1
|
Duan Y, Ma X, Guo J, Shan F, Pan Y, Chen Y, Chen H, Chen G. Fe 0-MAP Prepared Glycosurfaces for Selective Cell Capture: From Adherent to Suspended Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39357029 DOI: 10.1021/acsami.4c11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The specific capture of live cells is crucial for various biomedical applications. Existing methods often are limited by complex production processes. This study introduces Fe0-mediated monomer-adaptation polymerization (Fe0-MAP), a convenient and rapid synthesis approach for selective cell capture using surface-engineered glycopolymer brushes. This method utilizes surface-initiated zerovalent iron-mediated reversible-deactivation radical polymerization (Fe0-SI-RDRP), offering advantages like simplicity, biocompatibility and oxygen-tolerance due to the use of iron sheet as catalysts. We successfully employed Fe0-MAP to selective capture both adherent (HeLa, L929) and suspended cells (Ramos, U937) in mammalian cell cultures. Combining excellent biocompatibility, specific and reusable cell capture capabilities, and applicability to suspended cells, Fe0-MAP establishes itself as a promising strategy for selective cell capture, holding significant potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Nantong No.2 Middle School, 500 Changtai Road, Nantong 226300, P. R. China
| | - Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Fangjian Shan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuchun Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
2
|
Das D, Huang SH, Weng CL, Yu CH, Hsu CK, Lee YC, Cheng HC, Chuang HS. Detachable acoustofluidic droplet-sorter. Anal Chim Acta 2024; 1321:343043. [PMID: 39155105 DOI: 10.1016/j.aca.2024.343043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cell sorting is crucial in isolating specific cell populations. It enables detailed analysis of their functions and characteristics and plays a vital role in disease diagnosis, drug discovery, and regenerative medicine. Fluorescence-activated cell sorting (FACS) is considered the gold standard for high-speed single-cell sorting. However, its high cost, complex instrumentation, and lack of portability are significant limitations. Additionally, the high pressure and electric fields used in FACS can harm cell integrity. In this work, an acoustofluidic device was developed in combination with surface acoustic wave (SAW) and droplet microfluidics to isolate single-cell droplets with high purity while maintaining high cell viability. RESULT Human embryonic kidney cells, transfected with fluorescent reporter plasmids, were used to demonstrate the targeted droplet sorting containing single cells. The acoustofluidic sorter achieved a recovery rate of 81 % and an accuracy rate higher than 97 %. The device maintained a cell viability rate of 95 % and demonstrated repeatability over 20 consecutive trials without compromising efficiency, thus underscoring its reliability. Thermal image analysis revealed that the temperature of the interdigital transducer (IDT) during SAW operation remained within the permissible range for maintaining cell viability. SIGNIFICANCE The findings highlighted the sensitivity and effectiveness of the developed acoustofluidic device as a tool for single-cell sorting. The detachable microfluidic chip design enables the reusability of the expensive IDT, making it cost-effective and reducing the risk of cross-contamination between different biological samples. The results underscore its capability to accurately isolate individual cells on the basis of specific criteria, showcasing its potential to advance research and clinical applications requiring precise cell sorting methodologies.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Choa-Li Weng
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yung-Chun Lee
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hui-Ching Cheng
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Liang L, Liang M, Zuo Z, Ai Y. Label-free single-cell analysis in microdroplets using a light-scattering-based optofluidic chip. Biosens Bioelectron 2024; 253:116148. [PMID: 38428071 DOI: 10.1016/j.bios.2024.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Droplet-based single-cell analysis is a very powerful tool for studying phenotypic and genomic heterogeneity at single-cell resolution for a variety of biological problems. In conventional two-phase droplet microfluidics, due to the mismatch in optical properties between oil and aqueous phases, light scattering mainly happens at the oil/water interface that disables light-scattering-based cell analysis confined in microdroplets. Detection and analysis of cells in microdroplets thus mostly rely on the fluorescence labeling of cell samples, which may suffer from complex operation, cytotoxicity, and low fluorescence stability. In this work, we propose a novel light-scattering-based droplet screening (LSDS) that can effectively detect and characterize single cells confined in droplets by adjusting the optical properties of droplets in a multiangle optofluidic chip. Theoretical and simulated calculations suggest that refractive index (RI) matching in droplet two-phase materials can reduce or eliminate droplets' scattered signals (background signal), enabling the differentiation of scattered signals from single cells and particles within droplets. Furthermore, by using a set of multiangle (from -145° to 140°) optical fibers integrated into the optofluidic chip, the scattered light properties of droplets with the RI ranging from 1.334 to 1.429 are measured. We find that the smaller the RI and size of microparticles inside droplets are, the smaller the RI difference between two-phase materials Δn is required. Especially, when Δn is smaller than 0.02, single cells in droplets can be detected and analyzed solely based on light scattering. This capability allows to accurately detect droplets containing one single cell and one single gel bead, a typical droplet encapsulation for single-cell sequencing. Altogether, this work provides a powerful platform for high-throughput label-free single-cell analysis in microdroplets for diverse single-cell related biological assays.
Collapse
Affiliation(s)
- Li Liang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, China
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zewen Zuo
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
| |
Collapse
|
4
|
Kim C, Hong S, Shin D, An S, Zhang X, Jhe W. Sorting Gold and Sand (Silica) Using Atomic Force Microscope-Based Dielectrophoresis. NANO-MICRO LETTERS 2021; 14:13. [PMID: 34862935 PMCID: PMC8643387 DOI: 10.1007/s40820-021-00760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures. However, the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir, which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle. Here, we propose a dielectrophoresis (DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions. We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation, which confirmed the surface-enhanced Raman spectroscopy (SERS). To validate the scheme, we also performed a simulation for the system and found qualitative agreement with the experimental results. The method that combines DEP, pipette-based AFM, and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning, materials sorting, and diverse advanced applications.
Collapse
Affiliation(s)
- Chungman Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Sunghoon Hong
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongha Shin
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sangmin An
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Physics, Institute of Photonics and Information Technology, Jeonbuk National University, Jeonju, 54896, Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States.
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Wonho Jhe
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
5
|
Wlodkowic D, Czerw A, Karakiewicz B, Deptała A. Recent progress in cytometric technologies and their applications in ecotoxicology and environmental risk assessment. Cytometry A 2021; 101:203-219. [PMID: 34652065 DOI: 10.1002/cyto.a.24508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Environmental toxicology focuses on identifying and predicting impact of potentially toxic anthropogenic chemicals on biosphere at various levels of biological organization. Presently there is a significant drive to gain deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity. Most notable is increased focus on elucidation of cellular-response networks, interactomes, and greater implementation of cell-based biotests using high-throughput procedures, while at the same time decreasing the reliance on standard animal models used in ecotoxicity testing. This is aimed at discovery and interpretation of molecular pathways of ecotoxicity at large scale. In this regard, the applications of cytometry are perhaps one of the most fundamental prospective analytical tools for the next generation and high-throughput ecotoxicology research. The diversity of this modern technology spans flow, laser-scanning, imaging, and more recently, Raman as well as mass cytometry. The cornerstone advantages of cytometry include the possibility of multi-parameter measurements, gating and rapid analysis. Cytometry overcomes, thus, limitations of traditional bulk techniques such as spectrophotometry or gel-based techniques that average the results from pooled cell populations or small model organisms. Novel technologies such as cell imaging in flow, laser scanning cytometry, as well as mass cytometry provide innovative and tremendously powerful capabilities to analyze cells, tissues as well as to perform in situ analysis of small model organisms. In this review, we outline cytometry as a tremendously diverse field that is still vastly underutilized and often largely unknown in environmental sciences. The main motivation of this work is to highlight the potential and wide-reaching applications of cytometry in ecotoxicology, guide environmental scientists in the technological aspects as well as popularize its broader adoption in environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health, Department of Social Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention. Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Beshay PE, Ibrahim AM, Jeffrey SS, Howe RT, Anis YH. Encapsulated Cell Dynamics in Droplet Microfluidic Devices with Sheath Flow. MICROMACHINES 2021; 12:mi12070839. [PMID: 34357249 PMCID: PMC8304737 DOI: 10.3390/mi12070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
In this paper we study the dynamics of single cells encapsulated in water-in-oil emulsions in a microchannel. The flow field of a microfluidic channel is coupled to the internal flow field of a droplet through viscous traction at the interface, resulting in a rotational flow field inside the droplet. An encapsulated single cell being subjected to this flow field responds by undergoing multiple orbits, spins, and deformations that depend on its physical properties. Monitoring the cell dynamics, using a high-speed camera, can lead to the development of new label-free methods for the detection of rare cells, based on their biomechanical properties. A sheath flow microchannel was proposed to strengthen the rotational flow field inside droplets flowing in Poiseuille flow conditions. A numerical model was developed to investigate the effect of various parameters on the rotational flow field inside a droplet. The multi-phase flow model required the tracking of the fluid–fluid interface, which deforms over time due to the applied shear stresses. Experiments confirmed the significant effect of the sheath flow rate on the cell dynamics, where the speed of cell orbiting was doubled. Doubling the cell speed can double the amount of extracted biomechanical information from the encapsulated cell, while it remains within the field of view of the camera used.
Collapse
Affiliation(s)
- Peter E. Beshay
- Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt; (P.E.B.); (A.M.I.)
| | - Ali M. Ibrahim
- Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt; (P.E.B.); (A.M.I.)
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Roger T. Howe
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Yasser H. Anis
- Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt; (P.E.B.); (A.M.I.)
- Correspondence:
| |
Collapse
|
7
|
Pei Z, Ma Y, Wang C, Wu Y, Song F, Wu X. Optimal design of a driver of interdigital transducers used to generate standing surface acoustic waves for cell sorting. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:034705. [PMID: 33820111 DOI: 10.1063/5.0036856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A compact driver based on current feedback amplifiers is designed to drive interdigital transducers (IDTs) that generate standing surface acoustic waves for cell sorting. Compared with commercial RF amplifiers, this driver can be used to drive a wider range of loads without impedance matching. Furthermore, the driver works in a switch mode triggered by target cells, which significantly reduces power consumption in the system. A Butterworth-Van Dyke equivalent circuit was fabricated to study the electrical characteristics of the IDTs, and the driver was designed and optimized by circuit simulations. A cell sorter was constructed and tested experimentally to demonstrate that the driver meets sorting requirements. The driver allows the cell sorter to extract rare cells while otherwise consuming low power.
Collapse
Affiliation(s)
- Zhiguo Pei
- University of Sciences and Technology of China, Hefei, Anhui 230026, China
| | - Yuting Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Ce Wang
- University of Sciences and Technology of China, Hefei, Anhui 230026, China
| | - Yunliang Wu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Feifei Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Xiaodong Wu
- University of Sciences and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Digital Microfluidics for Single Bacteria Capture and Selective Retrieval Using Optical Tweezers. MICROMACHINES 2020; 11:mi11030308. [PMID: 32183431 PMCID: PMC7142809 DOI: 10.3390/mi11030308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022]
Abstract
When screening microbial populations or consortia for interesting cells, their selective retrieval for further study can be of great interest. To this end, traditional fluorescence activated cell sorting (FACS) and optical tweezers (OT) enabled methods have typically been used. However, the former, although allowing cell sorting, fails to track dynamic cell behavior, while the latter has been limited to complex channel-based microfluidic platforms. In this study, digital microfluidics (DMF) was integrated with OT for selective trapping, relocation, and further proliferation of single bacterial cells, while offering continuous imaging of cells to evaluate dynamic cell behavior. To enable this, magnetic beads coated with Salmonella Typhimurium-targeting antibodies were seeded in the microwell array of the DMF platform, and used to capture single cells of a fluorescent S. Typhimurium population. Next, OT were used to select a bead with a bacterium of interest, based on its fluorescent expression, and to relocate this bead to a different microwell on the same or different array. Using an agar patch affixed on top, the relocated bacterium was subsequently allowed to proliferate. Our OT-integrated DMF platform thus successfully enabled selective trapping, retrieval, relocation, and proliferation of bacteria of interest at single-cell level, thereby enabling their downstream analysis.
Collapse
|
9
|
Mutafopulos K, Spink P, Lofstrom CD, Lu PJ, Lu H, Sharpe JC, Franke T, Weitz DA. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). LAB ON A CHIP 2019; 19:2435-2443. [PMID: 31192328 DOI: 10.1039/c9lc00163h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a microfluidic fluorescence activated cell-sorting (μFACS) device that employs traveling surface acoustic waves (TSAW) to sort cells at rates comparable to conventional jet-in-air FACS machines, with high purity and viability. The device combines inertial flow focusing and sheath flow to align and evenly space cells, improving the sorting accuracy and screening rate. We sort with an interdigital transducer (IDT) whose tapered geometry allows precise positioning of the TSAW for optimal cell sorting. We sort three different cell lines at several kHz, at cell velocities exceeding one meter per second, while maintaining both sorting purity and cell viability at around 90% simultaneously.
Collapse
Affiliation(s)
- K Mutafopulos
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas RSW, Mitchell PD, Oreffo ROC, Morgan H, Green NG. Image-based sorting and negative dielectrophoresis for high purity cell and particle separation. Electrophoresis 2019; 40:2718-2727. [PMID: 31206722 DOI: 10.1002/elps.201800489] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023]
Abstract
Microelectrode arrays are used to sort single fluorescently labeled cells and particles as they flow through a microfluidic channel using dielectrophoresis. Negative dielectrophoresis is used to create a "Dielectrophoretic virtual channel" that runs along the center of the microfluidic channel. By switching the polarity of the electrodes, the virtual channel can be dynamically reconfigured to direct particles along a different path. This is demonstrated by sorting particles into two microfluidic outlets, controlled by an automated system that interprets video data from a color camera and makes complex sorting decisions based on color, intensity, size, and shape. This enables the rejection of particle aggregates and other impurities, and the system is optimized to isolate high purity populations from a heterogeneous sample. Green beads are isolated from an excess of red beads with 100% purity at a rate of up to 0.9 particles per second, in addition application to the sorting of osteosarcoma and human bone marrow cells is evidenced. The extension of Dielectrophoretic Virtual Channels to an arbitrary number of sorting outputs is examined, with design, simulation, and experimental verification of two alternate geometries presented and compared.
Collapse
Affiliation(s)
- Rupert S W Thomas
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK
| | - Peter D Mitchell
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK.,Institute for Life Sciences, University of Southampton Highfield, Southampton, UK
| | - Nicolas G Green
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK
| |
Collapse
|
11
|
Li P, Ma Z, Zhou Y, Collins DJ, Wang Z, Ai Y. Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level. Anal Chem 2019; 91:9970-9977. [DOI: 10.1021/acs.analchem.9b01708] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peixian Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Yinning Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - David J. Collins
- Biomedical Engineering Department, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhenfeng Wang
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
12
|
Verma RS, Ahlawat S, Uppal A. Optical guiding-based cell focusing for Raman flow cell cytometer. Analyst 2019; 143:2648-2655. [PMID: 29756139 DOI: 10.1039/c8an00037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the use of an optical guiding arrangement generated in a microfluidic channel to produce a stream of single cells in a line for single-cell Raman spectroscopic analysis. The optical guiding arrangement consisted of dual-line optical tweezers, generated using a 1064 nm laser, aligned in the shape of a '' symbol. By controlling the laser power in the tweezers and the flow rate in the microfluidic channel, a single line flow of cells could be produced in the tail of the guiding arrangement, where the 514.5 nm Raman excitation beam was also located. Furthermore, by resonantly exciting the Raman spectrum, a good-quality Raman spectrum could be recorded from the flowing single cells as they passed through the Raman excitation focal spot without the need to trap the cells. As a proof of concept, it was shown that red blood cells (RBCs) could be guided to the tail of the optical guide and the Raman spectra of the resonantly excited cells could be recorded in a continuous manner without trapping the cells at a cell flow rate of ∼500 cells per h. From the recorded spectra, we were able to distinguish between RBCs containing hemoglobin in the normal form (normal-RBCs) and the met form (met-RBCs) from a mixture of RBCs comprising met-RBCs and normal-RBCs in a ratio of 1 : 9.
Collapse
|
13
|
The Impact of Tumor Eco-Evolution in Renal Cell Carcinoma Sampling. Cancers (Basel) 2018; 10:cancers10120485. [PMID: 30518081 PMCID: PMC6316833 DOI: 10.3390/cancers10120485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Malignant tumors behave dynamically as cell communities governed by ecological principles. Massive sequencing tools are unveiling the true dimension of the heterogeneity of these communities along their evolution in most human neoplasms, clear cell renal cell carcinomas (CCRCC) included. Although initially thought to be purely stochastic processes, very recent genomic analyses have shown that temporal tumor evolution in CCRCC may follow some deterministic pathways that give rise to different clones and sub-clones randomly spatially distributed across the tumor. This fact makes each case unique, unrepeatable and unpredictable. Precise and complete molecular information is crucial for patients with cancer since it may help in establishing a personalized therapy. Intratumor heterogeneity (ITH) detection relies on the correctness of tumor sampling and this is part of the pathologist’s daily work. International protocols for tumor sampling are insufficient today. They were conceived decades ago, when ITH was not an issue, and have remained unchanged until now. Noteworthy, an alternative and more efficient sampling method for detecting ITH has been developed recently. This new method, called multisite tumor sampling (MSTS), is specifically addressed to large tumors that are impossible to be totally sampled, and represent an opportunity to improve ITH detection without extra costs.
Collapse
|
14
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
15
|
Ren L, Yang S, Zhang P, Qu Z, Mao Z, Huang PH, Chen Y, Wu M, Wang L, Li P, Huang TJ. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801996. [PMID: 30168662 PMCID: PMC6291339 DOI: 10.1002/smll.201801996] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Microfluidic fluorescence-activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high-performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)-based, 3D cell-focusing unit, an in-plane fluorescent detection unit, and an SSAW-based cell-deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW-based cell-focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in-plane-integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic-based cell-deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high-throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW-based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s-1 . The SSAW-based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS.
Collapse
Affiliation(s)
- Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhiguo Qu
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhangming Mao
- Ascent Bio-Nano Technologies, Inc., Research Triangle Park, NC, 27709, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies, Inc., Research Triangle Park, NC, 27709, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
16
|
López JI, Pulido R, Cortés JM, Angulo JC, Lawrie CH. Potential impact of PD-L1 (SP-142) immunohistochemical heterogeneity in clear cell renal cell carcinoma immunotherapy. Pathol Res Pract 2018; 214:1110-1114. [PMID: 29910061 DOI: 10.1016/j.prp.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
Abstract
Intratumor heterogeneity (ITH) detection remains a challenge in modern oncology because it can have a direct impact on the success of new therapies. Anti-PD-1/PD-L1 immunotherapy is an emerging treatment modality that is showing great promise for clear cell renal cell carcinoma (CCRCC) patients with advanced disease. Patient selection for such therapy relies upon the immunohistochemical detection of PD-1/PD-L1, however the degree of ITH for these markers among tumor cells and/or inflammatory mononuclear infiltrates remains unknown. Therefore, we analyzed PD-L1 (SP-142) expression in the tumor inflammatory cells of 22 CCRCC cases with the aim to define the pattern of PD-L1 expression, and to compare the reliability of current tumor sampling protocols (RS) with a multisite tumor sampling strategy (MSTS). While the RS protocol identified 5/22 (22.7%) of cases that were positive for PD-L1 expression, MSTS identified 10/22 (45.45%) of cases. This suggests that RS may miss a proportion of CCRCC patients that might benefit from immunotherapy. In addition, MSTS demonstrated that positive and negative regions of PD-L1 expression are very variable within each tumor.
Collapse
Affiliation(s)
- José I López
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain; Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain; Department of Medical-Surgical Specialties, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain; IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Cortés
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain; Quantitative Biomedicine Unit, Biocruces Research Institute, Barakaldo, Spain; Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid, Spain; Clinical Department, European University of Madrid, Laureate Universities, Madrid, Spain
| | - Charles H Lawrie
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain; Molecular Oncology, Biodonostia Research Institute, Donostia-San Sebastián, Spain; Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Radcliffe Department of Medicine, University of Oxford, UK
| |
Collapse
|
17
|
Sohrabi S, Tan J, Yunus DE, He R, Liu Y. Label-free sorting of soft microparticles using a bioinspired synthetic cilia array. BIOMICROFLUIDICS 2018; 12:042206. [PMID: 29861817 PMCID: PMC5962446 DOI: 10.1063/1.5022500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 05/25/2023]
Abstract
Isolating cells of interest from a heterogeneous population has been of critical importance in biological studies and clinical applications. In this study, a novel approach is proposed for utilizing an active ciliary system in microfluidic devices to separate particles based on their physical properties. In this approach, the bottom of the microchannel is covered with an equally spaced cilia array of various patterns which is actuated by an external stimuli. 3D simulations are carried out to study cilia-particle interaction and isolation dynamic in a microfluidic channel. It is observed that these elastic hair-like filaments can influence particle's trajectories differently depending on their biophysical properties. This modeling study utilizes immersed boundary method coupled with the lattice Boltzmann method. Soft particles and cilia are implemented through the spring connected network model and point-particle scheme, respectively. It is shown that cilia array with proper stimulation is able to continuously and non-destructively separate cells into subpopulations based on their size, shape, and stiffness. At the end, a design map for fabrication of a programmable microfluidic device capable of isolating various subpopulations of cells is developed. This biocompatible, label-free design can separate cells/soft microparticles with high throughput which can greatly complement existing separation technologies.
Collapse
Affiliation(s)
- Salman Sohrabi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - Doruk Erdem Yunus
- Department of Mechanical Engineering, Bursa Technical University, Bursa, Turkey
| | - Ran He
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
18
|
Li Y, Cornelis B, Dusa A, Vanmeerbeeck G, Vercruysse D, Sohn E, Blaszkiewicz K, Prodanov D, Schelkens P, Lagae L. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry. Comput Biol Med 2018; 96:147-156. [PMID: 29573668 PMCID: PMC5933530 DOI: 10.1016/j.compbiomed.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost.
Collapse
Affiliation(s)
- Yuqian Li
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium; Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium.
| | - Bruno Cornelis
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Alexandra Dusa
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Geert Vanmeerbeeck
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Dries Vercruysse
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Erik Sohn
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Kamil Blaszkiewicz
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Dimiter Prodanov
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Liesbet Lagae
- Department of Life Sciences and Imaging, IMEC, Kapeldreef 75, 3001 Heverlee, Belgium; Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| |
Collapse
|
19
|
Huang M, Joensson HN, Nielsen J. High-Throughput Microfluidics for the Screening of Yeast Libraries. Methods Mol Biol 2018; 1671:307-317. [PMID: 29170967 DOI: 10.1007/978-1-4939-7295-1_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell factory development is critically important for efficient biological production of chemicals, biofuels, and pharmaceuticals. Many rounds of the Design-Build-Test-Learn cycles may be required before an engineered strain meeting specific metrics required for industrial application. The bioindustry prefer products in secreted form (secreted products or extracellular metabolites) as it can lower the cost of downstream processing, reduce metabolic burden to cell hosts, and allow necessary modification on the final products , such as biopharmaceuticals. Yet, products in secreted form result in the disconnection of phenotype from genotype, which may have limited throughput in the Test step for identification of desired variants from large libraries of mutant strains. In droplet microfluidic screening, single cells are encapsulated in individual droplet and enable high-throughput processing and sorting of single cells or clones. Encapsulation in droplets allows this technology to overcome the throughput limitations present in traditional methods for screening by extracellular phenotypes. In this chapter, we describe a protocol/guideline for high-throughput droplet microfluidics screening of yeast libraries for higher protein secretion . This protocol can be adapted to screening by a range of other extracellular products from yeast or other hosts.
Collapse
Affiliation(s)
- Mingtao Huang
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Haakan N Joensson
- Division of Nanobiotechnology and Proteomics, KTH Royal Institute of Technology, Science for Life Laboratory, Box 1031, SE-17121, Solna, Sweden
- Novo Nordisk Foundation Center for Biosustainability, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| |
Collapse
|
20
|
Ung WL, Mutafopulos K, Spink P, Rambach RW, Franke T, Weitz DA. Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design. LAB ON A CHIP 2017; 17:4059-4069. [PMID: 28994439 DOI: 10.1039/c7lc00715a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate an acoustic wave driven microfluidic cell sorter that combines advantages of multilayer device fabrication with planar surface acoustic wave excitation. We harness the strong vertical component of the refracted acoustic wave to enhance cell actuation by using an asymmetric flow field to increase cell deflection. Precise control of the 3-dimensional flow is realized by topographical structures implemented on the top of the microchannel. We experimentally quantify the effect of the structure dimensions and acoustic parameter. The design attains cell sorting rates and purities approaching those of state of the art fluorescence-activated cell sorters with all the advantages of microfluidic cell sorting.
Collapse
Affiliation(s)
- W L Ung
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
21
|
López JI, Cortés JM. Multisite tumor sampling: a new tumor selection method to enhance intratumor heterogeneity detection. Hum Pathol 2017; 64:1-6. [DOI: 10.1016/j.humpath.2017.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/14/2017] [Accepted: 02/09/2017] [Indexed: 01/20/2023]
|
22
|
Shen Y, Song Z, Yan Y, Song Y, Pan X, Wang Q. Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device. MICROMACHINES 2017. [PMCID: PMC6189766 DOI: 10.3390/mi8060172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A microfluidic lab-on-chip device was developed to automatically and selectively manipulate target cells at the single cell level. The device is composed of a microfluidic chip, mini solenoid valves with negative-pressurized soft tubes, and a LabView®-based data acquisition device. Once a target cell passes the resistive pulse sensing gate of the microfluidic chip, the solenoid valves are automatically actuated and open the negative-pressurized tubes placed at the ends of the collecting channels. As a result, the cell is transported to that collecting well. Numerical simulation shows that a 0.14 mm3 volume change of the soft tube can result in a 1.58 mm/s moving velocity of the sample solution. Experiments with single polystyrene particles and cancer cells samples were carried out to demonstrate the effectiveness of this method. Selectively manipulating a certain size of particles from a mixture solution was also achieved. Due to the very high pressure-driven flow switching, as many as 300 target cells per minute can be isolated from the sample solution and thus is particularly suitable for manipulating very rare target cells. The device is simple, automatic, and label-free and particularly suitable for isolating single cells off the chip one by one for downstream analysis.
Collapse
Affiliation(s)
- Yigang Shen
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.S.); (Y.Y.); (X.P.)
| | - Zhenyu Song
- Department of Radiotherapy, Jiaozhao Central Hospital, Qingdao 266300, China;
| | - Yimo Yan
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.S.); (Y.Y.); (X.P.)
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.S.); (Y.Y.); (X.P.)
- Correspondence: (Y.S.); (Q.W.); Tel.: +86-411-8472-3553 (Y.S.); +86-411-8467-1669 (Q.W.)
| | - Xinxiang Pan
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; (Y.S.); (Y.Y.); (X.P.)
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian 116027, China
- Correspondence: (Y.S.); (Q.W.); Tel.: +86-411-8472-3553 (Y.S.); +86-411-8467-1669 (Q.W.)
| |
Collapse
|
23
|
Cortés JM, de Petris G, López JI. Detection of Intratumor Heterogeneity in Modern Pathology: A Multisite Tumor Sampling Perspective. Front Med (Lausanne) 2017; 4:25. [PMID: 28321395 PMCID: PMC5337957 DOI: 10.3389/fmed.2017.00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Current sampling protocols of neoplasms along the digestive tract and in the urinary bladder have to be updated, as they do not respond to the necessities of modern personalized medicine. We show here that an adapted version of multisite tumor sampling (MSTS) is a sustainable model to overcome current deficiencies in digestive and bladder tumors when they are large enough so as to make unaffordable a total sampling. The new method is based on the divide-and-conquer algorithm and includes a slight modification of the MSTS, which proved to be useful very recently in clear cell renal cell carcinoma. This in silico analysis confirms the usefulness of MSTS for detecting intratumor heterogeneity (ITH) in tumors arising in hollow viscera. However, MSTS does not seem to improve routine traditional sampling in detecting tumor budding, extramural venous invasion, and perineural invasion. We conclude that (1) MSTS is the best method for tumor sampling to detect ITH balancing high performance and sustainable cost, (2) MSTS must be adapted to tumor shape and tumor location for an optimal performance.
Collapse
Affiliation(s)
- Jesús M. Cortés
- Quantitative Biomedicine Unit, Biocruces Research Institute, Barakaldo, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Giovanni de Petris
- Department of Pathology and Laboratory Medicine, Penrose St Francis Hospital, Colorado Springs, CO, USA
| | - José I. López
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
- Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain
- University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
24
|
Barani A, Paktinat H, Janmaleki M, Mohammadi A, Mosaddegh P, Fadaei-Tehrani A, Sanati-Nezhad A. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron 2016; 85:714-725. [DOI: 10.1016/j.bios.2016.05.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
|
25
|
Lopez JI, Cortes JM. A multi-site cutting device implements efficiently the divide-and-conquer strategy in tumor sampling. F1000Res 2016; 5:1587. [PMID: 27540472 PMCID: PMC4965694 DOI: 10.12688/f1000research.9091.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
We recently showed that in order to detect intra-tumor heterogeneity a Divide-and-Conquer (DAC) strategy of tumor sampling outperforms current routine protocols. This paper is a continuation of this work, but here we focus on DAC implementation in the Pathology Laboratory. In particular, we describe a new simple method that makes use of a cutting grid device and is applied to clear cell renal cell carcinomas for DAC implementation. This method assures a thorough sampling of large surgical specimens, facilitates the demonstration of intratumor heterogeneity, and saves time to pathologists in the daily practice. The method involves the following steps: 1. Thin slicing of the tumor (by hand or machine), 2. Application of a cutting grid to the slices ( e.g., a French fry cutter), resulting in multiple tissue cubes with fixed position within the slice, 3. Selection of tissue cubes for analysis, and finally, 4. Inclusion of selected cubes into a cassette for histological processing (with about eight tissue fragments within each cassette). Thus, using our approach in a 10 cm in-diameter-tumor we generate 80 tumor tissue fragments placed in 10 cassettes and, notably, in a tenth of time. Eighty samples obtained across all the regions of the tumor will assure a much higher performance in detecting intratumor heterogeneity, as proved recently with synthetic data.
Collapse
Affiliation(s)
- Jose I. Lopez
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
- Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain
- University of the Basque Country, Leioa, Spain
| | - Jesus M. Cortes
- Quantitative Biomedicine Unit, Biocruces Research Institute, Barakaldo, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
26
|
Lopez JI, Cortes JM. A multi-site cutting device implements efficiently the divide-and-conquer strategy in tumor sampling. F1000Res 2016; 5:1587. [PMID: 27540472 PMCID: PMC4965694 DOI: 10.12688/f1000research.9091.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
We recently showed that in order to detect intra-tumor heterogeneity a Divide-and-Conquer (DAC) strategy of tumor sampling outperforms current routine protocols. This paper is a continuation of this work, but here we focus on DAC implementation in the Pathology Laboratory. In particular, we describe a new simple method that makes use of a cutting grid device and is applied to clear cell renal cell carcinomas for DAC implementation. This method assures a thorough sampling of large surgical specimens, facilitates the demonstration of intratumor heterogeneity, and saves time to pathologists in the daily practice. The method involves the following steps: 1. Thin slicing of the tumor (by hand or machine), 2. Application of a cutting grid to the slices ( e.g., a French fry cutter), resulting in multiple tissue cubes with fixed position within the slice, 3. Selection of tissue cubes for analysis, and finally, 4. Inclusion of selected cubes into a cassette for histological processing (with about eight tissue fragments within each cassette). Thus, using our approach in a 10 cm in-diameter-tumor we generate 80 tumor tissue fragments placed in 10 cassettes and, notably, in a tenth of time. Eighty samples obtained across all the regions of the tumor will assure a much higher performance in detecting intratumor heterogeneity, as proved recently with synthetic data.
Collapse
Affiliation(s)
- Jose I. Lopez
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
- Biomarkers in Cancer Unit, Biocruces Research Institute, Barakaldo, Spain
- University of the Basque Country, Leioa, Spain
| | - Jesus M. Cortes
- Quantitative Biomedicine Unit, Biocruces Research Institute, Barakaldo, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
27
|
High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci Rep 2016; 6:27223. [PMID: 27270141 PMCID: PMC4895158 DOI: 10.1038/srep27223] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 10(4) clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.
Collapse
|
28
|
Liu Z, Kim YJ, Wang H, Han A. Effects of fluid medium flow and spatial temperature variation on acoustophoretic motion of microparticles in microfluidic channels. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:332-49. [PMID: 26827029 DOI: 10.1121/1.4939737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A numerical modeling method for accurately predicting the acoustophoretic motion of compressible microparticles in microfluidic devices is presented to consider the effects of fluid medium flow and spatial temperature variation that can significantly influence the acoustophoretic motion. In the proposed method, zeroth-order fluid medium flow and temperature, and first- and second-order acoustic fields in the microfluidic devices are first calculated by applying quadratic mapping functions and a second-order finite difference method (FDM) to perturbed mass, momentum, and energy conservation equations and state equation. Then, the acoustic radiation force is obtained based on the Gorkov's acoustic radiation force equation and applied to the Newton's Equation of Motion to calculate the microparticle motion. The proposed method was validated by comparing its results to a commercial software package, COMSOL Multiphysics results, one-dimensional, analytical modeling results, and experimental results. It is shown that the fluid medium flow affects the acoustic radiation force and streaming significantly, resulting in the acoustic radiation force and streaming prediction errors of 10.9% and 67.4%, respectively, when the fluid medium flow speed is increased from 0 to 1 m/s. A local temperature elevation from 20 °C to 22 °C also results in the prediction errors of 88.4% and 73.4%.
Collapse
Affiliation(s)
- Zhongzheng Liu
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, USA
| | - Yong-Joe Kim
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, USA
| | - Han Wang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843-3128, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843-3128, USA
| |
Collapse
|
29
|
Devendran C, Gunasekara NR, Collins DJ, Neild A. Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 2016. [DOI: 10.1039/c5ra26965b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acoustic fields are described incorporating travelling and standing wave components to perform size-deterministic particle sorting. This is achieved without the need for fluid flow allowing application to very small volumes in a batch-wise system.
Collapse
Affiliation(s)
- Citsabehsan Devendran
- Laboratory for Micro Systems
- Department of Mechanical and Aerospace Engineering
- Monash University
- Clayton
- Australia
| | - Nipuna R. Gunasekara
- Laboratory for Micro Systems
- Department of Mechanical and Aerospace Engineering
- Monash University
- Clayton
- Australia
| | - David J. Collins
- Engineering Product Design Pillar
- Singapore University of Technology and Design
- Singapore
| | - Adrian Neild
- Laboratory for Micro Systems
- Department of Mechanical and Aerospace Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
30
|
Nawaz AA, Chen Y, Nama N, Nissly RH, Ren L, Ozcelik A, Wang L, McCoy JP, Levine SJ, Huang TJ. Acoustofluidic Fluorescence Activated Cell Sorter. Anal Chem 2015; 87:12051-8. [PMID: 26331909 PMCID: PMC4888785 DOI: 10.1021/acs.analchem.5b02398] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective isolation of cell subpopulations with defined biological characteristics is crucial for many biological studies and clinical applications. In this work, we present the development of an acoustofluidic fluorescence activated cell sorting (FACS) device that simultaneously performs on-demand, high-throughput, high-resolution cell detection and sorting, integrated onto a single chip. Our acoustofluidic FACS device uses the "microfluidic drifting" technique to precisely focus cells/particles three dimensionally and achieves a flow of single-file particles/cells as they pass through a laser interrogation region. We then utilize short bursts (150 μs) of standing surface acoustic waves (SSAW) triggered by an electronic feedback system to sort fluorescently labeled particles/cells with desired biological properties. We have demonstrated continuous isolation of fluorescently labeled HeLa cells from unlabeled cells at a throughput of ∼1200 events/s with a purity reaching 92.3 ± 3.39%. Furthermore, 99.18% postsort cell viability indicates that our acoustofluidic sorting technique maintains a high integrity of cells. Therefore, our integrated acoustofluidic FACS device is demonstrated to achieve two-way cell sorting with high purity, biocompatibility, and biosafety. We believe that our device has significant potential for use as a low-cost, high-performance, portable, and user-friendly FACS instrument.
Collapse
Affiliation(s)
- Ahmad Ahsan Nawaz
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad H-12, Pakistan
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nitesh Nama
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ruth Helmus Nissly
- Microscopy and Cytometry Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., State College, Pennsylvania 16801, United States
| | - J. Philip McCoy
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, United States
| | - Stewart J. Levine
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Ren L, Chen Y, Li P, Mao Z, Huang PH, Rufo J, Guo F, Wang L, McCoy JP, Levine SJ, Huang TJ. A high-throughput acoustic cell sorter. LAB ON A CHIP 2015; 15:3870-3879. [PMID: 26289231 PMCID: PMC4641751 DOI: 10.1039/c5lc00706b] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acoustic-based fluorescence activated cell sorters (FACS) have drawn increased attention in recent years due to their versatility, high biocompatibility, high controllability, and simple design. However, the sorting throughput for existing acoustic cell sorters is far from optimum for practical applications. Here we report a high-throughput cell sorting method based on standing surface acoustic waves (SSAWs). We utilized a pair of focused interdigital transducers (FIDTs) to generate SSAW with high resolution and high energy efficiency. As a result, the sorting throughput is improved significantly from conventional acoustic-based cell sorting methods. We demonstrated the successful sorting of 10 μm polystyrene particles with a minimum actuation time of 72 μs, which translates to a potential sorting rate of more than 13,800 events per second. Without using a cell-detection unit, we were able to demonstrate an actual sorting throughput of 3300 events per second. Our sorting method can be conveniently integrated with upstream detection units, and it represents an important development towards a functional acoustic-based FACS system.
Collapse
Affiliation(s)
- Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies, Inc., State College, PA, 16802, USA
| | - J. Philip McCoy
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Stewart J. Levine
- National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
32
|
Najah M, Calbrix R, Mahendra-Wijaya IP, Beneyton T, Griffiths AD, Drevelle A. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. ACTA ACUST UNITED AC 2015; 21:1722-32. [PMID: 25525991 DOI: 10.1016/j.chembiol.2014.10.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 01/05/2023]
Abstract
Discovery of microorganisms producing enzymes that can efficiently hydrolyze cellulosic biomass is of great importance for biofuel production. To date, however, only a miniscule fraction of natural biodiversity has been tested because of the relatively low throughput of screening systems and their limitation to screening only culturable microorganisms. Here, we describe an ultra-high-throughput droplet-based microfluidic system that allowed the screening of over 100,000 cells in less than 20 min. Uncultured bacteria from a wheat stubble field were screened directly by compartmentalization of single bacteria in 20 pl droplets containing a fluorogenic cellobiohydrolase substrate. Sorting of droplets based on cellobiohydrolase activity resulted in a bacterial population with 17- and 7-fold higher cellobiohydrolase and endogluconase activity, respectively, and very different taxonomic diversity than when selected for growth on medium containing starch and carboxymethylcellulose as carbon source.
Collapse
Affiliation(s)
- Majdi Najah
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France; Division Biotechnologies, Ets. J. Soufflet, quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Raphaël Calbrix
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France
| | - I Putu Mahendra-Wijaya
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France; Division Biotechnologies, Ets. J. Soufflet, quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Thomas Beneyton
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Andrew D Griffiths
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France; École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, 10 rue Vauquelin, 75231 Paris Cedex 05, France.
| | - Antoine Drevelle
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, 67083 Strasbourg Cedex, France; Division Biotechnologies, Ets. J. Soufflet, quai Sarrail, 10400 Nogent-sur-Seine, France.
| |
Collapse
|
33
|
Vercruysse D, Dusa A, Stahl R, Vanmeerbeeck G, de Wijs K, Liu C, Prodanov D, Peumans P, Lagae L. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. LAB ON A CHIP 2015; 15:1123-32. [PMID: 25537881 DOI: 10.1039/c4lc01131g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A compelling clinical need exists for inexpensive, portable haematology analyzers that can be utilized at the point-of-care in emergency settings or in resource-limited settings. Development of a label-free, microfluidic blood analysis platform is the first step towards such a miniaturized, cost-effective system. Here we assemble a compact lens-free in-line holographic microscope and employ it to image blood cells flowing in a microfluidic chip, using a high-speed camera and stroboscopic illumination. Numerical reconstruction of the captured holograms allows classification of unlabeled leukocytes into three main subtypes: lymphocytes, monocytes and granulocytes. A scale-space recognition analysis to evaluate cellular size and internal complexity is also developed and used to build a 3-part leukocyte differential. The lens-free image-based classification is compared to the 3-part white blood cell differential generated by using a conventional analyzer on the same blood sample and is found to be in good agreement with it.
Collapse
|
34
|
Schmid L, Weitz DA, Franke T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. LAB ON A CHIP 2014; 14:3710-8. [PMID: 25031157 DOI: 10.1039/c4lc00588k] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.
Collapse
Affiliation(s)
- Lothar Schmid
- Lehrstuhl für Experimentalphysik I, Soft Matter Group, Universität Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany.
| | | | | |
Collapse
|
35
|
Abstract
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
Collapse
|
36
|
Chen Y, Chung AJ, Wu TH, Teitell MA, Di Carlo D, Chiou PY. Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1746-51. [PMID: 24536017 PMCID: PMC4324602 DOI: 10.1002/smll.201302885] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/08/2013] [Indexed: 05/20/2023]
Affiliation(s)
- Yue Chen
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43–147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA 90095–1597, USA
| | - Aram J. Chung
- Department of Mechanical, Aerospace and Nuclear Engineering, JEC 2024, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180–3590, USA
| | - Ting-Hsiang Wu
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43–147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA 90095–1597, USA. Department of Pathology and Laboratory Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095–1732, USA
| | - Michael A. Teitell
- Departments of Pathology and Laboratory Medicine, Pediatrics, and Bioengineering; Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, Molecular Biology Institute; and California NanoSystems Institute, University of California at Los Angeles (UCLA), Los Angeles, CA 90095–1732, USA
| | - Dino Di Carlo
- Department of Bioengineering and California NanoSystems Institute, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43–147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA 90095–1597, USA. Department of Bioengineering and California NanoSystems Institute, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Chen Y, Wu TH, Kung YC, Teitell MA, Chiou PY. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter. Analyst 2013; 138:7308-15. [PMID: 23844418 PMCID: PMC4210433 DOI: 10.1039/c3an01266b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23 000 cells per s with 90% purity in high-purity mode and at a throughput of 45 000 cells per s with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μs complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m s(-1)) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter.
Collapse
Affiliation(s)
- Yue Chen
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43-147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
| | - Ting-Hsiang Wu
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43-147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
- Department of Pathology and Laboratory Medicine, Broad Stem Cell Research Center, Molecular Biology Institute, and California NanoSystems Institute,University of California at LosAngeles (UCLA), Los Angeles, CA, 90095-1732, USA
| | - Yu-Chun Kung
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43-147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, Broad Stem Cell Research Center, Molecular Biology Institute, and California NanoSystems Institute,University of California at LosAngeles (UCLA), Los Angeles, CA, 90095-1732, USA
- Departments of Bioengineering and Pediatrics, Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, Molecular Biology Institute, and California NanoSystems Institute,University of California at LosAngeles (UCLA), Los Angeles, CA, 90095-1732, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 43-147 Eng. IV, 420 Westwood Plaza, Los Angeles, CA, 90095-1597, USA
- Department of Bioengineering, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Lim J, Vrignon J, Gruner P, Karamitros CS, Konrad M, Baret JC. Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array. APPLIED PHYSICS LETTERS 2013; 103:203704. [PMID: 32095020 PMCID: PMC7028306 DOI: 10.1063/1.4830046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 05/06/2023]
Abstract
We demonstrate the use of a hybrid microfluidic-micro-optical system for the screening of enzymatic activity at the single cell level. Escherichia coli β-galactosidase activity is revealed by a fluorogenic assay in 100 pl droplets. Individual droplets containing cells are screened by measuring their fluorescence signal using a high-speed camera. The measurement is parallelized over 100 channels equipped with microlenses and analyzed by image processing. A reinjection rate of 1 ml of emulsion per minute was reached corresponding to more than 105 droplets per second, an analytical throughput larger than those obtained using flow cytometry.
Collapse
Affiliation(s)
| | - Jérémy Vrignon
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany
| | - Philipp Gruner
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany
| | - Christos S Karamitros
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Jean-Christophe Baret
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany
| |
Collapse
|
39
|
Ding X, Lin SCS, Lapsley MI, Li S, Guo X, Chan CYK, Chiang IK, Wang L, McCoy JP, Huang TJ. Standing surface acoustic wave (SSAW) based multichannel cell sorting. LAB ON A CHIP 2012; 12:4228-31. [PMID: 22992833 PMCID: PMC3956451 DOI: 10.1039/c2lc40751e] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We introduce a novel microfluidic device for cell sorting in continuous flow using tunable standing surface acoustic waves. This method allows individual cells to be precisely directed into five different outlet channels in a single step. It is versatile, simple, label-free, non-invasive, and highly controllable.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Sz-Chin Steven Lin
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Michael Ian Lapsley
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
- Cell and Developmental Biology Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiang Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Chung Yu Keith Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - I-Kao Chiang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., State College, PA 16801, USA
| | - J. Philip McCoy
- National Heart, Lung, and Blood Institute at NIH, Bethesda, MD 20892, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. Fax: 814-865-9974; Tel: 814-863-4209
- Cell and Developmental Biology Program, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Kudo LC, Vi N, Ma Z, Fields T, Avliyakulov NK, Haykinson MJ, Bragin A, Karsten SL. Novel Cell and Tissue Acquisition System (CTAS): microdissection of live and frozen brain tissues. PLoS One 2012; 7:e41564. [PMID: 22855692 PMCID: PMC3404047 DOI: 10.1371/journal.pone.0041564] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/27/2012] [Indexed: 12/05/2022] Open
Abstract
We developed a novel, highly accurate, capillary based vacuum-assisted microdissection device CTAS - Cell and Tissue Acquisition System, for efficient isolation of enriched cell populations from live and freshly frozen tissues, which can be successfully used in a variety of molecular studies, including genomics and proteomics. Specific diameter of the disposable capillary unit (DCU) and precisely regulated short vacuum impulse ensure collection of the desired tissue regions and even individual cells. We demonstrated that CTAS is capable of dissecting specific regions of live and frozen mouse and rat brain tissues at the cellular resolution with high accuracy. CTAS based microdissection avoids potentially harmful physical treatment of tissues such as chemical treatment, laser irradiation, excessive heat or mechanical cell damage, thus preserving primary functions and activities of the dissected cells and tissues. High quality DNA, RNA, and protein can be isolated from CTAS-dissected samples, which are suitable for sequencing, microarray, 2D gel-based proteomic analyses, and Western blotting. We also demonstrated that CTAS can be used to isolate cells from native living tissues for subsequent recultivation of primary cultures without affecting cellular viability, making it a simple and cost-effective alternative for laser-assisted microdissection.
Collapse
Affiliation(s)
- Lili C. Kudo
- NeuroInDx, Inc., Signal Hill, California, United States of America
- * E-mail: (LCK); (SLK)
| | - Nancy Vi
- NeuroInDx, Inc., Signal Hill, California, United States of America
| | - Zhongcai Ma
- NeuroInDx, Inc., Signal Hill, California, United States of America
- Division of Neuroscience, Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Tony Fields
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Nuraly K. Avliyakulov
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael J. Haykinson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Anatol Bragin
- NeuroInDx, Inc., Signal Hill, California, United States of America
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanislav L. Karsten
- NeuroInDx, Inc., Signal Hill, California, United States of America
- * E-mail: (LCK); (SLK)
| |
Collapse
|
41
|
Wlodkowic D, Khoshmanesh K, Sharpe JC, Darzynkiewicz Z, Cooper JM. Apoptosis goes on a chip: advances in the microfluidic analysis of programmed cell death. Anal Chem 2011; 83:6439-46. [PMID: 21630641 PMCID: PMC3251906 DOI: 10.1021/ac200588g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have brought enormous progress in cell-based lab-on-a-chip technologies, allowing dynamic studies of cell death with an unprecedented accuracy. As interest in the microfabricated technologies for cell-based bioassays is rapidly gaining momentum, we highlight the most promising technologies that provide a new outlook for the rapid assessment of programmed and accidental cell death and are applicable in drug discovery, high-content drug screening, and personalized clinical diagnostics.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
42
|
Heng X, Hsiung F, Sadri A, Patt P. Serial Line Scan Encoding Imaging Cytometer for Both Adherent and Suspended Cells. Anal Chem 2011; 83:1587-93. [DOI: 10.1021/ac102408g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Heng
- Gene Expression Division, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Hercules, California 94547, United States
| | - Frank Hsiung
- Gene Expression Division, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Hercules, California 94547, United States
| | - Amir Sadri
- Gene Expression Division, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Hercules, California 94547, United States
| | - Paul Patt
- Gene Expression Division, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Hercules, California 94547, United States
| |
Collapse
|
43
|
Abstract
The past decade has brought many innovations to the field of flow and image-based cytometry. These advancements can be seen in the current miniaturization trends and simplification of analytical components found in the conventional flow cytometers. On the other hand, the maturation of multispectral imaging cytometry in flow imaging and the slide-based laser scanning cytometers offers great hopes for improved data quality and throughput while proving new vistas for the multiparameter, real-time analysis of cells and tissues. Importantly, however, cytometry remains a viable and very dynamic field of modern engineering. Technological milestones and innovations made over the last couple of years are bringing the next generation of cytometers out of centralized core facilities while making it much more affordable and user friendly. In this context, the development of microfluidic, lab-on-a-chip (LOC) technologies is one of the most innovative and cost-effective approaches toward the advancement of cytometry. LOC devices promise new functionalities that can overcome current limitations while at the same time promise greatly reduced costs, increased sensitivity, and ultra high throughputs. We can expect that the current pace in the development of novel microfabricated cytometric systems will open up groundbreaking vistas for the field of cytometry, lead to the renaissance of cytometric techniques and most importantly greatly support the wider availability of these enabling bioanalytical technologies.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
44
|
Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol 2011; 103:55-98. [PMID: 21722800 PMCID: PMC3263828 DOI: 10.1016/b978-0-12-385493-3.00004-8] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the "time window" at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized.
Collapse
Affiliation(s)
- Donald Wlodkowic
- BioMEMS Research Group, Department of Chemistry, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
45
|
Lautz J, Sankin G, Yuan F, Zhong P. Displacement of particles in microfluidics by laser-generated tandem bubbles. APPLIED PHYSICS LETTERS 2010; 97:183701. [PMID: 21124726 PMCID: PMC2994928 DOI: 10.1063/1.3511538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/12/2010] [Indexed: 05/22/2023]
Abstract
The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m∕s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.
Collapse
Affiliation(s)
- Jaclyn Lautz
- Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
46
|
Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry in cell necrobiology revisited. Recent advances and new vistas. Cytometry A 2010; 77:591-606. [PMID: 20235235 PMCID: PMC2975392 DOI: 10.1002/cyto.a.20889] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over a decade has passed since publication of the last review on "Cytometry in cell necrobiology." During these years we have witnessed many substantial developments in the field of cell necrobiology such as remarkable advancements in cytometric technologies and improvements in analytical biochemistry. The latest innovative platforms such as laser scanning cytometry, multispectral imaging cytometry, spectroscopic cytometry, and microfluidic Lab-on-a-Chip solutions rapidly emerge as highly advantageous tools in cell necrobiology studies. Furthermore, we have recently gained substantial knowledge on alternative cell demise modes such as caspase-independent apoptosis-like programmed cell death (PCD), autophagy, necrosis-like PCD, or mitotic catastrophe, all with profound connotations to pathogenesis and treatment. Although detection of classical, caspase-dependent apoptosis is still the major ground for the advancement of cytometric techniques, there is an increasing demand for novel analytical tools to rapidly quantify noncanonical modes of cell death. This review highlights the key developments warranting a renaissance and evolution of cytometric techniques in the field of cell necrobiology.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Bioelectronics Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
47
|
Franke T, Braunmüller S, Schmid L, Wixforth A, Weitz DA. Surface acoustic wave actuated cell sorting (SAWACS). LAB ON A CHIP 2010; 10:789-94. [PMID: 20221569 DOI: 10.1039/b915522h] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.
Collapse
Affiliation(s)
- T Franke
- Department of Physics and School of Engineering and Applied Science, Harvard University, Cambridge, USA
| | | | | | | | | |
Collapse
|
48
|
Ahn B, Lee K, Louge R, Oh KW. Concurrent droplet charging and sorting by electrostatic actuation. BIOMICROFLUIDICS 2009; 3:44102. [PMID: 20216964 PMCID: PMC2835282 DOI: 10.1063/1.3250303] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/25/2009] [Indexed: 05/05/2023]
Abstract
This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 dropletss by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.
Collapse
Affiliation(s)
- Byungwook Ahn
- Department of Electrical Engineering, nanobio Sensors and MicroActuators Learning Lab (SMALL), University at Buffalo, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, University Medicine of the Johannes Gutenberg University, III. Medical Clinic, Langenbeckstr. 1, 55131 Mainz, Germany, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Department of Transfusion Medicine, University of Ulm, Helmholtzstr. 10, 89081 Ulm, Germany, and Institute of Organic Chemistry III−Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, University Medicine of the Johannes Gutenberg University, III. Medical Clinic, Langenbeckstr. 1, 55131 Mainz, Germany, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Department of Transfusion Medicine, University of Ulm, Helmholtzstr. 10, 89081 Ulm, Germany, and Institute of Organic Chemistry III−Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
50
|
Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. LAB ON A CHIP 2009; 9:1850-8. [PMID: 19532959 DOI: 10.1039/b902504a] [Citation(s) in RCA: 629] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We describe a highly efficient microfluidic fluorescence-activated droplet sorter (FADS) combining many of the advantages of microtitre-plate screening and traditional fluorescence-activated cell sorting (FACS). Single cells are compartmentalized in emulsion droplets, which can be sorted using dielectrophoresis in a fluorescence-activated manner (as in FACS) at rates up to 2000 droplets s(-1). To validate the system, mixtures of E. coli cells, expressing either the reporter enzyme beta-galactosidase or an inactive variant, were compartmentalized with a fluorogenic substrate and sorted at rates of approximately 300 droplets s(-1). The false positive error rate of the sorter at this throughput was <1 in 10(4) droplets. Analysis of the sorted cells revealed that the primary limit to enrichment was the co-encapsulation of E. coli cells, not sorting errors: a theoretical model based on the Poisson distribution accurately predicted the observed enrichment values using the starting cell density (cells per droplet) and the ratio of active to inactive cells. When the cells were encapsulated at low density ( approximately 1 cell for every 50 droplets), sorting was very efficient and all of the recovered cells were the active strain. In addition, single active droplets were sorted and cells were successfully recovered.
Collapse
Affiliation(s)
- Jean-Christophe Baret
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, CNRS UMR 7006, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|