1
|
Choi JE, Kaang BK. Plasticity of Dendritic Spines Underlies Fear Memory. Neuroscientist 2024; 30:690-703. [PMID: 37480273 DOI: 10.1177/10738584231185530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
4
|
Tasnim F, Freitas N, Wolpert DH. Entropy production in communication channels. Phys Rev E 2024; 110:034101. [PMID: 39425415 DOI: 10.1103/physreve.110.034101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 10/21/2024]
Abstract
In many complex systems, whether biological or artificial, the thermodynamic costs of communication among their components are large. These systems also tend to split information transmitted between any two components across multiple channels. A common hypothesis is that such inverse multiplexing strategies reduce total thermodynamic costs. So far, however, there have been no physics-based results supporting this hypothesis. This gap existed partially because we have lacked a theoretical framework that addresses the interplay of thermodynamics and information in off-equilibrium systems. Here we present the first study that rigorously combines such a framework, stochastic thermodynamics, with Shannon information theory. We develop a minimal model that captures the fundamental features common to a wide variety of communication systems, and study the relationship between the entropy production of the communication process and the channel capacity, the canonical measure of the communication capability of a channel. In contrast to what is assumed in previous works not based on first principles, we show that the entropy production is not always a convex and monotonically increasing function of the channel capacity. However, those two properties are recovered for sufficiently high channel capacity. These results clarify when and how to split a single communication stream across multiple channels.
Collapse
Affiliation(s)
| | - Nahuel Freitas
- Departamento de Fisica, FCEyN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - David H Wolpert
- Santa Fe Institute, Santa Fe, New Mexico, USA; Complexity Science Hub, Vienna, Austria; Arizona State University, Tempe, Arizona, USA; International Center for Theoretical Physics, Trieste 34151, Italy; and Albert Einstein Institute for Advanced Study, New York, New York, USA
| |
Collapse
|
5
|
Ingram R, Volianskis A. Promiscuous involvement of metabotropic glutamate receptors in the storage of N-methyl-d-aspartate receptor-dependent short-term potentiation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230445. [PMID: 38853548 PMCID: PMC11343307 DOI: 10.1098/rstb.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AX, UK
| |
Collapse
|
6
|
Choucry A, Nomoto M, Inokuchi K. Engram mechanisms of memory linking and identity. Nat Rev Neurosci 2024; 25:375-392. [PMID: 38664582 DOI: 10.1038/s41583-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Memories are thought to be stored in neuronal ensembles referred to as engrams. Studies have suggested that when two memories occur in quick succession, a proportion of their engrams overlap and the memories become linked (in a process known as prospective linking) while maintaining their individual identities. In this Review, we summarize the key principles of memory linking through engram overlap, as revealed by experimental and modelling studies. We describe evidence of the involvement of synaptic memory substrates, spine clustering and non-linear neuronal capacities in prospective linking, and suggest a dynamic somato-synaptic model, in which memories are shared between neurons yet remain separable through distinct dendritic and synaptic allocation patterns. We also bring into focus retrospective linking, in which memories become associated after encoding via offline reactivation, and discuss key temporal and mechanistic differences between prospective and retrospective linking, as well as the potential differences in their cognitive outcomes.
Collapse
Affiliation(s)
- Ali Choucry
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masanori Nomoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
7
|
Lee J, Lee J, Bang H, Yoon TW, Ko JH, Zhang G, Park JS, Jeon I, Lee S, Kang B. One-Shot Remote Integration of Macromolecular Synaptic Elements on a Chip for Ultrathin Flexible Neural Network System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2402361. [PMID: 38762775 DOI: 10.1002/adma.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Indexed: 05/20/2024]
Abstract
The field of biomimetic electronics that mimic synaptic functions has expanded significantly to overcome the limitations of the von Neumann bottleneck. However, the scaling down of the technology has led to an increasingly intricate manufacturing process. To address the issue, this work presents a one-shot integrable electropolymerization (OSIEP) method with remote controllability for the deposition of synaptic elements on a chip by exploiting bipolar electrochemistry. Condensing synthesis, deposition, and patterning into a single fabrication step is achieved by combining alternating-current voltage superimposed on direct-current voltage-bipolar electropolymerization and a specially designed dual source/drain bipolar electrodes. As a result, uniform 6 × 5 arrays of poly(3,4-ethylenedioxythiophene) channels are successfully fabricated on flexible ultrathin parylene substrates in one-shot process. The channels exhibited highly uniform characteristics and are directly used as electrochemical synaptic transistor with synaptic plasticity over 100 s. The synaptic transistors have demonstrated promising performance in an artificial neural network (NN) simulation, achieving a high recognition accuracy of 95.20%. Additionally, the array of synaptic transistor is easily reconfigured to a multi-gate synaptic circuit to implement the principles of operant conditioning. These results provide a compelling fabrication strategy for realizing cost-effective and disposable NN systems with high integration density.
Collapse
Affiliation(s)
- Jiyun Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Jaehoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Hyeonsu Bang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Tae Woong Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Jong Hwan Ko
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Guobing Zhang
- Special Display and Imaging Innovation Center of Anhui Province, National Engineering Lab of Special Display Technology, Academy of Opto-Electronic Technology, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Chemistry and Chemical Engineering, Hefei University of Technology, Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Ji-Sang Park
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Il Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| |
Collapse
|
8
|
Uytiepo M, Zhu Y, Bushong E, Polli F, Chou K, Zhao E, Kim C, Luu D, Chang L, Quach T, Haberl M, Patapoutian L, Beutter E, Zhang W, Dong B, McCue E, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590812. [PMID: 38712256 PMCID: PMC11071366 DOI: 10.1101/2024.04.23.590812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Memory engrams are formed through experience-dependent remodeling of neural circuits, but their detailed architectures have remained unresolved. Using 3D electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway following chemogenetic labeling of cellular ensembles with a remote history of correlated excitation during associative learning. Projection neurons involved in memory acquisition expanded their connectomes via multi-synaptic boutons without altering the numbers and spatial arrangements of individual axonal terminals and dendritic spines. This expansion was driven by presynaptic activity elicited by specific negative valence stimuli, regardless of the co-activation state of postsynaptic partners. The rewiring of initial ensembles representing an engram coincided with local, input-specific changes in the shapes and organelle composition of glutamatergic synapses, reflecting their weights and potential for further modifications. Our findings challenge the view that the connectivity among neuronal substrates of memory traces is governed by Hebbian mechanisms, and offer a structural basis for representational drifts.
Collapse
|
9
|
Lin G, Rennie M, Adeeko A, Scarlata S. The role of calcium in neuronal membrane tension and synaptic plasticity. Biochem Soc Trans 2024; 52:937-945. [PMID: 38533899 DOI: 10.1042/bst20231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Calcium is a primary second messenger that plays a role in cellular functions including growth, movement and responses to drugs. The role that calcium plays in mediating communication between neurons by synaptic vesicle release is well established. This review focuses on the dependence of the physical properties of neuronal plasma membranes on calcium levels. After describing the key features of synaptic plasticity, we summarize the general role of calcium in cell function and the signaling pathways responsible for intracellular increase in calcium levels. We then present findings showing that increases in intracellular calcium levels cause neurites to contract and break synaptic connections by changes in membrane tension.
Collapse
Affiliation(s)
- Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Ayobami Adeeko
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| |
Collapse
|
10
|
Vásquez CE, Knak Guerra KT, Renner J, Rasia-Filho AA. Morphological heterogeneity of neurons in the human central amygdaloid nucleus. J Neurosci Res 2024; 102:e25319. [PMID: 38629777 DOI: 10.1002/jnr.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The central amygdaloid nucleus (CeA) has an ancient phylogenetic development and functions relevant for animal survival. Local cells receive intrinsic amygdaloidal information that codes emotional stimuli of fear, integrate them, and send cortical and subcortical output projections that prompt rapid visceral and social behavior responses. We aimed to describe the morphology of the neurons that compose the human CeA (N = 8 adult men). Cells within CeA coronal borders were identified using the thionine staining and were further analyzed using the "single-section" Golgi method followed by open-source software procedures for two-dimensional and three-dimensional image reconstructions. Our results evidenced varied neuronal cell body features, number and thickness of primary shafts, dendritic branching patterns, and density and shape of dendritic spines. Based on these criteria, we propose the existence of 12 morphologically different spiny neurons in the human CeA and discuss the variability in the dendritic architecture within cellular types, including likely interneurons. Some dendritic shafts were long and straight, displayed few collaterals, and had planar radiation within the coronal neuropil volume. Most of the sampled neurons showed a few to moderate density of small stubby/wide spines. Long spines (thin and mushroom) were observed occasionally. These novel data address the synaptic processing and plasticity in the human CeA. Our morphological description can be combined with further transcriptomic, immunohistochemical, and electrophysiological/connectional approaches. It serves also to investigate how neurons are altered in neurological and psychiatric disorders with hindered emotional perception, in anxiety, following atrophy in schizophrenia, and along different stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos E Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
11
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Sell GL, Barrow SL, McAllister AK. Glutamate signaling and neuroligin/neurexin adhesion play opposing roles that are mediated by major histocompatibility complex I molecules in cortical synapse formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583626. [PMID: 38496590 PMCID: PMC10942384 DOI: 10.1101/2024.03.05.583626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation 1-4 , yet glutamate clearly regulates glutamate receptor trafficking 5,6 and induces spine formation 7-11 . Using a culture system to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing NMDAR transport and surface expression as well as co-transport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels. Thus, like acetylcholine at the NMJ, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
Collapse
|
13
|
Wang J, Ilyas N, Ren Y, Ji Y, Li S, Li C, Liu F, Gu D, Ang KW. Technology and Integration Roadmap for Optoelectronic Memristor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307393. [PMID: 37739413 DOI: 10.1002/adma.202307393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Optoelectronic memristors (OMs) have emerged as a promising optoelectronic Neuromorphic computing paradigm, opening up new opportunities for neurosynaptic devices and optoelectronic systems. These OMs possess a range of desirable features including minimal crosstalk, high bandwidth, low power consumption, zero latency, and the ability to replicate crucial neurological functions such as vision and optical memory. By incorporating large-scale parallel synaptic structures, OMs are anticipated to greatly enhance high-performance and low-power in-memory computing, effectively overcoming the limitations of the von Neumann bottleneck. However, progress in this field necessitates a comprehensive understanding of suitable structures and techniques for integrating low-dimensional materials into optoelectronic integrated circuit platforms. This review aims to offer a comprehensive overview of the fundamental performance, mechanisms, design of structures, applications, and integration roadmap of optoelectronic synaptic memristors. By establishing connections between materials, multilayer optoelectronic memristor units, and monolithic optoelectronic integrated circuits, this review seeks to provide insights into emerging technologies and future prospects that are expected to drive innovation and widespread adoption in the near future.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Changcun Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
14
|
Yamazaki H, Koganezawa N, Yokoo H, Sekino Y, Shirao T. Super-resolution imaging reveals the relationship between CaMKIIβ and drebrin within dendritic spines. Neurosci Res 2024; 199:30-35. [PMID: 37659612 DOI: 10.1016/j.neures.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIβ subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIβ binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIβ within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIβ co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIβ and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIβ was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIβ in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIβ is in a standby state before its activation.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Faculty of Social Welfare, Gunma University of Health and Welfare, 191-1 Kawamagari-cho, Maebashi 371-0823, Japan; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan.
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Yuko Sekino
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Institute for Drug Discovery Innovation, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoaki Shirao
- AlzMed, Inc, UT South building Entrepreneurs Lab, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8485, Japan
| |
Collapse
|
15
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Abstract
According to the commonly accepted opinion, memory engrams are formed and stored at the level of neural networks due to a change in the strength of synaptic connections between neurons. This hypothesis of synaptic plasticity (HSP), formulated by Donald Hebb in the 1940s, continues to dominate the directions of experimental studies and the interpretations of experimental results in the field. The universal acceptance of the HSP has transformed it from a hypothesis into an incontrovertible theory. In this article, I show that the entire body of experimental and clinical data obtained in studies of long-term memory in mammals and humans is inconsistent with the HSP. Instead, these data suggest that long-term memory is formed and stored at the intracellular level where it is reliably protected from ongoing synaptic activity, including pathological epileptic activity. It seems that the generally accepted HSP became a serious obstacle to understanding the mechanisms of memory and that progress in this field requires rethinking this doctrine and shifting experimental efforts toward exploring the intracellular mechanisms.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Rigby M, Grillo FW, Compans B, Neves G, Gallinaro J, Nashashibi S, Horton S, Pereira Machado PM, Carbajal MA, Vizcay-Barrena G, Levet F, Sibarita JB, Kirkland A, Fleck RA, Clopath C, Burrone J. Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens. Cell Rep 2023; 42:112397. [PMID: 37074915 PMCID: PMC10695768 DOI: 10.1016/j.celrep.2023.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/21/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
Excitatory synapses are typically described as single synaptic boutons (SSBs), where one presynaptic bouton contacts a single postsynaptic spine. Using serial section block-face scanning electron microscopy, we found that this textbook definition of the synapse does not fully apply to the CA1 region of the hippocampus. Roughly half of all excitatory synapses in the stratum oriens involved multi-synaptic boutons (MSBs), where a single presynaptic bouton containing multiple active zones contacted many postsynaptic spines (from 2 to 7) on the basal dendrites of different cells. The fraction of MSBs increased during development (from postnatal day 22 [P22] to P100) and decreased with distance from the soma. Curiously, synaptic properties such as active zone (AZ) or postsynaptic density (PSD) size exhibited less within-MSB variation when compared with neighboring SSBs, features that were confirmed by super-resolution light microscopy. Computer simulations suggest that these properties favor synchronous activity in CA1 networks.
Collapse
Affiliation(s)
- Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Federico W Grillo
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Benjamin Compans
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Julia Gallinaro
- Bioengineering Department, Imperial College London, London, UK
| | - Sophie Nashashibi
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sally Horton
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Pedro M Pereira Machado
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Maria Alejandra Carbajal
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Florian Levet
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR3420, US 4, 33000 Bordeaux, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Angus Kirkland
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging (CUI), Kings College London, New Hunts House, Guys Hospital Campus, London SE1 1UL, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
18
|
Huang R, Lin B, Tian H, Luo Q, Li Y. Prenatal Exposure to General Anesthesia Drug Esketamine Impaired Neurobehavior in Offspring. Cell Mol Neurobiol 2023:10.1007/s10571-023-01354-4. [PMID: 37119312 DOI: 10.1007/s10571-023-01354-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Prenatal exposure to anesthetics has raised increasing attention about the neuronal development in offspring. Animal models are usually used for investigation. As a new drug, esketamine is the s-isoform of ketamine and is twice as potent as the racemic ketamine with less reported adverse effects. Esketamine is currently being used and become more favorable in clinical anesthesia work, including surgeries during pregnancy, yet the effect on the offspring is unknown. The present study aimed to elucidate the effects of gestational administration of esketamine on neuronal development in offspring, using a rat model. Gestational day 14.5 pregnant rats received intravenous injections of esketamine. The postnatal day 0 (P0) hippocampus was digested and cultured in vitro to display the neuronal growth morphology. On Day 4 the in vitro experiments revealed a shorter axon length and fewer dendrite branches in the esketamine group. The results from the EdU- imaging kit showed decreased proliferative capacity in the subventricular zone (SVZ) and dentate gyrus (DG) in both P0 and P30 offspring brains in the esketamine group. Moreover, neurogenesis, neuron maturity and spine density were impaired, resulting in attenuated long-term potentiation (LTP). Compromised hippocampal function accounted for the deficits in neuronal cognition, memory and emotion. The evidence obtained suggests that the neurobehavioral deficit due to prenatal exposure to esketamine may be related to the decrease phosphorylation of CREB and abnormalities in N-methyl-D-aspartic acid receptor subunits. Taken together, these results demonstrate the negative effect of prenatal esketamine exposure on neuronal development in offspring rats. G14.5 esketamine administration influenced the neurobehavior of the offspring in adolescence. Poorer neuronal growth and reduced brain proliferative capacity in late gestation and juvenile pups resulted in impaired P30 neuronal plasticity and synaptic spines as well as abnormalities in NMDAR subunits. Attenuated LTP reflected compromised hippocampal function, as confirmed by behavioral tests of cognition, memory and emotions. This figure was completed on the website of Figdraw.
Collapse
Affiliation(s)
- Ronghua Huang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Bingbiao Lin
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China
| | - Hongyan Tian
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Qichen Luo
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
19
|
Prengel TM, Brunne B, Habiballa M, Rune GM. Sexually differentiated microglia and CA1 hippocampal synaptic connectivity. J Neuroendocrinol 2023; 35:e13276. [PMID: 37170708 DOI: 10.1111/jne.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Microglia have been shown to sculpt postnatal circuitry from birth up to adulthood due to their role in both synapse formation, synaptic pruning, and the elimination of weak, redundant synapses. Microglia are differentiated in a sex-dependent manner. In this study, we tested whether sexual differentiation of microglia results in sex-dependent postnatal reorganization of CA1 synaptic connectivity in the hippocampus. The stereological counting of synapses in mice using electron microscopy showed a continuous rise in synapse density until the fourth week, followed by a plateau phase and loss of synapses from the eighth week onwards, with no difference between sexes. This course of alteration in synapse numbers did not differ between sexes. However, selectively, on postnatal day (P) 14 the density of synapses was significantly higher in the female than in the male hippocampus. Higher synapse density in females was paralleled by higher activity of microglia, as indicated by morphological changes, CD68 expression, and proximity of microglia to synaptic sites. In Thy1-GFP mice, consistent with increased synapse numbers, bouton density was also clearly increased in females at P14. At this time point, CD47 expression, the "don't eat me" signal of neurons, was similar in males and females. The decrease in bouton density thereafter in conjunction with increased synapse numbers argues for a role of microglia in the formation of multispine boutons (MSB). Our data in females at P14 support the regulatory role of microglia in synapse density. Sexual differentiation of microglia, however, does not substantially affect long-term synaptic reorganization in the hippocampus.
Collapse
Affiliation(s)
- Tim M Prengel
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bianka Brunne
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Chen YH, Jin SY, Yang JM, Gao TM. The Memory Orchestra: Contribution of Astrocytes. Neurosci Bull 2023; 39:409-424. [PMID: 36738435 PMCID: PMC10043126 DOI: 10.1007/s12264-023-01024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Xu Z, Geron E, Pérez-Cuesta LM, Bai Y, Gan WB. Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites. Nat Commun 2023; 14:503. [PMID: 36720872 PMCID: PMC9889816 DOI: 10.1038/s41467-023-35805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
Memories can be modified by new experience in a specific or generalized manner. Changes in synaptic connections are crucial for memory storage, but it remains unknown how synaptic changes associated with different memories are distributed within neuronal circuits and how such distributions affect specific or generalized modification by novel experience. Here we show that fear conditioning with two different auditory stimuli (CS) and footshocks (US) induces dendritic spine elimination mainly on different dendritic branches of layer 5 pyramidal neurons in the mouse motor cortex. Subsequent fear extinction causes CS-specific spine formation and extinction of freezing behavior. In contrast, spine elimination induced by fear conditioning with >2 different CS-USs often co-exists on the same dendritic branches. Fear extinction induces CS-nonspecific spine formation and generalized fear extinction. Moreover, activation of somatostatin-expressing interneurons increases the occurrence of spine elimination induced by different CS-USs on the same dendritic branches and facilitates the generalization of fear extinction. These findings suggest that specific or generalized modification of existing memories by new experience depends on whether synaptic changes induced by previous experiences are segregated or co-exist at the level of individual dendritic branches.
Collapse
Affiliation(s)
- Zhiwei Xu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Erez Geron
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Luis M Pérez-Cuesta
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Yang Bai
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wen-Biao Gan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Zaccard CR, Gippo I, Song A, Geula C, Penzes P. Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease. Front Mol Neurosci 2023; 16:1059730. [PMID: 36741924 PMCID: PMC9895827 DOI: 10.3389/fnmol.2023.1059730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.
Collapse
Affiliation(s)
- Colleen R. Zaccard
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Isabel Gippo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy Song
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Peter Penzes,
| |
Collapse
|
23
|
Sun C, Liu X, Jiang Q, Ye X, Zhu X, Li RW. Emerging electrolyte-gated transistors for neuromorphic perception. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2162325. [PMID: 36684849 PMCID: PMC9848240 DOI: 10.1080/14686996.2022.2162325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 05/31/2023]
Abstract
With the rapid development of intelligent robotics, the Internet of Things, and smart sensor technologies, great enthusiasm has been devoted to developing next-generation intelligent systems for the emulation of advanced perception functions of humans. Neuromorphic devices, capable of emulating the learning, memory, analysis, and recognition functions of biological neural systems, offer solutions to intelligently process sensory information. As one of the most important neuromorphic devices, Electrolyte-gated transistors (EGTs) have shown great promise in implementing various vital neural functions and good compatibility with sensors. This review introduces the materials, operating principle, and performances of EGTs, followed by discussing the recent progress of EGTs for synapse and neuron emulation. Integrating EGTs with sensors that faithfully emulate diverse perception functions of humans such as tactile and visual perception is discussed. The challenges of EGTs for further development are given.
Collapse
Affiliation(s)
- Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Qian Jiang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Shi D, Wong JKY, Zhu K, Noakes PG, Rammes G. The Anaesthetics Isoflurane and Xenon Reverse the Synaptotoxic Effects of Aβ 1-42 on Megf10-Dependent Astrocytic Synapse Elimination and Spine Density in Ex Vivo Hippocampal Brain Slices. Int J Mol Sci 2023; 24:ijms24020912. [PMID: 36674434 PMCID: PMC9861496 DOI: 10.3390/ijms24020912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
It has been hypothesised that inhalational anaesthetics such as isoflurane (Iso) may trigger the pathogenesis of Alzheimer's disease (AD), while the gaseous anaesthetic xenon (Xe) exhibits many features of a putative neuroprotective agent. Loss of synapses is regarded as one key cause of dementia in AD. Multiple EGF-like domains 10 (MEGF10) is one of the phagocytic receptors which assists the elimination of synapses by astrocytes. Here, we investigated how β-amyloid peptide 1-42 (Aβ1-42), Iso and Xe interact with MEGF10-dependent synapse elimination. Murine cultured astrocytes as well as cortical and hippocampal ex vivo brain slices were treated with either Aβ1-42, Iso or Xe and the combination of Aβ1-42 with either Iso or Xe. We quantified MEGF10 expression in astrocytes and dendritic spine density (DSD) in slices. In brain slices of wild type and AAV-induced MEGF10 knock-down mice, antibodies against astrocytes (GFAP), pre- (synaptophysin) and postsynaptic (PSD95) components were used for co-localization analyses by means of immunofluorescence-imaging and 3D rendering techniques. Aβ1-42 elevated pre- and postsynaptic components inside astrocytes and decreased DSD. The combined application with either Iso or Xe reversed these effects. In the presence of Aβ1-42 both anaesthetics decreased MEGF10 expression. AAV-induced knock-down of MEGF10 reduced the pre- and postsynaptic marker inside astrocytes. The presented data suggest Iso and Xe are able to reverse the Aβ1-42-induced enhancement of synaptic elimination in ex vivo hippocampal brain slices, presumably through MEGF10 downregulation.
Collapse
Affiliation(s)
- Dai Shi
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
| | - Jaime K. Y. Wong
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Straße 23, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Feodor-Lynen-Straße 23, 81377 Munich, Germany
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Klinikum Rechts der Isar, Ismaningerstraße 22, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
25
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
26
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
27
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
32
|
Ichinose T, Kinoshita M, Nakajima R, Tanaka S, Nakada M. Recovery of Visual Field After Awake Stimulation Mapping of the Optic Pathway in Glioma Patients. Brain Topogr 2023; 36:87-98. [PMID: 36327063 DOI: 10.1007/s10548-022-00922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Brain mapping during awake craniotomy for gliomas can help preserve neurological functions, including maintenance of central and peripheral vision. However, the consecutive changes in the visual field remain unknown. We retrospectively assessed 14 patients who underwent awake craniotomy for gliomas infiltrating into the optic radiation. Cortico-subcortical direct electrical stimulation (DES) was intraoperatively applied until transient visual symptoms were elicited and recorded. The visual fields were examined consecutively in the preoperative period and postoperative subacute and chronic periods. To evaluate the anatomo-functional validity of the recordings, all DES-elicited points were overlaid onto a three-dimensional template that included the optic radiation, using voxel-based morphometry (VBM) mapping. All patients experienced visual symptoms that were classified as phosphenes, blurred vision, or hallucinations during DES, and surgical resection was limited to within the functional boundaries. In VBM, almost all the subcortical positive mapping points overlapped with the surface of the optic radiation, and the distribution of sites that induced visual phenomena in the upper or lower visual fields could be differentiated in the anatomical space. We observed no postoperative visual deficit in four patients (29%), time-dependent improvements in five out of eight patients that presented transient quadrantanopia or partial visual defect (36% out of 57%), and permanent hemianopsia (14%) in two patients with occipital lesions. Intraoperative DES that identifies and preserves optic radiation in awake craniotomy for gliomas is a reliable and effective technique to reduce risk of permanent deficits, but has a low success rate in patients with occipital involvement.
Collapse
Affiliation(s)
- Toshiya Ichinose
- Department of Neurosurgery, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shingo Tanaka
- Department of Neurosurgery, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
33
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
34
|
Chenani A, Weston G, Ulivi AF, Castello-Waldow TP, Huettl RE, Chen A, Attardo A. Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. Transl Psychiatry 2022; 12:381. [PMID: 36096987 PMCID: PMC9468341 DOI: 10.1038/s41398-022-02107-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
Stress exposure impairs brain structure and function, resulting in cognitive deficits and increased risk for psychiatric disorders such as depression, schizophrenia, anxiety and post-traumatic stress disorder. In particular, stress exposure affects function and structure of hippocampal CA1 leading to impairments in episodic memory. Here, we applied longitudinal deep-brain optical imaging to investigate the link between changes in activity patterns and structural plasticity of dorsal CA1 pyramidal neurons and hippocampal-dependent learning and memory in mice exposed to stress. We found that several days of repeated stress led to a substantial increase in neuronal activity followed by disruption of the temporal structure of this activity and spatial coding. We then tracked dynamics of structural excitatory connectivity as a potential underlying cause of the changes in activity induced by repeated stress. We thus discovered that exposure to repeated stress leads to an immediate decrease in spinogenesis followed by decrease in spine stability. By comparison, acute stress led to stabilization of the spines born in temporal proximity to the stressful event. Importantly, the temporal relationship between changes in activity levels, structural connectivity and activity patterns, suggests that loss of structural connectivity mediates the transition between increased activity and impairment of temporal organization and spatial information content in dorsal CA1 upon repeated stress exposure.
Collapse
Affiliation(s)
| | - Ghabiba Weston
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
| | - Alessandro F Ulivi
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | | | | | - Alon Chen
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany
- Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alessio Attardo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
- Graduate School of Systemic Neurosciences GSN-LMU, 82152, Munich, Germany.
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| |
Collapse
|
35
|
Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 2022; 110:3339-3355.e8. [PMID: 36099920 DOI: 10.1016/j.neuron.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
During motor learning, dendritic spines on pyramidal neurons (PNs) in the primary motor cortex (M1) undergo reorganization. Intriguingly, the inhibition from local somatostatin-expressing inhibitory neurons (SST-INs) plays an important role in regulating the PN plasticity and thus new motor skill acquisition. However, the molecular mechanisms underlying this process remain unclear. Here, we identified that the early-response transcription factor, NPAS4, is selectively expressed in SST-INs during motor learning. By utilizing in vivo two-photon imaging in mice, we found that cell-type-specific deletion of Npas4 in M1 disrupted learning-induced spine reorganization among PNs and impaired motor learning. In addition, NPAS4-expressing SST-INs exhibited lower neuronal activity during task-related movements, and chemogenetically increasing the activity of NPAS4-expressing ensembles was sufficient to mimic the effects of Npas4 deletion. Together, our results reveal an instructive role of NPAS4-expressing SST-INs in modulating the inhibition to downstream task-related PNs to allow proper spine reorganization that is critical for motor learning.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pablo Serrano
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaochen Sun
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yingxi Lin
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
36
|
Gore A, Yurina A, Yukevich-Mussomeli A, Nahmani M. Synaptic spinules are reliable indicators of excitatory presynaptic bouton size and strength and are ubiquitous components of excitatory synapses in CA1 hippocampus. Front Synaptic Neurosci 2022; 14:968404. [PMID: 36032419 PMCID: PMC9403541 DOI: 10.3389/fnsyn.2022.968404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Synaptic spinules are thin, finger-like projections from one neuron that become embedded within the presynaptic or postsynaptic compartments of another neuron. While spinules are conserved features of synapses across the animal kingdom, their specific function(s) remain unknown. Recent focused ion beam scanning electron microscopy (FIB-SEM) image volume analyses have demonstrated that spinules are embedded within ∼25% of excitatory boutons in primary visual cortex, yet the diversity of spinule sizes, origins, and ultrastructural relationships to their boutons remained unclear. To begin to uncover the function of synaptic spinules, we sought to determine the abundance, origins, and 3D ultrastructure of spinules within excitatory presynaptic spinule-bearing boutons (SBBs) in mammalian CA1 hippocampus and compare them with presynaptic boutons bereft of spinules (non-SBBs). Accordingly, we performed a comprehensive 3D analysis of every excitatory presynaptic bouton, their embedded spinules, and postsynaptic densities, within a 5 nm isotropic FIB-SEM image volume from CA1 hippocampus of an adult male rat. Surprisingly, we found that ∼74% of excitatory presynaptic boutons in this volume contained at least one spinule, suggesting they are fundamental components of excitatory synapses in CA1. In addition, we found that SBBs are 2.5-times larger and have 60% larger postsynaptic densities (PSDs) than non-SBBs. Moreover, synaptic spinules within SBBs are clearly differentiated into two groups: small clathrin-coated spinules, and 29-times larger spinules without clathrin. Together, these findings suggest that the presence of a spinule is a marker for stronger and more stable presynaptic boutons in CA1, and that synaptic spinules serve at least two separable and distinct functions.
Collapse
|
37
|
Heuser JE. The Structural Basis of Long-Term Potentiation in Hippocampal Synapses, Revealed by Electron Microscopy Imaging of Lanthanum-Induced Synaptic Vesicle Recycling. Front Cell Neurosci 2022; 16:920360. [PMID: 35978856 PMCID: PMC9376242 DOI: 10.3389/fncel.2022.920360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Hippocampal neurons in dissociated cell cultures were exposed to the trivalent cation lanthanum for short periods (15–30 min) and prepared for electron microscopy (EM), to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses of these cultures—including synaptic vesicle depletion and proliferation of vesicle-recycling structures—but the overall architecture of a large proportion of the synapses in the cultures was dramatically altered, due to large postsynaptic “bulges” or herniations into the presynapses. Moreover, in most cases, these postsynaptic herniations or protrusions produced by lanthanum were seen by EM to distort or break or “perforate” the so-called postsynaptic densities (PSDs) that harbor receptors and recognition molecules essential for synaptic function. These dramatic EM observations lead us to postulate that such PSD breakages or “perforations” could very possibly create essential substrates or “tags” for synaptic growth, simply by creating fragmented free edges around the PSDs, into which new receptors and recognition molecules could be recruited more easily, and thus, they could represent the physical substrate for the important synaptic growth process known as “long-term potentiation” (LTP). All of this was created simply in hippocampal dissociated cell cultures, and simply by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum, but we argued in this report that such fundamental changes in synaptic architecture—given that they can occur at all—could also occur at the extremes of normal neuronal activity, which are presumed to lead to learning and memory.
Collapse
|
38
|
Deficiency in FTSJ1 Affects Neuronal Plasticity in the Hippocampal Formation of Mice. BIOLOGY 2022; 11:biology11071011. [PMID: 36101392 PMCID: PMC9312013 DOI: 10.3390/biology11071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Neuronal plasticity refers to the brain’s ability to adapt in response to activity-dependent changes. This process, among others, allows the brain to acquire memory or to compensate for a neurocognitive deficit. We analyzed adult FTSJ1-deficient mice in order to gain insight into the role of FTSJ1 in neuronal plasticity. These mice displayed alterations in the hippocampus (a brain structure that is involved in memory and learning, among other functions) e.g., in the form of changes in dendritic spines. Changes in dendritic spines are considered to represent a morphological hallmark of altered neuronal plasticity, and thus FTSJ1 deficiency might have a direct effect upon the capacity of the brain to adapt to plastic changes. Long-term potentiation (LTP) is an electrophysiological correlate of neuronal plasticity, and is related to learning and to processes attributed to memory. Here we show that LTP in FTSJ1-deficient mice is reduced, hinting at disturbed neuronal plasticity. These findings suggest that FTSJ1 deficiency has an impact on neuronal plasticity not only morphologically but also on the physiological level. Abstract The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.
Collapse
|
39
|
Hokama Y, Nishimura M, Usugi R, Fujiwara K, Katagiri C, Takagi H, Ishiuchi S. Recovery from the damage of cranial radiation modulated by memantine, an NMDA receptor antagonist, combined with hyperbaric oxygen therapy. Neuro Oncol 2022; 25:108-122. [PMID: 35762568 PMCID: PMC9825311 DOI: 10.1093/neuonc/noac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Radiotherapy is an important treatment option for central nervous system malignancies. However, cranial radiation induces hippocampal dysfunction and white matter injury; this leads to cognitive dysfunction, and results in a reduced quality of life in patients. Excitatory glutamate signaling through N-methyl-d-aspartate receptors (NMDARs) plays a central role both in hippocampal neurogenesis and in the myelination of oligodendrocytes in the cerebrum. METHODS We provide a method for quantifying neurogenesis in human subjects in live brain during cancer therapy. Neuroimaging using originally created behavioral tasks was employed to examine human hippocampal memory pathway in patients with brain disorders. RESULTS Treatment with memantine, a non-competitive NMDAR antagonist, reversed impairment in hippocampal pattern separation networks as detected by functional magnetic resonance imaging. Hyperbaric preconditioning of the patients just before radiotherapy with memantine mostly reversed white matter injury as detected by whole brain analysis with Tract-Based Spatial Statics. Neuromodulation combined with the administration of hyperbaric oxygen therapy and memantine during radiotherapy facilitated the restoration of hippocampal function and white matter integrity, and improved higher cognitive function in patients receiving cranial radiation. CONCLUSIONS The method described herein, for diagnosis of hippocampal dysfunction, and therapeutic intervention can be utilized to restore some of the cognitive decline experienced by patients who have received cranial radiation. The underlying mechanism of restoration is the production of new neurons, which enhances functionality in pattern separation networks in the hippocampi, resulting in an increase in cognitive score, and restoration of microstructural integrity of white matter tracts revealed by Tract-Based Spatial Statics Analysis.
Collapse
Affiliation(s)
- Yohei Hokama
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Masahiko Nishimura
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Ryoichi Usugi
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Kyoko Fujiwara
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Chiaki Katagiri
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Hiroshi Takagi
- Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan
| | - Shogo Ishiuchi
- Corresponding Author: Dr. Shogo Ishiuchi, Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus, 207 Uehara, Nishihara-machi, Okinawa 903-0215, Japan ()
| |
Collapse
|
40
|
Burlingham SR, Wong NF, Peterkin L, Lubow L, Dos Santos Passos C, Benner O, Ghebrial M, Cast TP, Xu-Friedman MA, Südhof TC, Chanda S. Induction of synapse formation by de novo neurotransmitter synthesis. Nat Commun 2022; 13:3060. [PMID: 35650274 PMCID: PMC9160008 DOI: 10.1038/s41467-022-30756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
A vital question in neuroscience is how neurons align their postsynaptic structures with presynaptic release sites. Although synaptic adhesion proteins are known to contribute in this process, the role of neurotransmitters remains unclear. Here we inquire whether de novo biosynthesis and vesicular release of a noncanonical transmitter can facilitate the assembly of its corresponding postsynapses. We demonstrate that, in both stem cell-derived human neurons as well as in vivo mouse neurons of purely glutamatergic identity, ectopic expression of GABA-synthesis enzymes and vesicular transporters is sufficient to both produce GABA from ambient glutamate and transmit it from presynaptic terminals. This enables efficient accumulation and consistent activation of postsynaptic GABAA receptors, and generates fully functional GABAergic synapses that operate in parallel but independently of their glutamatergic counterparts. These findings suggest that presynaptic release of a neurotransmitter itself can signal the organization of relevant postsynaptic apparatus, which could be directly modified to reprogram the synapse identity of neurons.
Collapse
Affiliation(s)
- Scott R Burlingham
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Nicole F Wong
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lindsay Peterkin
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lily Lubow
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Michael Ghebrial
- Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Thomas C Südhof
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Hedrick NG, Lu Z, Bushong E, Singhi S, Nguyen P, Magaña Y, Jilani S, Lim BK, Ellisman M, Komiyama T. Learning binds new inputs into functional synaptic clusters via spinogenesis. Nat Neurosci 2022; 25:726-737. [PMID: 35654957 DOI: 10.1038/s41593-022-01086-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Learning induces the formation of new excitatory synapses in the form of dendritic spines, but their functional properties remain unknown. Here, using longitudinal in vivo two-photon imaging and correlated electron microscopy of dendritic spines in the motor cortex of mice during motor learning, we describe a framework for the formation, survival and resulting function of new, learning-related spines. Specifically, our data indicate that the formation of new spines during learning is guided by the potentiation of functionally clustered preexisting spines exhibiting task-related activity during earlier sessions of learning. We present evidence that this clustered potentiation induces the local outgrowth of multiple filopodia from the nearby dendrite, locally sampling the adjacent neuropil for potential axonal partners, likely via targeting preexisting presynaptic boutons. Successful connections are then selected for survival based on co-activity with nearby task-related spines, ensuring that the new spine preserves functional clustering. The resulting locally coherent activity of new spines signals the learned movement. Furthermore, we found that a majority of new spines synapse with axons previously unrepresented in these dendritic domains. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve learned behaviors.
Collapse
Affiliation(s)
- Nathan G Hedrick
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA.
| | - Zhongmin Lu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Eric Bushong
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Surbhi Singhi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Peter Nguyen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Yessenia Magaña
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Sayyed Jilani
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA
| | - Mark Ellisman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Li N, Chen S, Xu NJ, Sun S, Chen JJ, Liu XD. Scaffold Protein Lnx1 Stabilizes EphB Receptor Kinases for Synaptogenesis. Front Mol Neurosci 2022; 15:861873. [PMID: 35531068 PMCID: PMC9070102 DOI: 10.3389/fnmol.2022.861873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Postsynaptic structure assembly and remodeling are crucial for functional synapse formation during the establishment of neural circuits. However, how the specific scaffold proteins regulate this process during the development of the postnatal period is poorly understood. In this study, we find that the deficiency of ligand of Numb protein X 1 (Lnx1) leads to abnormal development of dendritic spines to impair functional synaptic formation. We further demonstrate that loss of Lnx1 promotes the internalization of EphB receptors from the cell surface. Constitutively active EphB2 intracellular signaling rescues synaptogenesis in Lnx1 mutant mice. Our data thus reveal a molecular mechanism whereby the Lnx1-EphB complex controls postsynaptic structure for synapse maturation during the adolescent period.
Collapse
Affiliation(s)
- Na Li
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan-Jie Xu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Jin Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Dong Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Scholl B, Tepohl C, Ryan MA, Thomas CI, Kamasawa N, Fitzpatrick D. A binocular synaptic network supports interocular response alignment in visual cortical neurons. Neuron 2022; 110:1573-1584.e4. [PMID: 35123654 PMCID: PMC9081247 DOI: 10.1016/j.neuron.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
In visual cortex, signals from the two eyes merge to form a coherent binocular representation. Here we investigate the synaptic interactions underlying the binocular representation of stimulus orientation in ferret visual cortex with in vivo calcium imaging of layer 2/3 neurons and their dendritic spines. Individual neurons with aligned somatic responses received a mixture of monocular and binocular synaptic inputs. Surprisingly, monocular pathways alone could not account for somatic alignment because ipsilateral monocular inputs poorly matched somatic preference. Binocular inputs exhibited different degrees of interocular alignment, and those with a high degree of alignment (congruent) had greater selectivity and somatic specificity. While congruent inputs were similar to others in measures of strength, simulations show that the number of active congruent inputs predicts aligned somatic output. Our study suggests that coherent binocular responses derive from connectivity biases that support functional amplification of aligned signals within a heterogeneous binocular intracortical network.
Collapse
Affiliation(s)
- Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Clara Tepohl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| |
Collapse
|
44
|
Noble BT, Brennan FH, Wang Y, Guan Z, Mo X, Schwab JM, Popovich PG. Thoracic VGluT2 + Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury. J Neurosci 2022; 42:3659-3675. [PMID: 35304427 PMCID: PMC9053847 DOI: 10.1523/jneurosci.2134-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2+ spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI. To test whether the onset and progression of SCI-induced sympathetic plasticity is neuron activity dependent, we selectively inhibited (or excited) thoracic VGluT2+ interneurons using chemogenetics. New data show that silencing VGluT2+ interneurons in female and male mice with a T3 SCI, using hM4Di designer receptors exclusively activated by designer drugs (Gi DREADDs), blocks structural plasticity and the development of dysautonomia. Specifically, silencing VGluT2+ interneurons prevents the structural remodeling of spinal sympathetic networks that project to lymphoid and endocrine organs, reduces the frequency of spontaneous autonomic dysreflexia (AD), and reduces the severity of experimentally induced AD. Features of SCI-induced structural plasticity can be recapitulated in the intact spinal cord by activating excitatory hM3Dq-DREADDs in VGluT2+ interneurons. Collectively, these data implicate VGluT2+ excitatory SpINs in the onset and propagation of SCI-induced structural plasticity and dysautonomia, and reveal the potential for neuromodulation to block or reduce dysautonomia after severe high-level SCI.SIGNIFICANCE STATEMENT In response to stress or dangerous stimuli, autonomic spinal neurons coordinate a "fight or flight" response marked by increased cardiac output and release of stress hormones. After a spinal cord injury (SCI), normally harmless stimuli like bladder filling can result in a "false" fight or flight response, causing pathological changes throughout the body. We show that progressive hypertension and immune suppression develop after SCI because thoracic excitatory VGluT2+ spinal interneurons (SpINs) provoke structural remodeling in autonomic networks within below-lesion spinal levels. These pathological changes can be prevented in SCI mice or phenocopied in uninjured mice using chemogenetics to selectively manipulate activity in VGluT2+ SpINs. Targeted neuromodulation of SpINs could prevent structural plasticity and subsequent autonomic dysfunction in people with SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Yan Wang
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Zhen Guan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210
| | - Jan M Schwab
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
45
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
46
|
Suzuki N, Tantirigama MLS, Aung KP, Huang HHY, Bekkers JM. Fast and slow feedforward inhibitory circuits for cortical odor processing. eLife 2022; 11:73406. [PMID: 35297763 PMCID: PMC8929928 DOI: 10.7554/elife.73406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Feedforward inhibitory circuits are key contributors to the complex interplay between excitation and inhibition in the brain. Little is known about the function of feedforward inhibition in the primary olfactory (piriform) cortex. Using in vivo two-photon-targeted patch clamping and calcium imaging in mice, we find that odors evoke strong excitation in two classes of interneurons – neurogliaform (NG) cells and horizontal (HZ) cells – that provide feedforward inhibition in layer 1 of the piriform cortex. NG cells fire much earlier than HZ cells following odor onset, a difference that can be attributed to the faster odor-driven excitatory synaptic drive that NG cells receive from the olfactory bulb. As a result, NG cells strongly but transiently inhibit odor-evoked excitation in layer 2 principal cells, whereas HZ cells provide more diffuse and prolonged feedforward inhibition. Our findings reveal unexpected complexity in the operation of inhibition in the piriform cortex.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, Germany
| | - K Phyu Aung
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Helena H Y Huang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
47
|
Park C, Gim J, Lee S, Lee KJ, Kim JS. Automated Synapse Detection Method for Cerebellar Connectomics. Front Neuroanat 2022; 16:760279. [PMID: 35360651 PMCID: PMC8963724 DOI: 10.3389/fnana.2022.760279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
The connectomic analyses of large-scale volumetric electron microscope (EM) images enable the discovery of hidden neural connectivity. While the technologies for neuronal reconstruction of EM images are under rapid progress, the technologies for synapse detection are lagging behind. Here, we propose a method that automatically detects the synapses in the 3D EM images, specifically for the mouse cerebellar molecular layer (CML). The method aims to accurately detect the synapses between the reconstructed neuronal fragments whose types can be identified. It extracts the contacts between the reconstructed neuronal fragments and classifies them as synaptic or non-synaptic with the help of type information and two deep learning artificial intelligences (AIs). The method can also assign the pre- and postsynaptic sides of a synapse and determine excitatory and inhibitory synapse types. The accuracy of this method is estimated to be 0.955 in F1-score for a test volume of CML containing 508 synapses. To demonstrate the usability, we measured the size and number of the synapses in the volume and investigated the subcellular connectivity between the CML neuronal fragments. The basic idea of the method to exploit tissue-specific properties can be extended to other brain regions.
Collapse
Affiliation(s)
- Changjoo Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon-si, South Korea
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jawon Gim
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu, South Korea
- Laboratory of Synaptic Circuit Plasticity in Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sungjin Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity in Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jinseop S. Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon-si, South Korea
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
48
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
49
|
Hruska M, Cain RE, Dalva MB. Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific. Nat Commun 2022; 13:920. [PMID: 35177616 PMCID: PMC8854560 DOI: 10.1038/s41467-022-28504-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterotetrameric glutamate receptors are essential for the development, function, and plasticity of spine synapses but how they are organized to achieve this is not known. Here we show that the nanoscale organization of glutamate receptors containing specific subunits define distinct subsynaptic features. Glutamate receptors containing GluA2 or GluN1 subunits establish nanomodular elements precisely positioned relative to Synaptotagmin-1 positive presynaptic release sites that scale with spine size. Glutamate receptors containing GluA1 or GluN2B specify features that exhibit flexibility: GluA1-subunit containing AMPARs are found in larger spines, while GluN2B-subunit containing NMDARs are enriched in the smallest spines with neither following a strict modular organization. Given that the precise positioning of distinct classes of glutamate receptors is linked to diverse events including cell death and synaptic plasticity, this unexpectedly robust synaptic nanoarchitecture provides a resilient system, where nanopositioned glutamate receptor heterotetramers define specific subsynaptic regions of individual spine synapses. Glutamate receptors comprise two obligate subunits and two subunits that confer distinct properties and functions to the specific tetramers, which also localize to distinct synaptic spines. Here, the authors use STimulated Emission Depletion nanoscopy (STED) to provide detailed insights into the spatial organization of glutamate receptor types.
Collapse
Affiliation(s)
- Martin Hruska
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, Morgantown, WV, 26506, USA
| | - Rachel E Cain
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA, 19107, USA.
| |
Collapse
|
50
|
Al-Amin MM, Sullivan RKP, Alexander S, Carter DA, Bradford D, Burne THJ, Burne THJ. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci 2022; 9:31-56. [PMID: 35434279 PMCID: PMC8941191 DOI: 10.3934/neuroscience.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.
Collapse
Affiliation(s)
- Md. Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | | | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - David A. Carter
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Australian E-Health Research Centre, CSIRO, Pullenvale 4069, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia,* Correspondence: ; Tel: +61 733466371; Fax: +61 733466301
| | | | | | | |
Collapse
|