1
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
2
|
Huang 黄玉莹 Y, Shao 邵建英 JY, Chen 陈红 H, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons. J Neurosci 2024; 44:e0392242024. [PMID: 38886057 PMCID: PMC11255431 DOI: 10.1523/jneurosci.0392-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao 邵建英
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jing-Jing Zhou 周京京
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
3
|
Arnold FJ, Putka AF, Raychaudhuri U, Hsu S, Bedlack RS, Bennett CL, La Spada AR. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int J Mol Sci 2024; 25:5587. [PMID: 38891774 PMCID: PMC11171854 DOI: 10.3390/ijms25115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.
Collapse
Affiliation(s)
- Frederick J. Arnold
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Alexandra F. Putka
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Urmimala Raychaudhuri
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Solomon Hsu
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Richard S. Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Craig L. Bennett
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. Calcineurin regulates synaptic Ca 2+-permeable AMPA receptors in hypothalamic presympathetic neurons via α2δ-1-mediated GluA1/GluA2 assembly. J Physiol 2024; 602:2179-2197. [PMID: 38630836 PMCID: PMC11096015 DOI: 10.1113/jp286081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Sprengel R, Eltokhi A, Single FN. Generation of Rare Human NMDA Receptor Variants in Mice. Methods Mol Biol 2024; 2799:79-105. [PMID: 38727904 DOI: 10.1007/978-1-0716-3830-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The analysis of rare NMDAR gene variants in mice, coupled with a fundamental understanding of NMDAR function, plays a crucial role in achieving therapeutic success when addressing NMDAR dysfunctions in human patients. For the generation of such NMDAR mouse models, a basic knowledge of receptor structure, along with skills in database sequence analysis, cloning in E. coli, genetic manipulation of embryonic stem (ES) cells, and ultimately the genetic modification of mouse embryos, is essential. Primarily, this chapter will focus on the design and synthesis of NMDAR gene-targeting vectors that can be used successfully for the genetic manipulation of mice. We will outline the core principles of the design and synthesis of a gene targeting vector that facilitates the introduction of single-point mutations in NMDAR-encoding genes in mice. The transformation of ES cells, selection of positive ES cell colonies, manipulation of mouse embryos, and genotyping strategies will be described briefly.
Collapse
Affiliation(s)
- Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Ahmed Eltokhi
- Department of Biomedical Sciences, School of Medicine, Mercer University, Columbus, GA, USA
| | - Frank N Single
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
7
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
8
|
Wright AL, Konen LM, Mockett BG, Morris GP, Singh A, Burbano LE, Milham L, Hoang M, Zinn R, Chesworth R, Tan RP, Royle GA, Clark I, Petrou S, Abraham WC, Vissel B. The Q/R editing site of AMPA receptor GluA2 subunit acts as an epigenetic switch regulating dendritic spines, neurodegeneration and cognitive deficits in Alzheimer's disease. Mol Neurodegener 2023; 18:65. [PMID: 37759260 PMCID: PMC10537207 DOI: 10.1186/s13024-023-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/03/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND RNA editing at the Q/R site of GluA2 occurs with ~99% efficiency in the healthy brain, so that the majority of AMPARs contain GluA2(R) instead of the exonically encoded GluA2(Q). Reduced Q/R site editing infcreases AMPA receptor calcium permeability and leads to dendritic spine loss, neurodegeneration, seizures and learning impairments. Furthermore, GluA2 Q/R site editing is impaired in Alzheimer's disease (AD), raising the possibility that unedited GluA2(Q)-containing AMPARs contribute to synapse loss and neurodegeneration in AD. If true, then inhibiting expression of unedited GluA2(Q), while maintaining expression of GluA2(R), may be a novel strategy of preventing synapse loss and neurodegeneration in AD. METHODS We engineered mice with the 'edited' arginine codon (CGG) in place of the unedited glutamine codon (CAG) at position 607 of the Gria2 gene. We crossbred this line with the J20 mouse model of AD and conducted anatomical, electrophysiological and behavioural assays to determine the impact of eliminating unedited GluA2(Q) expression on AD-related phenotypes. RESULTS Eliminating unedited GluA2(Q) expression in AD mice prevented dendritic spine loss and hippocampal CA1 neurodegeneration as well as improved working and reference memory in the radial arm maze. These phenotypes were improved independently of Aβ pathology and ongoing seizure susceptibility. Surprisingly, our data also revealed increased spine density in non-AD mice with exonically encoded GluA2(R) as compared to their wild-type littermates, suggesting an unexpected and previously unknown role for unedited GluA2(Q) in regulating dendritic spines. CONCLUSION The Q/R editing site of the AMPA receptor subunit GluA2 may act as an epigenetic switch that regulates dendritic spines, neurodegeneration and memory deficits in AD.
Collapse
Affiliation(s)
- Amanda L Wright
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Lisseth Estefania Burbano
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Luke Milham
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, ON, N2G 1C5, Canada
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Richard P Tan
- Chronic Diseases, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2050, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Ian Clark
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Box 56, Dunedin, 9054, New Zealand
| | - Bryce Vissel
- St Vincent's Clinical School, St Vincent's Hospital Sydney, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
- Centre for Neuroscience and Regenerative Medicine, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
9
|
Hosaka T, Tsuji H, Kwak S. Roles of Aging, Circular RNAs, and RNA Editing in the Pathogenesis of Amyotrophic Lateral Sclerosis: Potential Biomarkers and Therapeutic Targets. Cells 2023; 12:1443. [PMID: 37408276 DOI: 10.3390/cells12101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease caused by upper and lower motor neuron death. Despite advances in our understanding of ALS pathogenesis, effective treatment for this fatal disease remains elusive. As aging is a major risk factor for ALS, age-related molecular changes may provide clues for the development of new therapeutic strategies. Dysregulation of age-dependent RNA metabolism plays a pivotal role in the pathogenesis of ALS. In addition, failure of RNA editing at the glutamine/arginine (Q/R) site of GluA2 mRNA causes excitotoxicity due to excessive Ca2+ influx through Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, which is recognized as an underlying mechanism of motor neuron death in ALS. Circular RNAs (circRNAs), a circular form of cognate RNA generated by back-splicing, are abundant in the brain and accumulate with age. Hence, they are assumed to play a role in neurodegeneration. Emerging evidence has demonstrated that age-related dysregulation of RNA editing and changes in circRNA expression are involved in ALS pathogenesis. Herein, we review the potential associations between age-dependent changes in circRNAs and RNA editing, and discuss the possibility of developing new therapies and biomarkers for ALS based on age-related changes in circRNAs and dysregulation of RNA editing.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- University of Tsukuba Hospital/Jichi Medical University Joint Ibaraki Western Regional Clinical Education Center, Chikusei 308-0813, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
10
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
11
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
12
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
13
|
Han JX, Wen CX, Sun R, Tang MY, Li XM, Lian H. The dorsal hippocampal CA3 regulates spatial reference memory through the CtBP2/GluR2 pathway. FASEB J 2022; 36:e22456. [PMID: 35969153 DOI: 10.1096/fj.202101609rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
The dorsal hippocampus plays a pivotal role in spatial memory. However, the role of subregion-specific molecular pathways in spatial cognition remains unclear. We observed that the transcriptional coregulator C-terminal binding protein 2 (CtBP2) presented CA3-specific enrichment in expression. RNAi interference of CtBP2 in the dorsal CA3 (dCA3) neurons, but not the ventral CA3 (vCA3), specifically impaired spatial reference memory and reduced the expression of GluR2, the calcium permeability determinant subunit of AMPA receptors. Application of an antagonist for GluR2-absent calcium permeable AMPA receptors rescued spatial memory deficits in dCA3 CtBP2 knockdown animals. Transcriptomic analysis suggest that CtBP2 may regulate GluR2 protein level through post-translational mechanisms, especially by the endocytosis pathway which regulates AMPA receptor sorting. Consistently, CtBP2 deficiency altered the mRNA expression of multiple endocytosis-regulatory genes, and CtBP2 knockdown in primary hippocampal neurons enhanced GluR2-containing AMPA receptor endocytosis. Together, our results provide evidence that the dCA3 regulates spatial reference memory by the CtBP2/GluR2 pathway through the modulation of calcium permeable AMPA receptors.
Collapse
Affiliation(s)
- Jia-Xuan Han
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Xi Wen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Sun
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Yu Tang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Li C, Shi X, Yang J, Li K, Dai L, Zhang Y, Zhou M, Su J. Genome-wide characterization of RNA editing highlights roles of high editing events of glutamatergic synapse during mouse retinal development. Comput Struct Biotechnol J 2022; 20:2648-2656. [PMID: 35685368 PMCID: PMC9162912 DOI: 10.1016/j.csbj.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing leads to functional change of neurotransmitter receptor which is essential for neurotransmission and normal neuronal development. As a highly accessible part of central nervous system, retina has been extensively studied, however, it remains largely unknown how RNA editing regulates its development. Here, a genome-wide screening of high-confidence RNA editing events were performed to decipher the dynamic transcriptome regulation by RNA editing during mouse retinal development. 2000 high-confidence editing sites across eight developmental stages of retina were called. Three unique patterns (RNA-editinghigh pattern, RNA-editingmedium pattern and RNA-editinglow pattern) were identified by clustering these editing sites based on their editing level during retinal development. Editing events from RNA-editinghigh pattern were significantly associated with glutamate receptors and regulated synaptic transmission. Interestingly, most non-synonymous high-editing sites were mapped to ion channel genes of glutamatergic synapse which were associated with neurotransmission by controlling ion channel permeability and affecting exocytosis. Meanwhile, these non-synonymous editing sites were evolutionarily conserved and exhibited a consistently increasing editing levels between mouse and human retinal development. Single-cell RNA-seq data analysis revealed that RNA editing events prefer to occur in two main cell types including bipolar and amacrine cells. Genes with non-synonymous high-editing sites were enriched in both bipolar cells and retina ganglion cells, which may mediate retina ganglion cell differentiation by altering channel ion permeability. Together, our results provide novel insights into mechanism of post-transcriptional regulation during retinal development and help to develop novel RNA editing-guided therapeutic strategies for retinal disorders.
Collapse
Affiliation(s)
- Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Xinrui Shi
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiaying Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ke Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yan Zhang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Corresponding authorsat: School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (J. Su).
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Corresponding authorsat: School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (J. Su).
| |
Collapse
|
15
|
Moldovan MA, Chervontseva ZS, Nogina DS, Gelfand MS. A hierarchy in clusters of cephalopod mRNA editing sites. Sci Rep 2022; 12:3447. [PMID: 35236910 PMCID: PMC8891338 DOI: 10.1038/s41598-022-07460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.
Collapse
Affiliation(s)
- Mikhail A Moldovan
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| | - Zoe S Chervontseva
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| | - Daria S Nogina
- A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.,A.A.Kharkevich Institute for Information Transmission Problems (RAS), Bolshoy Karetny Per. 19, bld.1, Moscow, Russia, 127051
| |
Collapse
|
16
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
17
|
Wright AL, Della Gatta PA, Le S, Berning BA, Mehta P, Jacobs KR, Gul H, San Gil R, Hedl TJ, Riddell WR, Watson O, Keating SS, Venturato J, Chung RS, Atkin JD, Lee A, Shi B, Blizzard CA, Morsch M, Walker AK. Riluzole does not ameliorate disease caused by cytoplasmic TDP-43 in a mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2021; 54:6237-6255. [PMID: 34390052 DOI: 10.1111/ejn.15422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease commonly treated with riluzole, a small molecule that may act via modulation of glutamatergic neurotransmission. However, riluzole only modestly extends lifespan for people living with ALS, and its precise mechanisms of action remain unclear. Most ALS cases are characterised by accumulation of cytoplasmic TAR DNA binding protein of 43 kDa (TDP-43), and understanding the effects of riluzole in models that closely recapitulate TDP-43 pathology may provide insights for development of improved therapeutics. We therefore investigated the effects of riluzole in female transgenic mice that inducibly express nuclear localisation sequence (NLS)-deficient human TDP-43 in neurons (NEFH-tTA/tetO-hTDP-43ΔNLS, 'rNLS8', mice). Riluzole treatment from the first day of hTDP-43ΔNLS expression did not alter disease onset, weight loss or performance on multiple motor behavioural tasks. Riluzole treatment also did not alter TDP-43 protein levels, solubility or phosphorylation. Although we identified a significant decrease in GluA2 and GluA3 proteins in the cortex of rNLS8 mice, riluzole did not ameliorate this disease-associated molecular phenotype. Likewise, riluzole did not alter the disease-associated atrophy of hindlimb muscle in rNLS8 mice. Finally, riluzole treatment beginning after disease onset in rNLS8 mice similarly had no effect on progression of late-stage disease or animal survival. Together, we demonstrate specific glutamatergic receptor alterations and muscle fibre-type changes reminiscent of ALS in female rNLS8 mice, but riluzole had no effect on these or any other disease phenotypes. Future targeting of pathways related to accumulation of TDP-43 pathology may be needed to develop better treatments for ALS.
Collapse
Affiliation(s)
- Amanda L Wright
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sheng Le
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Britt A Berning
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Prachi Mehta
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly R Jacobs
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Hossai Gul
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rebecca San Gil
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Thomas J Hedl
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Winonah R Riddell
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Owen Watson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sean S Keating
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Juliana Venturato
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bingyang Shi
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam K Walker
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
18
|
Piller M, Werkman IL, Brown RI, Latimer AJ, Kucenas S. Glutamate Signaling via the AMPAR Subunit GluR4 Regulates Oligodendrocyte Progenitor Cell Migration in the Developing Spinal Cord. J Neurosci 2021; 41:5353-5371. [PMID: 33975920 PMCID: PMC8221590 DOI: 10.1523/jneurosci.2562-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.
Collapse
Affiliation(s)
- Melanie Piller
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Robin Isadora Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
19
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Cull‐Candy SG, Farrant M. Ca 2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 2021; 599:2655-2671. [PMID: 33533533 PMCID: PMC8436767 DOI: 10.1113/jp279029] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.
Collapse
Affiliation(s)
- Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark Farrant
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
21
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
Yang Y, Okada S, Sakurai M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol 2021; 18:999-1013. [PMID: 33393416 DOI: 10.1080/15476286.2020.1867797] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is one of the most prevalent post-transcriptional RNA modifications in metazoan. This reaction is catalysed by enzymes called adenosine deaminases acting on RNA (ADARs). RNA editing is involved in the regulation of protein function and gene expression. The numerous A-to-I editing sites have been identified in both coding and non-coding RNA transcripts. These editing sites are also found in various genes expressed in the central nervous system (CNS) and play an important role in neurological development and brain function. Aberrant regulation of RNA editing has been associated with the pathogenesis of neurological and psychiatric disorders, suggesting the physiological significance of RNA editing in the CNS. In this review, we discuss the current knowledge of editing on neurological disease and development.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shunpei Okada
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
24
|
Thuy-Boun AS, Thomas JM, Grajo HL, Palumbo CM, Park S, Nguyen LT, Fisher AJ, Beal PA. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res 2020; 48:7958-7972. [PMID: 32597966 PMCID: PMC7641318 DOI: 10.1093/nar/gkaa532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine to inosine in duplex RNA, a modification that exhibits a multitude of effects on RNA structure and function. Recent studies have identified ADAR1 as a potential cancer therapeutic target. ADARs are also important in the development of directed RNA editing therapeutics. A comprehensive understanding of the molecular mechanism of the ADAR reaction will advance efforts to develop ADAR inhibitors and new tools for directed RNA editing. Here we report the X-ray crystal structure of a fragment of human ADAR2 comprising its deaminase domain and double stranded RNA binding domain 2 (dsRBD2) bound to an RNA duplex as an asymmetric homodimer. We identified a highly conserved ADAR dimerization interface and validated the importance of these sequence elements on dimer formation via gel mobility shift assays and size exclusion chromatography. We also show that mutation in the dimerization interface inhibits editing in an RNA substrate-dependent manner for both ADAR1 and ADAR2.
Collapse
Affiliation(s)
| | - Justin M Thomas
- Department of Chemistry, University of California, Davis, CA, USA
| | - Herra L Grajo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, CA, USA
| | - SeHee Park
- Department of Chemistry, University of California, Davis, CA, USA
| | - Luan T Nguyen
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Nakahama T, Kawahara Y. Adenosine-to-inosine RNA editing in the immune system: friend or foe? Cell Mol Life Sci 2020; 77:2931-2948. [PMID: 31996954 PMCID: PMC11104962 DOI: 10.1007/s00018-020-03466-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Our body expresses sensors to detect pathogens through the recognition of expressed molecules, including nucleic acids, lipids, and proteins, while immune tolerance prevents an overreaction with self and the development of autoimmune disease. Adenosine (A)-to-inosine (I) RNA editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a post-transcriptional modification that can potentially occur at over 100 million sites in the human genome, mainly in Alu repetitive elements that preferentially form a double-stranded RNA (dsRNA) structure. A-to-I conversion within dsRNA, which may induce a structural change, is required to escape from the host immune system, given that endogenous dsRNAs transcribed from Alu repetitive elements are potentially recognized by melanoma differentiation-associated protein 5 (MDA5) as non-self. Of note, loss-of-function mutations in the ADAR1 gene cause Aicardi-Goutières syndrome, a congenital autoimmune disease characterized by encephalopathy and a type I interferon (IFN) signature. However, the loss of ADAR1 in cancer cells with an IFN signature induces lethality via the activation of protein kinase R in addition to MDA5. This makes cells more sensitive to immunotherapy, highlighting the opposing immune status of autoimmune diseases (overreaction) and cancer (tolerance). In this review, we provide an overview of insights into two opposing aspects of RNA editing that functions as a modulator of the immune system in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Konen LM, Wright AL, Royle GA, Morris GP, Lau BK, Seow PW, Zinn R, Milham LT, Vaughan CW, Vissel B. A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability. Mol Brain 2020; 13:27. [PMID: 32102661 PMCID: PMC7045468 DOI: 10.1186/s13041-020-0545-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/05/2020] [Indexed: 11/18/2022] Open
Abstract
Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington’s disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer’s disease.
Collapse
Affiliation(s)
- Lyndsey M Konen
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Amanda L Wright
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Gordon A Royle
- Middlemore Hospital, Counties Manukau DHB, Otahuhu, Auckland, 1062, New Zealand.,The University of Auckland, Faculty of Medical and Health Sciences, School of Medicine, Grafton, Auckland, 1023, New Zealand
| | - Gary P Morris
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Benjamin K Lau
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Patrick W Seow
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Luke T Milham
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia
| | - Christopher W Vaughan
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, 2065, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine (CNRM), Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia. .,St Vincent's Centre for Applied Medical Research, Sydney, 2011, Australia.
| |
Collapse
|
27
|
Gatsiou A, Stellos K. Dawn of Epitranscriptomic Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001927. [PMID: 30354331 DOI: 10.1161/circgen.118.001927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medicine is at the crossroads of expanding disciplines. Prompt adaptation of medicine to each rapidly advancing research field, bridging bench to bedside, is a key step toward health improvement. Cardiovascular disease still ranks first among the mortality causes in the Western world, indicating a poor adaptation rate of cardiovascular medicine, albeit the gigantic scientific breakthroughs of this century. This urges the cardiovascular research field to explore novel concepts with promising prognostic and therapeutic potential. This review attempts to introduce the newly emerging field of epitranscriptome (or else known as RNA epigenetics) to cardiovascular researchers and clinicians summarizing its applications on health and disease. The traditionally perceived, intermediate carrier of genetic information or as contemporary revised as, occasionally, even the final product of gene expression, RNA, is dynamically subjected to >140 different kinds of chemical modifications determining its fate, which may profoundly impact the cellular responses and thus both health and disease course. Which are the most prevalent types of these RNA modifications, how are they catalyzed, how are they regulated, which role may they play in health and disease, and which are the implications for the cardiovascular medicine are few important questions that are discussed in the present review.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.)
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.).,Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (K.S.).,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health System Foundation Trust, United Kingdom (K.S.)
| |
Collapse
|
28
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
29
|
Nozaki K, Nakano M, Iwakami C, Fukami T, Nakajima M. RNA Editing Enzymes Modulate the Expression of Hepatic CYP2B6, CYP2C8, and Other Cytochrome P450 Isoforms. Drug Metab Dispos 2019; 47:639-647. [DOI: 10.1124/dmd.119.086702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
|
30
|
Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, Nguyen TB, Hsiao YHE, Lee C, Pratt GA, Martínez-Cerdeño V, Hagerman RJ, Yeo GW, Geschwind DH, Xiao X. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 2019; 22:25-36. [PMID: 30559470 PMCID: PMC6375307 DOI: 10.1038/s41593-018-0287-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Stephen S Tran
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Adel Azghadi
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Changhoon Lee
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | | | - Randi J Hagerman
- The MIND Institute, Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Hosaka T, Yamashita T, Teramoto S, Hirose N, Tamaoka A, Kwak S. ADAR2-dependent A-to-I RNA editing in the extracellular linear and circular RNAs. Neurosci Res 2018; 147:48-57. [PMID: 30448461 DOI: 10.1016/j.neures.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Currently, no reliable biomarkers of amyotrophic lateral sclerosis (ALS) exist. In sporadic ALS, RNA editing at the glutamine/arginine site of GluA2 mRNA is specifically reduced in the motor neurons due to the downregulation of adenosine deaminase acting on RNA 2 (ADAR2). Furthermore, TDP-43 pathology, the pathological hallmark of ALS, is observed in the ADAR2-lacking motor neurons in ALS patients and conditional ADAR2 knockout mice, suggesting a pivotal role of ADAR2 downregulation in the ALS pathogenesis. Extracellular RNAs were shown to represent potential disease biomarkers and the editing efficiencies at their ADAR2-dependent sites may reflect cellular ADAR2 activity, suggesting that these RNAs isolated from the body fluids may represent the biomarkers of ALS. We searched for ADAR2-dependent sites in the mouse motor neurons and human-derived cultured cells and found 10 sites in five host RNAs expressed in SH-SY5Y cells and their culture medium. Of these, the arginine/glycine site of SON mRNA was newly identified as an ADAR2-dependent site. Furthermore, we detected a circular RNA with an ADAR2-dependent site in the SH-SY5Y cells and their culture medium. Therefore, the changes in the editing efficiencies at the identified host RNA sites isolated from the body fluids may represent potential biomarkers of ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Pathophysiology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Sayaka Teramoto
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Hirose
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
32
|
Jinnah H, Ulbricht RJ. Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods 2018; 156:40-45. [PMID: 30827465 DOI: 10.1016/j.ymeth.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022] Open
Abstract
The deamination of adenosine to inosine by RNA editing is a widespread post-transcriptional process that expands genetic diversity. Selective substitution of inosine for adenosine in pre-mRNA transcripts can alter splicing, mRNA stability, and the amino acid sequence of the encoded protein. The functional consequences of RNA editing-dependent amino acid substitution are known for only a handful of RNA editing substrates. Many of these studies began in heterologous mammalian expression systems; however, the gold-standard for determining the functional significance of transcript-specific re-coding A-to-I editing events is the generation of a mouse model that expresses only one RNA editing-dependent isoform. The frequency of site-specific RNA editing varies spatially, temporally, and in some diseases, therefore, determining the profile of RNA editing frequency is also an important element of research. Here we review the strengths and weaknesses of existing mouse models for the study of RNA editing, as well as methods for quantifying RNA editing frequencies in vivo. Importantly, we highlight opportunities for future RNA editing studies in mice, projecting that improvements in genome editing and high-throughput sequencing technologies will allow the field to excel in coming years.
Collapse
Affiliation(s)
- Hussain Jinnah
- Vanderbilt University, Department of Pharmacology, 8140 Medical Research Building 3, Nashville, TN 37240-1104, United States.
| | - Randi J Ulbricht
- Missouri State University, Department of Biomedical Sciences, 901 South National Avenue, Springfield, MO 65897, United States.
| |
Collapse
|
33
|
Lalanne T, Oyrer J, Farrant M, Sjöström PJ. Synapse Type-Dependent Expression of Calcium-Permeable AMPA Receptors. Front Synaptic Neurosci 2018; 10:34. [PMID: 30369875 PMCID: PMC6194349 DOI: 10.3389/fnsyn.2018.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium-permeable (CP) AMPA-type glutamate receptors (AMPARs) are known to mediate synaptic plasticity in several different interneuron (IN) types. Recent evidence suggests that CP-AMPARs are synapse-specifically expressed at excitatory connections onto a subset of IN types in hippocampus and neocortex. For example, CP-AMPARs are found at connections from pyramidal cells (PCs) to basket cells (BCs), but not to Martinotti cells (MCs). This synapse type-specific expression of CP-AMPARs suggests that synaptic dynamics as well as learning rules are differentially implemented in local circuits and has important implications not just in health but also in disease states such as epilepsy.
Collapse
Affiliation(s)
- Txomin Lalanne
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Montreal General Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
34
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
35
|
|
36
|
Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 2018; 44:112-129. [DOI: 10.1111/nan.12451] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- A. J. Becker
- Section for Translational Epilepsy Research; Department of Neuropathology; University of Bonn Medical Center; Bonn Germany
| |
Collapse
|
37
|
Srivastava PK, Bagnati M, Delahaye-Duriez A, Ko JH, Rotival M, Langley SR, Shkura K, Mazzuferi M, Danis B, van Eyll J, Foerch P, Behmoaras J, Kaminski RM, Petretto E, Johnson MR. Genome-wide analysis of differential RNA editing in epilepsy. Genome Res 2018; 27:440-450. [PMID: 28250018 PMCID: PMC5340971 DOI: 10.1101/gr.210740.116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023]
Abstract
The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.
Collapse
Affiliation(s)
| | - Marta Bagnati
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | - Maxime Rotival
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France
| | - Sarah R Langley
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | | | | | | | - Patrik Foerch
- Neuroscience TA, UCB Pharma, 1420 Braine-l'Alleud, Belgium
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | | | - Enrico Petretto
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| |
Collapse
|
38
|
Shimshek DR, Bus T, Schupp B, Jensen V, Marx V, Layer LE, Köhr G, Sprengel R. Different Forms of AMPA Receptor Mediated LTP and Their Correlation to the Spatial Working Memory Formation. Front Mol Neurosci 2017; 10:214. [PMID: 28725178 PMCID: PMC5495865 DOI: 10.3389/fnmol.2017.00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023] Open
Abstract
Spatial working memory (SWM) and the classical, tetanus-induced long-term potentiation (LTP) at hippocampal CA3/CA1 synapses are dependent on L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) containing GluA1 subunits as demonstrated by knockout mice lacking GluA1. In GluA1 knockout mice LTP and SWM deficits could be partially recovered by transgenic re-installation of full-length GluA1 in principle forebrain neurons. Here we partially restored hippocampal LTP in GluA1-deficient mice by forebrain-specific depletion of the GluA2 gene, by the activation of a hypomorphic GluA2(Q) allele and by transgenic expression of PDZ-site truncated GFP-GluA1(TG). In none of these three mouse lines, the partial LTP recovery improved the SWM performance of GluA1-deficient mice suggesting a specific function of intact GluA1/2 receptors and the GluA1 intracellular carboxyl-terminus in SWM and its associated behavior.
Collapse
Affiliation(s)
- Derya R Shimshek
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany
| | - Thorsten Bus
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Bettina Schupp
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany
| | - Vidar Jensen
- Letten Centre and GliaLab, Department of Physiology, Institute of Basic Medical Sciences, University of OsloOslo, Norway
| | - Verena Marx
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Department of Neurophysiology, Donders Center for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Liliana E Layer
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Faculty of Medicine, Institute of Anatomy, University of ZurichZurich, Switzerland
| | - Georg Köhr
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Physiology of Neuronal Networks, Central Institute for Mental Health (CIMH), Medical Faculty, Heidelberg UniversityMannheim, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
39
|
Kitaura H, Sonoda M, Teramoto S, Shirozu H, Shimizu H, Kimura T, Masuda H, Ito Y, Takahashi H, Kwak S, Kameyama S, Kakita A. Ca 2+ -permeable AMPA receptors associated with epileptogenesis of hypothalamic hamartoma. Epilepsia 2017; 58:e59-e63. [PMID: 28195308 DOI: 10.1111/epi.13700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2017] [Indexed: 11/28/2022]
Abstract
Hypothalamic hamartoma (HH), composed of neurons and glia without apparent cytologic abnormalities, is a rare developmental malformation in humans. Patients with HH often have characteristic medically refractory gelastic seizures, and intrinsic epileptogenesis within the lesions has been speculated. Herein we provide evidence to suggest that in HH neurons, Ca2+ permeability through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is aberrantly elevated. In needle biopsy specimens of HH tissue, field potential recordings demonstrated spontaneous epileptiform activities similar to those observed in other etiologically distinct epileptogenic tissues. In HH, however, these activities were clearly abolished by application of Joro Spider Toxin (JSTX), a specific inhibitor of the Ca2+ -permeable AMPA receptor. Consistent with these physiologic findings, the neuronal nuclei showed disappearance of adenosine deaminase acting on RNA 2 (ADAR2) immunoreactivity. Furthermore, examination of glutamate receptor 2 (GluA2) messenger RNA (mRNA) revealed that editing efficiency at the glutamine/arginine site was significantly low. These results suggest that neurons in HH may bear Ca2+ -permeable AMPA receptors due to dislocation of ADAR2.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masaki Sonoda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Sayaka Teramoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Shirozu
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Tadashi Kimura
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hiroshi Masuda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Yosuke Ito
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Shin Kwak
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Kameyama
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| |
Collapse
|
40
|
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J Biol Chem 2017; 292:4326-4335. [PMID: 28167531 DOI: 10.1074/jbc.m117.779868] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/05/2017] [Indexed: 01/08/2023] Open
Abstract
RNA editing is a cellular process that precisely alters nucleotide sequences, thus regulating gene expression and generating protein diversity. Over 60% of human transcripts undergo adenosine to inosine RNA editing, and editing is required for normal development and proper neuronal function of animals. Editing of one adenosine in the transcript encoding the glutamate receptor subunit B, glutamate receptor ionotropic AMPA 2 (GRIA2), modifies a codon, replacing the genomically encoded glutamine (Q) with arginine (R); thus this editing site is referred to as the Q/R site. Editing at the Q/R site of GRIA2 is essential, and reduced editing of GRIA2 transcripts has been observed in patients suffering from glioblastoma. In glioblastoma, incorporation of unedited GRIA2 subunits leads to a calcium-permeable glutamate receptor, which can promote cell migration and tumor invasion. In this study, we identify adenosine deaminase that acts on RNA 3 (ADAR3) as an important regulator of Q/R site editing, investigate its mode of action, and detect elevated ADAR3 expression in glioblastoma tumors compared with adjacent brain tissue. Overexpression of ADAR3 in astrocyte and astrocytoma cell lines inhibits RNA editing at the Q/R site of GRIA2 Furthermore, the double-stranded RNA binding domains of ADAR3 are required for repression of RNA editing. As the Q/R site of GRIA2 is specifically edited by ADAR2, we suggest that ADAR3 directly competes with ADAR2 for binding to GRIA2 transcript, inhibiting RNA editing, as evidenced by the direct binding of ADAR3 to the GRIA2 pre-mRNA. Finally, we provide evidence that both ADAR2 and ADAR3 expression contributes to the relative level of GRIA2 editing in tumors from patients suffering from glioblastoma.
Collapse
Affiliation(s)
| | - Ashley Anderson
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405 and
| | - Aaron Cohen-Gadol
- Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indianapolis, Indiana 46202
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405 and
| |
Collapse
|
41
|
Sprengel R, Eltokhi A, Single FN. Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations. Methods Mol Biol 2017; 1677:201-230. [PMID: 28986875 DOI: 10.1007/978-1-4939-7321-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
For the genetic alterations of NMDA receptor (NMDAR) properties like Ca2+-permeability or voltage-dependent gating in mice and for the experimental analysis of nonsense or missense mutations that were identified in human patients, single nucleotide mutations have to be introduced into the germ line of mice (Burnashev and Szepetowski, Curr Opin Pharmacol 20:73-82, 2015; Endele et al., Nat Genet 42:1021-1026, 2010). This can be done with very high precision by the well-established method of gene replacement, which makes use of homologous recombination in pluripotent embryonic stem (ES) cells of mice. The homologous recombination at NMDAR subunit genes (Grin; for glutamate receptor ionotropic NMDAR subtype) has to be performed by targeting vectors, also called replacement vectors. The targeting vector should encode part of the gene for the NMDAR subunit, the NMDAR mutation, and a removable selection maker. In these days, the targeting vector can be precisely designed using DNA sequences from public databases. The assembly of the vector is then done from isogenic NMDAR gene fragments cloned in bacterial artificial chromosomes (BACs) using "high fidelity" long-range PCR reactions. During these PCR reactions, the NMDAR mutations are introduced into the cloned NMDAR gene fragments of the targeting vector. Finally, the targeting vector is used for homologous recombination in mouse ES cells. Positive ES cell clones which have the correct mutation have to be selected and are then used for blastocyst injection to generate chimeric mice that hopefully transmit the Grin gene targeted ES cells to their offspring. In the first offspring generation of the founder (F1), some animals will be heterozygous for the targeted NMDAR gene mutation. In order to regulate the expression of NMDAR mutations, it is important to keep the targeted NMDAR mutation under conditional control. Here, we describe a general method how those conditionally controlled NMDAR mutations can be engraved into the germ line of mice as hypomorphic Grin alleles. By breeding these hypomorphic Grin gene targeted mice with Cre recombinase expressing mice, the hypomorphic Grin allele can be activated at specific time points in specific cell types, and the function of the mutated NMDAR can be analyzed in these - so called - conditional mouse models. In this method chapter, we describe in detail the different methodical steps for successful gene targeting and generation of conditional NMDAR mutant mouse lines. Within the last 20 years, several students in our Department of Molecular Neurobiology in Heidelberg used these techniques several times to generate different mouse lines with mutated NMDARs.
Collapse
Affiliation(s)
- Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, Germany.
- Max Planck Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, Heidelberg, Germany.
| | - Ahmed Eltokhi
- Max Planck Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, Heidelberg, Germany
| | - Frank N Single
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, Bergisch Gladbach, Germany
| |
Collapse
|
42
|
Wisden W. A Tribute to Peter H Seeburg (1944-2016): A Founding Father of Molecular Neurobiology. Front Mol Neurosci 2016; 9:133. [PMID: 27965536 PMCID: PMC5126100 DOI: 10.3389/fnmol.2016.00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- William Wisden
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London London, UK
| |
Collapse
|
43
|
Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, Picardi E, Eisenberg E. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. RNA (NEW YORK, N.Y.) 2016; 22:290-302. [PMID: 26655226 PMCID: PMC4712678 DOI: 10.1261/rna.054627.115] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/18/2015] [Indexed: 05/20/2023]
Abstract
Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients' brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing.
Collapse
Affiliation(s)
- Khen Khermesh
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, 70126, Italy
| | - Michal Barak
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Anita Annese
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Chaim Wachtel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, 70126, Italy
| | - Eli Eisenberg
- Sagol School of Neuroscience and Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
44
|
RNA Editing: A Contributor to Neuronal Dynamics in the Mammalian Brain. Trends Genet 2016; 32:165-175. [PMID: 26803450 DOI: 10.1016/j.tig.2015.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Post-transcriptional RNA modification by adenosine to inosine (A-to-I) editing expands the functional output of many important neuronally expressed genes. The mechanism provides flexibility in the proteome by expanding the variety of isoforms, and is a requisite for neuronal function. Indeed, targets for editing include key mediators of synaptic transmission with an overall significant effect on neuronal signaling. In addition, editing influences splice-site choice and miRNA targeting capacity, and thereby regulates neuronal gene expression. Editing efficiency at most of these sites increases during neuronal differentiation and brain maturation in a spatiotemporal manner. This editing-induced dynamics in the transcriptome is essential for normal brain development, and we are only beginning to understand its role in neuronal function. In this review we discuss the impact of RNA editing in the brain, with special emphasis on the physiological consequences for neuronal development and plasticity.
Collapse
|
45
|
Mannion N, Arieti F, Gallo A, Keegan LP, O'Connell MA. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015; 5:2338-62. [PMID: 26437436 PMCID: PMC4693238 DOI: 10.3390/biom5042338] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.
Collapse
Affiliation(s)
- Niamh Mannion
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 21 Shelley Road, Glasgow G12 0ZD, UK.
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Angela Gallo
- Oncohaematoogy Department, Ospedale Pediatrico Bambino Gesù (IRCCS) Viale di San Paolo, Roma 15-00146, Italy.
| | - Liam P Keegan
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Mary A O'Connell
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| |
Collapse
|
46
|
Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 2015; 5:10934. [PMID: 26055072 PMCID: PMC4460729 DOI: 10.1038/srep10934] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/08/2015] [Indexed: 01/08/2023] Open
Abstract
The acute neurotoxicity of oligomeric forms of amyloid-β 1-42 (Aβ) is implicated in the pathogenesis of Alzheimer’s disease (AD). However, how these oligomers might first impair neuronal function at the onset of pathology is poorly understood. Here we have examined the underlying toxic effects caused by an increase in levels of intracellular Aβ, an event that could be important during the early stages of the disease. We show that oligomerised Aβ induces a rapid enhancement of AMPA receptor-mediated synaptic transmission (EPSCA) when applied intracellularly. This effect is dependent on postsynaptic Ca2+ and PKA. Knockdown of GluA1, but not GluA2, prevents the effect, as does expression of a S845-phosphomutant of GluA1. Significantly, an inhibitor of Ca2+-permeable AMPARs (CP-AMPARs), IEM 1460, reverses the increase in the amplitude of EPSCA. These results suggest that a primary neuronal response to intracellular Aβ oligomers is the rapid synaptic insertion of CP-AMPARs.
Collapse
|
47
|
Pachernegg S, Münster Y, Muth-Köhne E, Fuhrmann G, Hollmann M. GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Front Cell Neurosci 2015; 9:69. [PMID: 25798088 PMCID: PMC4350408 DOI: 10.3389/fncel.2015.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/04/2022] Open
Abstract
The majority of AMPA receptors in the adult brain contain GluA2 subunits, which can be edited at the Q/R site, changing a glutamine to an arginine within the ion pore. Q/R editing renders AMPARs virtually Ca2+-impermeable, which is important for normal AMPA receptor function. Thus, all GluA2 subunits are Q/R-edited in the adult brain. However, it has remained controversial precisely when editing sets in during development. In the present study, we show that GluA2 mRNA is very rapidly Q/R-edited immediately after its appearance, which is after 4.5 days of differentiation from 46C embryonic stem cells (ESCs) to neuroepithelial precursor cells (NEPs). At this time point, most of the GluA2 transcripts were already edited, with only a small fraction remaining unedited, and half a day later all GluA2 transcripts were edited. This can be explained by the observation that the enzyme that Q/R-edits GluA2 transcripts, ADAR2, is already expressed in the cell well before GluA2 transcription starts, and later is not significantly upregulated any more. Editing at another site works differently: The R/G site within the ligand-binding domain was never completely edited at any of the developmental stages tested, and the enzyme that performs this editing, ADAR1, was significantly upregulated during neural differentiation. This confirms previous data suggesting that R/G editing, in contrast to Q/R editing, progresses gradually during development.
Collapse
Affiliation(s)
- Svenja Pachernegg
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany
| | - Yvonne Münster
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Elke Muth-Köhne
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr University Bochum Bochum, Germany ; Ruhr University Research School, Ruhr University Bochum Bochum, Germany
| | - Gloria Fuhrmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
48
|
Yamashita T, Kwak S. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res 2014; 1584:28-38. [DOI: 10.1016/j.brainres.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/12/2022]
|
49
|
Kim SW, Cho KJ. Activity-dependent alterations in the sensitivity to BDNF-TrkB signaling may promote excessive dendritic arborization and spinogenesis in fragile X syndrome in order to compensate for compromised postsynaptic activity. Med Hypotheses 2014; 83:429-35. [PMID: 25113167 DOI: 10.1016/j.mehy.2014.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS), the most common cause of inherited human mental retardation, results from the loss of function of fragile X mental retardation protein (FMRP). To date, most researchers have thought that FXS neural pathologies are primarily caused by extreme dendritic branching and spine formation. With this rationale, several researchers attempted to prune dendritic branches and reduce the number of spines in FXS animal models. We propose that increased dendritic arborization and spinogenesis in FXS are developed rather as secondary compensatory responses to counteract the compromised postsynaptic activity during uncontrollable metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD). When postsynaptic and electrical activities become dampened in FXS, dendritic trees can increase their sensitivity to brain-derived neurotrophic factor (BDNF) by using the molecular sensor called eukaryotic elongation factor 2 (eEF2) and taking advantage of the tight coupling of mGluR and BDNF-TrkB signaling pathways. Then, this activity-dependent elevation of the BDNF signaling can strategically alter dendritic morphologies to foster branching and develop spine structures in order to improve the postsynaptic response in FXS. Our model suggests a new therapeutic rationale for FXS: correcting the postsynaptic and electrical activity first, and then repairing structural abnormalities of dendrites. Then, it may be possible to successfully fix the dendritic morphologies without affecting the survival of neurons. Our theory may also be generalized to explain aberrant dendritic structures observed in other neurobehavioral diseases, such as tuberous sclerosis, Rett syndrome, schizophrenia, and channelopathies, which accompany high postsynaptic and electrical activity.
Collapse
Affiliation(s)
- Sang Woo Kim
- Department of Neuroscience, Brown University, Providence, RI 02912, United States.
| | - Kyoung Joo Cho
- Department of Anatomy, BK 21 PLUS for Medical Science, College of Medicine, Yonsei University, Seoul, South Korea.
| |
Collapse
|
50
|
Abstract
Glutamate receptors are ligand-gated ion channels that mediate fast excitatory synaptic transmission throughout the central nervous system. Functional receptors are homo- or heteromeric tetramers with each subunit contributing a re-entrant pore loop that dips into the membrane from the cytoplasmic side. The pore loops form a narrow constriction near their apex with a wide vestibule toward the cytoplasm and an aqueous central cavity facing the extracellular solution. This article focuses on the pore region, reviewing how structural differences among glutamate receptor subtypes determine their distinct functional properties.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|