1
|
Yamada K, Mendoza J, Koutmos M. Structural basis of S-adenosylmethionine-dependent allosteric transition from active to inactive states in methylenetetrahydrofolate reductase. Nat Commun 2024; 15:5167. [PMID: 38886362 PMCID: PMC11183114 DOI: 10.1038/s41467-024-49327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a pivotal flavoprotein connecting the folate and methionine methyl cycles, catalyzing the conversion of methylenetetrahydrofolate to methyltetrahydrofolate. Human MTHFR (hMTHFR) undergoes elaborate allosteric regulation involving protein phosphorylation and S-adenosylmethionine (AdoMet)-dependent inhibition, though other factors such as subunit orientation and FAD status remain understudied due to the lack of a functional structural model. Here, we report crystal structures of Chaetomium thermophilum MTHFR (cMTHFR) in both active (R) and inhibited (T) states. We reveal FAD occlusion by Tyr361 in the T-state, which prevents substrate interaction. Remarkably, the inhibited form of cMTHFR accommodates two AdoMet molecules per subunit. In addition, we conducted a detailed investigation of the phosphorylation sites in hMTHFR, three of which were previously unidentified. Based on the structural framework provided by our cMTHFR model, we propose a possible mechanism to explain the allosteric structural transition of MTHFR, including the impact of phosphorylation on AdoMet-dependent inhibition.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Johnny Mendoza
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Brulet JW, Ciancone AM, Yuan K, Hsu K. Advances in Activity‐Based Protein Profiling of Functional Tyrosines in Proteomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jeffrey W. Brulet
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Anthony M. Ciancone
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Kun Yuan
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Ku‐Lung Hsu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
- Department of Pharmacology University of Virginia School of Medicine Charlottesville Virginia 22908 United States
- Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville Virginia 22908 United States
- University of Virginia Cancer Center University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
3
|
Mitchener MM, Muir TW. Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Mol Cell 2022; 82:2925-2938. [PMID: 35985302 PMCID: PMC9482148 DOI: 10.1016/j.molcel.2022.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Work over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated. Here, we survey this rapidly expanding research field with particular emphasis on how histone mutants, even at low dosage, can corrupt chromatin states. This work is unveiling the remarkable intricacies of epigenetic control mechanisms. Throughout, we highlight how studies of oncohistones have leveraged, and in some cases fueled, the advances in our ability to manipulate and interrogate chromatin at the molecular level.
Collapse
Affiliation(s)
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Mizuno H, Fukuhara G. Solution-State Hydrostatic Pressure Chemistry: Application to Molecular, Supramolecular, Polymer, and Biological Systems. Acc Chem Res 2022; 55:1748-1762. [PMID: 35657708 DOI: 10.1021/acs.accounts.2c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusPressure (P), as one of the most inherent state quantities, has become an academic subject of study and has attracted attention for a long time for the minute control of reaction equilibria and rates, not only in the gas phase, based on the gas state equation, but also in the solution state. In the latter case, the pressure applied to the solutions is classified as hydrostatic pressure, which is a type of isotropic mechanical force. For instance, deep-sea organisms are exposed to hydrostatic pressure environments of up to 100 MPa, implying that hydrostatic pressurization plays a role in homeostatic functions at physiological levels. The pressure control of such complicated biological behavior can be addressed by thermodynamics or kinetics. In fact, the spontaneity (ΔG) of a reaction that is governed by weak interactions (approximately 10 kcal/mol), such as electrostatic, van der Waals, hydrophobic, hydrogen bonding, and π-π stacking, is determined by the exquisite balance of enthalpy (ΔH) and entropy changes (ΔS), in accordance with the fundamental thermodynamic equation ΔG = ΔH - TΔS. The mutually correlated ΔH-ΔS relationship is known as the enthalpy-entropy compensation law, in which a more negative enthalpic change (more exothermic) causes further entropic loss based on a more negative entropy change. Namely, changing the temperature (T) as the state quantity, except for P, is highly likely to be equal to controlling the entropy term. The solution-state entropy term is relatively vague, mainly based on solvation, and thus unpredictable, even using high-cost quantum mechanical calculations because of the vast number of solvation molecules. Hence, such entropy control is not always feasible and must be demonstrated on a trial-and-error basis. Furthermore, the above-mentioned equation can be rearranged as ΔG = ΔF + PΔV, enabling us to control solution-state reactions by simply changing P as hydrostatic pressure based on the volume change (ΔV). The volume term is strongly relevant to conformational changes, solvation changes, and molecular recognition upon complexation and thus is relatively predictable, that is, volumetrically compact or not, compared to the complicated entropy term. These extrathermodynamic and kinetic observations prompted us to use hydrostatic pressure as a controlling factor over a long period. Hydrostatic pressure chemistry in the solution phase has developed over the past six decades and then converged and passed the fields of mechanochemistry and mechanobiology, which are new but challenging and current hot topics in multidisciplinary science. In this Account, we fully summarize our achievements in solution-state hydrostatic pressure chemistry for smart/functional molecular, supramolecular, polymer, and biological systems. We hope that the phenomena, mechanistic outcomes, and methodologies that we introduced herein for hydrostatic-pressure-controlling dynamics can provide guidance for both theoretical and experimental chemists working in supramolecular and (bio)macromolecular chemistry, mechanoscience, materials science, and technology.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Orimoto Y, Hisama K, Aoki Y. Local electronic structure analysis by ab initio elongation method: A benchmark using DNA block polymers. J Chem Phys 2022; 156:204114. [DOI: 10.1063/5.0087726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio elongation (ELG) method based on a polymerization concept is a feasible way to perform linear-scaling electronic structure calculations for huge aperiodic molecules while maintaining computational accuracy. In the method, the electronic structures are sequentially elongated by repeating (1) the conversion of canonical molecular orbitals (CMOs) to region-localized MOs (RLMOs), that is, active RLMOs localized onto a region close to an attacking monomer or frozen RLMOs localized onto the remaining region, and the subsequent (2) partial self-consistent-field calculations for an interaction space composed of the active RLMOs and the attacking monomer. For each ELG process, one can obtain local CMOs for the interaction space and the corresponding local orbital energies. Local site information, such as the local highest-occupied/lowest-unoccupied MOs, can be acquired with linear-scaling efficiency by correctly including electronic effects from the frozen region. In this study, we performed a local electronic structure analysis using the ELG method for various DNA block polymers with different sequential patterns. This benchmark aimed to confirm the effectiveness of the method toward the efficient detection of a singular local electronic structure in unknown systems as a future practical application. We discussed the high-throughput efficiency of our method and proposed a strategy to detect singular electronic structures by combining with a machine learning technique.
Collapse
Affiliation(s)
- Yuuichi Orimoto
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Keisuke Hisama
- Department of Interdisciplinary Engineering Sciences, Chemistry and Materials Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuriko Aoki
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| |
Collapse
|
6
|
Structure, Function and Regulation of the Plasma Membrane Calcium Pump in Health and Disease. Int J Mol Sci 2022; 23:ijms23031027. [PMID: 35162948 PMCID: PMC8835232 DOI: 10.3390/ijms23031027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
In this review, I summarize the present knowledge of the structural and functional properties of the mammalian plasma membrane calcium pump (PMCA). It is outlined how the cellular expression of the different spliced isoforms of the four genes are regulated under normal and pathological conditions.
Collapse
|
7
|
|
8
|
Schleyer KA, Fetrow B, Zannes Fatland P, Liu J, Chaaban M, Ma B, Cui L. Dual-Mechanism Quenched Fluorogenic Probe Provides Selective and Rapid Detection of Cathepsin L Activity*. ChemMedChem 2021; 16:1082-1087. [PMID: 33295147 PMCID: PMC8202353 DOI: 10.1002/cmdc.202000823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Cathepsin L (CTL) is a cysteine protease demonstrating upregulated activity in many disease states. Overlapping substrate specificity makes selective detection of CTL activity difficult to parse from that of its close homologue CTV and the ubiquitous CTB. Current probes of CTL activity have limited applications due to either poor contrast or extra assay steps required to achieve selectivity. We have developed a fluorogenic probe, CTLAP, that displays good selectivity for CTL over CTB and CTV while exhibiting low background fluorescence attributed to dual quenching mechanisms. CTLAP achieves optimum CTL selectivity in the first 10 min of incubation, thus suggesting that it is amenable for rapid detection of CTL, even in the presence of competing cathepsins.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Ben Fetrow
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Peter Zannes Fatland
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Jun Liu
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way 118 DLC, Tallahassee, FL 32306, USA
| | - Lina Cui
- Department of Medicinal Chemistry, UF Health Science Center, UF Health Cancer Center, University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Zegeye EK, Sadler NC, Lomas GX, Attah IK, Jansson JK, Hofmockel KS, Anderton CR, Wright AT. Activity-Based Protein Profiling of Chitin Catabolism. Chembiochem 2020; 22:717-723. [PMID: 33049124 DOI: 10.1002/cbic.202000616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Indexed: 01/09/2023]
Abstract
The microbial catabolism of chitin, an abundant and ubiquitous environmental organic polymer, is a fundamental cog in terrestrial and aquatic carbon and nitrogen cycles. Despite the importance of this critical bio-geochemical function, there is a limited understanding of the synergy between the various hydrolytic and accessory enzymes involved in chitin catabolism. To address this deficit, we synthesized activity-based probes (ABPs) designed to target active chitinolytic enzymes by modifying the chitin subunits N-acetyl glucosamine and chitotriose. The ABPs were used to determine the active complement of chitinolytic enzymes produced over time by the soil bacterium Cellvibrio japonicus treated with various C substrates. We demonstrate the utility of these ABPs in determining the synergy between various enzymes involved in chitin catabolism. The strategy can be used to gain molecular-level insights that can be used to better understand microbial roles in soil bio-geochemical cycling in the face of a changing climate.
Collapse
Affiliation(s)
- Elias K Zegeye
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA 99164, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Gerard X Lomas
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Isaac K Attah
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
- Department of Ecology, Evolution and Organismal Biology Iowa State University, 251 Bessey Hall, Ames, Iowa (USA) 50011
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
| | - Aaron T Wright
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 1505 NE Stadium Way, Pullman, WA 99164, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Box 999, Richland, WA 99354, USA
| |
Collapse
|
10
|
Teunissen AJP, Paffen TFE, Filot IAW, Lanting MD, van der Haas RJC, de Greef TFA, Meijer EW. Supramolecular interactions between catalytic species allow rational control over reaction kinetics. Chem Sci 2019; 10:9115-9124. [PMID: 31827754 PMCID: PMC6889839 DOI: 10.1039/c9sc02357g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling.
Collapse
Affiliation(s)
- Abraham J P Teunissen
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Tim F E Paffen
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Ivo A W Filot
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Schuit Institute for Catalysis , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Menno D Lanting
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Roy J C van der Haas
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Tom F A de Greef
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Computational Biology , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . ; .,Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
11
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
12
|
Mishra SK, Kandoi G, Jernigan RL. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites. Proteins 2019; 87:850-868. [PMID: 31141211 DOI: 10.1002/prot.25749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022]
Abstract
Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites through effector molecules. Owing to their significance in determining protein function, the identification of protein functional and regulatory binding sites is widely acknowledged as an important biological problem. In this work, we present a novel binding site prediction method, Active and Regulatory site Prediction (AR-Pred), which supplements protein geometry, evolutionary, and physicochemical features with information about protein dynamics to predict putative active and allosteric site residues. As the intrinsic dynamics of globular proteins plays an essential role in controlling binding events, we find it to be an important feature for the identification of protein binding sites. We train and validate our predictive models on multiple balanced training and validation sets with random forest machine learning and obtain an ensemble of discrete models for each prediction type. Our models for active site prediction yield a median area under the curve (AUC) of 91% and Matthews correlation coefficient (MCC) of 0.68, whereas the less well-defined allosteric sites are predicted at a lower level with a median AUC of 80% and MCC of 0.48. When tested on an independent set of proteins, our models for active site prediction show comparable performance to two existing methods and gains compared to two others, while the allosteric site models show gains when tested against three existing prediction methods. AR-Pred is available as a free downloadable package at https://github.com/sambitmishra0628/AR-PRED_source.
Collapse
Affiliation(s)
- Sambit K Mishra
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Gaurav Kandoi
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa.,Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa
| | - Robert L Jernigan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
13
|
|
14
|
Mukherjee P, Leman LJ, Griffin JH, Ghadiri MR. Design of a DNA-Programmed Plasminogen Activator. J Am Chem Soc 2018; 140:15516-15524. [PMID: 30347143 DOI: 10.1021/jacs.8b10166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the functional specificity and catalytic versatility of enzymes have been exploited in numerous settings, controlling the spatial and temporal activity of enzymes remains challenging. Here we describe an approach for programming the function of streptokinase (SK), a protein that is clinically used as a blood "clot buster" therapeutic. We show that the fibrinolytic activity resulting from the binding of SK to the plasma proenzyme plasminogen (Pg) can be effectively regulated (turned "OFF" and "ON") by installing an intrasteric regulatory feature using a DNA-linked protease inhibitor modification. We describe the design rationale, synthetic approach, and functional characterization of two generations of intrasterically regulated SK-Pg constructs and demonstrate dose-dependent and sequence-specific temporal control in fibrinolytic activity in response to short predesignated DNA inputs. The studies described establish the feasibility of a new enzyme-programming approach and serves as a step toward advancing a new generation of programmable enzyme therapeutics.
Collapse
Affiliation(s)
- Purba Mukherjee
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Luke J Leman
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - John H Griffin
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - M Reza Ghadiri
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States.,The Skaggs Institute of Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
15
|
Dumpati R, Ramatenki V, Vadija R, Vellanki S, Vuruputuri U. Structural insights into suppressor of cytokine signaling 1 protein- identification of new leads for type 2 diabetes mellitus. J Mol Recognit 2018; 31:e2706. [PMID: 29630758 DOI: 10.1002/jmr.2706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/22/2017] [Accepted: 02/04/2018] [Indexed: 12/23/2022]
Abstract
The study considers the Suppressor of cytokine signaling 1 (SOCS1) protein as a novel Type 2 diabetes mellitus (T2DM) drug target. T2DM in human beings is also triggered by the over expression of SOCS proteins. The SOCS1 acts as a ubiquitin ligase (E3), degrades Insulin Receptor Substrate 1 and 2 (IRS1 and IRS2) proteins, and causes insulin resistance. Therefore, the structure of the SOCS1 protein was evaluated using homology-modeling and molecular dynamics methods and validated using standard computational protocols. The Protein-Protein docking study of SOCS1 with its natural substrates, IRS1 and IRS2, and subsequent solvent accessible surface area analysis gave insight into the binding region of the SOCS1 protein. The in silico active site prediction tools highlight the residues Val155 to Ile211 in SOCS1 being implicated in the ubiquitin mediated protein degradation of the proteins IRS1 and IRS2. Virtual screening in the active site region, using large structural databases, results in selective lead structures with 3-Pyridinol, Xanthine, and Alanine moieties as Pharmacophore. The virtual screening study shows that the residues Glu149, Gly187, Arg188, Leu191, and Ser205 of the SOCS1 are important for binding. The docking study with current anti-diabetic therapeutics shows that the drugs Glibenclamide and Glyclopyramide have a partial affinity towards SOCS1. The predicted ADMET and IC50 properties for the identified ligands are within the acceptable range with drug-like properties. The structural data of SOCS1, its active site, and the identified lead structures are expedient in the development of new T2DM therapeutics.
Collapse
Affiliation(s)
- Ramakrishna Dumpati
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| | - Vishwanath Ramatenki
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| | - Rajender Vadija
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| | - Santhiprada Vellanki
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| | - Uma Vuruputuri
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| |
Collapse
|
16
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
17
|
Smith AL, Kolpashchikov DM. Divide and Control: Comparison of Split and Switch Hybridization Sensors. ChemistrySelect 2017; 2:5427-5431. [PMID: 29372178 PMCID: PMC5777618 DOI: 10.1002/slct.201701179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hybridization probes have been intensively used for nucleic acid analysis in medicine, forensics and fundamental research. Instantaneous hybridization probes (IHPs) enable signalling immediately after binding to a targeted DNA or RNA sequences without the need to isolate the probe-target complex (e. g. by gel electrophoresis). The two most common strategies for IHP design are conformational switches and split approach. A conformational switch changes its conformation and produces signal upon hybridization to a target. Split approach uses two (or more) strands that independently or semi independently bind the target and produce an output signal only if all components associate. Here, we compared the performance of split vs switch designs for deoxyribozyme (Dz) hybridization probes under optimal conditions for each of them. The split design was represented by binary Dz (BiDz) probes; while catalytic molecular beacon (CMB) probes represented the switch design. It was found that BiDz were significantly more selective than CMBs in recognition of single base substitution. CMBs produced high background signal when operated at 55°C. An important advantage of BiDz over CMB is more straightforward design and simplicity of assay optimization.
Collapse
Affiliation(s)
- Alexandra L Smith
- Chemistry Department, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| | - Dmitry M Kolpashchikov
- Chemistry Department, Burnett School of Biomedical Sciences, National Center for Forensic Science, University of Central Florida, 4000 N. Central Florida Ave, Orlando, FL 32826
| |
Collapse
|
18
|
Baggelaar MP, van Esbroeck ACM, van Rooden EJ, Florea BI, Overkleeft HS, Marsicano G, Chaouloff F, van der Stelt M. Chemical Proteomics Maps Brain Region Specific Activity of Endocannabinoid Hydrolases. ACS Chem Biol 2017; 12:852-861. [PMID: 28106377 DOI: 10.1021/acschembio.6b01052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The biosynthetic and catabolic enzymes of the endocannabinoids tightly regulate endocannabinoid-mediated activation of the cannabinoid CB1 receptor. Monitoring the activities of these endocannabinoid hydrolases in different brain regions is, therefore, key to gaining insight into spatiotemporal control of CB1 receptor-mediated physiology. We have employed a comparative chemical proteomics approach to quantitatively map the activity profile of endocannabinoid hydrolases in various mouse brain regions at the same time. To this end, we used two different activity-based probes: fluorophosphonate-biotin (FP-biotin), which quantifies FAAH, ABHD6, and MAG-lipase activity, and MB108, which detects DAGL-α, ABHD4, ABHD6, and ABHD12. In total, 32 serine hydrolases were evaluated in the frontal cortex, hippocampus, striatum, and cerebellum. Comparison of endocannabinoid hydrolase activity in the four brain regions revealed that FAAH activity was highest in the hippocampus, and MAGL activity was most pronounced in the frontal cortex, whereas DAGL-α was most active in the cerebellum. Comparison of the activity profiles with a global proteomics data set revealed pronounced differences. This could indicate that post-translational modification of the endocannabinoid hydrolases is important to regulate their activity. Next, the effect of genetic deletion of the CB1 receptor was studied. No difference in the enzymatic activity was found in the cerebellum, striatum, frontal cortex, and hippocampus of CB1 receptor knockout animals compared to wild type mice. Our results are in line with previous reports and indicate that the CB1 receptor exerts no regulatory control over the basal production and degradation of endocannabinoids and that genetic deletion of the CB1 receptor does not induce compensatory mechanisms in endocannabinoid hydrolase activity.
Collapse
Affiliation(s)
- Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Annelot C. M. van Esbroeck
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Giovanni Marsicano
- Plateforme
de Chimie Analytique, NeuroCentre INSERM U862, Bordeaux, France
| | - Francis Chaouloff
- Plateforme
de Chimie Analytique, NeuroCentre INSERM U862, Bordeaux, France
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
19
|
Stiers KM, Graham AC, Kain BN, Beamer LJ. Asp263 missense variants perturb the active site of human phosphoglucomutase 1. FEBS J 2017; 284:937-947. [PMID: 28117557 DOI: 10.1111/febs.14025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/31/2016] [Accepted: 01/19/2017] [Indexed: 11/26/2022]
Abstract
The enzyme phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis. Clinical studies have identified mutations in human PGM1 as the cause of PGM1 deficiency, an inherited metabolic disease. One residue, Asp263, has two known variants associated with disease: D263G and D263Y. Biochemical studies have shown that these mutants are soluble and well folded, but have significant catalytic impairment. To better understand this catalytic defect, we determined crystal structures of these two missense variants, both of which reveal a similar and indirect structural change due to the loss of a conserved salt bridge between Asp263 and Arg293. The arginine reorients into the active site, making interactions with residues responsible for substrate binding. Biochemical studies also show that the catalytic phosphoserine of the missense variants is more stable to hydrolysis relative to wild-type enzyme. The structural perturbation resulting from mutation of this single amino acid reveals the molecular mechanism underlying PGM1 deficiency in these missense variants. DATABASE Structural data are available in the PDB under the accession numbers 5JN5 and 5TR2.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Abigail C Graham
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Bailee N Kain
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| |
Collapse
|
20
|
Strmiskova M, Desrochers GF, Shaw TA, Powdrill MH, Lafreniere MA, Pezacki JP. Chemical Methods for Probing Virus-Host Proteomic Interactions. ACS Infect Dis 2016; 2:773-786. [PMID: 27933785 DOI: 10.1021/acsinfecdis.6b00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interactions between host and pathogen proteins constitute an important aspect of both infectivity and the host immune response. Different viruses have evolved complex mechanisms to hijack host-cell machinery and metabolic pathways to redirect resources and energy flow toward viral propagation. These interactions are often critical to the virus, and thus understanding these interactions at a molecular level gives rise to opportunities to develop novel antiviral strategies for therapeutic intervention. This review summarizes current advances in chemoproteomic methods for studying these molecular altercations between different viruses and their hosts.
Collapse
Affiliation(s)
- Miroslava Strmiskova
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Geneviève F. Desrochers
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew A. Lafreniere
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
21
|
Stiti N, Chandrasekar B, Strubl L, Mohammed S, Bartels D, van der Hoorn RAL. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases. ACS Chem Biol 2016; 11:1578-86. [PMID: 26990764 DOI: 10.1021/acschembio.5b00784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.
Collapse
Affiliation(s)
- Naim Stiti
- Institute
of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Balakumaran Chandrasekar
- Plant
Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1
3RB, Oxford, United Kingdom
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Laura Strubl
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shabaz Mohammed
- Department
of Biochemistry, University of Oxford, OX1 3QU, Oxford, United Kingdom
| | - Dorothea Bartels
- Institute
of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Renier A. L. van der Hoorn
- Plant
Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1
3RB, Oxford, United Kingdom
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
22
|
Skagia A, Zografou C, Vezyri E, Venieraki A, Katinakis P, Dimou M. Cyclophilin PpiB is involved in motility and biofilm formation via its functional association with certain proteins. Genes Cells 2016; 21:833-51. [PMID: 27306110 DOI: 10.1111/gtc.12383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
PpiB belongs to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), which catalyze the rate-limiting protein folding step at peptidyl-prolyl bonds and control several biological processes. In this study, we show that PpiB acts as a negative effector of motility and biofilm formation ability of Escherichia coli. We identify multicopy suppressors of each ΔppiB phenotype among putative PpiB prey proteins which upon deletion are often characterized by analogous phenotypes. Many putative preys show similar gene expression in wild-type and ΔppiB genetic backgrounds implying possible post-translational modifications by PpiB. We further conducted in vivo and in vitro interaction screens to determine which of them represent true preys. For DnaK, acetyl-CoA carboxylase, biotin carboxylase subunit (AccC) and phosphate acetyltransferase (Pta) we also showed a direct role of PpiB in the functional control of these proteins because it increased the measured enzyme activity of each protein and further interfered with DnaK localization and the correct folding of AccC. Taken together, these results indicate that PpiB is involved in diverse regulatory mechanisms to negatively modulate motility and biofilm formation via its functional association with certain protein substrates.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Eleni Vezyri
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
23
|
Morimoto K, van der Hoorn RAL. The Increasing Impact of Activity-Based Protein Profiling in Plant Science. PLANT & CELL PHYSIOLOGY 2016; 57:446-61. [PMID: 26872839 DOI: 10.1093/pcp/pcw003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
24
|
Viader A, Ogasawara D, Joslyn CM, Sanchez-Alavez M, Mori S, Nguyen W, Conti B, Cravatt BF. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 2016; 5:e12345. [PMID: 26779719 PMCID: PMC4737654 DOI: 10.7554/elife.12345] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI:http://dx.doi.org/10.7554/eLife.12345.001 The brain is made up of many types of cells. These include the neurons that transmit messages throughout the nervous system, and microglia, which act as the first line of the brain’s immune defense. The activity of both neurons and microglia can be influenced by molecules called endocannabinoids that bind to proteins on the cells’ surface. For example, endocannabinoids affect how a neuron responds to messages sent to it from a neighbouring neuron, and help microglia to regulate the inflammation of brain tissue. Enzymes called serine hydrolases play important roles in several different signaling processes in the brain, including those involving endocannabinoids. Viader et al. have now studied the activities of these enzymes – including two called DAGLα and DAGLβ – in the mouse brain using a technique called activity-based protein profiling. This revealed that DAGLα plays an important role in controlling how neurons respond to endocannabinoids, while DAGLβ performs the equivalent role in microglia. When Viader et al. shut down DAGLβ activity, this only affected endocannabinoid signaling in microglia. This also had the effect of reducing inflammation in the brain, without affecting how endocannabinoids signal in neurons. These results suggest that inhibitors of DAGLβ could offer a way to suppress inflammation in the brain, which may contribute to neuropsychiatric and neurodegenerative diseases, while preserving the normal pathways that neurons use to communicate with one another. DOI:http://dx.doi.org/10.7554/eLife.12345.002
Collapse
Affiliation(s)
- Andreu Viader
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Christopher M Joslyn
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Manuel Sanchez-Alavez
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Simone Mori
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - William Nguyen
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Bruno Conti
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
25
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
26
|
|
27
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
28
|
Dudani JS, Jain PK, Kwong GA, Stevens KR, Bhatia SN. Photoactivated Spatiotemporally-Responsive Nanosensors of in Vivo Protease Activity. ACS NANO 2015; 9:11708-17. [PMID: 26565752 PMCID: PMC5588683 DOI: 10.1021/acsnano.5b05946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteases play diverse and important roles in physiology and disease, including influencing critical processes in development, immune responses, and malignancies. Both the abundance and activity of these enzymes are tightly regulated and highly contextual; thus, in order to elucidate their specific impact on disease progression, better tools are needed to precisely monitor in situ protease activity. Current strategies for detecting protease activity are focused on functionalizing synthetic peptide substrates with reporters that emit detection signals following peptide cleavage. However, these activity-based probes lack the capacity to be turned on at sites of interest and, therefore, are subject to off-target activation. Here we report a strategy that uses light to precisely control both the location and time of activity-based sensing. We develop photocaged activity-based sensors by conjugating photolabile molecules directly onto peptide substrates, thereby blocking protease cleavage by steric hindrance. At sites of disease, exposure to ultraviolet light unveils the nanosensors to allow proteases to cleave and release a reporter fragment that can be detected remotely. We apply this spatiotemporally controlled system to probe secreted protease activity in vitro and tumor protease activity in vivo. In vitro, we demonstrate the ability to dynamically and spatially measure metalloproteinase activity in a 3D model of colorectal cancer. In vivo, veiled nanosensors are selectively activated at the primary tumor site in colorectal cancer xenografts to capture the tumor microenvironment-enriched protease activity. The ability to remotely control activity-based sensors may offer a valuable complement to existing tools for measuring biological activity.
Collapse
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Piyush K. Jain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gabriel A. Kwong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelly R. Stevens
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
29
|
Autophosphorylation of CaMKK2 generates autonomous activity that is disrupted by a T85S mutation linked to anxiety and bipolar disorder. Sci Rep 2015; 5:14436. [PMID: 26395653 PMCID: PMC4585769 DOI: 10.1038/srep14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022] Open
Abstract
Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca(2+)-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca(2+) signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders.
Collapse
|
30
|
Zaremba M, Siksnys V. An Engineered SS Bridge Blocks the Conformational Change Required for the Nuclease Activity of BfiI. Biochemistry 2015; 54:5340-7. [PMID: 26261897 DOI: 10.1021/acs.biochem.5b00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type IIS restriction endonuclease BfiI is a homodimer, and each monomer is composed of the N-terminal catalytic and C-terminal DNA recognition domains connected by a 28-residue linker segment. In the crystal in the absence of cognate DNA, BfiI exists in a "closed" conformation, in which an interdomain linker occludes a putative DNA binding surface at the catalytic domain and sterically hinders access to the active site. Cognate DNA binding presumably triggers a conformational change from the inactive "closed" state to the catalytically competent "open" state. Here we show that the disulfide SS bridge engineered at the domain interface locks the enzyme in the "closed" state. In the "closed" SS-linked state, BfiI binds cognate DNA with the same affinity as the wild-type enzyme but does not cut it, indicating that cross-linking introduces a restraint on the conformational transition, which couples DNA recognition and cleavage. Disruption of the interdomain SS bridge by the reducing agent restores the DNA cleavage ability of BfiI.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
31
|
Yang X, Ding F, Zhang L, Sheng Y, Zheng X, Wang Y. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae. Fungal Genet Biol 2015; 82:108-15. [DOI: 10.1016/j.fgb.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
32
|
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, Barbosa GM, Enguita FJ, Bond PJ, Castanho MARB, Da Poian AT, Almeida FCL, Santos NC, Martins IC. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition. ACS Chem Biol 2015; 10:517-26. [PMID: 25412346 DOI: 10.1021/cb500640t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.
Collapse
Affiliation(s)
- André F. Faustino
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gabriela M. Guerra
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G. Huber
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Axel Hollmann
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Glauce M. Barbosa
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Francisco J. Enguita
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J. Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore, Singapore
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabio C. L. Almeida
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centro
Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nuno C. Santos
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ivo C. Martins
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
33
|
Abstract
Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
Collapse
Affiliation(s)
- Micah J Niphakis
- The Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
34
|
Chandrasekar B, Colby T, Emran Khan Emon A, Jiang J, Hong TN, Villamor JG, Harzen A, Overkleeft HS, van der Hoorn RAL. Broad-range glycosidase activity profiling. Mol Cell Proteomics 2014; 13:2787-800. [PMID: 25056938 DOI: 10.1074/mcp.o114.041616] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plants produce hundreds of glycosidases. Despite their importance in cell wall (re)modeling, protein and lipid modification, and metabolite conversion, very little is known of this large class of glycolytic enzymes, partly because of their post-translational regulation and their elusive substrates. Here, we applied activity-based glycosidase profiling using cell-permeable small molecular probes that react covalently with the active site nucleophile of retaining glycosidases in an activity-dependent manner. Using mass spectrometry we detected the active state of dozens of myrosinases, glucosidases, xylosidases, and galactosidases representing seven different retaining glycosidase families. The method is simple and applicable for different organs and different plant species, in living cells and in subproteomes. We display the active state of previously uncharacterized glycosidases, one of which was encoded by a previously declared pseudogene. Interestingly, glycosidase activity profiling also revealed the active state of a diverse range of putative xylosidases, galactosidases, glucanases, and heparanase in the cell wall of Nicotiana benthamiana. Our data illustrate that this powerful approach displays a new and important layer of functional proteomic information on the active state of glycosidases.
Collapse
Affiliation(s)
- Balakumaran Chandrasekar
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Thomas Colby
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Asif Emran Khan Emon
- §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Jianbing Jiang
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tram Ngoc Hong
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Joji Grace Villamor
- §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Anne Harzen
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- ‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Renier A L van der Hoorn
- From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
35
|
Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 2014; 15:657-69. [PMID: 24829223 PMCID: PMC4197876 DOI: 10.15252/embr.201338283] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent technological advances in accurate mass spectrometry and data analysis have revolutionized
metabolomics experimentation. Activity-based and global metabolomic profiling methods allow
simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes,
making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By
using the metabolome of the relevant organism or close species, these methods capitalize on
biological relevance, avoiding the assignment of artificial and non-physiological functions. This
review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use
for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic
activities across diverse biological sources.
Collapse
Affiliation(s)
- Gareth A Prosser
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | - Gerald Larrouy-Maumus
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
36
|
Martell J, Weerapana E. Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules 2014; 19:1378-93. [PMID: 24473203 PMCID: PMC6270908 DOI: 10.3390/molecules19021378] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a chemical proteomic technique that enables the interrogation of protein activity directly within complex proteomes. Given the dominant role of posttranslational modifications in regulating protein function in vivo, ABPP provides a direct readout of activity that is not attained through traditional proteomic methods. ABPP relies on the design of covalent binding probes that either target a specific enzyme or a class of enzymes with related function. These covalent warheads are coupled to either fluorophores or biotin groups for visualization and enrichment of these active proteins. The advent of bioorthogonal chemistries, in particular, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), has benefitted the field of ABPP by achieving the following: (1) replacing bulky reporter groups with smaller alkyne or azide groups to promote cell permeability; (2) adding modularity to the system such that a single probe can be diversified with a variety of reporter groups without the need to develop new synthetic routes; and (3) enabling the conjugation of complex linkers to facilitate quantitative proteomic analyses. Here, we summarize recent examples of CuAAC in ABPP that serve to illustrate the contribution of bioorthogonal chemistry to advancing discoveries in this field.
Collapse
Affiliation(s)
- Julianne Martell
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
37
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
38
|
A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB. ACTA ACUST UNITED AC 2013; 20:168-76. [PMID: 23438746 DOI: 10.1016/j.chembiol.2012.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/21/2022]
Abstract
The AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant. We show that AvrPphB is secreted as a proprotease and that secretion requires the prodomain, but probably does not involve a pH-dependent unfolding mechanism. The prodomain removal is required for the ability of AvrPphB to trigger a hypersensitive cell death in resistant host plants, presumably since processing exposes a hidden acylation site required for subcellular targeting in the host cell. We detected two active isoforms of AvrPphB in planta, of which the major one localizes exclusively to membranes.
Collapse
|
39
|
Russo GL, Russo M, Ungaro P. AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 2013; 86:339-50. [PMID: 23747347 DOI: 10.1016/j.bcp.2013.05.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
The AMP-activated protein kinase (AMPK) is considered a key checkpoint to ensure energy balance in both cells and organisms. AMPK is an αβγ heterotrimer controlled by allosteric regulation by AMP, ADP and ATP, auto-inhibitory features and phosphorylation, with the threonine-172 phosphorylation on the catalytic α-subunit by LKB1, CaMKKβ or Tak1 being essential for its fully activation. AMPK acts as a protective response to energy stress in numerous systems, but it is also a key player in diabetes and related metabolic diseases and cancer. Pharmacological activation of AMPK by metformin or other compounds holds a considerable potential to reverse the metabolic abnormalities associated with type 2 diabetes. In cancer, correction of the dysregulated metabolic pathway LKB1/AMPK/mTORC1 can lower the Warburg effect, suggesting AMPK as a potential target for cancer prevention and/or treatment. In this commentary, we review recent findings that support the role and function of AMPK in normal and pathological conditions. We also discuss how the activation of AMPK by naturally occurring compounds could help to prevent the development of numerous chronic diseases contributing in such a way to the well-being of ageing population.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | | | | |
Collapse
|
40
|
Yang X, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 2013; 19:7662-77. [PMID: 23666908 DOI: 10.1002/chem.201300401] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/08/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post-translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | |
Collapse
|
41
|
Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase. Protein Cell 2013; 4:286-98. [PMID: 23549614 DOI: 10.1007/s13238-013-2116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/15/2013] [Indexed: 12/19/2022] Open
Abstract
The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.
Collapse
|
42
|
Misas-Villamil JC, Toenges G, Kolodziejek I, Sadaghiani AM, Kaschani F, Colby T, Bogyo M, van der Hoorn RAL. Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:689-700. [PMID: 23134548 DOI: 10.1111/tpj.12062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/24/2012] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzymes (VPEs) are important cysteine proteases that are implicated in the maturation of seed storage proteins, and programmed cell death during plant-microbe interactions and development. Here, we introduce a specific, cell-permeable, activity-based probe for VPEs. This probe is highly specific for all four Arabidopsis VPEs, and labeling is activity-dependent, as illustrated by sensitivity for inhibitors, pH and reducing agents. We show that the probe can be used for in vivo imaging and displays multiple active isoforms of VPEs in various tissues and in both monocot and dicot plant species. Thus, VPE activity profiling is a robust, simple and powerful tool for plant research for a wide range of applications. Using VPE activity profiling, we discovered that VPE activity is increased during infection with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). The enhanced VPE activity is host-derived and EDS1-independent. Sporulation of Hpa is reduced on vpe mutant plants, demonstrating a role for VPE during compatible interactions that is presumably independent of programmed cell death. Our data indicate that, as an obligate biotroph, Hpa takes advantage of increased VPE activity in the host, e.g. to mediate protein turnover and nutrient release.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chemical approaches to study metabolic networks. Pflugers Arch 2013; 465:427-40. [PMID: 23296751 DOI: 10.1007/s00424-012-1201-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways.
Collapse
|
44
|
Wang K, Yang T, Wu Q, Zhao X, Nice EC, Huang C. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 2013; 9:293-310. [PMID: 22809208 DOI: 10.1586/epr.12.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug target deconvolution, a process that identifies targets to small molecules in complex biological samples, which underlie the biological responses that are observed when a drug is administered, plays an important role in current drug discovery. Despite the fact that genomics and proteomics have provided a flood of information that contributes to the progress of drug target identification and validation, the current approach to drug target deconvolution still poses dilemmas. Chemistry-based functional proteomics, a multidisciplinary strategy, has become the preferred method of choice to deconvolute drug target pools, based on direct interactions between small molecules and their protein targets. This approach has already identified a broad panel of previously undefined enzymes with potential as drug targets and defined targets that can rationalize side effects and toxicity for new drug candidates and existing therapeutics. Herein, the authors discuss both activity-based protein profiling and compound-centric chemical proteomics approaches used in chemistry-based functional proteomics and their applications for the identification and characterization of small molecular targets.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Shih PM, Liu TK, Tan KT. Fluorescence amplified detection of proteases by the catalytic activation of a semisynthetic sensor. Chem Commun (Camb) 2013; 49:6212-4. [DOI: 10.1039/c3cc42791a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Characterization of TAMRA- and biotin-conjugated peptide arrays for on-chip matrix metalloproteinase activity assay. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Chang CW, Couñago RLM, Williams SJ, Bodén M, Kobe B. Crystal structure of rice importin-α and structural basis of its interaction with plant-specific nuclear localization signals. THE PLANT CELL 2012; 24:5074-88. [PMID: 23250448 PMCID: PMC3556976 DOI: 10.1105/tpc.112.104422] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/22/2012] [Accepted: 11/26/2012] [Indexed: 05/22/2023]
Abstract
In the classical nucleocytoplasmic import pathway, nuclear localization signals (NLSs) in cargo proteins are recognized by the import receptor importin-α. Importin-α has two separate NLS binding sites (the major and the minor site), both of which recognize positively charged amino acid clusters in NLSs. Little is known about the molecular basis of the unique features of the classical nuclear import pathway in plants. We determined the crystal structure of rice (Oryza sativa) importin-α1a at 2-Å resolution. The structure reveals that the autoinhibitory mechanism mediated by the importin-β binding domain of importin-α operates in plants, with NLS-mimicking sequences binding to both minor and major NLS binding sites. Consistent with yeast and mammalian proteins, rice importin-α binds the prototypical NLS from simian virus 40 large T-antigen preferentially at the major NLS binding site. We show that two NLSs, previously described as plant specific, bind to and are functional with plant, mammalian, and yeast importin-α proteins but interact with rice importin-α more strongly. The crystal structures of their complexes with rice importin-α show that they bind to the minor NLS binding site. By contrast, the crystal structures of their complexes with mouse (Mus musculus) importin-α show preferential binding to the major NLS binding site. Our results reveal the molecular basis of a number of features of the classical nuclear transport pathway specific to plants.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Rafael Lemos Miguez Couñago
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane Qld 4072, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
- Address correspondence to
| |
Collapse
|
48
|
Abstract
We describe a phage display approach that we have previously used to generate conformation-sensor antibodies that specifically recognize and stabilize the oxidized, inactive conformation of protein tyrosine phosphatase 1B (PTP1B). We use a solution-based panning and screening strategy conducted in the presence of reduced active PTP1B, which enriches antibodies to epitopes unique to the oxidized form while excluding antibodies that recognize epitopes common to oxidized and reduced forms of PTP1B. This strategy avoids conventional solid-phase immobilization owing to its inherent potential for denaturation of the antigen. In addition, a functional screening strategy selects single-chain variable fragments (scFvs) directly for their capacity for both specific binding and stabilization of the target enzyme in its inactive conformation. These conformation-specific scFvs illustrate that stabilization of oxidized PTP1B is an effective strategy to inhibit PTP1B function; it is possible that this approach may be applicable to the protein tyrosine phosphatase (PTP) family as a whole. With this protocol, isolation and characterization of specific scFvs from immune responsive animals should take ~6 weeks.
Collapse
|
49
|
Fan F, Nie S, Dammer EB, Duong DM, Pan D, Ping L, Zhai L, Wu J, Hong X, Qin L, Xu P, Zhang YH. Protein Profiling of Active Cysteine Cathepsins in Living Cells Using an Activity-Based Probe Containing a Cell-Penetrating Peptide. J Proteome Res 2012; 11:5763-72. [DOI: 10.1021/pr300575u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fengkai Fan
- Britton Chance Center for Biomedical
Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology (HUST),
Wuhan, China
- Key Laboratory of Biomedical
Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan,
China
| | - Si Nie
- Britton Chance Center for Biomedical
Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology (HUST),
Wuhan, China
- Key Laboratory of Biomedical
Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan,
China
| | - Eric B. Dammer
- Department of Human Genetics,
and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, United States
| | - Duc M. Duong
- Department of Human Genetics,
and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, United States
| | - Deng Pan
- Britton Chance Center for Biomedical
Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology (HUST),
Wuhan, China
- Key Laboratory of Biomedical
Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan,
China
| | - Lingyan Ping
- State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Biochemistry,
School of Medicine, Wuhan University, Wuhan,
China
| | - Linhui Zhai
- State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery, Wuhan University, Ministry of Education, and Wuhan University School of Pharmaceutical
Sciences, Wuhan, China
| | - Junzhu Wu
- Department of Biochemistry,
School of Medicine, Wuhan University, Wuhan,
China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery, Wuhan University, Ministry of Education, and Wuhan University School of Pharmaceutical
Sciences, Wuhan, China
| | - Lingsong Qin
- Britton Chance Center for Biomedical
Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology (HUST),
Wuhan, China
- Key Laboratory of Biomedical
Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan,
China
| | - Ping Xu
- State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Key Laboratory of Combinatorial
Biosynthesis and Drug Discovery, Wuhan University, Ministry of Education, and Wuhan University School of Pharmaceutical
Sciences, Wuhan, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical
Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology (HUST),
Wuhan, China
- Key Laboratory of Biomedical
Photonics of Ministry of Education, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan,
China
| |
Collapse
|
50
|
Ogawa N, Yuki H, Tanaka A. Insights from Pim1 structure for anti-cancer drug design. Expert Opin Drug Discov 2012; 7:1177-92. [DOI: 10.1517/17460441.2012.727394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|