1
|
Jakovlić I, Ye T, Zou H, Zhu F, Shi Y, Ma Y, Wang GT, Li WX, Zhang D. Drivers of interlineage variability in mitogenomic evolutionary rates in Platyhelminthes. Heredity (Edinb) 2024; 133:276-286. [PMID: 39095653 PMCID: PMC11436680 DOI: 10.1038/s41437-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Studies of forces driving interlineage variability in the evolutionary rates (both sequence and architecture) of mitochondrial genomes often produce contradictory results. Flatworms (Platyhelminthes) exhibit the fastest-evolving mitogenomic sequences among all bilaterian phyla. To test the effects of multiple factors previously associated with different aspects of mitogenomic evolution, we used mitogenomes of 223 flatworm species, phylogenetic multilevel regression models, and causal inference. Thermic host environment (endothermic vs. ectothermic) had nonsignificant impacts on both sequence evolution and mitogenomic size. Mitogenomic gene order rearrangements (GORR) were mostly positively correlated with mitogenomic size (R2 ≈ 20-30%). Longevity was not (negatively) correlated with sequence evolution in flatworms. The predominantly free-living "turbellaria" exhibited much shorter branches and faster-evolving mitogenomic architecture than parasitic Neodermata. As a result, "parasitism" had a strong explanatory power on the branch length variability (>90%), and there was a negative correlation between GORR and branch length. However, the stem branch of Neodermata comprised 63.6% of the total average branch length. This evolutionary period was also marked by a high rate of gene order rearrangements in the ancestral Neodermata. We discuss how this period of rapid evolution deep in the evolutionary history may have decoupled sequence evolution rates from longevity and GORR, and overestimated the explanatory power of "parasitism". This study shows that impacts of variables often vary across lineages, and stresses the importance accounting for the episodic nature of evolutionary patterns in studies of mitogenomic evolution.
Collapse
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tong Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fengyue Zhu
- National Agricultural Science Observing and Experimental Station of Chongqing, Chongqing, 401329, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430073, China
| | - Yuying Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yiwen Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850011, China.
| |
Collapse
|
2
|
Jiang C, Kang H, Zhou Y, Zhu W, Zhao X, Mohamed N, Li B. Selected Lark Mitochondrial Genomes Provide Insights into the Evolution of Second Control Region with Tandem Repeats in Alaudidae (Aves, Passeriformes). Life (Basel) 2024; 14:881. [PMID: 39063634 PMCID: PMC11278119 DOI: 10.3390/life14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The control region (CR) regulates the replication and transcription of the mitochondrial genome (mitogenome). Some avian mitogenomes possess two CRs, and the second control region (CR2) may enhance replication and transcription; however, the CR2 in lark mitogenome appears to be undergoing loss and is accompanied by tandem repeats. Here, we characterized six lark mitogenomes from Alaudala cheleensis, Eremophila alpestris, Alauda razae, and Calandrella cinerea and reconstructed the phylogeny of Passerida. Through further comparative analysis among larks, we traced the evolutionary process of CR2. The mitochondrial gene orders were conserved in all published lark mitogenomes, with Cytb-trnT-CR1-trnP-ND6-trnE-remnant CR2 with tandem repeat-trnF-rrnS. Phylogenetic analysis revealed Alaudidae and Panuridae are sister groups at the base of Sylvioidea, and sporadic losses of CR2 may occur in their common ancestor. CR sequence and phylogeny analysis indicated CR2 tandem repeats were generated within CR2, originating in the ancestor of all larks, rather than inherited from CR1. The secondary structure comparison of tandem repeat units within and between species suggested slipped-strand mispairing and DNA turnover as suitable models for explaining the origin and evolution of these repeats. This study reveals the evolutionary process of the CR2 containing tandem repeat in Alaudidae, providing reference for understanding the evolutionary characteristics and dynamics of tandem repeats.
Collapse
Affiliation(s)
- Chuan Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Hui Kang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Yang Zhou
- BGI Research, Shenzhen 518083, China;
- BGI Research, Wuhan 430074, China
| | - Wenwen Zhu
- School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| | - Xilong Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Nassoro Mohamed
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
| | - Bo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (C.J.); (H.K.); (X.Z.); (N.M.)
- State Forestry and Grassland Administration Detecting Center of Wildlife, Harbin 150040, China
| |
Collapse
|
3
|
Sandberg TOM, Yahalomi D, Bracha N, Haddas-Sasson M, Pupko T, Atkinson SD, Bartholomew JL, Zhang JY, Huchon D. Evolution of myxozoan mitochondrial genomes: insights from myxobolids. BMC Genomics 2024; 25:388. [PMID: 38649808 PMCID: PMC11034133 DOI: 10.1186/s12864-024-10254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.
Collapse
Affiliation(s)
| | - Dayana Yahalomi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Noam Bracha
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Haddas-Sasson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jin Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
4
|
Winn JC, Maduna SN, Bester-van der Merwe AE. A comprehensive phylogenomic study unveils evolutionary patterns and challenges in the mitochondrial genomes of Carcharhiniformes: A focus on Triakidae. Genomics 2024; 116:110771. [PMID: 38147941 DOI: 10.1016/j.ygeno.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.
Collapse
Affiliation(s)
- Jessica C Winn
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa
| | - Simo N Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa.
| |
Collapse
|
5
|
Shen Y, Li Q, Cheng R, Luo Y, Zhang Y, Zuo Q. Mitochondrial genomic characterization of two endemic Chinese freshwater crabs of the genus Sinopotamon (Brachyura: Potamidae) and implications for biogeography analysis of Potamidae. Ecol Evol 2023; 13:e9858. [PMID: 36911301 PMCID: PMC9994612 DOI: 10.1002/ece3.9858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
As an endemic freshwater crab group in China, the phylogenetic relationships within Sinopotamon are still controversial because of the limited taxon samples. In this study, the complete mitogenomes of Sinopotamon chishuiense with 17,311 bp and the nearly complete mitogenomes of S. wushanense with 16,785 bp were firstly sequenced and analyzed. Compared with other reported mitogenomes of Potamidae, some novel patterns of gene rearrangement were detected in these two Sinopotamon mitogenomes, which could be illuminated by the mechanisms of tandem duplication-random loss, recombination, and translocation. Phylogenetic analyses showed the nonmonophyly of the Sinopotamon and a sister group relationship with Tenuilapotamon. These crabs from the eastern and southern of the Yangtze River basin were more closely related while other crabs form the plateau areas formed a separate clade. Divergence time indicated that the Sinopotamon and its sister group Tenuilapotamon diverged from other potamiscine freshwater crabs approximately 42.65 Mya, which belongs to the recent main uplifts period of the Tibetan Plateau in the Late Miocene. Combined with the similar evolutionary rates and relatively stable habitat altitude of these Sinopotamon species, these results implied that the ecological environment may be relatively stable during the speciation. Overall, our study yielded worthy perceptions for the evolutionary and taxonomic relationship of Sinopotamon and will help to better clarify the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Sinopotamon. Overall, our study yielded valuable insights into the evolutionary history and taxonomic relationship of Sinopotamon and these results will help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Sinopotamon.
Collapse
Affiliation(s)
- Yanjun Shen
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Qinghua Li
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Ruli Cheng
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Yang Luo
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Yufeng Zhang
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
| | - Qing Zuo
- Laboratory of Water Ecological Health and Environmental Safety, School of Life SciencesChongqing Normal UniversityChongqingChina
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
6
|
The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). Funct Integr Genomics 2023; 23:41. [PMID: 36650401 DOI: 10.1007/s10142-022-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W-C-Y to rrnS-Q-W-C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P-T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.
Collapse
|
7
|
Zhang H, Lu C, Liu Q, Zou T, Qiao G, Huang X. Insights into the Evolution of Aphid Mitogenome Features from New Data and Comparative Analysis. Animals (Basel) 2022; 12:ani12151970. [PMID: 35953959 PMCID: PMC9367533 DOI: 10.3390/ani12151970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The complete mitochondrial genomes and their rearrangement patterns can provide useful information for inferring evolutionary history of organisms. Aphids are one of the insect groups with some unique mitogenome features. In this study, to examine whether some features in aphid mitogenomes are independent species-specific evolutionary events or clade-specific events at certain taxonomic levels, we sequenced three new aphid mitogenomes (Hormaphidinae: Ceratovacuna keduensis, Pseudoregma panicola; Lachninae: Nippolachnus piri) and compared them with all known aphid mitogenomes. The three mitogenomes are 16,059–17,033 bp in length, with a set of 37 typical mitochondrial genes, a non-coding control region and a tandem repeat region. The gene orders of them are all highly rearranged. Within the subfamily Hormaphidinae, the presence of repeat region and mitogenome rearrangement in Cerataphidini species but not in the other two tribes indicate that these may be Cerataphidini-specific features. The same gene rearrangement pattern in the two Lachninae species, N. piri (Tuberolachnini) and Stomaphis sinisalicis (Stomaphidini), supports that this feature should be at least derived from the common ancestor of two tribes. Overall, our data and analyses provide new insights into the evolutionary patterns of gene rearrangement and repeat region in aphid mitogenomes, and further corroborate the potential role of gene rearrangement in elucidating the evolutionary history of different insect lineages.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Tianmin Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (G.Q.); (X.H.)
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
- Correspondence: (G.Q.); (X.H.)
| |
Collapse
|
8
|
Yu M, Zhang D, Zhao X. Sequencing and phylogenomics of the complete mitochondrial genome of Allodiplogaster sp. (Rhabditida: Diplogasteridae): A new gene order and its phylogenetic implications. Gene 2022; 840:146761. [PMID: 35905856 DOI: 10.1016/j.gene.2022.146761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
Abstract
Gene order has been utilized as a phylogenetic signal for many taxa. However, its phylogenetic performance has not been evaluated in Nematoda. As there is only one nematode mitogenome available to date, in the Diplogasteridae family, we sequenced the mitogenome of Allodiplogaster sp. and constructed a phylogeny for Nematoda using this updated mitogenome dataset. We then compared this phylogeny to one constructed using gene order. The complete mitochondrial genome of Allodiplogaster sp. was 13,953 bp in size and included 22 tRNAs, two rRNAs, and 12 protein-coding genes. To assess how Allodiplogaster sp. is related to other nematode species, we used Bayesian inference and maximum likelihood algorithms to construct phylogenetic trees of the Nematoda. We found that: 1) The target species Allodiplogaster sp. is closely related to Allodiplogaster sudhausi. The topology of the mitogenome based phylogeny was nearly identical to previous phylogenies created using 18S rRNA data, except for the placement of the Strongyloididae family. 2) The maximum likelihood tree constructed using gene order was roughly consistent with the mitogenome-based tree at the family level, but not at the species level. 3) Protein-coding genes were ordered differently in Allodiplogaster sp. versus Allodiplogaster sudhausi; this represents the first report of such a reordering in the class Chromadorea in our study. Our study confirms that gene order represents useful phylogenetic information for the Nematoda: the maximum likelihood tree based on gene order provided additional support for the nematode phylogeny constructed using molecular data.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xumao Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Zhang C, Zhang K, Peng Y, Zhou J, Liu Y, Liu B. Novel Gene Rearrangement in the Mitochondrial Genome of Three Garra and Insights Into the Phylogenetic Relationships of Labeoninae. Front Genet 2022; 13:922634. [PMID: 35754812 PMCID: PMC9213810 DOI: 10.3389/fgene.2022.922634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Complete mitochondrial genomes (mitogenomes) can provide valuable information for phylogenetic relationships, gene rearrangement, and molecular evolution. Here, we report the mitochondrial whole genomes of three Garra species and explore the mechanisms of rearrangements that occur in their mitochondrial genomes. The lengths of the mitogenomes’ sequences of Garra dengba, Garra tibetana, and Garra yajiangensis were 16,876, 16,861, and 16,835, respectively. They contained 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNA genes, and two identical control regions (CRs). The mitochondrial genomes of three Garra species were rearranged compared to other fish mitochondrial genomes. The tRNA-Thr, tRNA-Pro and CR (T-P-CR) genes undergo replication followed by random loss of the tRNA-Thr and tRNA-Pro genes to form tRNA-Thr, CR1, tRNA-Pro and CR2 (T-CR-P-CR). Tandem duplication and random loss best explain this mitochondrial gene rearrangement. These results provide a foundation for future characterization of the mitochondrial gene arrangement of Labeoninae and further phylogenetic studies.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Kun Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Ying Peng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
10
|
Ye Z, Zhao C, Raborn RT, Lin M, Wei W, Hao Y, Lynch M. Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Mol Biol Evol 2022; 39:msac059. [PMID: 35325186 PMCID: PMC9004417 DOI: 10.1093/molbev/msac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Chaoxian Zhao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - R. Taylor Raborn
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Man Lin
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wen Wei
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yue Hao
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Zuo Q, Zhang Z, Shen Y. Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS-2019 and phylogenetic analysis of the Myriapoda. Ecol Evol 2022; 12:e8764. [PMID: 35356579 PMCID: PMC8948135 DOI: 10.1002/ece3.8764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS-2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT-skew (-0.236). Several genes rearrangements were detected and we propose a new rearrangement model: "TD (N\R) L + C" based on the genome-scale duplication + (non-random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Zhisheng Zhang
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal BiologySchool of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
12
|
Burton RS. The role of mitonuclear incompatibilities in allopatric speciation. Cell Mol Life Sci 2022; 79:103. [PMID: 35091831 PMCID: PMC11072163 DOI: 10.1007/s00018-021-04059-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/03/2022]
Abstract
Aerobic metabolism in eukaryotic cells requires extensive interactions between products of the nuclear and mitochondrial genomes. Rapid evolution of the mitochondrial genome, including fixation of both adaptive and deleterious mutations, creates intrinsic selection pressures favoring nuclear gene mutations that maintain mitochondrial function. As this process occurs independently in allopatry, the resulting divergence between conspecific populations can subsequently be manifest in mitonuclear incompatibilities in inter-population hybrids. Such incompatibilities, mitonuclear versions of Bateson-Dobzhansky-Muller incompatibilities that form the standard model for allopatric speciation, can potentially restrict gene flow between populations, ultimately resulting in varying degrees of reproductive isolation. The potential role of mitonuclear incompatibilities in speciation is further enhanced where mtDNA substitution rates are elevated compared to the nuclear genome and where population structure maintains allopatry for adequate time to evolve multiple mitonuclear incompatibilities. However, the fact that mitochondrial introgression occurs across species boundaries has raised questions regarding the efficacy of mitonuclear incompatibilities in reducing gene flow. Several scenarios now appear to satisfactorily explain this phenomenon, including cases where differences in mtDNA genetic load may drive introgression or where co-introgression of coadapted nuclear genes may support the function of introgressed mtDNA. Although asymmetries in reproductive isolation between taxa are consistent with mitonuclear incompatibilities, interactions between autosomes and sex chromosomes yield similar predictions that are difficult to disentangle. With regard to establishing reproductive isolation while in allopatry, existing studies clearly suggest that mitonuclear incompatibilities can contribute to the evolution of barriers to gene flow. However, there is to date relatively little definitive evidence supporting a primary role for mitonuclear incompatibilities in the speciation process.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
13
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
14
|
Ye F, Li H, Xie Q. Mitochondrial Genomes from Two Specialized Subfamilies of Reduviidae (Insecta: Hemiptera) Reveal Novel Gene Rearrangements of True Bugs. Genes (Basel) 2021; 12:1134. [PMID: 34440308 PMCID: PMC8392325 DOI: 10.3390/genes12081134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Reduviidae, a hyper-diverse family, comprise 25 subfamilies with nearly 7000 species and include many natural enemies of crop pests and vectors of human disease. To date, 75 mitochondrial genomes (mitogenomes) of assassin bugs from only 11 subfamilies have been reported. The limited sampling of mitogenome at higher categories hinders a deep understanding of mitogenome evolution and reduviid phylogeny. In this study, the first mitogenomes of Holoptilinae (Ptilocnemus lemur) and Emesinae (Ischnobaenella hainana) were sequenced. Two novel gene orders were detected in the newly sequenced mitogenomes. Combined 421 heteropteran mitogenomes, we identified 21 different gene orders and six gene rearrangement units located in three gene blocks. Comparative analyses of the diversity of gene order for each unit reveal that the tRNA gene cluster trnI-trnQ-trnM is the hotspot of heteropteran gene rearrangement. Furthermore, combined analyses of the gene rearrangement richness of each unit and the whole mitogenome among heteropteran lineages confirm Reduviidae as a 'hot-spot group' of gene rearrangement in Heteroptera. The phylogenetic analyses corroborate the current view of phylogenetic relationships between basal groups of Reduviidae with high support values. Our study provides deeper insights into the evolution of mitochondrial gene arrangement in Heteroptera and the early divergence of reduviids.
Collapse
Affiliation(s)
- Fei Ye
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiang Xie
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
Xu XD, Guan JY, Zhang ZY, Cao YR, Cai YY, Storey KB, Yu DN, Zhang JY. Insight into the Phylogenetic Relationships among Three Subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with Low-Temperature Selection Pressure Analyses Using Mitogenomes. INSECTS 2021; 12:656. [PMID: 34357316 PMCID: PMC8307263 DOI: 10.3390/insects12070656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.
Collapse
Affiliation(s)
- Xiao-Dong Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yu-Rou Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
16
|
Ye YY, Miao J, Guo YH, Gong L, Jiang LH, Lü ZM, Xu KD, Guo BY. The first mitochondrial genome of the genus Exhippolysmata (Decapoda: Caridea: Lysmatidae), with gene rearrangements and phylogenetic associations in Caridea. Sci Rep 2021; 11:14446. [PMID: 34262102 PMCID: PMC8280103 DOI: 10.1038/s41598-021-93946-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
The complete mitochondrial genome (mitogenome) of animals can provide useful information for evolutionary and phylogenetic analyses. The mitogenome of the genus Exhippolysmata (i.e., Exhippolysmata ensirostris) was sequenced and annotated for the first time, its phylogenetic relationship with selected members from the infraorder Caridea was investigated. The 16,350 bp mitogenome contains the entire set of 37 common genes. The mitogenome composition was highly A + T biased at 64.43% with positive AT skew (0.009) and negative GC skew (- 0.199). All tRNA genes in the E. ensirostris mitogenome had a typical cloverleaf secondary structure, except for trnS1 (AGN), which appeared to lack the dihydrouridine arm. The gene order in the E. ensirostris mitogenome was rearranged compared with those of ancestral decapod taxa, the gene order of trnL2-cox2 changed to cox2-trnL2. The tandem duplication-random loss model is the most likely mechanism for the observed gene rearrangement of E. ensirostris. The ML and BI phylogenetic analyses place all Caridea species into one group with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. These results will help to better understand the gene rearrangements and evolutionary position of E. ensirostris and lay a foundation for further phylogenetic studies of Caridea.
Collapse
Affiliation(s)
- Ying-Ying Ye
- Marine Fishery Institute of Zhejiang Province, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Ocean University, Zhoushan, 316021, People's Republic of China.
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China.
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China.
| | - Jing Miao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Ya-Hong Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Li Gong
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Li-Hua Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Zhen-Ming Lü
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Kai-da Xu
- Marine Fishery Institute of Zhejiang Province, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Ocean University, Zhoushan, 316021, People's Republic of China.
| | - Bao-Ying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Yu DN, Yu PP, Zhang LP, Storey KB, Gao XY, Zhang JY. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. PeerJ 2021; 9:e11402. [PMID: 34221707 PMCID: PMC8231340 DOI: 10.7717/peerj.11402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phylogenetic relationships of Odonata (dragonflies and damselflies) and Ephemeroptera (mayflies) remain unresolved. Different researchers have supported one of three hypotheses (Palaeoptera, Chiastomyaria or Metapterygota) based on data from different morphological characters and molecular markers, sometimes even re-assessing the same transcriptomes or mitochondrial genomes. The appropriate choice of outgroups and more taxon sampling is thought to eliminate artificial phylogenetic relationships and obtain an accurate phylogeny. Hence, in the current study, we sequenced 28 mt genomes from Ephemeroptera, Odonata and Plecoptera to further investigate phylogenetic relationships, the probability of each of the three hypotheses, and to examine mt gene arrangements in these species. We selected three different combinations of outgroups to analyze how outgroup choice affected the phylogenetic relationships of Odonata and Ephemeroptera. METHODS Mitochondrial genomes from 28 species of mayflies, dragonflies, damselflies and stoneflies were sequenced. We used Bayesian inference (BI) and Maximum likelihood (ML) analyses for each dataset to reconstruct an accurate phylogeny of these winged insect orders. The effect of outgroup choice was assessed by separate analyses using three outgroups combinations: (a) four bristletails and three silverfish as outgroups, (b) five bristletails and three silverfish as outgroups, or (c) five diplurans as outgroups. RESULTS Among these sequenced mitogenomes we found the gene arrangement IMQM in Heptageniidae (Ephemeroptera), and an inverted and translocated tRNA-Ile between the 12S RNA gene and the control region in Ephemerellidae (Ephemeroptera). The IMQM gene arrangement in Heptageniidae (Ephemeroptera) can be explained via the tandem-duplication and random loss model, and the transposition and inversion of tRNA-Ile genes in Ephemerellidae can be explained through the recombination and tandem duplication-random loss (TDRL) model. Our phylogenetic analysis strongly supported the Chiastomyaria hypothesis in three different outgroup combinations in BI analyses. The results also show that suitable outgroups are very important to determining phylogenetic relationships in the rapid evolution of insects especially among Ephemeroptera and Odonata. The mt genome is a suitable marker to investigate the phylogeny of inter-order and inter-family relationships of insects but outgroup choice is very important for deriving these relationships among winged insects. Hence, we must carefully choose the correct outgroup in order to discuss the relationships of Ephemeroptera and Odonata.
Collapse
Affiliation(s)
- Dan-Na Yu
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Pan-Pan Yu
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Le-Ping Zhang
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Xin-Yan Gao
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
18
|
Liu J, Xiao J, Hao X, Yuan X. Unique Duplication of trnN in Odontoptilum angulatum (Lepidoptera: Pyrginae) and Phylogeny within Hesperiidae. INSECTS 2021; 12:insects12040348. [PMID: 33919713 PMCID: PMC8070526 DOI: 10.3390/insects12040348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
To explore the variation and relationship between gene rearrangement and phylogenetic effectiveness of mitogenomes among lineages of the diversification of the tribe Tagiadini in the subfamily Pyrginae, we sequenced the complete mitogenome of Odontoptilum angulatum. The genome is 15,361 bp with the typical 37 genes, a large AT-rich region and an additional trnN (trnN2), which is completely identical to trnN (sequence similarity: 100%). The gene order differs from the typical Lepidoptera-specific arrangement and is unique to Hesperiidae. The presence of a "pseudo-trnS1" in the non-coding region between trnN1 and trnN2 supports the hypothesis that the presence of an extra trnN can be explained by the tandem duplication-random loss (TDRL) model. Regarding the phylogenetic analyses, we found that the dataset comprising all 37 genes produced the highest node support, as well as a monophyly of Pyrginae, indicating that the inclusion of RNAs improves the phylogenetic signal. Relationships among the subfamilies in Hesperiidae were also in general agreement with the results of previous studies. The monophyly of Tagiadini is strongly supported. Our study provides a new orientation for application of compositional and mutational biases of mitogenomes in phylogenetic analysis of Tagiadini and even all Hesperiidae based on larger taxon sampling in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
| | - Jintian Xiao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
| | - Xiangyu Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China;
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
- Correspondence: ; Tel.: +86-1375-998-5152
| |
Collapse
|
19
|
Schwartz JH. Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:126-151. [PMID: 33818247 DOI: 10.1080/24701394.2021.1899165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tenets underlying the use of mtDNA in phylogenetic and systematic analyses are strict maternal inheritance, clonality, homoplasmy, and difference due to mutation: that is, there are species-specific mtDNA sequences and phylogenetic reconstruction is a matter of comparing these sequences and inferring closeness of relatedness from the degree of sequence similarity. Yet, how mtDNA behavior became so defined is mysterious. Even though early studies of fertilization demonstrated for most animals that not only the head, but the sperm's tail and mitochondria-bearing midpiece penetrate the egg, the opposite - only the head enters the egg - became fact, and mtDNA conceived as maternally transmitted. When midpiece/tail penetration was realized as true, the conceptions 'strict maternal inheritance', etc., and their application to evolutionary endeavors, did not change. Yet there is mounting evidence of paternal mtDNA transmission, paternal and maternal combination, intracellular recombination, and intra- and intercellular heteroplasmy. Clearly, these phenomena impact the systematic and phylogenetic analysis of mtDNA sequences.
Collapse
Affiliation(s)
- Jeffrey H Schwartz
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. Int J Mol Sci 2021; 22:ijms22041811. [PMID: 33670420 PMCID: PMC7918261 DOI: 10.3390/ijms22041811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.
Collapse
|
21
|
Zhang J, Miao G, Hu S, Sun Q, Ding H, Ji Z, Guo P, Yan S, Wang C, Kan X, Nie L. Quantification and evolution of mitochondrial genome rearrangement in Amphibians. BMC Ecol Evol 2021; 21:19. [PMID: 33563214 PMCID: PMC7871395 DOI: 10.1186/s12862-021-01755-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rearrangement is an important topic in the research of amphibian mitochondrial genomes ("mitogenomes" hereafter), whose causes and mechanisms remain enigmatic. Globally examining mitogenome rearrangements and uncovering their characteristics can contribute to a better understanding of mitogenome evolution. RESULTS Here we systematically investigated mitogenome arrangements of 232 amphibians including four newly sequenced Dicroglossidae mitogenomes. The results showed that our new sequenced mitogenomes all possessed a trnM tandem duplication, which was not exclusive to Dicroglossidae. By merging the same arrangements, the mitogenomes of ~ 80% species belonged to the four major patterns, the major two of which were typical vertebrate arrangement and typical neobatrachian arrangement. Using qMGR for calculating rearrangement frequency (RF) (%), we found that the control region (CR) (RF = 45.04) and trnL2 (RF = 38.79) were the two most frequently rearranged components. Forty-seven point eight percentage of amphibians possessed rearranged mitogenomes including all neobatrachians and their distribution was significantly clustered in the phylogenetic trees (p < 0.001). In addition, we argued that the typical neobatrachian arrangement may have appeared in the Late Jurassic according to possible occurrence time estimation. CONCLUSION It was the first global census of amphibian mitogenome arrangements from the perspective of quantity statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic characteristics of these rearrangements.
Collapse
Affiliation(s)
- Jifeng Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
- Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, 232001, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, 232001, People's Republic of China.
- Anhui Shanhe Pharmaceutical Excipients Co., Ltd., Huainan, 232001, People's Republic of China.
| | - Guopen Miao
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Shunjie Hu
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Qi Sun
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Hengwu Ding
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhicheng Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Pen Guo
- Life Science and Food Engineering College, Yibin University, Yibin, Sichuan, 644000, People's Republic of China
| | - Shoubao Yan
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Xianzhao Kan
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liuwang Nie
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
22
|
Zhang K, Zhu K, Liu Y, Zhang H, Gong L, Jiang L, Liu L, Lü Z, Liu B. Novel gene rearrangement in the mitochondrial genome of Muraenesox cinereus and the phylogenetic relationship of Anguilliformes. Sci Rep 2021; 11:2411. [PMID: 33510193 PMCID: PMC7844273 DOI: 10.1038/s41598-021-81622-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
The structure and gene sequence of the fish mitochondrial genome are generally considered to be conservative. However, two types of gene arrangements are found in the mitochondrial genome of Anguilliformes. In this paper, we report a complete mitogenome of Muraenesox cinereus (Anguilliformes: Muraenesocidae) with rearrangement phenomenon. The total length of the M. cinereus mitogenome was 17,673 bp, and it contained 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNA genes, and two identical control regions (CRs). The mitochondrial genome of M. cinereus was obviously rearranged compared with the mitochondria of typical vertebrates. The genes ND6 and the conjoint trnE were translocated to the location between trnT and trnP, and one of the duplicated CR was translocated to the upstream of the ND6. The tandem duplication and random loss is most suitable for explaining this mitochondrial gene rearrangement. The Anguilliformes phylogenetic tree constructed based on the whole mitochondrial genome well supports Congridae non-monophyly. These results provide a basis for the future Anguilliformes mitochondrial gene arrangement characteristics and further phylogenetic research.
Collapse
Affiliation(s)
- Kun Zhang
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Kehua Zhu
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Yifan Liu
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Hua Zhang
- grid.9227.e0000000119573309Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Li Gong
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Lihua Jiang
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Liqin Liu
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Zhenming Lü
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| | - Bingjian Liu
- grid.443668.b0000 0004 1804 4247National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, Zhejiang 316022 People’s Republic of China ,grid.9227.e0000000119573309Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Beijing, People’s Republic of China ,grid.443668.b0000 0004 1804 4247National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 People’s Republic of China
| |
Collapse
|
23
|
Zhang H, Liu Q, Lu C, Deng J, Huang X. The First Complete Mitochondrial Genome of Lachninae Species and Comparative Genomics Provide New Insights into the Evolution of Gene Rearrangement and the Repeat Region. INSECTS 2021; 12:55. [PMID: 33440807 PMCID: PMC7828084 DOI: 10.3390/insects12010055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Complete mitochondrial genomes are valuable resources for different research fields such as genomics, molecular evolution and phylogenetics. The subfamily Lachninae represents one of the most ancient evolutionary lineages of aphids. To date, however, no complete Lachninae mitogenome is available in public databases. Here we report the Stomaphis sinisalicis mitogenome, representing the first complete mitogenome of Lachninae. The S. sinisalicis mitogenome is consist of 13 protein-coding genes (PCGs), two rRNA genes (rRNAs), 22 tRNA genes (tRNAs), a control region and a large tandem repeat region. Strikingly, the mitogenome exhibits a novel, highly rearranged gene order between trnE and nad1 compared with that of other aphids. The presence of repeat region in the basal Lachninae may further indicate it is probably an ancestral feature of aphid mitogenomes. Collectively, this study provides new insights on mitogenome evolution and valuable data for future comparative studies across different insect lineages.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Z.); (Q.L.); (C.L.); (J.D.)
| |
Collapse
|
24
|
Zhang Y, Gong L, Lu X, Jiang L, Liu B, Liu L, Lü Z, Li P, Zhang X. Gene rearrangements in the mitochondrial genome of Chiromantes eulimene (Brachyura: Sesarmidae) and phylogenetic implications for Brachyura. Int J Biol Macromol 2020; 162:704-714. [DOI: 10.1016/j.ijbiomac.2020.06.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022]
|
25
|
Xu XD, Jia YY, Cao SS, Zhang ZY, Storey KB, Yu DN, Zhang JY. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships. PeerJ 2020; 8:e9740. [PMID: 32879803 PMCID: PMC7443110 DOI: 10.7717/peerj.9740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/26/2020] [Indexed: 11/26/2022] Open
Abstract
As a small order of Pterygota (Insecta), Ephemeroptera has almost 3,500 species around the world. Ephemerellidae is a widely distributed common group of Ephemeroptera. However, the relationship among Ephemerellidae, Vietnamellidae and Teloganellidae is still in dispute. In this study, we sequenced six complete mitogenomes of three genera from Ephemerellidae (Insecta: Ephemeroptera): Ephemerella sp. Yunnan-2018, Serratella zapekinae, Serratella sp. Yunnan-2018, Serratella sp. Liaoning-2019, Torleya grandipennis and T. tumiforceps. These mitogenomes were employed to reveal controversial phylogenetic relationships among the Ephemeroptera, with emphasis on the phylogenetic relationships among Ephemerellidae. The lengths of the six mayfly mitogenomes ranged from 15,134 bp to 15,703 bp. Four mitogenomes of Ephemerella sp. Yunnan-2018, Serratella zapekinae, Serratella sp. Yunnan-2018 and Serratella sp. Liaoning-2019 had 22 tRNAs including an inversion and translocation of trnI. By contrast, the mitogenomes of T. tumiforceps and T. grandipennis had 24 tRNAs due to an extra two copies of inversion and translocation of trnI. Within the family Ephemerellidae, disparate gene rearrangement occurred in the mitogenomes of different genera: one copy of inversion and translocation trnI in the genera Ephemerella and Serratella, and three repeat copies of inversion and translocation of trnI in the genus Torleya. A large non-coding region (≥200 bp) between trnS1 (AGN) and trnE was detected in T. grandipennis and T. tumiforceps. Among the phylogenetic relationship of the Ephemeroptera, the monophyly of almost all families except Siphlonuridae was supported by BI and ML analyses. The phylogenetic results indicated that Ephemerellidae was the sister clade to Vietnamellidae whereas Teloganellidae was not a sister clade of Ephemerellidae and Vietnamellidae.
Collapse
Affiliation(s)
- Xiao-Dong Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Yi-Yang Jia
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Si-Si Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
| | | | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
26
|
Mir RA, Bhat KA, Rashid G, Ebinezer LB, Masi A, Rakwal R, Shah AA, Zargar SM. DNA barcoding: a way forward to obtain deep insights about the realistic diversity of living organisms. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Huang W, Xie X, Huo L, Liang X, Wang X, Chen X. An integrative DNA barcoding framework of ladybird beetles (Coleoptera: Coccinellidae). Sci Rep 2020; 10:10063. [PMID: 32572078 PMCID: PMC7308296 DOI: 10.1038/s41598-020-66874-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Even though ladybirds are well known as economically important biological control agents, an integrative framework of DNA barcoding research was not available for the family so far. We designed and present a set of efficient mini-barcoding primers to recover full DNA barcoding sequences for Coccinellidae, even for specimens collected 40 years ago. Based on these mini-barcoding primers, we obtained 104 full DNA barcode sequences for 104 species of Coccinellidae, in which 101 barcodes were newly reported for the first time. We also downloaded 870 COI barcode sequences (658 bp) from GenBank and BOLD database, belonging to 108 species within 46 genera, to assess the optimum genetic distance threshold and compare four methods of species delimitation (GMYC, bPTP, BIN and ABGD) to determine the most accurate approach for the family. The results suggested the existence of a 'barcode gap' and that 3% is likely an appropriate genetic distance threshold to delimit species of Coccinellidae using DNA barcodes. Species delimitation analyses confirm ABGD as an accurate and efficient approach, more suitable than the other three methods. Our research provides an integrative framework for DNA barcoding and descriptions of new taxa in Coccinellidae. Our results enrich DNA barcoding public reference libraries, including data for Chinese coccinellids. This will facilitate taxonomic identification and biodiversity monitoring of ladybirds using metabarcoding.
Collapse
Affiliation(s)
- Weidong Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm; Department of Forest Protection, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province; Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Engineering Research Center of Biological Control, Ministry of Education, Guangzhou, 510640, China
| | - Xiufeng Xie
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510507, China
| | - Lizhi Huo
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Xinyue Liang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm; Department of Forest Protection, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province; Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Engineering Research Center of Biological Control, Ministry of Education, Guangzhou, 510640, China
| | - Xingmin Wang
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province; Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Engineering Research Center of Biological Control, Ministry of Education, Guangzhou, 510640, China
| | - Xiaosheng Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm; Department of Forest Protection, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China.
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province; Engineering Technology Research Center of Agricultural Pest Biocontrol, Guangdong Province, Engineering Research Center of Biological Control, Ministry of Education, Guangzhou, 510640, China.
| |
Collapse
|
28
|
Mitochondria, spermatogenesis, and male infertility - An update. Mitochondrion 2020; 54:26-40. [PMID: 32534048 DOI: 10.1016/j.mito.2020.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
The incorporation of mitochondria in the eukaryotic cell is one of the most enigmatic events in the course of evolution. This important organelle was thought to be only the powerhouse of the cell, but was later learnt to perform many other indispensable functions in the cell. Two major contributions of mitochondria in spermatogenesis concern energy production and apoptosis. Apart from this, mitochondria also participate in a number of other processes affecting spermatogenesis and fertility. Mitochondria in sperm are arranged in the periphery of the tail microtubules to serve to energy demand for motility. Apart from this, the role of mitochondria in germ cell proliferation, mitotic regulation, and the elimination of germ cells by apoptosis are now well recognized. Eventually, mutations in the mitochondrial genome have been reported in male infertility, particularly in sluggish sperm (asthenozoospermia); however, heteroplasmy in the mtDNA and a complex interplay between the nucleus and mitochondria affect their penetrance. In this article, we have provided an update on the role of mitochondria in various events of spermatogenesis and male fertility and on the correlation of mitochondrial DNA mutations with male infertility.
Collapse
|
29
|
Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: New gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). Int J Biol Macromol 2020; 149:1232-1240. [DOI: 10.1016/j.ijbiomac.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022]
|
30
|
Wang S, Jiao N, Zhao L, Zhang M, Zhou P, Huang X, Hu F, Yang C, Shu Y, Li W, Zhang C, Tao M, Chen B, Ma M, Liu S. Evidence for the paternal mitochondrial DNA in the crucian carp-like fish lineage with hybrid origin. SCIENCE CHINA. LIFE SCIENCES 2020; 63:102-115. [PMID: 31728830 DOI: 10.1007/s11427-019-9528-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/11/2019] [Indexed: 01/05/2023]
Abstract
In terms of taxonomic status, common carp (Cyprinus carpio, Cyprininae) and crucian carp (Carassius auratus, Cyprininae) are different species; however, in this study, a newborn homodiploid crucian carp-like fish (2n=100) (2nNCRC) lineage (F1-F3) was established from the interspecific hybridization of female common carp (2n=100)×male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n=48). The phenotypes and genotypes of 2nNCRC differed from those of its parents but were closely related to those of the existing diploid crucian carp. We further sequenced the whole mitochondrial (mt) genomes of the 2nNCRC lineage from F1 to F3. The paternal mtDNA fragments were stably embedded in the mt-genomes of F1-F3 generations of 2nNCRC to form chimeric DNA fragments. Along with this chimeric process, numerous base sites of F1-F3 generations of 2nNCRC underwent mutations. Most of these mutation sites were consistent with the existing diploid crucian carp. Moreover, the mtDNA organization and nucleotide composition of 2nNCRC were more similar to those of the existing diploid crucian carp than those of the parents. The inheritable chimeric DNA fragments and mutant loci in the mt-genomes of different generations of 2nNCRC provided important evidence of the mtDNA change process in the newborn lineage derived from hybridization of different species. Our findings demonstrated for the first time that the paternal mtDNA were transmitted into the mt-genomes of homodiploid lineage, which provided new insights into the existence of paternal mtDNA in the mtDNA inheritance.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lu Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Meiwen Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xuexue Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ming Ma
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
31
|
Zheng C, Ye Z, Zhu X, Zhang H, Dong X, Chen P, Bu W. Integrative taxonomy uncovers hidden species diversity in the rheophilic genus
Potamometra
(Hemiptera: Gerridae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chenguang Zheng
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Zhen Ye
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Xiuxiu Zhu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | | | - Xue Dong
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Pingping Chen
- Netherlands Biodiversity Centre – Naturalis Leiden The Netherlands
| | - Wenjun Bu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
32
|
Shi W, Gong L, Yu H. Double control regions of some flatfish mitogenomes evolve in a concerted manner. Int J Biol Macromol 2019; 142:11-17. [PMID: 31785298 DOI: 10.1016/j.ijbiomac.2019.11.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Mitochondrial genomes (mitogenomes) typically contain 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a single control region (CR). Flatfish mitochondrial genomes (mitogenomes) from three different genera in Bothidae (bothids) contain double CRs that evolved in a concerted manner. How these double CRs maintained identical sequences throughout the evolutionary process is an interesting issue. In the present study, over four hundred arrays of the double CRs of mitogenomes from three bothids (Arnoglossus tenuis, Lophonectes gallus and Psettina iijimae) were performed. Interesting variations between double CRs were observed in P. iijimae mitogenomes, and the networks of CR sequences from P. iijimae indicated a high possibility of genetic information exchange between CRs. No recombination product was detected in our results, indicating that the mechanism of the concerted evolution between the double CRs of P. iijimae was not recombination. We speculate that mismatch repair, a mitochondrial DNA repair mechanism, is a potential explanation for the concerted evolution between these double CRs.
Collapse
Affiliation(s)
- Wei Shi
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science, Foshan University, Foshan, Guangdong 528231, China
| | - Li Gong
- National engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science, Foshan University, Foshan, Guangdong 528231, China.
| |
Collapse
|
33
|
Novel gene rearrangement in the mitochondrial genome of Coenobita brevimanus (Anomura: Coenobitidae) and phylogenetic implications for Anomura. Genomics 2019; 112:1804-1812. [PMID: 31655177 DOI: 10.1016/j.ygeno.2019.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
Abstract
The complete mitochondrial genomes (mitogenomes) can indicate phylogenetic relationships among organisms, as well as useful information about the process of molecular evolution and gene rearrangement mechanisms. However, knowledge on the complete mitogenome of Coenobitidae (Decapoda: Anomura) is quite scarce. Here, we describe in detail the complete mitogenome of Coenobita brevimanus, which is 16,393 bp in length, and contains 13 protein-coding genes, two ribosomal RNA, 22 transfer RNA genes, as well as a putative control region. The genome composition shows a moderate A + T bias (65.0%), and exhibited a negative AT-skew (-0.148) and a positive GC-skew (0.183). Five gene clusters (or genes) involving eleven tRNAs and two PCGs were found to have rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination models were determined as most likely to explain the observed large-scale gene rearrangements. Phylogenetic analysis placed all Coenobitidae species into one clade. The polyphyly of Paguroidea was well supported, whereas the non-monophyly of Galatheoidea was inconsistence with previous findings on Anomura. Taken together, our results help to better understand gene rearrangement process and the evolutionary status of C. brevimanus and lay a foundation for further phylogenetic studies of Anomura.
Collapse
|
34
|
Sullins JA, Coleman-Hulbert AL, Gallegos A, Howe DK, Denver DR, Estes S. Complex Transmission Patterns and Age-Related Dynamics of a Selfish mtDNA Deletion. Integr Comp Biol 2019; 59:983-993. [PMID: 31318034 PMCID: PMC6797909 DOI: 10.1093/icb/icz128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite wide-ranging implications of selfish mitochondrial DNA (mtDNA) elements for human disease and topics in evolutionary biology (e.g., speciation), the forces controlling their formation, age-related accumulation, and offspring transmission remain largely unknown. Selfish mtDNA poses a significant challenge to genome integrity, mitochondrial function, and organismal fitness. For instance, numerous human diseases are associated with mtDNA mutations; however, few genetic systems can simultaneously represent pathogenic mitochondrial genome evolution and inheritance. The nematode Caenorhabditis briggsae is one such system. Natural C. briggsae isolates harbor varying levels of a large-scale deletion affecting the mitochondrial nduo-5 gene, termed nad5Δ. A subset of these isolates contains putative compensatory mutations that may reduce the risk of deletion formation. We studied the dynamics of nad5Δ heteroplasmy levels during animal development and transmission from mothers to offspring in genetically diverse C. briggsae natural isolates. Results support previous work demonstrating that nad5Δ is a selfish element and that heteroplasmy levels of this deletion can be quite plastic, exhibiting high degrees of inter-family variability and divergence between generations. The latter is consistent with a mitochondrial bottleneck effect, and contrasts with previous findings from a laboratory-derived model uaDf5 mtDNA deletion in C. elegans. However, we also found evidence for among-isolate differences in the ability to limit nad5Δ accumulation, the pattern of which suggested that forces other than the compensatory mutations are important in protecting individuals and populations from rampant mtDNA deletion expansion over short time scales.
Collapse
Affiliation(s)
- Jennifer A Sullins
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | - Alexandra Gallegos
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
35
|
Wang Q, Wang Z, Tang D, Xu X, Tao Y, Ji C, Wang Z. Characterization and comparison of the mitochondrial genomes from two Alpheidae species and insights into the phylogeny of Caridea. Genomics 2019; 112:65-70. [PMID: 31437541 DOI: 10.1016/j.ygeno.2019.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Abstract
The mitochondrial genome (mitogenome) has been widely used in phylogenetics and molecular evolution as a parameter, due to its simple genetic structure, high evolutionary rate, and compositional heterogeneity properties. Alpheidae is a large and highly diverse family of the Caridea infraorder, currently containing about 600 species dispersed all over the world. However, only a few shrimps in Alpheidae have their complete mitogenome annotated in GenBank. In our study, the entire mitogenomes of two shrimps from Alpheidae were determined, Alpheus randalli and Alpheus bellulus. The mitogenomes of both shrimps share the complete set of 37 mitochondrial genes found in other Alpheidae species. In A. randalli the AT-skew is slightly positive and GC-skew is negative, whereas in A. bellulus the AT-skew is negative and GC-skew is slightly positive. Furthermore, the secondary structures of trnS1 in the two shrimps are partially missing, and another three tRNAs formed the typical cloverleaf shaped secondary structures. Also, the trnS1 of A. randalli has an unusual anticodon stem with some unpaired nucleotides. Comparative genomic analysis suggests that the mitochondrial gene order of Alpheus genus exhibits a different gene rearrangement compared with that of Caridea. Most species in Alpheus share the same gene order, except for A. lobidens, which has an additional pseudogenomic trnQ (trnQ*). Compared with the mitochondrial gene order of Caridea the Alpheus trnE underwent both translocation and inversion, which were caused by a recombination event. Bayesian inferences (BI) and Maximum Likelihood (ML) phylogenetic analyses of 105 species amino acid datasets resulted in a well-supported topology, whereas four families in Caridea are monophyletic and can be divided into two major clades. Moreover, we demonstrated the phylogenetic relationships of six infraorders in Decapoda (Dendrobranchiata, (Caridea, (Stenopodidea, (Achelata, (Polychelida, Astacidea))))). This study used the large taxon sampling available to date for phylomitogenomic analysis. The results provide a theoretical basis for further research on the evolution of the Decapoda order, specifically Caridea infraorder.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Ziqian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xinyi Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Yitao Tao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Chenyao Ji
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| |
Collapse
|
36
|
Variable Number Tandem Repeats in the Mitochondrial DNA of Lentinula edodes. Genes (Basel) 2019; 10:genes10070542. [PMID: 31319586 PMCID: PMC6679062 DOI: 10.3390/genes10070542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Variable number tandem repeats (VNTRs) in mitochondrial DNA (mtDNA) of Lentinula edodes are of interest for their role in mtDNA variation and their application as genetic marker. Sequence analysis of three L. edodes mtDNAs revealed the presence of VNTRs of two categories. Type I VNTRs consist of two types of repeat units in a symmetric distribution, whereas Type II VNTRs contain tandemly arrayed repeats of 7- or 17-bp DNA sequences. The number of repeat units was variable depending on the mtDNA of different strains. Using the variations in VNTRs as a mitochondrial marker and the A mating type as a nuclear type marker, we demonstrated that one of the two nuclei in the donor dikaryon preferentially enters into the monokaryotic cytoplasm to establish a new dikaryon which still retains the mitochondria of the monokaryon in the individual mating. Interestingly, we found 6 VNTRs with newly added repeat units from the 22 mates, indicating that elongation of VNTRs occurs during replication of mtDNA. This, together with comparative analysis of the repeating pattern, enables us to propose a mechanistic model that explains the elongation of Type I VNTRs through reciprocal incorporation of basic repeat units, 5’-TCCCTTTAGGG-3’ and its complementary sequence (5’-CCCTAAAGGGA-3’).
Collapse
|
37
|
The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. Int J Biol Macromol 2019; 137:767-773. [PMID: 31269414 DOI: 10.1016/j.ijbiomac.2019.06.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/21/2022]
Abstract
In this study, the mitochondrial genomes of three Stenogastrinae species, Eustenogaster scitula, Liostenogaster nitidipennis and Parishnogaster mellyi were sequenced and annotated, and a total of 16 vespid mtgenomes are comparatively analyzed. Our results indicate that codon usage bias is mainly dominated by mutational pressure, and affected only slightly by natural selection. Selective pressure analysis of protein-coding genes (PCGs) shows that the highest evolutionary rate is present in NADH complex I, and the lowest in cox1. Compared with the reported mtgenomes of other Vespidae, in Stenogastrinae, trnH is shifted to a new position. Phylogenetic analyses are performed using Bayesian method and Maximum Parsimony. Phylogenetic analysis further confirms that the Stenogastrinae is the sister group of all remaining Vespidae. Divergence time of Stenogastrinae from other Vespidae is estimated at ~ 166 Mya. Our results also support that eusociality evolved twice in the family Vespidae.
Collapse
|
38
|
Luchetti A, Forni G, Skaist AM, Wheelan SJ, Mantovani B. Mitochondrial genome diversity and evolution in Branchiopoda (Crustacea). ZOOLOGICAL LETTERS 2019; 5:15. [PMID: 31149346 PMCID: PMC6537178 DOI: 10.1186/s40851-019-0131-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The crustacean class Branchiopoda includes fairy shrimps, clam shrimps, tadpole shrimps, and water fleas. Branchiopods, which are well known for their great variety of reproductive strategies, date back to the Cambrian and extant taxa can be mainly found in freshwater habitats, also including ephemeral ponds. Mitochondrial genomes of the notostracan taxa Lepidurus apus lubbocki (Italy), L. arcticus (Iceland) and Triops cancriformis (an Italian and a Spanish population) are here characterized for the first time and analyzed together with available branchiopod mitogenomes. RESULTS Overall, branchiopod mitogenomes share the basic structure congruent with the ancestral Pancrustacea model. On the other hand, rearrangements involving tRNAs and the control region are observed among analyzed taxa. Remarkably, an unassigned region in the L. apus lubbocki mitogenome showed a chimeric structure, likely resulting from a non-homologous recombination event between the two flanking trnC and trnY genes. Notably, Anostraca and Onychocaudata mitogenomes showed increased GC content compared to both Notostraca and the common ancestor, and a significantly higher substitution rate, which does not correlate with selective pressures, as suggested by dN/dS values. CONCLUSIONS Branchiopod mitogenomes appear rather well-conserved, although gene rearrangements have occurred. For the first time, it is reported a putative non-homologous recombination event involving a mitogenome, which produced a pseudogenic tRNA sequence. In addition, in line with data in the literature, we explain the higher substitution rate of Anostraca and Onychocaudata with the inferred GC substitution bias that occurred during their evolution.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| | - Giobbe Forni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| | - Alyza M. Skaist
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sarah J. Wheelan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bolgna, Italy
| |
Collapse
|
39
|
Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. Int J Biol Macromol 2019; 135:609-618. [PMID: 31132441 DOI: 10.1016/j.ijbiomac.2019.05.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 11/20/2022]
Abstract
Generally, a teleostean group possesses only one type or a set of similar mitochondrial gene arrangement. However, two types of gene arrangement have been identified in the mitochondrial genomes (mitogenomes) of Anguilliformes. Here, a newly sequenced mitogenome of Ophichthus brevicaudatus (Anguilliformes; Ophichthidae) was presented. The total length of the O. brevicaudatus mitogenome was 17,773 bp, and it contained 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNA (tRNA) genes, and two identical control regions (CRs). The gene order differed from that of the typical vertebrate mitogenomes. The genes ND6 and the conjoint trnE were translocated to the location between trnT and trnP, and one of the duplicated CR was translocated to the upstream of the ND6. The duplication-random loss model was adopted to explain the gene rearrangement events in this mitogenome. The most comprehensive phylogenetic trees of Anguilliformes based on complete mitogenome was constructed. The non-monophyly of Congridae was well supported, whereas the non-monophyly of Derichthyidae and Chlopsidae was not supported. These results provide insight into gene arrangement features of anguilliform mitogenomes and lay the foundation for further phylogenetic studies on Anguilliformes.
Collapse
|
40
|
Gong L, Jiang H, Zhu K, Lu X, Liu L, Liu B, Jiang L, Ye Y, Lü Z. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene 2019; 695:75-83. [PMID: 30738095 DOI: 10.1016/j.gene.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Complete mitochondrial genome (mitogenome) provides important information for better understanding of gene rearrangement, molecular evolution and phylogenetic analysis. Currently, only a few Paguridae mitogenomes have been reported. Herein, we described the complete mitogenome of hermit crab Pagurus nigrofascia. The total length was 15,423 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA, 22 transfer RNA genes, as well as an AT-rich region. The genome composition was highly A + T biased (71.4%), and exhibited a negative AT-skew (-0.006) and GC-skew (-0.138). Eight tRNA genes, two PCGs and an AT-rich region found to be rearranged with respect to the pancrustacean ground pattern gene order. Duplication-random loss and recombination model were adopted to explain the large-scale gene rearrangement events. Two phylogenetic trees of Anomura involving 12 families were constructed. The results showed that all Paguridae species were clustered into one clade except Pagurus longicarpus, which for the first time imposed raises doubt about the morphological taxonomy of this species. Furthermore, the present study found that higher- level phylogenetic relationships within Anomura were controversial, compared with the previous studies. Our results help to better understand gene rearrangements and the evolutionary status of P. nigrofascia and lay foundation for further phylogenetic study of Anomura.
Collapse
Affiliation(s)
- Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Kehua Zhu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Xinting Lu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Lihua Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yingying Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022 Zhoushan, China; National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, China
| |
Collapse
|
41
|
Sun Z, Liu Y, Wilson JJ, Chen Z, Song F, Cai W, Li H. Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. Int J Biol Macromol 2019; 129:110-115. [PMID: 30711565 DOI: 10.1016/j.ijbiomac.2019.01.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Reduviidae is the second largest family of Heteroptera and most of them are important natural enemies of agricultural and forest pests. Most of the sequenced mitochondrial (mt) genomes in this family have the typical gene arrangement of insects and encode 37 coding genes (13 protein-coding genes, 22 tRNA genes and two rRNA genes). In the present study, we sequenced the mt genome of Phalantus geniculatus from the subfamily Peiratinae through high-throughput sequencing and encountered the duplication of tRNA genes for the first time in this subfamily. We identified 23 tRNA genes, including 22 tRNAs commonly found in insect mt genomes and an extra trnT (trnT2), which has high sequence similarity (96.9%) to trnT1. The presence of a "pseudo-trnP" in the non-coding region between trnT1 and trnT2 supports the hypothesis that the presence of an extra trnT can be explained by the tandem duplication-random loss (TDRL) model. Phylogenetic results inferred from mt genome sequences supported a sister relationship between Phymatinae and the remaining sampled subfamilies, as well as a paraphyletic Reduviinae. The present study highlights the utility of mt genomes in the phylogenetic study of Reduviidae based on the large scale taxon sampling in the future.
Collapse
Affiliation(s)
- Ziqiang Sun
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yingqi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - John-James Wilson
- Vertebrate Zoology at World Museum, National Museums Liverpool, Liverpool L3 8EN, United Kingdom; Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Zhuo Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Zhu B, Zhu Z, Wang J, Huang S, Li F, Wang L, Liu Y, Yan Q, Zhou S, Lu M, Yang D, Wang B. Chinese woodchucks with different susceptibility to WHV infection differ in their genetic background exemplified by cytochrome B and MHC-DRB molecules. Virol J 2018; 15:101. [PMID: 29914514 PMCID: PMC6006932 DOI: 10.1186/s12985-018-1010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chinese woodchucks (M. himalayana) were recently found to be susceptible to woodchuck hepatitis virus (WHV) infection. In this study, we aimed to determine the susceptibility to WHV infection of M. himalayana from different areas and their association with the animal genetic background exemplified by cytochrome B and MHC-DRB molecules. METHODS Animals from four different areas in Qinghai province were inoculated with WHV59 strains. The virological markers including WHV surface antigen (WHsAg), WHV core antibody (WHcAb), and WHV DNA in serum were measured by ELISA and Real-time PCR, respectively. The sequences of cytochrome B gene and MHC-DRB molecules were obtained and sorted with Clustalx software. The nucleotide variation sites were identified using MEGA5 software. RESULTS The animals from four different areas had different susceptibility to WHV infection. Animals from TR and TD areas had a high level of long-lasting viremia, while those from GD and WL areas had a low level of transient viremia after WHV inoculation. All of the animals belong to the same subspecies M. himalayana robusta identified by cytochrome B gene sequences. Based on their nucleotide variation pattern, 8 alleles of cytochrome B gene were identified, and 7 MHC-DRB alleles were identified. Allele A of cytochrome B and Allele Mamo-DRB1*02 of MHC-DRB was found to be frequent in animals from TR and TD areas, while Allele H of cytochrome B and Allele Mamo-DRB1*07 of MHC-DRB was predominant in animals from GD and WL areas. CONCLUSION Chinese woodchucks from different areas differed in their susceptibility to WHV infection, though they belong to the same subspecies M. himalayana robusta. The genetic background exemplified by cytochrome B and MHC-DRB differed in Chinese woodchucks with different susceptibility to WHV infection.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Zhenni Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China.,Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Yanan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Qi Yan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
43
|
Qian L, Wang H, Yan J, Pan T, Jiang S, Rao D, Zhang B. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes. BMC Genomics 2018; 19:354. [PMID: 29747572 PMCID: PMC5946542 DOI: 10.1186/s12864-018-4717-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. RESULTS In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the OL was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNALeu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. CONCLUSIONS The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.
Collapse
Affiliation(s)
- Lifu Qian
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Shanqun Jiang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Dingqi Rao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
44
|
Zhang JY, Zhang LP, Yu DN, Storey KB, Zheng RQ. Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae. BMC Evol Biol 2018; 18:26. [PMID: 29486721 PMCID: PMC6389187 DOI: 10.1186/s12862-018-1140-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Complete mitochondrial (mt) genomes have been used extensively to test hypotheses about microevolution and to study population structure, phylogeography, and phylogenetic relationships of Anura at various taxonomic levels. Large-scale mt genomic reorganizations have been observed among many fork-tongued frogs (family Dicroglossidae). The relationships among Dicroglossidae and validation of the genus Feirana are still problematic. Hence, we sequenced the complete mt genomes of Nanorana taihangnica (=F. taihangnica) and N. yunnanensis as well as partial mt genomes of six Quasipaa species (dicroglossid taxa), two Odorrana and two Amolops species (Ranidae), and one Rhacophorus species (Rhacophoridae) in order to identify unknown mt gene rearrangements, to investigate the validity of the genus Feirana, and to test the phylogenetic relationship of Dicroglossidae. RESULTS In the mt genome of N. taihangnica two trnM genes, two trnP genes and two control regions were found. In addition, the trnA, trnN, trnC, and trnQ genes were translocated from their typical positions. In the mt genome of N. yunnanensis, three control regions were found and eight genes (ND6, trnP, trnQ, trnA, trnN, trnC, trnY and trnS genes) in the L-stand were translocated from their typical position and grouped together. We also found intraspecific rearrangement of the mitochondrial genomes in N. taihangnica and Quasipaa boulengeri. In phylogenetic trees, the genus Feirana nested deeply within the clade of genus Nanorana, indicating that the genus Feirana may be a synonym to Nanorana. Ranidae as a sister clade to Dicroglossidae and the clade of (Ranidae + Dicroglossidae) as a sister clade to (Mantellidae + Rhacophoridae) were well supported in BI analysis but low bootstrap in ML analysis. CONCLUSIONS We found that the gene arrangements of N. taihangnica and N. yunnanensis differed from other published dicroglossid mt genomes. The gene arrangements in N. taihangnica and N. yunnanensis could be explained by the Tandem Duplication and Random Loss (TDRL) and the Dimer-Mitogenome and Non-Random Loss (DMNR) models, respectively. The invalidation of the genus Feirana is supported in this study.
Collapse
Affiliation(s)
- Jia-Yong Zhang
- Key lab of wildlife biotechnology, conservation and utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Le-Ping Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| | - Dan-Na Yu
- Key lab of wildlife biotechnology, conservation and utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China.
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Rong-Quan Zheng
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| |
Collapse
|
45
|
The Complete Mitogenome of the Wood-Feeding Cockroach Cryptocercus meridianus (Blattodea: Cryptocercidae) and Its Phylogenetic Relationship among Cockroach Families. Int J Mol Sci 2017; 18:ijms18112397. [PMID: 29137151 PMCID: PMC5713365 DOI: 10.3390/ijms18112397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, the complete mitochondrial genome of Cryptocercus meridianus was sequenced. The circular mitochondrial genome is 15,322 bp in size and contains 13 protein-coding genes, two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes, and one D-loop region. We compare the mitogenome of C. meridianus with that of C. relictus and C. kyebangensis. The base composition of the whole genome was 45.20%, 9.74%, 16.06%, and 29.00% for A, G, C, and T, respectively; it shows a high AT content (74.2%), similar to the mitogenomes of C. relictus and C. kyebangensis. The protein-coding genes are initiated with typical mitochondrial start codons except for cox1 with TTG. The gene order of the C. meridianus mitogenome differs from the typical insect pattern for the translocation of tRNA-SerAGN, while the mitogenomes of the other two Cryptocercus species, C. relictus and C. kyebangensis, are consistent with the typical insect pattern. There are two very long non-coding intergenic regions lying on both sides of the rearranged gene tRNA-SerAGN. The phylogenetic relationships were constructed based on the nucleotide sequence of 13 protein-coding genes and two ribosomal RNA genes. The mitogenome of C. meridianus is the first representative of the order Blattodea that demonstrates rearrangement, and it will contribute to the further study of the phylogeny and evolution of the genus Cryptocercus and related taxa.
Collapse
|
46
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
47
|
Melvin RG, Ballard JWO. Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis 2017; 32:323-334. [PMID: 28521046 DOI: 10.1093/mutage/gex004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA). We conclude that the whole genome mutation accumulation rate is higher for mtDNA than for nDNA but include the caveat that rates overlap considerably between the individual mtDNA- and nDNA-encoded genes. Next, we discuss the postulated causal mechanisms for the high rate of mtDNA mutation accumulation in both inheritance and in somatic cells. Perhaps unexpectedly, mtDNA is resilient to many mutagens of nDNA but is prone to errors of replication. We then consider the influence of maternal inheritance, recombination and selection on the observed accumulation pattern of inherited mtDNA mutations. Finally, we discuss environmental influences of temperature and diet on the observed frequency of inherited and somatic mtDNA mutations. We conclude that it is necessary to understand the cellular processes to fully interpret the pattern of mutations and how they influence our interpretations of evolution and disease.
Collapse
Affiliation(s)
- Richard G Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
48
|
Partially local three-way alignments and the sequence signatures of mitochondrial genome rearrangements. Algorithms Mol Biol 2017; 12:22. [PMID: 28852417 PMCID: PMC5569537 DOI: 10.1186/s13015-017-0113-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/11/2017] [Indexed: 12/01/2022] Open
Abstract
Background Genomic DNA frequently undergoes rearrangement of the gene order that can be localized by comparing the two DNA sequences. In mitochondrial genomes different mechanisms are likely at work, at least some of which involve the duplication of sequence around the location of the apparent breakpoints. We hypothesize that these different mechanisms of genome rearrangement leave distinctive sequence footprints. In order to study such effects it is important to locate the breakpoint positions with precision. Results We define a partially local sequence alignment problem that assumes that following a rearrangement of a sequence F, two fragments L, and R are produced that may exactly fit together to match F, leave a gap of deleted DNA between L and R, or overlap with each other. We show that this alignment problem can be solved by dynamic programming in cubic space and time. We apply the new method to evaluate rearrangements of animal mitogenomes and find that a surprisingly large fraction of these events involved local sequence duplications. Conclusions The partially local sequence alignment method is an effective way to investigate the mechanism of genomic rearrangement events. While applied here only to mitogenomes there is no reason why the method could not be used to also consider rearrangements in nuclear genomes. Electronic supplementary material The online version of this article (doi:10.1186/s13015-017-0113-0) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Rach J, Bergmann T, Paknia O, DeSalle R, Schierwater B, Hadrys H. The marker choice: Unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PLoS One 2017; 12:e0174842. [PMID: 28406914 PMCID: PMC5390999 DOI: 10.1371/journal.pone.0174842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
The potential of DNA barcoding approaches to identify single species and characterize species compositions strongly depends on the marker choice. The prominent “Folmer region”, a 648 basepair fragment at the 5’ end of the mitochondrial CO1 gene, has been traditionally applied as a universal DNA barcoding region for metazoans. In order to find a suitable marker for biomonitoring odonates (dragonflies and damselflies), we here explore a new region of the CO1 gene (CO1B) for DNA barcoding in 51 populations of 23 dragonfly and damselfly species. We compare the “Folmer region”, the mitochondrial ND1 gene (NADH dehydrogenase 1) and the new CO1 region with regard to (i) speed and reproducibility of sequence generation, (ii) levels of homoplasy and (iii) numbers of diagnostic characters for discriminating closely related sister taxa and populations. The performances of the gene regions regarding these criteria were quite different. Both, the amplification of CO1B and ND1 was highly reproducible and CO1B showed the highest potential for discriminating sister taxa at different taxonomic levels. In contrast, the amplification of the “Folmer region” using the universal primers was difficult and the third codon positions of this fragment have experienced nucleotide substitution saturation. Most important, exploring this new barcode region of the CO1 gene identified a higher discriminating power between closely related sister taxa. Together with the design of layered barcode approaches adapted to the specific taxonomic “environment”, this new marker will further enhance the discrimination power at the species level.
Collapse
Affiliation(s)
- Jessica Rach
- ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany
| | - Tjard Bergmann
- ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany
| | - Omid Paknia
- ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany
| | - Rob DeSalle
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, United States of America
| | - Bernd Schierwater
- ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, United States of America
| | - Heike Hadrys
- ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mu X, Yang Y, Liu Y, Luo D, Xu M, Wei H, Gu D, Song H, Hu Y. The complete mitochondrial genomes of two freshwater snails provide new protein-coding gene rearrangement models and phylogenetic implications. Parasit Vectors 2017; 10:11. [PMID: 28061879 PMCID: PMC5219674 DOI: 10.1186/s13071-016-1956-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial (mt) genome sequences are widely used for species identification and to study the phylogenetic relationships among Gastropoda. However, to date, limited data are available as taxon sampling is narrow. In this study we sequenced the complete mt genomes of the freshwater gastropods Radix swinhoei (Lymnaeidae) and Planorbarius corneus (Planorbidae). Based on these sequences, we investigated the gene rearrangement in these two species and the relationships with respect to the ancestral gene order and assessed their phylogenetic relationships. METHODS The complete mt genomes of R. swinhoei and P. corneus were sequenced using Illumina-based paired-end sequencing and annotated by comparing the sequence information with that of related gastropod species. Putative models of mitochondrial gene rearrangements were predicted for both R. swinhoei and P. corneus, using Reishia clavigera mtDNA structure as the ancestral gene order. The phylogenetic relationships were inferred using thirteen protein sequences based on Maximum likelihood and Bayesian inference analyses. RESULTS The complete circular mt genome sequences of R. swinhoei and P. corneus were 14,241 bp and 13,687 bp in length, respectively. Comparison of the gene order demonstrated complex rearrangement events in Gastropoda, both for tRNA genes and protein-coding genes. The phylogenetic analyses showed that the family Lymnaeidae was more closely related to the family Planorbidae, consistent with previous classification. Nevertheless, due to the position recovered for R. swinhoei, the family Lymnaeidae was not monophyletic. CONCLUSION This study provides the complete mt genomes of two freshwater snails, which will aid the development of useful molecular markers for epidemiological, ecological and phylogenetic studies. Additionally, the predicted models for mt gene rearrangement might provide novel insights into mt genome evolution in gastropods.
Collapse
Affiliation(s)
- Xidong Mu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yexin Yang
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yi Liu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Du Luo
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Meng Xu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Hui Wei
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Dangen Gu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Hongmei Song
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| | - Yinchang Hu
- Key Laboratory of Tropical&Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xingyu Road1, Guangzhou, 510380 China
| |
Collapse
|