 PMCID: PMC10531137 DOI: 10.3390/ijms241813712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| |
Collapse
|
5
|
Pluta R, Aragón E, Prescott NA, Ruiz L, Mees RA, Baginski B, Flood JR, Martin-Malpartida P, Massagué J, David Y, Macias MJ. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat Commun 2022; 13:7279. [PMID: 36435807 PMCID: PMC9701222 DOI: 10.1038/s41467-022-34925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Forkhead box H1 (FoxH1) is an essential maternal pioneer factor during embryonic development that binds to specific GG/GT-containing DNA target sequences. Here we have determined high-resolution structures of three FoxH1 proteins (from human, frog and fish species) and four DNAs to clarify the way in which FoxH1 binds to these sites. We found that the protein-DNA interactions extend to both the minor and major DNA grooves and are thus almost twice as extensive as those of other FOX family members. Moreover, we identified two specific amino acid changes in FoxH1 that allowed the recognition of GG/GT motifs. Consistent with the pioneer factor activity of FoxH1, we found that its affinity for nucleosomal DNA is even higher than for linear DNA fragments. The structures reported herein illustrate how FoxH1 binding to distinct DNA sites provides specificity and avoids cross-regulation by other FOX proteins that also operate during the maternal-zygotic transition and select canonical forkhead sites.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Nicholas A Prescott
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Rebeca A Mees
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Julia R Flood
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
6
|
Johnson K, Freedman S, Braun R, LaBonne C. Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions. BMC Genomics 2022; 23:723. [PMID: 36273135 PMCID: PMC9588240 DOI: 10.1186/s12864-022-08953-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND During embryogenesis, the developmental potential of initially pluripotent cells becomes progressively restricted as they transit to lineage restricted states. The pluripotent cells of Xenopus blastula-stage embryos are an ideal system in which to study cell state transitions during developmental decision-making, as gene expression dynamics can be followed at high temporal resolution. RESULTS Here we use transcriptomics to interrogate the process by which pluripotent cells transit to four different lineage-restricted states: neural progenitors, epidermis, endoderm and ventral mesoderm, providing quantitative insights into the dynamics of Waddington's landscape. Our findings provide novel insights into why the neural progenitor state is the default lineage state for pluripotent cells and uncover novel components of lineage-specific gene regulation. These data reveal an unexpected overlap in the transcriptional responses to BMP4/7 and Activin signaling and provide mechanistic insight into how the timing of signaling inputs such as BMP are temporally controlled to ensure correct lineage decisions. CONCLUSIONS Together these analyses provide quantitative insights into the logic and dynamics of developmental decision making in early embryos. They also provide valuable lineage-specific time series data following the acquisition of specific lineage states during development.
Collapse
Affiliation(s)
- Kristin Johnson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Simon Freedman
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
| | - Rosemary Braun
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
- Northwestern Institute On Complex Systems, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
7
|
Yoney A, Bai L, Brivanlou AH, Siggia ED. Mechanisms underlying WNT-mediated priming of human embryonic stem cells. Development 2022; 149:dev200335. [PMID: 35815787 PMCID: PMC9357376 DOI: 10.1242/dev.200335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/23/2022] [Indexed: 11/10/2023]
Abstract
Embryogenesis is guided by a limited set of signaling pathways dynamically expressed in different places. How a context-dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro models of human embryos that are derived from embryonic stem cells (hESCs). Our previous work demonstrated that during early stages of hESC differentiation, cells chronicle signaling hierarchy. Only cells that have been exposed (primed) by WNT signaling can respond to subsequent activin exposure and differentiate to mesendodermal (ME) fates. Here, we show that WNT priming does not alter SMAD2 binding nor its chromatin opening but, instead, acts by inducing the expression of the SMAD2 co-factor EOMES. Expression of EOMES is sufficient to replace WNT upstream of activin-mediated ME differentiation, thus unveiling the mechanistic basis for priming and cellular memory in early development.
Collapse
Affiliation(s)
- Anna Yoney
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Department of Physics, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ali H. Brivanlou
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Lee JH, Massagué J. TGF-β in Developmental and Fibrogenic EMTs. Semin Cancer Biol 2022; 86:136-145. [PMID: 36183999 PMCID: PMC10155902 DOI: 10.1016/j.semcancer.2022.09.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
TGF-β plays a prominent role as an inducer of epithelial-mesenchymal transitions (EMTs) during development and wound healing and in disease conditions such as fibrosis and cancer. During these processes EMT occurs together with changes in cell proliferation, differentiation, communication, and extracellular matrix remodeling that are orchestrated by multiple signaling inputs besides TGF-β. Chief among these inputs is RAS-MAPK signaling, which is frequently required for EMT induction by TGF-β. Recent work elucidated the molecular basis for the cooperation between the TGF-β-SMAD and RAS-MAPK pathways in the induction of EMT in embryonic, adult and carcinoma epithelial cells. These studies also provided direct mechanistic links between EMT and progenitor cell differentiation during gastrulation or intra-tumoral fibrosis during cancer metastasis. These insights illuminate the nature of TGF-β driven EMTs as part of broader processes during development, fibrogenesis and metastasis.
Collapse
Affiliation(s)
- Jun Ho Lee
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Coda DM, Patel H, Gori I, Gaarenstroom TE, Song OR, Howell M, Hill CS. A network of transcription factors governs the dynamics of NODAL/Activin transcriptional responses. J Cell Sci 2022; 135:jcs259972. [PMID: 35302162 PMCID: PMC9080556 DOI: 10.1242/jcs.259972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
SMAD2, an effector of the NODAL/Activin signalling pathway, regulates developmental processes by sensing distinct chromatin states and interacting with different transcriptional partners. However, the network of factors that controls SMAD2 chromatin binding and shapes its transcriptional programme over time is poorly characterised. Here, we combine ATAC-seq with computational footprinting to identify temporal changes in chromatin accessibility and transcription factor activity upon NODAL/Activin signalling. We show that SMAD2 binding induces chromatin opening genome wide. We discover footprints for FOXI3, FOXO3 and ZIC3 at the SMAD2-bound enhancers of the early response genes, Pmepa1 and Wnt3, respectively, and demonstrate their functionality. Finally, we determine a mechanism by which NODAL/Activin signalling induces delayed gene expression, by uncovering a self-enabling transcriptional cascade whereby activated SMADs, together with ZIC3, induce the expression of Wnt3. The resultant activated WNT pathway then acts together with the NODAL/Activin pathway to regulate expression of delayed target genes in prolonged NODAL/Activin signalling conditions. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Davide M. Coda
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tessa E. Gaarenstroom
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ok-Ryul Song
- High Throughput Screening Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Caroline S. Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
10
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
11
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Guglielmi L, Heliot C, Kumar S, Alexandrov Y, Gori I, Papaleonidopoulou F, Barrington C, East P, Economou AD, French PMW, McGinty J, Hill CS. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat Commun 2021; 12:6374. [PMID: 34737283 PMCID: PMC8569018 DOI: 10.1038/s41467-021-26486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.
Collapse
Affiliation(s)
- Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sunil Kumar
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yuriy Alexandrov
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul M W French
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - James McGinty
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
13
|
Tao W, Shi H, Yang J, Diakite H, Kocher TD, Wang D. Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia†. Biol Reprod 2021; 102:758-769. [PMID: 31837141 DOI: 10.1093/biolre/ioz225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/13/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Foxh1, a member of fox gene family, was first characterized as a transcriptional partner in the formation of the Smad protein complex. Recent studies have shown foxh1 is highly expressed in the cytoplasm of oocytes in both tilapia and mouse. However, its function in oogenesis remains unexplored. In the present study, foxh1-/- tilapia was created by CRISPR/Cas9. At 180 dah (days after hatching), the foxh1-/- XX fish showed oogenesis arrest and a significantly lower GSI. The transition of oocytes from phase II to phase III and follicle cells from one to two layers was blocked, resulting in infertility of the mutant. Transcriptomic analysis revealed that expression of genes involved in estrogen synthesis and oocyte growth were altered in the foxh1-/- ovaries. Loss of foxh1 resulted in significantly decreased Cyp19a1a and increased Cyp11b2 expression, consistent with significantly lower concentrations of serum estradiol-17β (E2) and higher concentrations of 11-ketotestosterone (11-KT). Moreover, administration of E2 rescued the phenotypes of foxh1-/- XX fish, as indicated by the appearance of phase III and IV oocytes and absence of Cyp11b2 expression. Taken together, these results suggest that foxh1 functions in the oocytes to regulate oogenesis by promoting cyp19a1a expression, and therefore estrogen production. Disruption of foxh1 may block the estrogen synthesis and oocyte growth, leading to the arrest of oogenesis and thus infertility in tilapia.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China and
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hamidou Diakite
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
de Oliveira Camargo R, Abual'anaz B, Rattan SG, Filomeno KL, Dixon IMC. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis. Wound Repair Regen 2021; 29:667-677. [PMID: 34076932 DOI: 10.1111/wrr.12947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Heart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFRα and are hypersecretory ECM components. These cells facilitate both acute wound healing (infarct site) and chronic cardiac fibrosis. Quiescent fibroblasts are associated with normal myocardial tissue and provide relatively slow turnover of the ECM. Deactivation of activated myofibroblasts is a much less studied phenomenon. In this context, SKI is a known negative regulator of TGFb1 /Smad signalling, and thus may share functional similarity to PPARγ activation. The discovery of SKI's potent anti-fibrotic role, and its ability to deactivate and/or myofibroblasts is featured and contrasted with PPARγ. While myofibroblasts are typically recruited from pools of potential precursor cells in a variety of organs, the importance of activation of resident cardiac fibroblasts has been recently emphasised. Myofibroblasts deposit ECM components at an elevated rate and contribute to both systolic and diastolic dysfunction with attendant cardiac fibrosis. A major knowledge gap exists as to specific proteins that may signal for fibroblast deactivation. As SKI may be a functionally pluripotent protein, we suggest that it serves as a scaffold to proteins other than R-Smads and associated Smad signal proteins, and thus its anti-fibrotic effects may extend beyond binding R-Smads. While cardiac fibrosis is causal to heart failure, the treatment of cardiac fibrosis is hampered by the lack of availability of effective pharmacological anti-fibrotic agents. The current review will provide an overview of work highlighting novel factors which cause fibroblast activation and deactivation to underscore putative therapeutic avenues for improving disease outcomes in cardiac patients with fibrosed hearts.
Collapse
Affiliation(s)
- Rebeca de Oliveira Camargo
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Besher Abual'anaz
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sunil G Rattan
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Krista L Filomeno
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada
| | - Ian M C Dixon
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
15
|
Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann Oncol 2020; 31:1336-1349. [PMID: 32710930 DOI: 10.1016/j.annonc.2020.07.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that plays a key role in both physiologic and pathologic conditions, including cancer. Importantly, TGFβ can exhibit both tumor-suppressive and oncogenic functions. In normal epithelial cells TGFβ acts as an antiproliferative and differentiating factor, whereas in advanced tumors TGFβ can act as an oncogenic factor by creating an immune-suppressive tumor microenvironment, and inducing cancer cell proliferation, angiogenesis, invasion, tumor progression, and metastatic spread. A wealth of preclinical findings have demonstrated that targeting TGFβ is a promising means of exerting antitumor activity. Based on this rationale, several classes of TGFβ inhibitors have been developed and tested in clinical trials, namely, monoclonal, neutralizing, and bifunctional antibodies; antisense oligonucleotides; TGFβ-related vaccines; and receptor kinase inhibitors. It is now >15 years since the first clinical trial testing an anti-TGFβ agent was engaged. Despite the promising preclinical studies, translation of the basic understanding of the TGFβ oncogenic response into the clinical setting has been slow and challenging. Here, we review the conclusions and status of all the completed and ongoing clinical trials that test compounds that inhibit the TGFβ pathway, and discuss the challenges that have arisen during their clinical development. With none of the TGFβ inhibitors evaluated in clinical trials approved for cancer therapy, clinical development for TGFβ blockade therapy is primarily oriented toward TGFβ inhibitor combinations. Immune checkpoint inhibitors are considered candidates, albeit with efficacy anticipated to be restricted to specific populations. In this context, we describe current efforts in the search for biomarkers for selecting the appropriate cancer patients who are likely to benefit from anti-TGFβ therapies. The knowledge accumulated during the last 15 years of clinical research in the context of the TGFβ pathway is crucial to design better, innovative, and more successful trials.
Collapse
Affiliation(s)
- D Ciardiello
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Department of Medicina di Precisione, Università degli studi della Campania, Luigi Vanvitelli, Naples, Italy
| | - E Elez
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J Tabernero
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain
| | - J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
16
|
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development. iScience 2020; 23:101314. [PMID: 32650116 PMCID: PMC7347983 DOI: 10.1016/j.isci.2020.101314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although Wnt/β-catenin signaling is generally conserved and well understood, the regulatory mechanisms controlling context-specific direct Wnt target gene expression in development and disease are still unclear. The onset of zygotic gene transcription in early embryogenesis represents an ideal, accessible experimental system to investigate context-specific direct Wnt target gene regulation. We combine transcriptomics using RNA-seq with genome-wide β-catenin association using ChIP-seq to identify stage-specific direct Wnt target genes. We propose coherent feedforward regulation involving two distinct classes of direct maternal Wnt target genes, which differ both in expression and persistence of β-catenin association. We discover that genomic β-catenin association overlaps with Foxh1-associated regulatory sequences and demonstrate that direct maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfβ signaling. Our results support a new paradigm for direct Wnt target gene co-regulation with context-specific mechanisms that will inform future studies of embryonic development and more widely stem cell-mediated homeostasis and human disease. Combining RNA-seq and β-catenin ChIP-seq identifies direct Wnt target genes Two distinct classes of direct maternal Wnt/β-catenin target genes can be discerned We propose coherent feedforward regulation of gene expression of the second class Maternal Wnt target gene expression of both classes requires Nodal/Foxh1 signaling
Collapse
|
17
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
18
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
19
|
Gentsch GE, Spruce T, Owens NDL, Smith JC. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat Commun 2019; 10:4269. [PMID: 31537794 PMCID: PMC6753111 DOI: 10.1038/s41467-019-12263-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Thomas Spruce
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, 75015, Paris, France
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
20
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1535] [Impact Index Per Article: 255.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
21
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
22
|
Osório L, Wu X, Wang L, Jiang Z, Neideck C, Sheng G, Zhou Z. ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development. J Cell Biol 2019; 218:2388-2402. [PMID: 31171630 PMCID: PMC6605798 DOI: 10.1083/jcb.201801081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/24/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isthmin1 (ISM1) was originally identified as a fibroblast group factor expressed in Xenopus laevis embryonic brain, but its biological functions remain unclear. The spatiotemporal distribution of ISM1, with high expression in the anterior primitive streak of the chick embryo and the anterior mesendoderm of the mouse embryo, suggested that ISM1 may regulate signaling by the NODAL subfamily of TGB-β cytokines that control embryo patterning. We report that ISM1 is an inhibitor of NODAL signaling. ISM1 has little effect on TGF-β1, ACTIVIN-A, or BMP4 signaling but specifically inhibits NODAL-induced phosphorylation of SMAD2. In line with this observation, ectopic ISM1 causes defective left-right asymmetry and abnormal heart positioning in chick embryos. Mechanistically, ISM1 interacts with NODAL ligand and type I receptor ACVR1B through its AMOP domain, which compromises the NODAL-ACVR1B interaction and down-regulates phosphorylation of SMAD2. Therefore, we identify ISM1 as an extracellular antagonist of NODAL and reveal a negative regulatory mechanism that provides greater plasticity for the fine-tuning of NODAL signaling.
Collapse
Affiliation(s)
- Liliana Osório
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Xuewei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Linsheng Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Carlos Neideck
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong .,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| |
Collapse
|
23
|
Herbs-Partitioned Moxibustion Combined with Acupuncture Inhibits TGF- β1-Smad-Snail-Induced Intestinal Epithelial Mesenchymal Transition in Crohn's Disease Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8320250. [PMID: 31275422 PMCID: PMC6582898 DOI: 10.1155/2019/8320250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/07/2019] [Indexed: 01/30/2023]
Abstract
Crohn's disease may cause excessive damage and repair in the intestinal epithelium due to its chronic relapsing intestinal inflammation. These factors may initiate the TGF-β 1-Smad pathway to activate the transcription factor of Snail, and the Snail-mediated pathway promotes the transformation of intestinal epithelial cells to mesenchymal cells, leading to intestinal fibrosis. Acupuncture and moxibustion have been demonstrated to prevent intestinal fibrosis in Crohn's disease. However, it is not clear whether acupuncture and moxibustion can inhibit intestinal epithelial mesenchymal transformation in Crohn's disease by affecting the TGF-β 1-Smad-Snail pathway. This study indicated that abnormal increased expressions of TGFβ1, TβR2, Smad3, and Snail were significantly downregulated by herbs-partitioned moxibustion at Tianshu (ST25) and Qihai (RN6) and acupuncture at Zusanli (ST36) and Shangjuxu (ST37). In addition, protein and mRNA levels of E-cadherin, the epithelial cell marker, were significantly increased. Protein and mRNA levels of fibronectin, the mesenchymal cell marker, were decreased in the intestinal tissue. Moreover, the number of mesenchymal cells in the intestinal mucosa can be reversely transformed to intestinal epithelial cells. Therefore, herbs-partitioned moxibustion combined with acupuncture can prevent intestinal epithelial mesenchymal transition by inhibiting abnormal expression of TGFβ1, TβR2, Smad3, and Snail in the TGF-β1-Smad-Snail pathway in Crohn's disease.
Collapse
|
24
|
Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B, Zuniga A, Krieglstein K, Wittbrodt J, Heermann S. TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol 2019; 8:rsob.170134. [PMID: 29593116 PMCID: PMC5881030 DOI: 10.1098/rsob.170134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor β2 (TGFβ2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFβ signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFβ ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFβ signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFβ is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFβ signalling or BMP antagonism is involved, as in fusion processes during orofacial development.
Collapse
Affiliation(s)
- Max D Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Juan L Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, Oviedo 33005, Spain
| | - Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Belal Rahhal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Aimee Zuniga
- Developmental Genetics, University of Basel Medical School, Basel CH-4058, Switzerland
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | | | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
25
|
Xu X, Wang L, Liu B, Xie W, Chen YG. Activin/Smad2 and Wnt/β-catenin up-regulate HAS2 and ALDH3A2 to facilitate mesendoderm differentiation of human embryonic stem cells. J Biol Chem 2018; 293:18444-18453. [PMID: 30282636 DOI: 10.1074/jbc.ra118.003688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activin and Wnt signaling are necessary and sufficient for mesendoderm (ME) differentiation of human embryonic stem cells (ESCs). In this study, we report that during ME differentiation induced by Activin and Wnt, Activin/Smad2 induces a decrease of the repressive histone modification of H3K27me3 by promoting the proteasome-dependent degradation of enhancer of zeste 2 polycomb (EZH2)-repressive complex 2 subunit. As a result, recruitment of the forkhead protein FOXH1 on open chromatin regions integrates the signals of Activin/Smad2 and Wnt/β-catenin to activate the expression of the ME genes including HAS2 and ALDH3A2 Consistently, H3K27me3 decrease is enriched on open chromatin around regulatory regions. Furthermore, knockdown of HAS2 or ALDH3A2 greatly attenuates ME differentiation. These findings unveil a pathway from extracellular signals to epigenetic modification-mediated gene activation during ME commitment.
Collapse
Affiliation(s)
- Xuanhao Xu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Lu Wang
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| | - Bofeng Liu
- the Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- the Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 and
| |
Collapse
|
26
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
27
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 575] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol 2018; 51:50-57. [PMID: 29153705 DOI: 10.1016/j.ceb.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Embryonic development is orchestrated by the activity of signal transduction pathways, amongst which are those downstream of the transforming growth factor β (TGF-β) family. Here I focus on signalling by one of these ligands, NODAL, which is essential for early embryonic axis patterning. I review recent advances in our understanding of how NODAL signalling is transduced from the plasma membrane to the nucleus to regulate the transcription of target genes, and how domains of NODAL activity are established and refined during embryonic development. The duration of signalling is emerging as a key determinant of the specificity of downstream responses in terms of cell fate decisions and I will discuss what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
29
|
Induction of Interferon Kappa in Human Papillomavirus 16 Infection by Transforming Growth Factor Beta-Induced Promoter Demethylation. J Virol 2018; 92:JVI.01714-17. [PMID: 29437968 DOI: 10.1128/jvi.01714-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Persistent high-risk human papillomavirus (HPV) infection is the major causal factor in cervical and other anogenital cancers. Because there are currently no therapeutics capable of preventing neoplastic progression of HPV infections, understanding the mechanisms of HPV-mediated persistence, including immune evasion, is a major research priority. The multifunctional growth factor transforming growth factor beta (TGFβ) has been shown to inhibit expression of early viral transcripts from cells harboring integrated HPV genomes or cells infected with retroviruses expressing HPV oncoproteins. However, the mechanism of TGFβ-induced inhibition has not been fully defined. In this study, we have observed a previously uncharacterized ability of TGFβ to repress the differentiation-induced upregulation of late HPV16 gene expression. In addition, interferon kappa (IFN-κ), a keratinocyte-specific, constitutively expressed cytokine suppressed by differentiation, can be transcriptionally induced by TGFβ1. TGFβ-mediated IFN-κ transcription only occurs in cells containing HPV16, and this is due to TGFβ1-mediated reversal of HPV-induced methylation of the IFN-κ promoter through active DNA demethylation mediated by thymine DNA glycosylase (TDG). This novel interaction between growth factor and innate immune signaling may shed light on the mechanisms of HPV persistence and how the virus manipulates both immune and growth factor signaling to promote its life cycle.IMPORTANCE Persistent infection by high-risk HPVs is the primary risk factor for development of HPV-induced cancers. Persistence involves viral evasion of the immune response, including the IFN response. HPV is also known to suppress TGFβ signaling, which inhibits viral gene expression. Here, we show that the TGFβ and IFN pathways are interrelated in the context of HPV16 infection through the upregulation of IFN-κ by TGFβ. The ability of TGFβ to induce IFN-κ promoter demethylation and transcriptional activation provides a new explanation for why HPV has evolved mechanisms to inhibit TGFβ in infected cells.
Collapse
|
30
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:68-73. [PMID: 29190317 DOI: 10.1093/abbs/gmx120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
TGF-β superfamily signaling pathways essentially contribute to the broad spectrum of early developmental events including embryonic patterning, cell fate determination and dynamic movements. In this review, we first introduced some key developmental processes that require TGF-β signaling to show the fundamental importance of these pathways. Then we discuss how their activities are regulated, and new findings about how the TGF-β superfamily ligands bind to the chromatin to regulate transcription during embryo development.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
32
|
Dickey TH, Pyle AM. The SMAD3 transcription factor binds complex RNA structures with high affinity. Nucleic Acids Res 2017; 45:11980-11988. [PMID: 29036649 PMCID: PMC5714123 DOI: 10.1093/nar/gkx846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
Several members of the SMAD family of transcription factors have been reported to bind RNA in addition to their canonical double-stranded DNA (dsDNA) ligand. RNA binding by SMAD has the potential to affect numerous cellular functions that involve RNA. However, the affinity and specificity of this RNA binding activity has not been well characterized, which limits the ability to validate and extrapolate functional implications of this activity. Here we perform quantitative binding experiments in vitro to determine the ligand requirements for RNA binding by SMAD3. We find that SMAD3 binds poorly to single- and double-stranded RNA, regardless of sequence. However, SMAD3 binds RNA with large internal loops or bulges with high apparent affinity. This apparent affinity matches that for its canonical dsDNA ligand, suggesting a biological role for RNA binding by SMAD3.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Martin-Malpartida P, Batet M, Kaczmarska Z, Freier R, Gomes T, Aragón E, Zou Y, Wang Q, Xi Q, Ruiz L, Vea A, Márquez JA, Massagué J, Macias MJ. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nat Commun 2017; 8:2070. [PMID: 29234012 PMCID: PMC5727232 DOI: 10.1038/s41467-017-02054-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022] Open
Abstract
Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways. Smad transcription factors are part of the TGF-β signal transduction pathways and are recruited to the genome by cell lineage-defining factors. Here, the authors identify specific Smad binding GC-rich motifs and provide structural information showing Smad3 and Smad4 bound to these motifs.
Collapse
Affiliation(s)
- Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marta Batet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Zuzanna Kaczmarska
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Regina Freier
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Center for the Science of Therapeutics, Broad Institute of MIT and Harvard , 415 Main St, Cambridge, MA, 02142, USA
| | - Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Qiaoran Xi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Angela Vea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
34
|
Dogra D, Ahuja S, Kim HT, Rasouli SJ, Stainier DYR, Reischauer S. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat Commun 2017; 8:1902. [PMID: 29196619 PMCID: PMC5711791 DOI: 10.1038/s41467-017-01950-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Zebrafish regenerate damaged myocardial tissue very effectively. Hence, insights into the molecular networks underlying zebrafish heart regeneration might help develop alternative strategies to restore human cardiac performance. While TGF-β signaling has been implicated in zebrafish cardiac regeneration, the role of its individual ligands remains unclear. Here, we report the opposing expression response during zebrafish heart regeneration of two genes, mstnb and inhbaa, which encode TGF-β family ligands. Using gain-of-function (GOF) and loss-of-function (LOF) approaches, we show that these ligands mediate inverse effects on cardiac regeneration and specifically on cardiomyocyte (CM) proliferation. Notably, we find that Inhbaa functions as a CM mitogen and that its overexpression leads to accelerated cardiac recovery and scar clearance after injury. In contrast, mstnb GOF and inhbaa LOF both lead to unresolved scarring after cardiac injury. We further show that Mstnb and Inhbaa inversely control Smad2 and Smad3 transcription factor activities through alternate Activin type 2 receptors.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Suchit Ahuja
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Hyun-Taek Kim
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - S Javad Rasouli
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, 94158, CA, USA.
| |
Collapse
|
35
|
Abstract
上皮间质转化(epithelialmesenchymal transition, EMT)是一个动态的、可逆的过程, 可以促进组织发育、伤口愈合以及恶性上皮肿瘤发生、侵袭和转移, 已成为当前研究的热点. Smads蛋白作为细胞内重要的信号转导蛋白, 直接参与转化生长因子-β1(transforming growth factor β1, TGF-β1)超家族中许多成员的信号转导, 发挥调节细胞增殖、分化、迁移、凋亡等多种生物学活动. 随着对Smads蛋白结构与功能的不断认识, 日渐发现由Smads参与的TGF-β1/Smads通路所介导的EMT与人类的某些疾病(器官组织纤维化、肥厚性疤痕以及癌症等)密切相关. 本文简要综述了Smads蛋白在TGF-β1/Smads通路介导EMT中的作用, 以期对Smads参与调控EMT有更进一步的认识.
Collapse
|
36
|
Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KWY. Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program. Dev Cell 2017; 40:595-607.e4. [PMID: 28325473 PMCID: PMC5434453 DOI: 10.1016/j.devcel.2017.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/24/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-β signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elmira Forouzmand
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Jessica Cheung
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Xiaohui Xie
- Department of Computer Science, Donald Bren School of Information & Computer Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
37
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Coda DM, Gaarenstroom T, East P, Patel H, Miller DSJ, Lobley A, Matthews N, Stewart A, Hill CS. Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling. eLife 2017; 6:e22474. [PMID: 28191871 PMCID: PMC5305219 DOI: 10.7554/elife.22474] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 01/13/2023] Open
Abstract
NODAL/Activin signaling orchestrates key processes during embryonic development via SMAD2. How SMAD2 activates programs of gene expression that are modulated over time however, is not known. Here we delineate the sequence of events that occur from SMAD2 binding to transcriptional activation, and the mechanisms underlying them. NODAL/Activin signaling induces dramatic chromatin landscape changes, and a dynamic transcriptional network regulated by SMAD2, acting via multiple mechanisms. Crucially we have discovered two modes of SMAD2 binding. SMAD2 can bind pre-acetylated nucleosome-depleted sites. However, it also binds to unacetylated, closed chromatin, independently of pioneer factors, where it induces nucleosome displacement and histone acetylation. For a subset of genes, this requires SMARCA4. We find that long term modulation of the transcriptional responses requires continued NODAL/Activin signaling. Thus SMAD2 binding does not linearly equate with transcriptional kinetics, and our data suggest that SMAD2 recruits multiple co-factors during sustained signaling to shape the downstream transcriptional program.
Collapse
Affiliation(s)
- Davide M Coda
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tessa Gaarenstroom
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Lobley
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
39
|
Abstract
The transforming growth factor-β (TGF-β) family of ligands elicit their biological effects by initiating new programs of gene expression. The best understood signal transducers for these ligands are the SMADs, which essentially act as transcription factors that are activated in the cytoplasm and then accumulate in the nucleus in response to ligand induction where they bind to enhancer/promoter sequences in the regulatory regions of target genes to either activate or repress transcription. This review focuses on the mechanisms whereby the SMADs achieve this and the functional implications. The SMAD complexes have weak affinity for DNA and limited specificity and, thus, they cooperate with other site-specific transcription factors that act either to actively recruit the SMAD complexes or to stabilize their DNA binding. In some situations, these cooperating transcription factors function to integrate the signals from TGF-β family ligands with environmental cues or with information about cell lineage. Activated SMAD complexes regulate transcription via remodeling of the chromatin template. Consistent with this, they recruit a variety of coactivators and corepressors to the chromatin, which either directly or indirectly modify histones and/or modulate chromatin structure.
Collapse
Affiliation(s)
- Caroline S Hill
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
40
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
41
|
Wang G, Liu L, Guo S, Zhang C. Expression and distribution of forkhead activin signal transducer 2 (FAST2) during follicle development in mouse ovaries and pre-implantation embryos. Acta Histochem 2016; 118:632-639. [PMID: 27432806 DOI: 10.1016/j.acthis.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Xenopus forkhead activin signal transducer 1 (xFAST 1) was first characterized in Xenopus as the transcriptional partner for Smad proteins. FAST2, which is the xFAST 1 homologues in mouse, is expressed during early developmental stages of the organism. However, the function of FAST2 in mouse ovaries and pre-implantation embryos is unclear. Therefore, we investigated its expression during these processes. In postnatal mice, FAST2 was expressed in oocytes and thecal cells from postnatal day (PD) 1 to PD 21. In gonadotropin-induced immature mice, FAST2 was expressed in oocytes, thecal cells and newly formed corpora lutea (CLs), but was expressed at a lower level in degenerated CLs. Similar results were observed upon western blot analyses. In meloxicam-treated immature mice, ovulation was inhibited and FAST2 was expressed in thecal cells, luteinized granulosa cells and entrapped oocytes. Immunofluorescence results showed that FAST2 was expressed in the cytoplasm and nucleus but not the nucleolus from the zygote to 8-cell embryo stage, after which it was localized to the cytoplasm of the morulae and inner cell mass of the blastocysts. Taken together, these observations suggest that FAST2 is expressed in a cell-specific manner during ovarian follicle development, ovulation, luteinization and early embryonic development, and that FAST2 might play important roles in these physiological processes.
Collapse
|
42
|
Reid CD, Steiner AB, Yaklichkin S, Lu Q, Wang S, Hennessy M, Kessler DS. FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. Dev Biol 2016; 414:34-44. [PMID: 27085753 DOI: 10.1016/j.ydbio.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Aaron B Steiner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Sergey Yaklichkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Qun Lu
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Shouwen Wang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Morgan Hennessy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Daniel S Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Blokzijl A, Zieba A, Hust M, Schirrmann T, Helmsing S, Grannas K, Hertz E, Moren A, Chen L, Söderberg O, Moustakas A, Dübel S, Landegren U. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens. Mol Cell Proteomics 2016; 15:1848-56. [PMID: 26929218 DOI: 10.1074/mcp.m115.055756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling.
Collapse
Affiliation(s)
- Andries Blokzijl
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden; **YUMAB GmbH, Rebenring 33 Braunschweig 38106, Germany
| | - Agata Zieba
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden;
| | - Michael Hust
- ‖Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Thomas Schirrmann
- ‖Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, Braunschweig 38106, Germany; **YUMAB GmbH, Rebenring 33 Braunschweig 38106, Germany
| | - Saskia Helmsing
- ‖Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karin Grannas
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - Ellen Hertz
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - Anita Moren
- §Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-751 24, Sweden
| | - Lei Chen
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - Ola Söderberg
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | - Aristidis Moustakas
- §Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-751 24, Sweden, ¶Dept. of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 23, Sweden
| | - Stefan Dübel
- ‖Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ulf Landegren
- From the ‡Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
44
|
Nishitani E, Li C, Lee J, Hotta H, Katayama Y, Yamaguchi M, Kinoshita T. Pou5f3.2-induced proliferative state of embryonic cells during gastrulation ofXenopus laevisembryo. Dev Growth Differ 2015; 57:591-600. [DOI: 10.1111/dgd.12246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Eriko Nishitani
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
| | - Chong Li
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
| | - Jaehoon Lee
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Hiroyo Hotta
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Yuta Katayama
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Masahiro Yamaguchi
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| | - Tsutomu Kinoshita
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; Hyogo 669-1337 Japan
- Department of Life Science; Faculty of Science; Rikkyo University; Tokyo 171-8501 Japan
| |
Collapse
|
45
|
Zhu H. Forkhead box transcription factors in embryonic heart development and congenital heart disease. Life Sci 2015; 144:194-201. [PMID: 26656470 DOI: 10.1016/j.lfs.2015.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, 1 Denggao Road, Yuelu District, Changsha, Hunan 410082, PR China.
| |
Collapse
|
46
|
Yakymovych I, Yakymovych M, Zang G, Mu Y, Bergh A, Landström M, Heldin CH. CIN85 modulates TGFβ signaling by promoting the presentation of TGFβ receptors on the cell surface. J Cell Biol 2015; 210:319-32. [PMID: 26169354 PMCID: PMC4508896 DOI: 10.1083/jcb.201411025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
Members of the transforming growth factor β (TGFβ) family initiate cellular responses by binding to TGFβ receptor type II (TβRII) and type I (TβRI) serine/threonine kinases, whereby Smad2 and Smad3 are phosphorylated and activated, promoting their association with Smad4. We report here that TβRI interacts with the SH3 domains of the adaptor protein CIN85 in response to TGFβ stimulation in a TRAF6-dependent manner. Small interfering RNA-mediated knockdown of CIN85 resulted in accumulation of TβRI in intracellular compartments and diminished TGFβ-stimulated Smad2 phosphorylation. Overexpression of CIN85 instead increased the amount of TβRI at the cell surface. This effect was inhibited by a dominant-negative mutant of Rab11, suggesting that CIN85 promoted recycling of TGFβ receptors. CIN85 enhanced TGFβ-stimulated Smad2 phosphorylation, transcriptional responses, and cell migration. CIN85 expression correlated with the degree of malignancy of prostate cancers. Collectively, our results reveal that CIN85 promotes recycling of TGFβ receptors and thereby positively regulates TGFβ signaling.
Collapse
Affiliation(s)
- Ihor Yakymovych
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| | - Mariya Yakymovych
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| | - Guangxiang Zang
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Yabing Mu
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Maréne Landström
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden Department of Medical Biosciences and Pathology, Umeå University, SE-90185 Umeå, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Ludwig Institute for Cancer Research Ltd., Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
47
|
Liu Y, Kong D, Wu H, Yuan X, Xu H, Zhang C, Wu G, Wu K. Interplay of retinal determination gene network with TGF-β signaling pathway in epithelial-mesenchymal transition. Stem Cell Investig 2015; 2:12. [PMID: 27358880 DOI: 10.3978/j.issn.2306-9759.2015.05.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/25/2015] [Indexed: 01/17/2023]
Abstract
As a fundamental event in the generation of tissues and organs during embryogenesis, the epithelial-mesenchymal transition (EMT) has also been implicated in cancer progression by its ability to alter the plasticity of epithelial cells to acquire invasive properties. Evidence is mounting that ectopic activation of transforming growth factors β (TGF-β)/bone morphogenetic protein (BMP) superfamily members to enhance tumorigenesis and metastasis. In this respect, the Retinal Determination Gene Network (RDGN), which was identified to govern the normal initiation of the morphogenetic furrow in Drosophila, has now been found to be de-regulated in various types of cancers, and the key members of this network, DACH, SIX, and EYA, have emerged as novel co-regulators of TGF- signaling during EMT. Understanding the molecular mechanism by which RDGN regulates TGF-β/BMP signaling to influence EMT may lead to novel strategies for targeted therapies.
Collapse
Affiliation(s)
- Yu Liu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Deguang Kong
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hua Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xun Yuan
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hanxiao Xu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Cuntai Zhang
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaosong Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Kongming Wu
- 1 Department of Geriatrics, 2 Department of Thyroid and Breast Surgery, 3 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
48
|
Huang X, Yan X, Zhang Z, Li X. Seeding of recipient-originated epithelial cells attenuates epithelial to mesenchymal transition in rat tracheal allotransplantation. Otolaryngol Head Neck Surg 2015; 152:1068-74. [PMID: 25820583 DOI: 10.1177/0194599815577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The specific role and mechanism of epithelium in the progression of obliterative airway disease (OAD) after tracheal allotransplantation remain poorly understood. In this study, we used rat heterotopic tracheal transplantation to investigate the mechanism of epithelial cell seeding during the process of OAD. STUDY DESIGN Prospective, basic science. SETTING Research laboratory. SUBJECTS AND METHODS In total, 120 Sprague Dawley (SD) rats and 90 Wistar rats were used. Tracheas from SD rats were implanted into SD rats (syngeneic, n = 30) or Wistar rats (allogeneic, n = 30), and SD rat tracheas (seeded with Wistar rat-derived epithelial cells 6 days after transplantation) were transplanted into Wistar rats (seeded allogeneic, n = 30). Grafts were harvested at 7, 14, or 30 days after transplantation for histologic, quantitative reverse transcriptional polymerase chain reaction or Western blot analyses. RESULTS Syngrafts retained normal histologic structures, while the corresponding allografts demonstrated less ciliated epithelia and more lumenal occlusion. Seeding of epithelial cells ameliorated the histologic changes, reduced the expression of epithelial to mesenchymal transition (EMT)-related transcriptional factors and mesenchymal markers, and dampened the expression of transforming growth factor β1 (TGF-β1) and phosphorylation of smad3. CONCLUSION Seeding of recipient epithelial cells inhibits the progression of OAD by attenuating EMT via TGF-β-Smad signaling in rat heterotopic tracheal allografts. Clinically, the injection of recipient-originated epithelial cells might provide new insights into the treatment for OAD after tracheal allotransplantation.
Collapse
Affiliation(s)
- Xun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Dev Cell 2014; 31:374-382. [PMID: 25453832 DOI: 10.1016/j.devcel.2014.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/21/2022]
Abstract
The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages and the neural plate border and neural crest at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long-sought DNA-binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm.
Collapse
|
50
|
Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KWY. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 2014; 141:4537-47. [PMID: 25359723 DOI: 10.1242/dev.107227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells.
Collapse
Affiliation(s)
- William T Chiu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Rebekah Charney Le
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | - Yi Li
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Jacob Biesinger
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California, Irvine, CA 92697-2300, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|