1
|
Finsterer J. Leigh Syndrome Caused by Compound Heterozygous Variants c.1162A_C and c.1138G_C in the NDUFV1 Gene: A Case Report. Cureus 2024; 16:e71127. [PMID: 39525154 PMCID: PMC11544579 DOI: 10.7759/cureus.71127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Early-onset Leigh syndrome is usually a genetically and phenotypically heterogeneous, severe, rapidly progressive mitochondrial disorder with a fatal outcome. Leigh syndrome is genetically heterogeneous as it is based on mutations in mtDNA or nDNA genes, which mostly encode subunits of respiratory chain complexes or assembly factors. It is phenotypically heterogeneous because it is genetically heterogeneous and due to the peculiarities of mitochondrial genetics. One of the more than 100 mutated genes responsible for Leigh syndrome is NDUFV1. Here we present the case of an infant with Leigh syndrome who suffered from a novel heterozygous variant of the NDUFV1 gene, which is phenotypically characterized by a number of previously unknown features. The patient was a four-month-old girl with Leigh syndrome due to the compound heterozygous variants c.1162+4A>C (previously described, inherited from the mother) and c.1138G>C (novel, inherited from the father) in NDUFV1. The mutation c.1162+4A>C is a non-canonical splice site variant that has been demonstrated to result in loss of function. The bioinformatic analysis supports that the missense variant c. 1138G>C has a deleterious effect on protein structure or function. The mutations manifested phenotypically with typical cerebral lesions on imaging, developmental delay, cognitive decline, epileptiform discharges in the electroencephalography without seizures, atrioventricular (AV) block II, agenesis of a subclavian vein, right heart failure, patent foramen ovale, pulmonary hypertension, hypoaldosteronism, and abdominal hernias. Within five weeks of hospitalization, the disease took a progressive course, and the patient died of infectious complications despite maximum treatment. This case shows that the described new heterozygous variant in NDUFV1 can occur with previously undescribed phenotypic features. It is important to diagnose mitochondrial disorders due to NDUFV1 mutations early in order not to miss the time for appropriate symptomatic treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology, Neurology and Neurophysiology Center, Vienna, AUT
| |
Collapse
|
2
|
Wang WC, Hou TC, Kuo CY, Lai YC. Amplifications of EVX2 and HOXD9-HOXD13 on 2q31 in mature cystic teratomas of the ovary identified by array comparative genomic hybridization may explain teratoma characteristics in chondrogenesis and osteogenesis. J Ovarian Res 2024; 17:129. [PMID: 38907278 PMCID: PMC11193297 DOI: 10.1186/s13048-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Teratomas are a common type of germ cell tumor. However, only a few reports on their genomic constitution have been published. The study of teratomas may provide a better understanding of their stepwise differentiation processes and molecular bases, which could prove useful for the development of tissue-engineering technologies. METHODS In the present study, we analyzed the copy number aberrations of nine ovarian mature cystic teratomas using array comparative genomic hybridization in an attempt to reveal their genomic aberrations. RESULTS The many chromosomal aberrations observed on array comparative genomic hybridization analysis reveal the complex genetics of this tumor. Amplifications and deletions of large DNA fragments were observed in some samples, while amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, NDUFV1 on 11q13.2, and RPL10, SNORA70, DNASE1L1, TAZ, ATP6AP1, and GDI1 on Xq28 were found in all nine mature cystic teratomas. CONCLUSIONS Our results indicated that amplifications of these genes may play an important etiological role in teratoma formation. Moreover, amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, found on array comparative genomic hybridization, may help to explain the characteristics of teratomas in chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Wen-Chung Wang
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
| | - Tai-Cheng Hou
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Chen-Yun Kuo
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Yen-Chein Lai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Road, Taichung, 402, Taiwan, R.O.C..
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Mahesan A, Choudhary PK, Kamila G, Rohil A, Meena AK, Kumar A, Jauhari P, Chakrabarty B, Gulati S. NDUFV1-Related Mitochondrial Complex-1 Disorders: A Retrospective Case Series and Literature Review. Pediatr Neurol 2024; 155:91-103. [PMID: 38626668 DOI: 10.1016/j.pediatrneurol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.
Collapse
Affiliation(s)
- Aakash Mahesan
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Puneet Kumar Choudhary
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Gautam Kamila
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Aradhana Rohil
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Kumar Meena
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Atin Kumar
- Department of Radiodiagnosis and Interventional Radiology, AIIMS, New Delhi, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, Centre of Excellence & Advanced Research for Childhood Neurodevelopmental Disorders, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Dagostino R, Gottlieb A. Tissue-specific atlas of trans-models for gene regulation elucidates complex regulation patterns. BMC Genomics 2024; 25:377. [PMID: 38632500 PMCID: PMC11022497 DOI: 10.1186/s12864-024-10317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Deciphering gene regulation is essential for understanding the underlying mechanisms of healthy and disease states. While the regulatory networks formed by transcription factors (TFs) and their target genes has been mostly studied with relation to cis effects such as in TF binding sites, we focused on trans effects of TFs on the expression of their transcribed genes and their potential mechanisms. RESULTS We provide a comprehensive tissue-specific atlas, spanning 49 tissues of TF variations affecting gene expression through computational models considering two potential mechanisms, including combinatorial regulation by the expression of the TFs, and by genetic variants within the TF. We demonstrate that similarity between tissues based on our discovered genes corresponds to other types of tissue similarity. The genes affected by complex TF regulation, and their modelled TFs, were highly enriched for pharmacogenomic functions, while the TFs themselves were also enriched in several cancer and metabolic pathways. Additionally, genes that appear in multiple clusters are enriched for regulation of immune system while tissue clusters include cluster-specific genes that are enriched for biological functions and diseases previously associated with the tissues forming the cluster. Finally, our atlas exposes multilevel regulation across multiple tissues, where TFs regulate other TFs through the two tested mechanisms. CONCLUSIONS Our tissue-specific atlas provides hierarchical tissue-specific trans genetic regulations that can be further studied for association with human phenotypes.
Collapse
Affiliation(s)
- Robert Dagostino
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
7
|
Lam XJ, Xu B, Yeo PL, Cheah PS, Ling KH. Mitochondria dysfunction and bipolar disorder: From pathology to therapy. IBRO Neurosci Rep 2023; 14:407-418. [PMID: 37388495 PMCID: PMC10300489 DOI: 10.1016/j.ibneur.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/08/2023] [Indexed: 07/01/2023] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.
Collapse
Affiliation(s)
- Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, 132 Daxuecheng Outer Ring E Rd, Panyu Qu, Guangzhou Shi, Guangdong 511434, People's Republic of China
| | - Pei-Ling Yeo
- School of Postgraduate Studies and Research, International Medical University, 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Unversiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Distelmaier F, Klopstock T. Neuroimaging in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:173-185. [PMID: 36813312 DOI: 10.1016/b978-0-12-821751-1.00016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
9
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Lang SH, Camponeschi F, de Joya E, Borjas-Mendoza P, Tekin M, Thorson W. Multiple Mitochondrial Dysfunction Syndrome Type 3: A Likely Pathogenic Homozygous Variant Affecting a Patient of Cuban Descent and Literature Review. Genes (Basel) 2022; 13:2044. [PMID: 36360281 PMCID: PMC9690653 DOI: 10.3390/genes13112044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/01/2023] Open
Abstract
Multiple mitochondrial dysfunction syndrome type 3 (MMDS3) is a rare mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in IBA57. Here, we describe a homozygous variant in IBA57, (NM_001010867.2): c.310G>T (p.Gly104Cys), in a 2-month-old infant of Cuban descent who presented with a one-month history of progressive hypotonia, weakness, and episodes of upgaze deviation. This is the first report of a patient homozygous for this variant and the first report of MMDS3 in a patient of Hispanic descent described to our knowledge. Using in silico tools, we found that the variant resides in a putative mutational hotspot located in the neighborhood of a key active ligand required for iron-sulfur cluster coordination. In addition, while previous case reports/series have reported the variable phenotypic features of the disease, the incidence of these features across the literature has not been well described. In order to construct a clearer global picture of the typical presentation of MMDS3, we reviewed 52 cases across the literature with respect to their clinical, biochemical, genotypic, and neuroradiographic features.
Collapse
Affiliation(s)
- Steven H. Lang
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Evan de Joya
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Paulo Borjas-Mendoza
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Willa Thorson
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
11
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
12
|
Lavorato M, Nakamaru-Ogiso E, Mathew ND, Herman E, Shah NK, Haroon S, Xiao R, Seiler C, Falk MJ. Dichloroacetate improves mitochondrial function, physiology, and morphology in FBXL4 disease models. JCI Insight 2022; 7:156346. [PMID: 35881484 PMCID: PMC9462489 DOI: 10.1172/jci.insight.156346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in the human F-box and leucine-rich repeat protein 4 (FBXL4) gene result in an autosomal recessive, multisystemic, mitochondrial disorder involving variable mitochondrial depletion and respiratory chain complex deficiencies with lactic acidemia. As no FDA-approved effective therapies for this disease exist, we sought to characterize translational C. elegans and zebrafish animal models, as well as human fibroblasts, to study FBXL4–/– disease mechanisms and identify preclinical therapeutic leads. Developmental delay, impaired fecundity and neurologic and/or muscular activity, mitochondrial dysfunction, and altered lactate metabolism were identified in fbxl-1(ok3741) C. elegans. Detailed studies of a PDHc activator, dichloroacetate (DCA), in fbxl-1(ok3741)C. elegans demonstrated its beneficial effects on fecundity, neuromotor activity, and mitochondrial function. Validation studies were performed in fbxl4sa12470 zebrafish larvae and in FBXL4–/– human fibroblasts; they showed DCA efficacy in preventing brain death, impairment of neurologic and/or muscular function, mitochondrial biochemical dysfunction, and stress-induced morphologic and ultrastructural mitochondrial defects. These data demonstrate that fbxl-1(ok3741) C. elegans and fbxl4sa12470 zebrafish provide robust translational models to study mechanisms and identify preclinical therapeutic candidates for FBXL4–/– disease. Furthermore, DCA is a lead therapeutic candidate with therapeutic benefit on diverse aspects of survival, neurologic and/or muscular function, and mitochondrial physiology that warrants rigorous clinical trial study in humans with FBXL4–/– disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Eiko Nakamaru-Ogiso
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Neal D Mathew
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Elizabeth Herman
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Nina K Shah
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Suraiya Haroon
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Christoph Seiler
- Aquatics Core Facility, Children's Hospital of Philadelphia, Philadelphia, United States of America
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America
| |
Collapse
|
13
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
14
|
Neubauer J, Forst AL, Warth R, Both CP, Haas C, Thomas J. Genetic variants in eleven central and peripheral chemoreceptor genes in sudden infant death syndrome. Pediatr Res 2022; 92:1026-1033. [PMID: 35102300 PMCID: PMC9586864 DOI: 10.1038/s41390-021-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is still one of the leading causes of postnatal infant death in developed countries. The occurrence of SIDS is described by a multifactorial etiology that involves the respiratory control system including chemoreception. It is still unclear whether genetic variants in genes involved in respiratory chemoreception might play a role in SIDS. METHODS The exome data of 155 SIDS cases were screened for variants within 11 genes described in chemoreception. Pathogenicity of variants was assigned based on the assessment of variant types and in silico protein predictions according to the current recommendations of the American College of Medical Genetics and Genomics. RESULTS Potential pathogenic variants in genes encoding proteins involved in respiratory chemoreception could be identified in 5 (3%) SIDS cases. Two of the variants (R137S/A188S) were found in the KNCJ16 gene, which encodes for the potassium channel Kir5.1, presumably involved in central chemoreception. Electrophysiologic analysis of these KCNJ16 variants revealed a loss-of-function for the R137S variant but no obvious impairment for the A188S variant. CONCLUSIONS Genetic variants in genes involved in respiratory chemoreception may be a risk factor in a fraction of SIDS cases and may thereby contribute to the multifactorial etiology of SIDS. IMPACT What is the key message of your article? Gene variants encoding proteins involved in respiratory chemoreception may play a role in a minority of SIDS cases. What does it add to the existing literature? Although impaired respiratory chemoreception has been suggested as an important risk factor for SIDS, genetic variants in single genes seem to play a minor role. What is the impact? This study supports previous findings, which indicate that genetic variants in single genes involved in respiratory control do not have a dominant role in SIDS.
Collapse
Affiliation(s)
- Jacqueline Neubauer
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anna-Lena Forst
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- grid.7727.50000 0001 2190 5763Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christian Peter Both
- grid.412341.10000 0001 0726 4330Department of Anesthesiology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Cordula Haas
- grid.7400.30000 0004 1937 0650Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jörg Thomas
- Department of Anesthesiology, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Wang R, Kairen C, Li L, Zhang L, Gong H, Huang X. Overexpression of NDUFV1 alleviates renal damage by improving mitochondrial function in unilateral ureteral obstruction model mice. Cell Biol Int 2021; 46:381-390. [PMID: 34936716 DOI: 10.1002/cbin.11736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial homeostasis plays essential role for the proper functioning of the kidney. NADH-ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an enzyme in the complex I of electron transport chain (ETC) in mitochondria. In the present study, we examined the effects of NDUFV1 on renal function in unilateral ureteral obstruction (UUO) model mice. Our data showed that increased expression of NDUFV1 improves kidney function as evidenced by the decreases in blood urea nitrogen and serum creatinine in UUO mice. Moreover, NDUFV1 also maintains renal structures and alleviates renal fibrosis induced by UUO surgery. Mechanistically, NDUFV1 mitigates the increased oxidative stress in the kidney in UUO model mice. Meanwhile, increased expression of NDUFV1 in the kidney improves the integrity of the complex I and potentiates the complex I activity. Overall, these results indicate that the ETC complex I plays a beneficial role against renal dysfunction induced by acute kidney injury such as UUO. Therefore, NDUFV1 might be a druggable target for developing agents for dealing with disabled mitochondria-associated renal diseases.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Kairen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lu Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lingling Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haifeng Gong
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Zanette V, Valle DD, Telles BA, Robinson AJ, Monteiro V, Santos MLSF, Souza RLR, Benincá C. NDUFV1 mutations in complex I deficiency: Case reports and review of symptoms. Genet Mol Biol 2021; 44:e20210149. [PMID: 34807224 PMCID: PMC8607527 DOI: 10.1590/1678-4685-gmb-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.
Collapse
Affiliation(s)
- Vanessa Zanette
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Daniel do Valle
- Hospital Pequeno Príncipe, Divisão de Neuropediatria, Curitiba, PR, Brazil
| | | | - Alan J Robinson
- University of Cambridge, Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Vaneisse Monteiro
- Hospital Pequeno Príncipe, Divisão de Neuropediatria, Curitiba, PR, Brazil
| | | | - Ricardo Lehtonen R Souza
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil
| | - Cristiane Benincá
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Polimorfismos e Ligação, Curitiba, PR, Brazil.,University of Cambridge, Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| |
Collapse
|
17
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
18
|
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2197-2222. [PMID: 34596729 DOI: 10.1007/s00210-021-02161-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (ubiquinone or CoQ10) is a lipid molecule that acts as an electron mobile carrier of the electron transport chain and also contains antioxidant properties. Supplementation of CoQ10 has been very useful to treat mitochondrial diseases. CoQ10 along with its synthetic analogue, idebenone, is used largely to treat various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Friedreich's ataxia and additional brain disease condition like autism, multiple sclerosis, epilepsy, depression, and bipolar disorder, which are related to mitochondrial impairment. In this article, we have reviewed numerous physiological functions of CoQ10 and the rationale for its use in clinical practice in different brain disorders.
Collapse
Affiliation(s)
- Nilima Pradhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
19
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
20
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
21
|
Liu Z, Zhang L, Ren C, Xu M, Li S, Ban R, Wu Y, Chen L, Sun S, Elstner M, Shimura M, Ogawa-Tominaga M, Murayama K, Shi T, Prokisch H, Fang F. Whole genome and exome sequencing identify NDUFV2 mutations as a new cause of progressive cavitating leukoencephalopathy. J Med Genet 2021; 59:351-357. [PMID: 33811136 PMCID: PMC8961761 DOI: 10.1136/jmedgenet-2020-107383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 11/18/2022]
Abstract
Background Progressive cavitating leukoencephalopathy (PCL) is thought to result from mutations in nuclear genes affecting mitochondrial function and energy metabolism. To date, mutations in two subunits of complex I, NDUFS1 and NDUFV1, have been reported to be related to PCL. Methods Patients underwent clinical examinations, brain MRI, skin biopsy and muscle biopsy. Whole-genome or whole-exome sequencing was performed on the index patients from two unrelated families with PCL. The effects of the mutations were examined through complementation of the NDUFV2 mutation by cDNA expression. Results The common clinical features of the patients in this study were recurring episodes of acute or subacute developmental regression that appeared in the first years of life, followed by gradual remissions and prolonged periods of stability. MRI showed leukoencephalopathy with multiple cavities. Three novel NDUFV2 missense mutations were identified in these families. Complex I deficiency was confirmed in affected individuals’ fibroblasts and a muscle biopsy. Functional and structural analyses revealed that these mutations affect the structural stability and function of the NDUFV2 protein, indicating that defective NDUFV2 function is responsible for the phenotypes in these individuals. Conclusions Here, we report the clinical presentations, neuroimaging and molecular and functional analyses of novel mutations in NDUFV2 in two sibling pairs of two Chinese families presenting with PCL. We hereby expand the knowledge on the clinical phenotypes associated with mutations in NDUFV2 and the genotypes causative for PCL.
Collapse
Affiliation(s)
- Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Changhong Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Manting Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shufang Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Rui Ban
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Chen
- Department of Neurology, Children's Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Suzhen Sun
- Department of Neurology, Children's Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Matthias Elstner
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Minako Ogawa-Tominaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China .,Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Holger Prokisch
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China .,Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
22
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
23
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
24
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
25
|
Borna NN, Kishita Y, Sakai N, Hamada Y, Kamagata K, Kohda M, Ohtake A, Murayama K, Okazaki Y. Leigh Syndrome Due to NDUFV1 Mutations Initially Presenting as LBSL. Genes (Basel) 2020; 11:genes11111325. [PMID: 33182419 PMCID: PMC7697158 DOI: 10.3390/genes11111325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
Leigh syndrome (LS) is most frequently characterized by the presence of focal, bilateral, and symmetric brain lesions Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a rare condition, characterized by progressive pyramidal, cerebellar, and dorsal column dysfunction. We describe a case with infantile-onset neurodegeneration, psychomotor retardation, irritability, hypotonia, and nystagmus. Brain MRI demonstrated signal abnormalities in the deep cerebral white matter, corticospinal and dorsal column tracts, and pyramids, which resemble the MRI pattern of a severe form of LBSL, and involvement of basal ganglia and thalamus that resemble the radiological features of LS. We identified biallelic loss-of-function mutations, one novel (c.756delC, p.Thr253Glnfs*44) and another reported (c.1156C > T, p.Arg386Cys), in NDUFV1 (NADH:Ubiquinone Oxidoreductase Core Subunit V1) by exome sequencing. Biochemical and functional analyses revealed lactic acidosis, complex I (CI) assembly and enzyme deficiency, and a loss of NDUFV1 protein. Complementation assays restored the NDUFV1 protein, CI assembly, and CI enzyme levels. The clinical and radiological features of this case are compatible with the phenotype of LS and LBSL associated with NDUFV1 mutations.
Collapse
Affiliation(s)
- Nurun Nahar Borna
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; (N.N.B.); (Y.K.); (M.K.)
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; (N.N.B.); (Y.K.); (M.K.)
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yusuke Hamada
- Department of Pediatrics, Toyonaka Municipal Hospital, Toyonaka, Osaka 560-8565, Japan;
| | - Koji Kamagata
- Department of Radiology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Masakazu Kohda
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; (N.N.B.); (Y.K.); (M.K.)
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama 350-0495, Japan;
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Saitama 350-0495, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Midori-ku, Chiba 266-0007, Japan;
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; (N.N.B.); (Y.K.); (M.K.)
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Correspondence: ; Tel.: +81-3-5802-1794; Fax: +81-3-5800-5022
| |
Collapse
|
26
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
27
|
Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 2020; 47:1963-1969. [PMID: 31769488 DOI: 10.1042/bst20191042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
Abstract
Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.
Collapse
|
28
|
Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol 2020; 24:47-52. [PMID: 31973983 DOI: 10.1016/j.ejpn.2019.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Mitochondria are vital organelles within cells that undertake many important metabolic roles, the most significant of which is to generate energy to support organ function. Dysfunction of the mitochondrion can lead to a wide range of clinical features, predominantly affecting organs with a high metabolic demand such as the brain. One of the main neurological manifestations of mitochondrial disease is metabolic epilepsies. These epileptic seizures are more frequently of posterior quadrant and occipital lobe onset, more likely to present with non-convulsive status epilepticus which may last months and be more resistant to treatment from the onset. The onset of can be of any age. Childhood onset epilepsy is a major phenotypic feature in mitochondrial disorders such as Alpers-Huttenlocher syndrome, pyruvate dehydrogenase complex deficiencies, and Leigh syndrome. Meanwhile, adults with classical mitochondrial disease syndrome such as MELAS, MERFF or POLG-related disorders could present with either focal or generalised seizures. There are no specific curative treatments for mitochondrial epilepsy. Generally, the epileptic seizures should be managed by specialist neurologist with appropriate use of anticonvulsants. As a general rule, especially in disorders associated with mutation in POLG, sodium valproate is best avoided because hepato-toxicity can be fulminant and fatal.
Collapse
Affiliation(s)
- Albert Lim
- Department of Paediatrics, Great Northern Children's Hospital, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - Rhys H Thomas
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom; Department of Neurology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
29
|
Finsterer J, Zarrouk-Mahjoub S. Phenotype of NDUFV1-related Disease. J Pediatr Neurosci 2019; 14:175-176. [PMID: 31649783 PMCID: PMC6798285 DOI: 10.4103/jpn.jpn_124_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/12/2018] [Accepted: 08/08/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Tunis, Tunisia
| |
Collapse
|
30
|
Chen CH, Hsu HW, Chang YH, Pan CL. Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans. Dev Cell 2019; 48:215-228.e5. [PMID: 30555000 DOI: 10.1016/j.devcel.2018.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/18/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron. This axon-dendrite fasciculation is mediated by a previously uncharacterized adhesive signaling by the ALA membrane signal SAX-7/L1CAM and the PVD receptor SAX-3/Robo but independent of Slit. L1CAM physically interacts with Robo and instructs dendrite adhesion in a Robo-dependent manner. Fasciculation mediated by L1CAM-Robo signaling aligns F-actin dynamics in the dendrite growth cone and facilitates dynamic growth cone behaviors for efficient dendrite guidance. Disruption of PVD dendrite fasciculation impairs nociceptive mechanosensation and rhythmicity in body curvature, suggesting that dendrite fasciculation governs the functions of mechanosensory circuits. Our work elucidates the molecular mechanisms by which adhesive axon-dendrite signaling shapes the construction and function of sensory neuronal circuits.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hao-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yun-Hsuan Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
31
|
Abstract
Leigh syndrome (LS) is a common neurodegenerative disease affecting neonates with devastating sequences. One of the characteristic features for LS is the phenotypic polymorphism, which-in part-can be dedicated to variety of genetic causes. A strong correlation with mitochondrial dysfunction has been assumed as the main cause of LS. This was based on the fact that most genetic causes are related to mitochondrial complex I genome. The first animal LS model was designed based on NDUFS4 knockdown. Interestingly, however, this one or others could not recapitulate the whole spectrum of manifestations encountered in different cases of LS. We show in this chapter a new animal model for LS based on silencing of one gene that is reported previously in clinical cases, FOXRED1. The new model carries some differences from previous models in the fact that more histopathological degeneration in dopaminergic system is seen and more behavioral changes can be recognized. FOXRED1 is an interesting gene that is related to complex I assembly, hence, plays important role in different neurodegenerative disorders leading to different clinical manifestations.
Collapse
Affiliation(s)
- Sara El-Desouky
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasmeen M Taalab
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- German Institute of Disaster Medicine and Emergency Medicine, Tubingen, Germany
| | - Mohamed El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Wael Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Atlantic Fellow for Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
32
|
Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations. CELLULAR AND MOLECULAR BASIS OF MITOCHONDRIAL INHERITANCE 2019; 231:51-74. [DOI: 10.1007/102_2018_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Wadhwa Y, Rohilla S, Kaushik JS. Cystic Leucoencephalopathy in NDUFV1 Mutation. Indian J Pediatr 2018; 85:1128-1131. [PMID: 29948731 DOI: 10.1007/s12098-018-2721-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Complex I deficiency is one of the most common mitochondrial respiratory chain defect. This deficiency of oxidative phosphorylation results from mutation in nuclear and mitochondrial DNA. Mutations in NDUFV1 (Flavin binding subunit of Respiratory complex 1) results in neurological manifestations including Leigh syndrome and leucoencephalopathy. The authors report a one-year-old boy with history of regression of motor milestones following a trivial fall from the bed. His magnetic resonance imaging revealed diffuse, cystic leucoencephalopathy involving corpus callosum and periventricular white matter. Clinical features and radiological findings may resemble those of vanishing white matter disease. Next generation sequencing revealed likely compound heterozygous missense pathogenic variant in exon 8 of NDUFV1 gene [c.1156C > C/T (p.Arg386Cys)] and possibly novel splice site variation in intron 2 of NDUFV1 gene (c.155 + 1G > G/A). NDUFV1 related leucoencephalopathy must be considered among those presenting with sudden onset of motor regression with neuroimaging correlate of diffuse cystic leucodystrophy.
Collapse
Affiliation(s)
- Yamini Wadhwa
- Department of Radiodiagnosis, Pt B D Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Seema Rohilla
- Department of Radiodiagnosis, Pt B D Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Jaya Shankar Kaushik
- Pediatric Neurology Services, Department of Pediatrics, Pt B D Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, 124001, India.
| |
Collapse
|
34
|
Srivastava A, Srivastava KR, Hebbar M, Galada C, Kadavigrere R, Su F, Cao X, Chinnaiyan AM, Girisha KM, Shukla A, Bielas SL. Genetic diversity of NDUFV1-dependent mitochondrial complex I deficiency. Eur J Hum Genet 2018; 26:1582-1587. [PMID: 29976978 PMCID: PMC6189076 DOI: 10.1038/s41431-018-0209-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
Medical genomics research performed in diverse population facilitates a better understanding of the genetic basis of developmental disorders, with regional implications for community genetics. Autosomal recessive mitochondrial complex I deficiency (MCID) accounts for a constellation of clinical features, including encephalopathies, myopathies, and Leigh Syndrome. Using whole-exome sequencing, we identified biallelic missense variants in NDUFV1 that encodes the 51-kD subunit of complex I (NADH dehydrogenase) NDUFV1. Mapping the variants on published crystal structures of mitochondrial complex I demonstrate that the novel c.1118T > C (p.(Phe373Ser)) variant is predicted to diminish the affinity of the active pocket of NDUFV1 for FMN that correlates to an early onset of debilitating MCID symptoms. The c.1156C > T (p.(Arg386Cys)) variant is predicted to alter electron shuttling required for energy production and correlate to a disease onset in childhood. NDUFV1 c.1156C > T (p.(Arg386Cys)) represents a founder variant in South Asian populations that have value in prioritizing this variant in a population-specific manner for genetic diagnostic evaluation. In conclusion, our results demonstrate the advantage of analyzing population-specific sequences to understand the disease pathophysiology and prevalence of inherited risk variants in the underrepresented populations.
Collapse
Affiliation(s)
- Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Chelna Galada
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Rajagopal Kadavigrere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal University, Manipal, India
| | - Fengyun Su
- Howard Hughes Medical Institute, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xuhong Cao
- Howard Hughes Medical Institute, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Arul M Chinnaiyan
- Howard Hughes Medical Institute, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
35
|
Fiedorczuk K, Sazanov LA. Mammalian Mitochondrial Complex I Structure and Disease-Causing Mutations. Trends Cell Biol 2018; 28:835-867. [PMID: 30055843 DOI: 10.1016/j.tcb.2018.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Complex I has an essential role in ATP production by coupling electron transfer from NADH to quinone with translocation of protons across the inner mitochondrial membrane. Isolated complex I deficiency is a frequent cause of mitochondrial inherited diseases. Complex I has also been implicated in cancer, ageing, and neurodegenerative conditions. Until recently, the understanding of complex I deficiency on the molecular level was limited due to the lack of high-resolution structures of the enzyme. However, due to developments in single particle cryo-electron microscopy (cryo-EM), recent studies have reported nearly atomic resolution maps and models of mitochondrial complex I. These structures significantly add to our understanding of complex I mechanism and assembly. The disease-causing mutations are discussed here in their structural context.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Present address: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria.
| |
Collapse
|
36
|
Andreazza AC, Duong A, Young LT. Bipolar Disorder as a Mitochondrial Disease. Biol Psychiatry 2018; 83:720-721. [PMID: 29050637 DOI: 10.1016/j.biopsych.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Angela Duong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - L Trevor Young
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department Psychiatry, University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Movement disorders in mitochondrial disease. J Neurol 2018; 265:1230-1240. [PMID: 29307008 DOI: 10.1007/s00415-017-8722-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Abstract
Mitochondrial disease presents with a wide spectrum of clinical manifestations that may appear at any age and cause multisystem dysfunction. A broad spectrum of movement disorders can manifest in mitochondrial diseases including ataxia, Parkinsonism, myoclonus, dystonia, choreoathetosis, spasticity, tremor, tic disorders and restless legs syndrome. There is marked heterogeneity of movement disorder phenotypes, even in patients with the same genetic mutation. Moreover, the advent of new technologies, such as next-generation sequencing, is likely to identify novel causative genes, expand the phenotype of known disease genes and improve the genetic diagnosis in these patients. Identification of the underlying genetic basis of the movement disorder is also a crucial step to allow for targeted therapies to be implemented as well as provide the basis for a better understanding of the molecular pathophysiology of the disease process. The aim of this review is to discuss the spectrum of movement disorders associated with mitochondrial disease.
Collapse
|
38
|
Incecik F, Herguner OM, Besen S, Bozdoğan ST, Mungan NO. Late-Onset Leigh Syndrome due to NDUFV1 Mutation in a 10-Year-Old Boy Initially Presenting with Ataxia. J Pediatr Neurosci 2018; 13:205-207. [PMID: 30090137 PMCID: PMC6057190 DOI: 10.4103/jpn.jpn_138_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. The onset of clinical features is typically between 3 and 12 months of age; however, a later onset has been described in a few patients. Complex I deficiency is reported to be the most common cause of mitochondrial disorders. We described a patient with a late-onset LS, who presented with gait ataxia, caused by complex I deficiency (NDUFV1 gene).
Collapse
Affiliation(s)
- Faruk Incecik
- Division of Child Neurology, Department of Pediatrics, Cukurova University, Adana, Turkey
| | - Ozlem M Herguner
- Division of Child Neurology, Department of Pediatrics, Cukurova University, Adana, Turkey
| | - Seyda Besen
- Division of Child Neurology, Department of Pediatrics, Cukurova University, Adana, Turkey
| | | | - Neslihan O Mungan
- Division of Pediatric Metabolism, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
39
|
Bindu PS, Sonam K, Govindaraj P, Govindaraju C, Chiplunkar S, Nagappa M, Kumar R, Vekhande CC, Arvinda HR, Gayathri N, Srinivas Bharath MM, Ponmalar JNJ, Philip M, Vandana VP, Khan NA, Nunia V, Paramasivam A, Sinha S, Thangaraj K, Taly AB. Outcome of epilepsy in patients with mitochondrial disorders: Phenotype genotype and magnetic resonance imaging correlations. Clin Neurol Neurosurg 2017; 164:182-189. [PMID: 29272804 DOI: 10.1016/j.clineuro.2017.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Studies exploring the outcome of epilepsy in patients with mitochondrial disorders are limited. This study examined the outcome of epilepsy in patients with mitochondrial disorders and its relation with the clinical phenotype, genotype and magnetic resonance imaging findings. PATIENTS AND METHODS The cohort was derived from the database of 67 patients with definite genetic diagnosis of mitochondrial disorders evaluated over a period of 11years (2006-2016). Among this, 27 had epilepsy and were included in final analysis. Data were analyzed with special reference to clinical phenotypes, genotypes, epilepsy characteristics, EEG findings, anti epileptic drugs used, therapeutic response, and magnetic resonance imaging findings. Patients were divided into three groups according to the seizure frequency at the time of last follow up: Group I- Seizure free; Group II- Infrequent seizures; Group III- uncontrolled seizures. For each group the clinical phenotype, genotype, magnetic resonance imaging and duration of epilepsy were compared. RESULTS The phenotypes & genotypes included Mitochondrial Encephalopathy Lactic Acidosis and Stroke like episodes (MELAS) & m.3243A>G mutation (n = 10), Myoclonic Epilepsy Ragged Red Fiber syndrome (MERRF) & m.8344A>G mutation (n = 4), Chronic Progressive External Ophthalmoplegia plus &POLG1 mutation (CPEO, n = 6), episodic neuroregression due to nuclear mutations (n = 6; NDUFV1 (n = 3), NDUFA1, NDUFS2, MPV17-1 one each), and one patient with infantile basal ganglia stroke syndrome, mineralizing angiopathy &MT-ND5 mutations. Seven patients (25.9%) were seizure free; seven had infrequent seizures (25.9%), while thirteen (48.1%) had frequent uncontrolled seizures. Majority of the subjects in seizure free group had episodic neuroregression & leukoencephalopathy due to nuclear mutations (85.7%). Patients in group II with infrequent seizures had CPEO, POLG1 mutation and a normal MRI (71%) while 62% of the subjects in group III had MELAS, m.3243A>G mutation and stroke like lesions on MRI. CONCLUSIONS A fair correlation exists between the outcome of epilepsy, clinical phenotypes, genotypes and magnetic resonance imaging findings in patients with mitochondrial disorders. The recognition of these patterns is important clinically because of the therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Parayil Sankaran Bindu
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kothari Sonam
- Dept. of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Dept. of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Chikkanna Govindaraju
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Dept. of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rakesh Kumar
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Hanumanthapura R Arvinda
- Dept. of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Dept. of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Dept. of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Mariyamma Philip
- Dept. of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - V P Vandana
- Dept. of Speech Pathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Vandana Nunia
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Sanjib Sinha
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Arun B Taly
- Dept. of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular lab-Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
40
|
Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci Rep 2017; 7:62. [PMID: 28246402 PMCID: PMC5427826 DOI: 10.1038/s41598-017-00108-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a long-term adverse effect of curative radiotherapy. The accumulation of myofibroblasts in fibroblastic foci is a pivotal feature of RILF. In the study, we found the inhibitory effect of grape seed proanthocyanidins (GSPs) on irradiation-induced differentiation of human fetal lung fibroblasts (HFL1). To explore the mechanism by which GSPs inhibit fibroblast differentiation, we measured the reactive oxygen species (ROS) levels, mitochondrial function, mitochondrial dynamics, glycolysis and the signaling molecules involved in fibroblast transdifferentiation. GSPs significantly reduced the production of cellular and mitochondrial ROS after radiation. The increases in mitochondrial respiration, proton leak, mitochondrial ATP production, lactate release and glucose consumption that occurred in response to irradiation were ameliorated by GSPs. Furthermore, GSPs increased the activity of complex I and improved the mitochondrial dynamics, which were disturbed by irradiation. In addition, the elevation of phosphorylation of p38MAPK and Akt, and Nox4 expression induced by irradiation were attenuated by GSPs. Blocking Nox4 attenuated irradiation-mediated fibroblast differentiation. Taken together, these results indicate that GSPs have the ability to inhibit irradiation-induced fibroblast-to-myofibroblast differentiation by ameliorating mitochondrial dynamics and mitochondrial complex I activity, regulating mitochondrial ROS production, ATP production, lactate release, glucose consumption and thereby inhibiting p38MAPK-Akt-Nox4 pathway.
Collapse
|
41
|
Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2016; 241:236-250. [PMID: 27659608 PMCID: PMC5215404 DOI: 10.1002/path.4809] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic control - the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological characterization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances in studying associated mitochondrial pathology in two, clinically relevant organs - skeletal muscle and brain. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Buhlman LM. Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species? Mech Ageing Dev 2016; 161:112-120. [PMID: 27374431 DOI: 10.1016/j.mad.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
Parkinson's and Alzheimer's diseases (PD and AD, respectively) are considered to be diseases of advanced brain ageing, which seems to involve high levels of reactive oxygen species (ROS). AD neurodegeneration is initially apparent in the hippocampus; as AD progresses, many more brain regions are affected. PD-associated neurodegeneration is relatively limited to dopaminergic neurons of the substantia nigra pars compacta (SNpc), especially in cases in which patients inherit particular disease-causing mutations. Thus, the task of elucidating mechanisms by which loss of function of one particular protein triggers death of a subset of neurons may be more approachable. Understanding the mechanisms of neurodegeneration in these forms of PD may not only shed light on avenues leading toward therapeutic strategies in PD and other neurodegenerative diseases, but also on those leading toward understanding natural ageing. Neurodegeneration in PD patients harboring homozygous loss-of-function mutations in the PARK2 gene may result from unbalanced levels of ROS, which are mostly produced in mitochondria and can irreparably damage macromolecules and trigger apoptosis. This review discusses mitochondrial sources of ROS, how ROS can trigger apoptosis, mechanisms by which Parkin loss-of-function may cause neurodegeneration by increasing ROS levels, and concludes with hypotheses regarding selective SNpc dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Lori M Buhlman
- Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA.
| |
Collapse
|
43
|
Nafisinia M, Guo Y, Dang X, Li J, Chen Y, Zhang J, Lake NJ, Gold WA, Riley LG, Thorburn DR, Keating B, Xu X, Hakonarson H, Christodoulou J. Whole Exome Sequencing Identifies the Genetic Basis of Late-Onset Leigh Syndrome in a Patient with MRI but Little Biochemical Evidence of a Mitochondrial Disorder. JIMD Rep 2016; 32:117-124. [PMID: 27344648 DOI: 10.1007/8904_2016_541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 03/11/2023] Open
Abstract
Leigh syndrome is a subacute necrotising encephalomyopathy proven by post-mortem analysis of brain tissue showing spongiform lesions with vacuolation of the neuropil followed by demyelination, gliosis and capillary proliferation caused by mutations in one of over 75 different genes, including nuclear- and mitochondrial-encoded genes, most of which are associated with mitochondrial respiratory chain function. In this study, we report a patient with suspected Leigh syndrome presenting with seizures, ptosis, scoliosis, dystonia, symmetrical putaminal abnormalities and a lactate peak on brain MRS, but showing normal MRC enzymology in muscle and liver, thereby complicating the diagnosis. Whole exome sequencing uncovered compound heterozygous mutations in NADH dehydrogenase (ubiquinone) flavoprotein 1 gene (NDUFV1), c.1162+4A>C (NM_007103.3), resulting in skipping of exon 8, and c.640G>A, causing the amino acid substitution p.Glu214Lys, both of which have previously been reported in a patient with complex I deficiency. Patient fibroblasts showed a significant reduction in NDUFV1 protein expression, decreased complex CI and complex IV assembly and consequential reductions in the enzymatic activities of both complexes by 38% and 67%, respectively. The pathogenic effect of these variations was further confirmed by immunoblot analysis of subunits for MRC enzyme complexes in patient muscle, liver and fibroblast where we observed 90%, 60% and 95% reduction in complex CI, respectively. Together these studies highlight the importance of a comprehensive, multipronged approach to the laboratory evaluation of patients with suspected Leigh syndrome.
Collapse
Affiliation(s)
- Michael Nafisinia
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiao Dang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,Shenzen Key Laboratory of Neurogenomics, BGI-Shenzen, Shenzhen, 518083, China
| | - Jiankang Li
- Shenzen Key Laboratory of Neurogenomics, BGI-Shenzen, Shenzhen, 518083, China
| | - Yulan Chen
- Shenzen Key Laboratory of Neurogenomics, BGI-Shenzen, Shenzhen, 518083, China
| | - Jianguo Zhang
- Shenzen Key Laboratory of Neurogenomics, BGI-Shenzen, Shenzhen, 518083, China
| | - Nicole J Lake
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Wendy A Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Lisa G Riley
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW, 2145, Australia.,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David R Thorburn
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Brendan Keating
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xun Xu
- Shenzen Key Laboratory of Neurogenomics, BGI-Shenzen, Shenzhen, 518083, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW, 2145, Australia. .,Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R. New perspective in diagnostics of mitochondrial disorders: two years' experience with whole-exome sequencing at a national paediatric centre. J Transl Med 2016; 14:174. [PMID: 27290639 PMCID: PMC4903158 DOI: 10.1186/s12967-016-0930-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). Methods We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. Results Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. Conclusions We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0930-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Pronicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland. .,Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Trubicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Magdalena Pajdowska
- Department of Biochemistry and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Radiology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paulina Halat
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Piotr Stawinski
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland.
| |
Collapse
|
45
|
Berrisford JM, Baradaran R, Sazanov LA. Structure of bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:892-901. [PMID: 26807915 DOI: 10.1016/j.bbabio.2016.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
| | - Rozbeh Baradaran
- Memorial Sloan-Kettering Cancer Center, 430 E 67th Street, NY 10065, USA
| | - Leonid A Sazanov
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
46
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
47
|
Varghese F, Atcheson E, Bridges HR, Hirst J. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system. Hum Mol Genet 2015; 24:6350-60. [PMID: 26345448 PMCID: PMC4614703 DOI: 10.1093/hmg/ddv344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023] Open
Abstract
Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Febin Varghese
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Erwan Atcheson
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
48
|
Cameron JM, MacKay N, Feigenbaum A, Tarnopolsky M, Blaser S, Robinson BH, Schulze A. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome. Eur J Paediatr Neurol 2015; 19:525-32. [PMID: 26008862 DOI: 10.1016/j.ejpn.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/12/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. METHODS Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. RESULTS Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. CONCLUSION We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene.
Collapse
Affiliation(s)
- Jessie M Cameron
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Nevena MacKay
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Annette Feigenbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Susan Blaser
- Department of Radiology, The Hospital for Sick Children and University of Toronto, ON M5G 1X8, Canada.
| | - Brian H Robinson
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Andreas Schulze
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
49
|
Björkman K, Sofou K, Darin N, Holme E, Kollberg G, Asin-Cayuela J, Holmberg Dahle KM, Oldfors A, Moslemi AR, Tulinius M. Broad phenotypic variability in patients with complex I deficiency due to mutations in NDUFS1 and NDUFV1. Mitochondrion 2015; 21:33-40. [DOI: 10.1016/j.mito.2015.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
50
|
Hong J, Kim BW, Choo HJ, Park JJ, Yi JS, Yu DM, Lee H, Yoon GS, Lee JS, Ko YG. Mitochondrial complex I deficiency enhances skeletal myogenesis but impairs insulin signaling through SIRT1 inactivation. J Biol Chem 2014; 289:20012-25. [PMID: 24895128 DOI: 10.1074/jbc.m114.560078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To address whether mitochondrial biogenesis is essential for skeletal myogenesis, C2C12 myogenesis was investigated after knockdown of NADH dehydrogenase (ubiquintone) flavoprotein 1 (NDUFV1), which is an oxidative phosphorylation complex I subunit that is the first subunit to accept electrons from NADH. The NDUFVI knockdown enhanced C2C12 myogenesis by decreasing the NAD(+)/NADH ratio and subsequently inactivating SIRT1 and SIRT1 activators (pyruvate, SRT1720, and resveratrol) abolished the NDUFV1 knockdown-induced myogenesis enhancement. However, the insulin-elicited activation of insulin receptor β (IRβ) and insulin receptor substrate-1 (IRS-1) was reduced with elevated levels of protein-tyrosine phosphatase 1B after NDUFV1 knockdown in C2C12 myotubes. The NDUFV1 knockdown-induced blockage of insulin signaling was released by protein-tyrosine phosphatase 1B knockdown in C2C12 myotubes, and we found that NDUFV1 or SIRT1 knockdown did not affect mitochondria biogenesis during C2C12 myogenesis. Based on these data, we can conclude that complex I dysfunction-induced SIRT1 inactivation leads to myogenesis enhancement but blocks insulin signaling without affecting mitochondria biogenesis.
Collapse
Affiliation(s)
- Jin Hong
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Bong-Woo Kim
- Department of Cosmetic Science and Technology, Seowon University, Cheongju, 361-742, Korea
| | - Hyo-Jung Choo
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Jung-Jin Park
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Jae-Sung Yi
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Dong-Min Yu
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Hyun Lee
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Gye-Soon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 443-721, Korea, and
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712, Korea
| | - Young-Gyu Ko
- From the Division of Life Sciences, Korea University, Seoul, 136-701, Korea,
| |
Collapse
|