1
|
He X, Huang H, Liu Y, Li H, Ren H. Analysis of the function, mechanism and clinical application prospect of TRPS1, a new marker for breast cancer. Gene 2025; 932:148880. [PMID: 39181273 DOI: 10.1016/j.gene.2024.148880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.
Collapse
Affiliation(s)
- Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China
| | - Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, China; College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou 450052, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Boulogeorgou K, Topalidis C, Koletsa T, Karayannopoulou G, Kanitakis J. Expression of TRPS1 in Metastatic Tumors of the Skin: An Immunohistochemical Study of 72 Cases. Dermatopathology (Basel) 2024; 11:293-302. [PMID: 39449380 PMCID: PMC11503264 DOI: 10.3390/dermatopathology11040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
TRPS1 (Tricho-rhino-phalangeal syndrome 1) is a GATA transcriptional activator gene encoding for a protein used as a sensitive immunohistochemical marker of breast carcinomas. In dermatopathology, TRPS1 is used as a marker of mammary and extramammary Paget's disease and is also expressed by a variety of primary cutaneous tumors, mostly of adnexal origin. So far, very limited data exist on the expression of TRPS1 in metastatic skin tumors. We studied the immunohistochemical expression of TRPS1 in 72 cutaneous metastatic tumors from the breast (n: 19) and other origins (n: 53) in order to assess its diagnostic usefulness. The intensity of TRPS1 immunostaining was expressed as a histoscore: the product of the percentage of positive cells (scored semi-quantitatively 0-4) and the staining intensity (scored 0-3). In normal skin, nuclear TRPS1 expression was predominantly observed in cells of adnexal structures (pilosebaceous follicles and sweat glands). Eighteen (18/19, 94.7%) metastatic breast carcinomas showed diffuse and strong TRPS1 positivity (histoscore 12). Lower reactivity was found in some other metastases, including from the lung (11/22), the female genital tract (3/4), and the kidney (2/4), whereas most (20/22) metastases from the digestive system and peritoneum, along with a case of metastatic prostate carcinoma, were negative. These results suggest that a high histoscore for TRPS1 is in favor of the mammary origin of metastatic cutaneous carcinoma. Although TRPS1 is not absolutely specific or sensitive to a particular primary, we consider that it can be added to a panel of other markers when investigating the origin of a cutaneous metastasis, namely when this is the first manifestation of the neoplastic disease.
Collapse
Affiliation(s)
- Kassiani Boulogeorgou
- Laboratory of Pathology, AHEPA University Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.B.); (C.T.); (T.K.); (G.K.)
| | - Christos Topalidis
- Laboratory of Pathology, AHEPA University Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.B.); (C.T.); (T.K.); (G.K.)
| | - Triantafyllia Koletsa
- Laboratory of Pathology, AHEPA University Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.B.); (C.T.); (T.K.); (G.K.)
| | - Georgia Karayannopoulou
- Laboratory of Pathology, AHEPA University Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.B.); (C.T.); (T.K.); (G.K.)
| | - Jean Kanitakis
- Laboratory of Pathology, Lyon-Sud Hospital Center, 69495 Pierre Bénite, France
- Department of Dermatology/CliMA, Ed. Herriot Hospital (Pav. R), 5 place d’Arsonval, 69437 cedex 03, Lyon, France
| |
Collapse
|
3
|
Zhang GN, Susnik B, Paulsen EJ, Lyons LL, Delma KS, Jorda M, Epstein JI, Kryvenko ON. Metastatic Pleomorphic Lobular Carcinoma of the Breast to the Urinary Bladder: A Report of 10 Cases and Assessment of TRPS1 in the Differential Diagnosis With Plasmacytoid Urothelial Carcinoma. Arch Pathol Lab Med 2024; 148:1110-1118. [PMID: 38217332 DOI: 10.5858/arpa.2023-0379-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/15/2024]
Abstract
CONTEXT.— Metastatic pleomorphic lobular carcinoma (MPLC) to the bladder is rare and has considerable histologic and immunohistochemical overlap with plasmacytoid urothelial carcinoma (PUC). OBJECTIVE.— To distinguish MPLC from PUC morphologically and immunohistochemically, including a newer marker, TRPS1. DESIGN.— Ten MPLCs to the bladder were reassessed and stained with estrogen, progesterone, and androgen receptors; GATA3; keratin 5/6; HMWK; GCDFP-15; and TRPS1. Sixteen PUCs constituted controls. RESULTS.— We studied 4 transurethral resections of bladder tumors and 6 biopsies from 10 women (median age, 69 years) who had breast cancer on average 15 years prior. Microscopic patterns included single cells and cords of cells (n = 4), nests/sheets of dyscohesive cells (n = 2), or both (n = 4). All tumors had cells with voluminous eosinophilic cytoplasm and eccentric nuclei mimicking PUC, and 7 of 10 tumors had signet ring cells. MPLCs were positive for estrogen (8 of 10), progesterone (3 of 7), and androgen (4 of 10) receptors; GCDFP-15 (7 of 10); GATA3 (9 of 10); HMWK (7 of 8); and TRPS1 (7 of 10). No MPLCs stained for keratin 5/6 (n = 9). Of 16 PUCs, 2 showed faint and 2 demonstrated strong TRSP1 staining; 7 of 16 were negative for p63. CONCLUSIONS.— MPLC to bladder often presents in patients with a remote history of breast cancer, exhibiting significant histologic and immunohistochemical overlap with PUC. Based on prior works and the current study, estrogen receptor (particularly SP-1), mammaglobin, and p63 help differentiate MPLC from PUC. Keratin 5/6 may aid in distinguishing a less frequent basal-type PUC because it is typically negative in MPLC. Some PUCs express TRPS1. Caution should be exercised because immunophenotypes of these tumors greatly overlap, and ramifications of misclassification are major.
Collapse
MESH Headings
- Humans
- Female
- Urinary Bladder Neoplasms/diagnosis
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/metabolism
- Diagnosis, Differential
- Aged
- Breast Neoplasms/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/metabolism
- DNA-Binding Proteins/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Middle Aged
- Repressor Proteins/metabolism
- Carcinoma, Lobular/secondary
- Carcinoma, Lobular/diagnosis
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Aged, 80 and over
- Immunohistochemistry
- GATA3 Transcription Factor/metabolism
- GATA3 Transcription Factor/analysis
- Transcription Factors/metabolism
- Carcinoma, Transitional Cell/diagnosis
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/secondary
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Guan-Nan Zhang
- From the Departments of Pathology and Laboratory Medicine (Zhang, Susnik, Delma, Jorda, Kryvenko) and Radiation Oncology (Kryvenko), the Desai Sethi Urology Institute (Jorda, Kryvenko), and the Sylvester Comprehensive Cancer Center (Susnik, Jorda, Kryvenko), University of Miami Miller School of Medicine, Miami, Florida
| | - Barbara Susnik
- From the Departments of Pathology and Laboratory Medicine (Zhang, Susnik, Delma, Jorda, Kryvenko) and Radiation Oncology (Kryvenko), the Desai Sethi Urology Institute (Jorda, Kryvenko), and the Sylvester Comprehensive Cancer Center (Susnik, Jorda, Kryvenko), University of Miami Miller School of Medicine, Miami, Florida
| | - Emma J Paulsen
- the Department of Pathology, Virginia Piper Cancer Institute, Minneapolis, Minnesota (Paulsen, Lyons)
| | - Lisa L Lyons
- the Department of Pathology, Virginia Piper Cancer Institute, Minneapolis, Minnesota (Paulsen, Lyons)
| | - Katiana S Delma
- From the Departments of Pathology and Laboratory Medicine (Zhang, Susnik, Delma, Jorda, Kryvenko) and Radiation Oncology (Kryvenko), the Desai Sethi Urology Institute (Jorda, Kryvenko), and the Sylvester Comprehensive Cancer Center (Susnik, Jorda, Kryvenko), University of Miami Miller School of Medicine, Miami, Florida
| | - Merce Jorda
- From the Departments of Pathology and Laboratory Medicine (Zhang, Susnik, Delma, Jorda, Kryvenko) and Radiation Oncology (Kryvenko), the Desai Sethi Urology Institute (Jorda, Kryvenko), and the Sylvester Comprehensive Cancer Center (Susnik, Jorda, Kryvenko), University of Miami Miller School of Medicine, Miami, Florida
| | - Jonathan I Epstein
- the Departments of Pathology, Urology, and Oncology, The Johns Hopkins Medical Institutions, Baltimore, Maryland (Epstein)
| | - Oleksandr N Kryvenko
- From the Departments of Pathology and Laboratory Medicine (Zhang, Susnik, Delma, Jorda, Kryvenko) and Radiation Oncology (Kryvenko), the Desai Sethi Urology Institute (Jorda, Kryvenko), and the Sylvester Comprehensive Cancer Center (Susnik, Jorda, Kryvenko), University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
4
|
Cai J, Zhang W, Lu Y, Liu W, Zhou H, Liu M, Bi X, Liu J, Chen J, Yin Y, Deng Y, Luo Z, Yang Y, Chen Q, Chen X, Xu Z, Zhang Y, Wu C, Long Q, Huang C, Yan C, Liu Y, Guo L, Li W, Yuan P, Jiao Y, Song W, Wang X, Huang Z, Ying J, Zhao H. Single-cell exome sequencing reveals polyclonal seeding and TRPS1 mutations in colon cancer metastasis. Signal Transduct Target Ther 2024; 9:247. [PMID: 39307879 PMCID: PMC11417107 DOI: 10.1038/s41392-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.
Collapse
Affiliation(s)
- Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yalan Lu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjie Liu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqiao Deng
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Luo
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Xu
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueyang Zhang
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Colorectal Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Qizhao Long
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Chunyuan Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yucheng Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Gene Editing Screening and R & D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Saeki N, Inui-Yamamoto C, Ikeda Y, Kanai R, Hata K, Itoh S, Inubushi T, Akiyama S, Ohba S, Abe M. Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities and growth retardation of Trichorhinophalangeal syndrome in mice. Hum Mol Genet 2024; 33:1618-1629. [PMID: 38899779 DOI: 10.1093/hmg/ddae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Trichorhinophalangeal syndrome (TRPS) is a genetic disorder caused by point mutations or deletions in the gene-encoding transcription factor TRPS1. TRPS patients display a range of skeletal dysplasias, including reduced jaw size, short stature, and a cone-shaped digit epiphysis. Certain TRPS patients experience early onset coxarthrosis that leads to a devastating drop in their daily activities. The etiologies of congenital skeletal abnormalities of TRPS were revealed through the analysis of Trps1 mutant mouse strains. However, early postnatal lethality in Trps1 knockout mice has hampered the study of postnatal TRPS pathology. Here, through epigenomic analysis we identified two previously uncharacterized candidate gene regulatory regions in the first intron of Trps1. We deleted these regions, either individually or simultaneously, and examined their effects on skeletal morphogenesis. Animals that were deleted individually for either region displayed only modest phenotypes. In contrast, the Trps1Δint/Δint mouse strain with simultaneous deletion of both genomic regions exhibit postnatal growth retardation. This strain displayed delayed secondary ossification center formation in the long bones and misshaped hip joint development that resulted in acetabular dysplasia. Reducing one allele of the Trps1 gene in Trps1Δint mice resulted in medial patellar dislocation that has been observed in some patients with TRPS. Our novel Trps1 hypomorphic strain recapitulates many postnatal pathologies observed in human TRPS patients, thus positioning this strain as a useful animal model to study postnatal TRPS pathogenesis. Our observations also suggest that Trps1 gene expression is regulated through several regulatory elements, thus guaranteeing robust expression maintenance in skeletal cells.
Collapse
Affiliation(s)
- Naoya Saeki
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
- Department of Special Needs Dentistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Chizuko Inui-Yamamoto
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Yuki Ikeda
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Rinna Kanai
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shigehisa Akiyama
- Department of Special Needs Dentistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Makoto Abe
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Lazcano R, Ingram DR, Panse G, Lazar AJ, Wang WL, Cloutier JM. TRPS1 expression in MPNST is correlated with PRC2 inactivation and loss of H3K27me3. Hum Pathol 2024; 151:105632. [PMID: 39084565 DOI: 10.1016/j.humpath.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Initially described as a highly specific immunohistochemical marker for carcinomas of mammary origin, trichorhinophalangeal syndrome type 1 (TRPS1) has subsequently been detected in a variety of other non-mammary tumors. In this study, we examined the immunohistochemical expression of TRPS1 in 114 peripheral nerve sheath tumors, including 43 malignant peripheral nerve sheath tumors (MPNSTs), 58 schwannomas, including 9 cellular neurofibromas, and 13 neurofibromas, including 1 atypical neurofibroma. Notably, TRPS1 was expressed in 49% of MPNSTs and was absent in all schwannomas and neurofibromas. All MPNSTs showed TRPS1 labeling in >50% of nuclei, with 95% of cases demonstrating diffuse labeling. Most cases (67%) showed weak TRPS1 immunoreactivity, while a smaller subset showed moderate (24%) or strong (9%) intensity staining. Analysis of publicly available gene expression datasets revealed higher levels of TRPS1 mRNA in MPNSTs with PRC2 inactivation. In keeping with this finding, TRPS1 expression was more commonly observed in MPNSTs with loss of H3K27me3, suggesting a potential relationship between TRPS1 and the PRC2 complex. This study further broadens the spectrum of TRPS1-expressing tumors to include MPNST.
Collapse
Affiliation(s)
- Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gauri Panse
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey M Cloutier
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
7
|
Fujikawa K, Socorro M, Lukashova L, Hoskere P, Keskinidis P, Verdelis K, Napierala D. Deficiency of Trps1 in Cementoblasts Impairs Cementogenesis and Tooth Root Formation. Calcif Tissue Int 2024:10.1007/s00223-024-01277-2. [PMID: 39177752 DOI: 10.1007/s00223-024-01277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Cementum is the least studied of all mineralized tissues and little is known about mechanisms regulating its formation. Therefore, the goal of this study was to provide new insights into the transcriptional regulation of cementum formation by determining the consequences of the deficiency of the Trps1 transcription factor in cementoblasts. We used Trps1Col1a1 cKO (2.3Co1a1-CreERT2;Trps1fl/fl) mice, in which Trps1 is deleted in cementoblasts. Micro-computed tomography analyses of molars of 4-week-old males and females demonstrated significantly shorter roots with thinner mineralized tissues (root dentin and cementum) in Trps1Col1a1 cKO compared to WT mice. Semi-quantitative histological analyses revealed a significantly reduced area of cellular cementum and localized deficiencies of acellular cementum in Trps1Col1a1 cKO mice. Immunohistochemical analyses revealed clustering of cementoblasts at the apex of roots, and intermittent absence of cementoblasts on Trps1Col1a1 cKO cementum surfaces. Fewer Osterix-positive cells adjacent to cellular cementum were also detected in Trps1Col1a1 cKO compared to WT mice. Decreased levels of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme required for proper cementogenesis, were apparent in cementum, periodontal ligament, and alveolar bone of Trps1Col1a1 cKO. There were no apparent differences in levels of bone sialoprotein (Bsp) in cementum. Quantitative analyses of picrosirius red-stained periodontal ligament revealed shorter and disorganized collagen fibers in Trps1Col1a1 cKO mice demonstrating impaired periodontal structure. In conclusion, this study has identified Trps1 transcription factor as one of the important regulators of cellular and acellular cementum formation. Furthermore, this study suggests that Trps1 supports the function of cementoblasts by upregulating expression of the major proteins required for cementogenesis, such as Osterix and TNAP.
Collapse
Affiliation(s)
- Kaoru Fujikawa
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Priyanka Hoskere
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Paulina Keskinidis
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, Department of Endodontics, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Velthof L, Van Dorpe J, Tummers P, Creytens D, Van de Vijver K. TRPS1 Is Consistently Expressed in Hidradenoma Papilliferum. Int J Gynecol Pathol 2024:00004347-990000000-00170. [PMID: 38959400 DOI: 10.1097/pgp.0000000000001042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
TRPS1 is a novel immunohistochemical marker, so far quite specific and sensitive for breast cancer and especially useful for the diagnosis of triple-negative breast cancer. TRPS1 expression has recently been reported in normal skin appendages, as well as in a variety of benign and malignant cutaneous tumors, including adnexal tumors. However, it has not yet been reported in hidradenoma papilliferum (papillary hidradenoma), a benign adnexal neoplasm, accepted to originate from mammary-like glands in the vulvar or anogenital region of middle-aged women. We report consistent nuclear expression of TRPS1 in the epithelium of 9/9 cases of hidradenoma papilliferum, while in 2/2 cases with foci of oxyphilic metaplasia, these foci were consistently negative for TRPS1 immunohistochemistry. Our findings are in line with the theory that hidradenoma papilliferum is derived from mammary-like glands and showed that TRPS1 can be an additional sensitive immunohistochemical marker for hidradenoma papilliferum.
Collapse
Affiliation(s)
- Lars Velthof
- Department of Pathology, Ghent University Hospital
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent University
| | - Philippe Tummers
- Department of Gynecology, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent University
| | - Koen Van de Vijver
- Department of Pathology, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent University
| |
Collapse
|
9
|
Herlin LK, Herlin MK, Blechingberg J, Rønholt K, Graversen L, Schmidt SAJ, Jørgensen MW, Hellfritzsch MB, Hald JD, Beck-Nielsen SS, Gjørup H, Andersen BN, Gregersen PA, Sommerlund M. Clinical presentation and genetics of tricho-rhino-phalangeal syndrome (TRPS) type 1: A single-center case series of 15 patients and seven novel TRPS1 variants. Eur J Med Genet 2024; 69:104937. [PMID: 38574886 DOI: 10.1016/j.ejmg.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Tricho-rhino-phalangeal syndrome (TRPS) is a rare malformation syndrome characterized by distinctive facial, ectodermal, and skeletal features. TRPS is divided into TRPS type I/III caused by pathogenic variants in TRPS1 and TRPS type II caused by contiguous gene deletions also spanning EXT1 and RAD21. Due to its rarity, knowledge of the clinical course of TRPS remains limited. Therefore, we collected and characterized a case series of 15 TRPS type I patients (median age at diagnosis 15 [interquartile range: 10-18] years, 11 females [73%]) seen at Aarhus University Hospital, Denmark, with a median follow-up period of 10 years. We estimated a minimum point prevalence of 0.5 in 100,000 (95% CI: 0.3-0.8 per 100,000) persons. Common craniofacial features included fine and sparse hair with a high anterior hairline, eyebrows with lateral thinning and a thicker medial part, prominent ears, a bulbous nose tip with small nasal alae, a low-hanging, and often wide columella, and a long philtrum with a thin upper vermillion. Specific skeletal features included short stature and deviating and short fingers with cone-shaped epiphyses and shortened metacarpals on radiographs. The most significant morbidity of the cohort was joint complaints, which were reported by all patients, often already before the TRPS diagnosis was established. We identified ten different TRPS1 variants including both frameshift/nonsense, missense, and splice-site variants, including seven variants not previously reported in the literature. In accordance with previous literature, no genotype-phenotype correlation was identified. The clinical trajectories were heterogeneous involving pediatrics, dermatology, orthopedic surgery, clinical genetics, and/or odontology, emphasizing that close multidisciplinary collaboration is essential for early diagnosis of TRPS and to ensure proper and timely patient care and counseling.
Collapse
Affiliation(s)
- Laura Krogh Herlin
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsten Rønholt
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Graversen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrun A J Schmidt
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans Gjørup
- Centre for Oral Health in Rare Diseases, Department of Dental and Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Pernille Axél Gregersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Sommerlund
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Liu YA, Aung PP, Wang Y, Ning J, Nagarajan P, Curry JL, Torres-Cabala CA, Ivan D, Prieto VG, Ding Q, Cho WC. TRPS1 expression in non-melanocytic cutaneous neoplasms: an immunohistochemical analysis of 200 cases. J Pathol Transl Med 2024; 58:72-80. [PMID: 38389280 PMCID: PMC10948250 DOI: 10.4132/jptm.2024.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Although trichorhinophalangeal syndrome type 1 (TRPS1) was initially thought to be highly sensitive and specific for carcinomas and mesenchymal tumors of mammary origin, more recent data suggest its expression is not limited to breast neoplasms but also can be seen in other cutaneous neoplasms, such as extramammary Paget disease and squamous cell carcinoma (SCC) in situ. METHODS Two-hundred cases of non-melanocytic cutaneous neoplasm, including basal cell carcinomas (BCCs) (n = 41), SCCs (n = 35), Merkel cell carcinomas (MCCs) (n = 25), and adnexal neoplasms (n = 99), were tested for TRPS1 expression using a monoclonal anti- TRPS1 rabbit anti-human antibody. RESULTS TRPS1 expression was present in almost all cases of SCC (94%), with a median H-score of 200, while it was either absent or only focally present in most BCCs (90%), with a median H-score of 5. The difference between BCCs and SCCs in H-score was significant (p < .001). All MCCs (100%) lacked TRPS1 expression. TRPS1 expression was frequently seen in most adnexal neoplasms, benign and malignant, in variable intensity and proportion but was consistently absent in apocrine carcinomas. All endocrine mucin-producing sweat gland carcinomas (EMPSGCs) (100%, 6/6) showed diffuse and strong TRPS1 immunoreactivity, with a median H-score of 300, which was significantly different (p < .001) than that of BCCs. CONCLUSIONS Our study shows that TRPS1 may be an effective discriminatory marker for BCCs and SCCs. It also has a role in distinguishing BCCs from EMPSGCs.
Collapse
Affiliation(s)
- Yi A. Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phyu P. Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunyi Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan L. Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos A. Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Doina Ivan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor G. Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Abrar M, Ali S, Hussain I, Khatoon H, Batool F, Ghazanfar S, Corcoran D, Kawakami Y, Abbasi AA. Cis-regulatory control of mammalian Trps1 gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 38369890 DOI: 10.1002/jez.b.23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.
Collapse
Affiliation(s)
- Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Center of Regenerative Medicine and Stem Cells Research, Aga Khan University Hospital, Karachi, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Wang J, Peng Y, Sun H, Aung PP, Resetkova E, Yam C, Sahin AA, Huo L, Ding Q. TRPS1 and GATA3 Expression in Invasive Breast Carcinoma With Apocrine Differentiation. Arch Pathol Lab Med 2024; 148:200-205. [PMID: 37074839 DOI: 10.5858/arpa.2022-0289-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 04/20/2023]
Abstract
CONTEXT.— The recently identified immunohistochemical marker TRPS1 is highly sensitive and specific for invasive breast carcinoma, especially triple-negative breast carcinoma. However, TRPS1 expression in special morphologic subtypes of breast cancer is unclear. OBJECTIVE.— To investigate the expression of TRPS1 in invasive breast cancer with apocrine differentiation, in comparison to the expression of GATA3. DESIGN.— A total of 52 invasive breast carcinomas with apocrine differentiation, comprising 41 triple-negative breast carcinomas and 11 estrogen receptor (ER) and progesterone receptor (PR)-negative, human epidermal growth factor receptor 2 (HER2)-positive cases, along with 11 triple-negative breast carcinomas without apocrine differentiation, were evaluated for TRPS1 and GATA3 expression by immunohistochemistry. All tumors were diffusely positive (>90%) for androgen receptor (AR). RESULTS.— Triple-negative breast carcinoma with apocrine differentiation had positive TRPS1 expression in 12% of cases (5 of 41), whereas GATA3 was positive in all cases. Similarly, HER2+/ER- invasive breast carcinoma with apocrine differentiation showed positive TRPS1 in 18% of cases (2 of 11), whereas GATA3 was positive in all cases. In contrast, triple-negative breast carcinoma with strong AR expression but without apocrine differentiation showed both TRPS1 and GATA3 expression in 100% (11 of 11) of cases. CONCLUSIONS.— Most ER-/PR-/AR+ invasive breast carcinomas with apocrine differentiation are TRPS1 negative and GATA3 positive, regardless of HER2 status. Therefore, TRPS1 negativity does not exclude breast origin in tumors with apocrine differentiation. A panel of TRPS1 and GATA3 immunostains can be helpful when the tissue origin of such tumors is clinically relevant.
Collapse
Affiliation(s)
- Jing Wang
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Yan Peng
- the Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Peng)
| | - Hongxia Sun
- the Department of Pathology and Laboratory Medicine, The University of Texas McGovern Medical School, Houston (Sun)
| | - Phyu P Aung
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Erika Resetkova
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Clinton Yam
- the Department of Breast Medical Oncology (Yam), The University of Texas MD Anderson Cancer Center, Houston
| | - Aysegul A Sahin
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Lei Huo
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| | - Qingqing Ding
- From the Department of Pathology (Wang, Aung, Resetkova, Sahin, Huo, Ding), The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
13
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor alpha (ER) binding and ER target gene expression in luminal breast cancer cells. PLoS Genet 2024; 20:e1011159. [PMID: 38377146 PMCID: PMC10906895 DOI: 10.1371/journal.pgen.1011159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G. Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center Member, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
14
|
Peled A, Sarig O, Mohamad J, Eskin-Schwartz M, Vodo D, Bochner R, Malchin N, Isakov O, Shomron N, Fainberg G, Bertolini M, Paus R, Sprecher E. Dominant frontonasal dysplasia with ectodermal defects results from increased activity of ALX4. Am J Med Genet A 2023; 191:2806-2812. [PMID: 37724761 DOI: 10.1002/ajmg.a.63408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Frontonasal dysplasia (FND) refers to a group of rare developmental disorders characterized by abnormal morphology of the craniofacial region. We studied a family manifesting with clinical features typical for FND2 including neurobehavioral abnormalities, hypotrichosis, hypodontia, and facial dysmorphism. Whole-exome sequencing analysis identified a novel heterozygous frameshift insertion in ALX4 (c.985_986insGTGC, p.Pro329Argfs*115), encoding aristaless homeobox 4. This and a previously reported dominant FND2-causing variant are predicted to result in the formation of a similar abnormally elongated protein tail domain. Using a reporter assay, we showed that the elongated ALX4 displays increased activity. ALX4 negatively regulates the Wnt/β-catenin pathway and accordingly, patient keratinocytes showed altered expression of genes associated with the WNT/β-catenin pathway, which in turn may underlie ectodermal manifestations in FND2. In conclusion, dominant FND2 with ectodermal dysplasia results from frameshift variants in ALX4 exerting a gain-of-function effect.
Collapse
Affiliation(s)
- Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Marina Eskin-Schwartz
- Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
- Soroka University Medical Center, Genetic Institute, Be'er Sheva, Israel
| | - Dan Vodo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ron Bochner
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Natalya Malchin
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Isakov
- Rabin Medical Center, Raphael Recanati Genetic Institute, Petach Tikva, Israel
- Clalit Research Institute, Clalit Health Services, Ramat Gan, Israel
- The Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute, Boston, Massachusetts, USA
| | - Noam Shomron
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| | - Gilad Fainberg
- Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany
- Monasterium Laboratory, Nano-Bioanalytik Zentrum, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Nano-Bioanalytik Zentrum, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Florida, USA
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Yagasaki H, Narusawa H, Watanabe D, Kobayashi K, Mitsui H, Asano Y, Nagata M, Yonei A, Inukai T. Novel TRPS1 frameshift variant in tricho-rhino-phalangeal syndrome type I accompanied by zinc deficiency. Eur J Med Genet 2023; 66:104870. [PMID: 37879495 DOI: 10.1016/j.ejmg.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Tricho-rhino-phalangeal syndrome type I (TRPS1), caused by pathogenic variants in the transcriptional repressor GATA-binding 1 gene (TRPS1), is characterized by ectodermal and skeletal anomalies including short stature and sparse scalp hair during infancy. TRPS1 encodes a zinc finger protein transcription factor that contributes to bone homeostasis by regulating perichondral mineralization, chondrocyte proliferation, and apoptosis. Here, a male infant aged 14 months presented with sparse scalp hair, deformed nails, fused teeth, and postnatal growth retardation without neurodevelopmental disorder. As endocrinological measurements revealed low serum zinc levels, he was treated with zinc acetate hydrate, which improved his growth velocity and scalp hair. Whole-exome sequencing revealed that this patient harbored a novel pathogenic de novo heterozygous TRPS1 frameshift variant, c.2819_2822del, p.(His940Argfs*6). Zinc deficiency induces zinc finger protein dysfunction via effects on protein folding and assembly, affecting target gene transcription and apoptosis. The symptoms of TRPS1 are similar to those caused by inadequate levels of zinc, an essential trace element with important roles in tissue growth and repair. Accompanying zinc deficiency may have affected the function of important zinc finger proteins, resulting in phenotypic deterioration. Analysis of zinc metabolism in patients harboring TRPS1 variants will enhance understanding the variety of phenotypes of TRPS1.
Collapse
Affiliation(s)
- Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Hiromune Narusawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Watanabe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koji Kobayashi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Mitsui
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling, Osaka University Hospital, Osaka, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
16
|
McIntire PJ, Duckworth LA, Van Arnam J, Abdelwahab H, Shin SJ. TRPS1, a New Promising Marker for Assessment of Distant Metastatic Breast Cancer. Adv Anat Pathol 2023; 30:380-387. [PMID: 37593968 DOI: 10.1097/pap.0000000000000409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This article reviewed the identification of breast cancer in the distant metastatic setting through traditional immunohistochemical markers, such as mammaglobin and GATA3, compared with the novel immunohistochemical stain, Trichorhinophalangeal syndrome-1 (TRPS1). We review previous studies evaluating TRPS1 staining, which were conducted using cytology specimens, as well as our recently conducted study evaluating this stain using surgical tissue samples, both from primary and distant metastatic invasive breast carcinoma. In summary, although no immunohistochemical stain is 100% specific or sensitive, in the metastatic setting where tissue available for ancillary studies is limited, TRPS1 was a reliable and even a standalone marker for breast origin, particularly in cases of triple-negative breast cancer.
Collapse
Affiliation(s)
- Patrick J McIntire
- Cleveland Clinic, Pathology and Laboratory Medicine Institute, Cleveland, OH
| | - Lauren A Duckworth
- Cleveland Clinic, Pathology and Laboratory Medicine Institute, Cleveland, OH
| | - John Van Arnam
- Cleveland Clinic, Pathology and Laboratory Medicine Institute, Cleveland, OH
| | - Hala Abdelwahab
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY
| | - Sandra J Shin
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
17
|
Sawano K, Nyuzuki H, Nagasaki K, Suzuki H, Suda K, Miyasaka D, Imai N, Saitoh A. A case of adolescent trichorhinophalangeal syndrome undergoing pelvic osteotomy for bilateral acetabular dysplasia. J Orthop Sci 2023; 28:1501-1504. [PMID: 34503898 DOI: 10.1016/j.jos.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kentaro Sawano
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiromi Nyuzuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Suzuki
- Division of Orthopaedic Surgery, Department of Reconstructive and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ken Suda
- Division of Orthopaedic Surgery, Department of Reconstructive and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Dai Miyasaka
- Division of Orthopaedic Surgery, Department of Reconstructive and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Norio Imai
- Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Taniguchi K, Goto K, Yabushita H, Yamasaki R, Ichimura K. Transcriptional repressor GATA binding 1 (TRPS1) immunoexpression in normal skin tissues and various cutaneous tumors. J Cutan Pathol 2023; 50:1006-1013. [PMID: 37649299 DOI: 10.1111/cup.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Transcriptional repressor GATA binding 1 (TRPS1) is a transcription factor recently shown to play a role in the development of breast and liver cancer. Here, we evaluate TRPS1 immunoexpression in normal skin tissues and various cutaneous tumors. METHODS TRPS1 immunohistochemistry was performed in 109 cases of primary cutaneous tumors and 19 cases of metastatic carcinomas. TRPS1 expression was also evaluated in the normal skin tissues. RESULTS The normal epidermis was TRPS1-. In contrast, the eccrine apparatus, epithelial compartment of the hair follicles, hair papilla, sebaceous glands, and anogenital mammary-like glands were TRPS1+. In primary cutaneous tumors, TRPS1 positivity varied in poroma (2/3), nodular hidradenoma (4/5), spiradenoma (4/4), cutaneous mixed tumor (5/5), trichilemmal cyst (7/8), proliferating trichilemmal tumor (1/3), pilomatricoma (9/9), sebaceoma (2/5), extramammary Paget disease (13/13), sebaceous carcinoma (2/2), actinic keratosis (3/10), Bowen disease (7/12), and squamous cell carcinoma (1/5) cases. All cases of seborrheic keratosis, basal cell carcinoma, Merkel cell carcinoma, and malignant melanoma were TRPS1-. All metastatic breast carcinoma cases (8/8) were highly positive for TRPS1, while all but one of the other metastatic tumor cases were TRPS1-. CONCLUSIONS TRPS1 immunoexpression was observed in several skin appendages and cutaneous tumors.
Collapse
Affiliation(s)
- Kohei Taniguchi
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
- Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan
- Department of Diagnostic Pathology, Tokyo Medical University Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
- Department of Diagnostic Pathology, Chutoen General Medical Center, Kakegawa, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
- Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Hiroki Yabushita
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Rie Yamasaki
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Koichi Ichimura
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| |
Collapse
|
19
|
Rammal R, Goel K, Elishaev E, Soong TR, Jones MW, Zhao C, Clark BZ, Carter GJ, Yu J, Fine JL, Villatoro TM, Skvarca L, Harinath L, Bhargava R. Utility of TRPS1 immunohistochemistry in confirming breast carcinoma: Emphasis on staining in triple-negative breast cancers and gynecologic tumors. Am J Clin Pathol 2023; 160:425-434. [PMID: 37352847 DOI: 10.1093/ajcp/aqad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/11/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVES Our aim was to explore the performance of TRPS1 as an immunohistochemical diagnostic marker; find the optimal conditions for its use in breast carcinomas, especially triple-negative breast cancers (TNBCs); and compare its results in carcinomas of a select few organ sites, with an emphasis on gynecologic tumors. METHODS Tissue microarrays from breast carcinomas (n = 197), endometrial adenocarcinomas (n = 69), ovarian tumors (n = 250), vulvar squamous cell carcinomas (n = 97), pancreatic ductal adenocarcinomas (n = 20), and gastric adenocarcinomas (n = 12) were stained with TRPS1 using 2 different conditions (protocol 1: high pH; protocol 2: low pH). Breast carcinomas consisted of hormone receptor (HR)-positive/ERBB2 (formerly HER2 or HER2/neu)-negative (n = 53) samples, HR-positive/ERBB2-positive (n = 6) samples, and TNBCs (n = 138). RESULTS Comparing TRPS1 results in breast carcinomas vs tumors from other organ sites, the sensitivity of TRPS1 was 91% and 87%, respectively, while the specificity was 66% and 74% for protocol 1 and 2, respectively. For TNBCs vs gynecologic tumors, the sensitivity of TRPS1 was 89% and 85%, respectively, while the specificity was 65% and 73%, respectively. CONCLUSIONS TRPS1 stains approximately 90% of breast carcinomas but also up to 71% of endometrial carcinomas, albeit with a weaker median expression. Our data show that although TRPS1 is a highly sensitive marker for TNBCs, it is not as highly specific as previously reported.
Collapse
Affiliation(s)
- Rayan Rammal
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Kanika Goel
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - T Rinda Soong
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Mirka W Jones
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Chengquan Zhao
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Beth Z Clark
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Gloria J Carter
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Jing Yu
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Jeffrey L Fine
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Tatiana M Villatoro
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Lauren Skvarca
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Lakshmi Harinath
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh, UPMC Magee-Womens Hospital, Pittsburgh, PA, US
| |
Collapse
|
20
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor (ER) binding and ER target gene expression in luminal breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547524. [PMID: 37461612 PMCID: PMC10349936 DOI: 10.1101/2023.07.03.547524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
21
|
Rybski KJ, Zengin HB, Smoller BR. TRPS1: A Marker of Follicular Differentiation. Dermatopathology (Basel) 2023; 10:173-183. [PMID: 37366800 DOI: 10.3390/dermatopathology10020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The trichorhinophalangeal syndrome type 1 (TRPS1) immunohistochemical (IHC) stain has increased in use in recent years as a marker for breast carcinomas. The TRPS1 gene is involved in various tissues, including the growth and differentiation of hair follicles. This article seeks to evaluate the IHC expression of TRPS1 in cutaneous neoplasms with follicular differentiation, such as trichoblastoma (TB), trichoepithelioma (TE), and basal cell carcinoma (BCC). IHC studies were performed on 13 TBs, 15 TEs, and 15 BCCs with an antibody against TRPS1. The study found a variable staining expression of TRPS1 in the tumor nests of TB, TE, and BCC. BCCs were distinct in that none of the BCCs demonstrated intermediate or high positivity, while TBs and TEs showed intermediate-to-high positivity in 5/13 (38%) and 3/15 (20%) of cases, respectively. We observed a distinct staining pattern among the mesenchymal cells of TB and TE. We found that TRPS1 highlighted perifollicular mesenchymal cells adjacent to the nests of TB and TE tumor cells. This staining pattern was absent in BCCs, where only scattered stromal cells were positive for TRPS1. Papillary mesenchymal bodies were also highlighted by TRPS1 in TB and TE. TRPS1 stained various parts of the normal hair follicle, including the nuclei of cells in the germinal matrix, outer root sheaths, and hair papillae. TRPS1 may be a useful IHC marker for follicular differentiation.
Collapse
Affiliation(s)
- Kristin J Rybski
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hatice B Zengin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bruce R Smoller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Ma S, Li X, Cao R, Zhan G, Fu X, Xiao R, Yang Z. Developmentally regulated expression of integrin alpha-6 distinguishes neural crest derivatives in the skin. Front Cell Dev Biol 2023; 11:1140554. [PMID: 37255601 PMCID: PMC10225710 DOI: 10.3389/fcell.2023.1140554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Neural crest-derived cells play essential roles in skin function and homeostasis. However, how they interact with environmental cues and differentiate into functional skin cells remains unclear. Using a combination of single-cell data analysis, neural crest lineage tracing, and flow cytometry, we found that the expression of integrin α6 (ITGA6) in neural crest and its derivatives was developmentally regulated and that ITGA6 could serve as a functional surface marker for distinguishing neural crest derivatives in the skin. Based on the expression of ITGA6, Wnt1-Cre lineage neural crest derivatives in the skin could be categorized into three subpopulations, namely, ITGA6bright, ITGA6dim, and ITGA6neg, which were found to be Schwann cells, melanocytes, and fibroblasts, respectively. We further analyzed the signature genes and transcription factors that specifically enriched in each cell subpopulation, as well as the ligand or receptor molecules, mediating the potential interaction with other cells of the skin. Additionally, we found that Hmx1 and Lhx8 are specifically expressed in neural crest-derived fibroblasts, while Zic1 and homeobox family genes are expressed in mesoderm-derived fibroblasts, indicating the distinct development pathways of fibroblasts of different origins. Our study provides insights into the regulatory landscape of neural crest cell development and identifies potential markers that facilitate the isolation of different neural crest derivatives in the skin.
Collapse
Affiliation(s)
- Shize Ma
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiu Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Guoqin Zhan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Xiao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Yan Y, Huang S, Huang L, Zhang J, Li S, Zhang C, Luo X. Molecular Genetic Analysis and Growth Hormone Treatment in a Three-Generation Chinese Family with Tricho-Rhino-Phalangeal Syndrome I. Horm Res Paediatr 2023; 97:28-39. [PMID: 36990068 DOI: 10.1159/000530414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
INTRODUCTION Tricho-rhino-phalangeal syndrome (TRPS) is a rare genetic disorder characterized by craniofacial and skeletal abnormalities, which is caused by variants in the TRPS1 gene. METHODS Clinical information and follow-up data were collected. Whole-exome sequencing (WES) was performed for variants and validated by Sanger sequencing. Bioinformatic analysis was performed to predict the pathogenicity of the identified variant. Moreover, wild-type and mutated TRPS1 vectors were constructed and transfected into human embryonic kidney (HEK) 293T cells. Immunofluorescence experiments were performed to assess the localization and expression of the mutated protein. Western blot analysis and RT-qPCR were used to detect the expression of downstream genes. RESULTS The affected family members had typical craniofacial phenotype including sparse lateral eyebrows, pear-shaped nasal tip, and large prominent ears, plus skeletal abnormalities including short stature and brachydactyly. WES and Sanger sequencing identified the TRPS1 c.880_882delAAG variant in affected family members. In vitro functional studies showed that the TRPS1 variant did not affect the cellular localization and the expression of TRPS1, but the transcriptional repression effect of the TRPS1 on the RUNX2 and STAT3 was disturbed. The proband and his brother have been treated with growth hormone (GH) for 2 years until now, and we have observed the improvement of the linear growth in both. CONCLUSIONS The variant of c.880_882delAAG in TRPS1 was responsible for the pathogenesis of the Chinese family with TRPS I. The treatment of GH could be beneficial for the height outcome in TRPS I patients, and earlier initiation and longer duration of the therapy in prepubertal or early pubertal stage could be associated with better height outcomes.
Collapse
Affiliation(s)
- Yaqin Yan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Shan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjing Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sujuan Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Cho WC, Nagarajan P, Ding Q, Prieto VG, Torres-Cabala CA. Trichorhinophalangeal Syndrome Type 1-Positive Cells in Breast Dermal Granulation Tissues and Scars: A Potential Diagnostic Pitfall. Am J Dermatopathol 2022; 44:964-967. [PMID: 35925150 DOI: 10.1097/dad.0000000000002268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Trichorhinophalangeal syndrome type 1 (TRPS1) immunohistochemistry has been gaining popularity in recent years in the field of surgical pathology for its utility as a highly sensitive and specific marker for breast carcinomas, including those with triple-negative phenotype. More recent data suggest TRPS1 may also prove its utility in the diagnosis of mesenchymal tumors arising in the breast parenchyma, including malignant phyllodes tumors and primary chondrosarcomas and osteosarcomas of the breast. However, little is known about TRPS1 expression in nontumor cells, such as stromal fibroblasts/myofibroblasts of dermal granulation tissues and scars. Here, we describe our unique experience with TRPS1-positive cells, morphologically consistent with reactive fibroblasts/myofibroblasts, seen in dermal granulation tissues and scars from breast skin specimens of a 51-year-old woman with a history of bilateral invasive ductal carcinomas of the breast, status after bilateral total mastectomy and chemoradiation, who presented with nonhealing wounds on the chests. To the best of our knowledge, this is the first reported case of strong TRPS1 expression in dermal granulation tissue/scar. As the usage of TRPS1 immunohistochemistry in routine clinical practice, including in the field of dermatopathology, will likely increase over time, awareness of this potential diagnostic pitfall is important to avoid overinterpretation of the findings.
Collapse
Affiliation(s)
- Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | |
Collapse
|
26
|
Cloutier JM, Ingram DR, Wani K, Lazar AJ, Wang WL. Frequent TRPS1 expression in synovial sarcoma is associated with SS18-SSX fusion oncoprotein activity. Hum Pathol 2022; 130:88-94. [PMID: 36162599 DOI: 10.1016/j.humpath.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Synovial sarcoma is an aggressive translocation-associated soft tissue tumor driven by an SS18-SSX fusion oncoprotein. TRPS1 is a recently identified marker for breast carcinoma, but less is known about its expression in other tumor types. We encountered a case of synovial sarcoma showing strong and diffuse expression of TRPS1. To better characterize this observation, we examined the immunohistochemical expression of TRPS1 in 165 cases of synovial sarcoma, including 70 primary, 21 recurrent, and 74 metastatic tumors, using tissue microarrays. TRPS1 expression was observed in 86% of cases. Among the positive cases, TRPS1 labeled >50% of tumor cells in 57% of cases, and staining intensity was strong or moderate in 68%. Metastatic tumors more frequently demonstrated strong and diffuse TRPS1 expression compared to primary tumors. To understand the mechanism of TRPS1 expression, we interrogated publicly available gene expression and ChIP-seq datasets and found that TRPS1 transcript levels are increased in synovial sarcoma compared to other soft tissue sarcomas. Data from ChIP-seq experiments showed enrichment of SS18-SSX protein at the TRPS1 locus and co-localization with RNA pol II. The TRPS1 locus is also enriched in several histone modifications associated with active transcription. In functional knockdown data, repression of SS18::SSX in synovial sarcoma cell lines is associated with reduced TRPS1 transcript levels, further supporting a model whereby TRPS1 expression is mediated, at least in part, by the SS18-SSX fusion oncoprotein. Knowledge of TRPS1 expression in synovial sarcoma may help avoid potential diagnostic pitfalls in the immunohistochemical workup of tumors.
Collapse
Affiliation(s)
- Jeffrey M Cloutier
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
27
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|
28
|
Identification of the Key miRNAs and Genes Associated with the Regulation of Non-Small Cell Lung Cancer: A Network-Based Approach. Genes (Basel) 2022; 13:genes13071174. [PMID: 35885958 PMCID: PMC9317345 DOI: 10.3390/genes13071174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is the major cause of cancer-associated deaths across the world in both men and women. Lung cancer consists of two major clinicopathological categories, i.e., small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Lack of diagnosis of NSCLC at an early stage in addition to poor prognosis results in ineffective treatment, thus, biomarkers for appropriate diagnosis and exact prognosis of NSCLC need urgent attention. The proposed study aimed to reveal essential microRNAs (miRNAs) involved in the carcinogenesis of NSCLC that probably could act as potential biomarkers. The NSCLC-associated expression datasets revealed 12 differentially expressed miRNAs (DEMs). MiRNA-mRNA network identified key miRNAs and their associated genes, for which functional enrichment analysis was applied. Further, survival and validation analysis for key genes was performed and consequently transcription factors (TFs) were predicted. We obtained twelve miRNAs as common DEMs after assessment of all datasets. Further, four key miRNAs and nine key genes were extracted from significant modules based on the centrality approach. The key genes and miRNAs reported in our study might provide some information for potential biomarkers profitable to increased prognosis and diagnosis of lung cancer.
Collapse
|
29
|
Paclitaxel Resistance Modulated by the Interaction between TRPS1 and AF178030.2 in Triple-Negative Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6019975. [PMID: 35399640 PMCID: PMC8986375 DOI: 10.1155/2022/6019975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Paclitaxel is a chemotherapeutic agent that acts as an inhibitor of cellular mitosis and has been widely used in the treatment of triple-negative breast cancer (TNBC). However, paclitaxel resistance is one of the major reasons that contribute to the high failure rates of chemotherapy and the relapse of TNBC. Accumulating studies have demonstrated that long noncoding RNA (lncRNA) plays a role in the paclitaxel resistance and positively correlated with progression and metastasis of breast cancers. In the present study, microarray expression profile analysis of lncRNA was performed between paclitaxel-resistant TNBC cell line MDA-MB-231 and their parental cells. After verification with quantitative PCR, we identified that AF178030.2, an orphan lncRNA, was significantly upregulated in paclitaxel-resistant TNBC cells. Overexpression of AF178030.2 greatly attenuated the sensitivity of TNBC to paclitaxel, whereas knockdown of AF178030.2 enhanced the sensitivity of TNBC cells to paclitaxel. Furthermore, bioinformatic analysis and RNA binding protein immunoprecipitation assay reveal that AF178030.2 can directly bind with trichorhinophalangeal syndrome-1 (TRPS1), an oncogene in breast cancer, and downregulate its expression in paclitaxel-resistant TNBC cells. TRPS1 overexpression effectively increased the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel. Taking together, high AF178030.2 expression contributed to paclitaxel resistance in TNBC through TRPS1 and poor clinical outcomes, which may provide a new treatment strategy for paclitaxel-resistant TNBC patients.
Collapse
|
30
|
Socorro M, Hoskere P, Roberts C, Lukashova L, Verdelis K, Beniash E, Napierala D. Deficiency of Mineralization-Regulating Transcription Factor Trps1 Compromises Quality of Dental Tissues and Increases Susceptibility to Dental Caries. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 35573139 PMCID: PMC9106314 DOI: 10.3389/fdmed.2022.875987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dental caries is the most common chronic disease in children and adults worldwide. The complex etiology of dental caries includes environmental factors as well as host genetics, which together contribute to inter-individual variation in susceptibility. The goal of this study was to provide insights into the molecular pathology underlying increased predisposition to dental caries in trichorhinophalangeal syndrome (TRPS). This rare inherited skeletal dysplasia is caused by mutations in the TRPS1 gene coding for the TRPS1 transcription factor. Considering Trps1 expression in odontoblasts, where Trps1 supports expression of multiple mineralization-related genes, we focused on determining the consequences of odontoblast-specific Trps1 deficiency on the quality of dental tissues. We generated a conditional Trps1Col1a1 knockout mouse, in which Trps1 is deleted in differentiated odontoblasts using 2.3kbCol1a1-CreERT2 driver. Mandibular first molars of 4wk old male and female mice were analyzed by micro-computed tomography (μCT) and histology. Mechanical properties of dentin and enamel were analyzed by Vickers microhardness test. The susceptibility to acid demineralization was compared between WT and Trps1Col1a1cKO molars using an ex vivo artificial caries procedure. μCT analyses demonstrated that odontoblast-specific deletion of Trps1 results in decreased dentin volume in male and female mice, while no significant differences were detected in dentin mineral density. However, histology revealed a wider predentin layer and the presence of globular dentin, which are indicative of disturbed mineralization. The secondary effect on enamel was also detected, with both dentin and enamel of Trps1Col1a1cKO mice being more susceptible to demineralization than WT tissues. The quality of dental tissues was particularly impaired in molar pits, which are sites highly susceptible to dental caries in human teeth. Interestingly, Trps1Col1a1cKO males demonstrated a stronger phenotype than females, which calls for attention to genetically-driven sex differences in predisposition to dental caries. In conclusion, the analyses of Trps1Col1a1cKO mice suggest that compromised quality of dental tissues contributes to the high prevalence of dental caries in TRPS patients. Furthermore, our results suggest that TRPS patients will benefit particularly from improved dental caries prevention strategies tailored for individuals genetically predisposed due to developmental defects in tooth mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Priyanka Hoskere
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Catherine Roberts
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Department of Restorative Dentistry/Comprehensive Care, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
- Department of Endodontics and Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Dobrawa Napierala,
| |
Collapse
|
31
|
Simonetti O, Radi G, Molinelli E, Diotallevi F, Offidani A. Trichorhinophalangeal syndrome: a case report and brief literature review. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Favilla BP, Burssed B, Yamashiro Coelho ÉM, Perez ABA, de Faria Soares MDF, Meloni VA, Bellucco FT, Melaragno MI. Minimal Critical Region and Genes for a Typical Presentation of Langer-Giedion Syndrome. Cytogenet Genome Res 2022; 162:46-54. [PMID: 35290978 DOI: 10.1159/000522034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Langer-Giedion syndrome (LGS) is caused by a contiguous deletion at 8q23q24, characterized by exostoses, facial, ectodermal, and skeletal anomalies, and, occasionally, intellectual disability. LGS patients have been diagnosed clinically or by routine cytogenetic techniques, hampering the definition of an accurate genotype-phenotype correlation for the syndrome. We report two unrelated patients with 8q23q24 deletions, characterized by cytogenomic techniques, with one of them, to our knowledge, carrying the smallest deletion reported in classic LGS cases. We assessed the pathogenicity of the deletion of genes within the 8q23q24 region and reviewed other molecularly confirmed cases from the literature. Our findings suggest a 3.2-Mb critical region for a typical presentation of the syndrome, emphasizing the contribution of the TRPS1, RAD21, and EXT1 genes' haploinsufficiency, and facial dysmorphisms as well as bone anomalies as the most frequent features among patients with LGS. We also suggest a possible role for the CSMD3 gene, whose deletion seems to contribute to central nervous system anomalies. Since studies performing such correlation for LGS patients are limited, our data contribute to improving the ge-notype-phenotype characterization for LGS patients.
Collapse
Affiliation(s)
- Bianca Pereira Favilla
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna Burssed
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Vera Ayres Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Elli FM, Mattinzoli D, Lucca C, Piu M, Maffini MA, Costanza J, Fontana L, Santaniello C, Forino C, Milani D, Bonati MT, Secco A, Gastaldi R, Alfieri C, Messa P, Miozzo M, Arosio M, Mantovani G. Novel Pathogenetic Variants in PTHLH and TRPS1 Genes Causing Syndromic Brachydactyly. J Bone Miner Res 2022; 37:465-474. [PMID: 34897794 PMCID: PMC9305952 DOI: 10.1002/jbmr.4490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Skeletal disorders, including both isolated and syndromic brachydactyly type E, derive from genetic defects affecting the fine tuning of the network of pathways involved in skeletogenesis and growth-plate development. Alterations of different genes of this network may result in overlapping phenotypes, as exemplified by disorders due to the impairment of the parathyroid hormone/parathyroid hormone-related protein pathway, and obtaining a correct diagnosis is sometimes challenging without a genetic confirmation. Five patients with Albright's hereditary osteodystrophy (AHO)-like skeletal malformations without a clear clinical diagnosis were analyzed by whole-exome sequencing (WES) and novel potentially pathogenic variants in parathyroid hormone like hormone (PTHLH) (BDE with short stature [BDE2]) and TRPS1 (tricho-rhino-phalangeal syndrome [TRPS]) were discovered. The pathogenic impact of these variants was confirmed by in vitro functional studies. This study expands the spectrum of genetic defects associated with BDE2 and TRPS and demonstrates the pathogenicity of TRPS1 missense variants located outside both the nuclear localization signal and the GATA ((A/T)GATA(A/G)-binding zinc-containing domain) and Ikaros-like binding domains. Unfortunately, we could not find distinctive phenotypic features that might have led to an earlier clinical diagnosis, further highlighting the high degree of overlap among skeletal syndromes associated with brachydactyly and AHO-like features, and the need for a close interdisciplinary workout in these rare patients. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Piu
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jole Costanza
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Carlo Santaniello
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | | | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unità di Pediatria Alta Intensità di Cura, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Secco
- SC Pediatria e DEA Pediatrico, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Dialysis and Renal Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Dialysis and Renal Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Huang Q, Jiang C, Sun J, Xue J, Zhang VW. Case report: A novel mutation in TRPS1 identified in a Chinese family with tricho-rhino-phalangeal syndrome I: A therapeutic challenge. Front Pediatr 2022; 10:990230. [PMID: 36467473 PMCID: PMC9716017 DOI: 10.3389/fped.2022.990230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Tricho-rhino-phalangeal syndrome (TRPS) is a rare autosomal dominant malformation caused by mutations involving the TRPS1 gene. Patients with TRPS exhibit distinctive craniofacial and skeletal abnormalities. This report presents three intra-familial cases with TRPS1 gene mutations that showed the characteristic features of TRPS. A 13-year-old boy was admitted to Department of Endocrinology for the evaluation of short stature. Physical examination revealed that the boy had thin sparse hair, pear-shaped nose, protruding ears, small jaw and brachydactyly. A survey of his family history indicated that the boy's sister and mother shared the same clinical features. Radiological techniques demonstrated a different degree of skeletal abnormalities in these siblings. Next-generation sequencing and quantitative PCR were performed and showed a novel deletion mutation in exons 3-5 in the three familial cases, confirming the diagnosis of TRPS I. The healthy father did not carry the deletion mutation. Currently, there was no specific therapy for TRPS I; however, genetic consultation may be useful for family planning.
Collapse
Affiliation(s)
- Qi Huang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Jiang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junli Xue
- Department of Endocrinology, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Victor Wei Zhang
- Department of Clinical Genetics, AmCare Genomics Lab, Guangzhou, China
| |
Collapse
|
35
|
Wang J, Wang WL, Sun H, Huo L, Wu Y, Chen H, Gan Q, Meis JM, Maloney N, Lazar AJ, Yoon EC, Albarracin CT, Krishnamurthy S, Middleton LP, Resetkova E, Yu W, Tan D, Lu W, Solis Soto LM, Wang S, Wistuba II, Parwani AV, Prieto VG, Sahin AA, Li Z, Ding Q. Expression of TRPS1 in phyllodes tumor and sarcoma of the breast. Hum Pathol 2022; 121:73-80. [DOI: 10.1016/j.humpath.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/31/2022]
|
36
|
Sun H, Li N, Wan N. Molecular genetic analysis and growth hormone response in patients with syndromic short stature. BMC Med Genomics 2021; 14:261. [PMID: 34740356 PMCID: PMC8570008 DOI: 10.1186/s12920-021-01113-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Syndromic short stature is a genetic and phenotypic heterogeneous disorder with multiple causes. This study aims to identify genetic causes in patients with syndromic short stature of unknown cause and evaluate the efficacy of the growth hormone response. METHODS Trio-whole-exome sequencing was applied to identify pathogenic gene mutations in seven patents with short stature, multiple malformations, and/or intellectual disability. Whole-genome low-coverage sequencing was also performed to identify copy number variants in three patients with concurrent intellectual disability. Recombinant human growth hormone was administered to improve height in patients with an identified cause of syndromic short stature. RESULTS Of the seven patients, three pathogenic/likely pathogenic gene mutations, including one FGFR3 mutation (c.1620C>A p.N540K), one novel GNAS mutation (c.2288C>T p.A763V), and one novel TRPS1 mutation (c.2527_c.2528dupTA p.S843fsX72), were identified in three patients. No copy number variants were identified in the three patients with concurrent intellectual disability. The proband with an FGFR3 mutation, a female 4 and 3/12 years of age, was diagnosed with hypochondroplasia. Long-acting growth hormone improved her height from 85.8 cm [- 5.05 standard deviation (SD)] to 100.4 cm (- 4.02 SD), and her increased height SD score (SDS) was 1.03 after 25 months of treatment. The proband with a GNAS mutation, a female 12 and 9/12 years of age, was diagnosed with pseudohypoparathyroidism Ia. After 14 months of treatment with short-acting growth hormone, her height improved from 139.3 cm (- 2.69 SD) to 145.0 cm (- 2.36 SD), and her increased height SDS was 0.33. CONCLUSIONS Trio-whole-exome sequencing was an important approach to confirm genetic disorders in patients with syndromic short stature of unknown etiology. Short-term growth hormone was effective in improving height in patients with hypochondroplasia and pseudohypoparathyroidism Ia.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Paediatrics, Beijing Jishuitan Hospital, No. 31 of Xinjiekou Dongjie Street, Xi Cheng District, Beijing, 100035, People's Republic of China
| | - Na Li
- Department of Radiology, Beijing Jishuitan Hospital, No. 31 of Xinjiekou Dongjie Street, Xi Cheng District, Beijing, 100035, People's Republic of China
| | - Naijun Wan
- Department of Paediatrics, Beijing Jishuitan Hospital, No. 31 of Xinjiekou Dongjie Street, Xi Cheng District, Beijing, 100035, People's Republic of China.
| |
Collapse
|
37
|
Hayashi R, Shimomura Y. Update of recent findings in genetic hair disorders. J Dermatol 2021; 49:55-67. [PMID: 34676598 DOI: 10.1111/1346-8138.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
38
|
|
39
|
Abstract
Parathyroid hormone (PTH), which is primarily regulated by extracellular calcium changes, controls calcium and phosphate homeostasis. Different diseases are derived from PTH deficiency (hypoparathyroidism), excess (hyperparathyroidism) and resistance (pseudohypoparathyroidism, PHP). Pseudohypoparathyroidism was historically classified into subtypes according to the presence or not of inherited PTH resistance associated or not with features of Albright's hereditary osteodystrophy and deep and progressive ectopic ossifications. The growing knowledge on the PTH/PTHrP signaling pathway showed that molecular defects affecting different members of this pathway determined distinct, yet clinically related disorders, leading to the proposal of a new nomenclature and classification encompassing all disorders, collectively termed inactivating PTH/PTHrP signaling disorders (iPPSD).
Collapse
Affiliation(s)
- Giovanna Mantovani
- University of Milan, Dept. Clinical Sciences and Commmunity Health, Via Lamarmora 5, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| |
Collapse
|
40
|
Kondo RN, Basmanav FB, Wolf S, Minelli L, Frank J, Betz RC. Hair loss, facial dysmorphology, and skeletal alterations - a diagnostic challenge. Int J Dermatol 2021; 60:e419-e421. [PMID: 34152005 DOI: 10.1111/ijd.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Rogério Nabor Kondo
- Dermatology Service, Hospital Universitário Regional do Norte do Paraná, State University of Londrina, Paraná, Brazil
| | - Fitnat Buket Basmanav
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Sabrina Wolf
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Lorivaldo Minelli
- Dermatology Service, Hospital Universitário Regional do Norte do Paraná, State University of Londrina, Paraná, Brazil
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
41
|
Wang B, Liu X. Long non-coding RNA KCNQ1OT1 promotes cell viability and migration as well as inhibiting degradation of CHON-001 cells by regulating miR-126-5p/TRPS1 axis. Adv Rheumatol 2021; 61:31. [PMID: 34108052 DOI: 10.1186/s42358-021-00187-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is defined as a degenerative disease. Pivotal roles of long non-coding RNA (lncRNAs) in OA are widely elucidated. Herein, we intend to explore the function and molecular mechanism of lncRNA KCNQ1OT1 in CHON-001 cells. METHODS Relative expression of KCNQ1OT1, miR-126-5p and TRPS1 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined by MTT assay. The migratory ability of chondrocytes was assessed by transwell assay. Western blot was used to determine relative protein expression of collagen II, MMP13 and TRPS1. Dual-luciferase reporter (DLR) assay was applied to test the target of lncRNA KCNQ1OT1 or miR-126-5p. RESULTS Relative expression of KCNQ1OT1 and TRPS1 was reduced, whereas miR-126-5p was augmented in cartilage tissues of post-traumatic OA patients compared to those of subjects without post-traumatic OA. Increased KCNQ1OT1 or decreased miR-126-5p enhanced cell viability and migration, and repressed extracellular matrix (ECM) degradation in CHON-001 cells. MiR-126-5p was the downstream target of KCNQ1OT1, and it could directly target TRPS1. There was an inverse correlation between KCNQ1OT1 and miR-126-5p or between miR-126-5p and TRPS1. Meantime, there was a positive correlation between KCNQ1OT1 and TRPS1. The promoting impacts of KCNQ1OT1 on cell viability and migration as well as the suppressive impact of KCNQ1OT1 on ECM degradation were partially abolished by miR-126-5p overexpression or TRPS1 knockdown in CHON-001 cells. CONCLUSIONS Overexpression of KCNQ1OT1 attenuates the development of OA by sponging miR-126-5p to target TRPS1. Our findings may provide a possible therapeutic strategy for human OA in clinic.
Collapse
Affiliation(s)
- Binfeng Wang
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Xiangwei Liu
- Orthopaedic Ward 2 (Trauma Surgery), Chifeng Municipal Hospital, No.1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China.
| |
Collapse
|
42
|
Yang J, Liu X, Huang Y, He L, Zhang W, Ren J, Wang Y, Wu J, Wu X, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. TRPS1 drives heterochromatic origin refiring and cancer genome evolution. Cell Rep 2021; 34:108814. [PMID: 33691114 DOI: 10.1016/j.celrep.2021.108814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breast carcinogenesis through regulating replication. Epigenomic decomposition of TRPS1 landscape reveals nearly half of H3K9me3-marked heterochromatic origins are occupied by TRPS1, where it encourages the chromatin loading of APC/C, resulting in uncontrolled origin refiring. TRPS1 binds to the genome through its atypical H3K9me3 reading via GATA and IKAROS domains, while TRPS-related mutations affect its chromatin binding, replication boosting, and tumorigenicity. Concordantly, overexpression of wild-type but not TRPS-associated mutants of TRPS1 is sufficient to drive cancer genome amplifications, which experience an extrachromosomal route and dynamically evolve to confer therapeutic resistance. Together, these results uncover a critical function of TRPS1 in driving heterochromatin origin firing and breast cancer genome evolution.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
43
|
Li S, Chen Z, Yang Y. Novel mutation of TRPS1 in a patient with tricho-rhino-phalangeal syndrome. Clin Exp Dermatol 2020; 46:557-559. [PMID: 32844440 DOI: 10.1111/ced.14430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Affiliation(s)
- S Li
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Z Chen
- Center of Genetic Disease, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Y Yang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,Center of Genetic Disease, Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
44
|
Wang C, Xu Y, Qing Y, Yao R, Li N, Wang X, Yu T, Wang J. TRPS1 mutation detection in Chinese patients with Tricho-rhino-phalangeal syndrome and identification of four novel mutations. Mol Genet Genomic Med 2020; 8:e1417. [PMID: 33073934 PMCID: PMC7549555 DOI: 10.1002/mgg3.1417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Tricho‐rhino‐phalangeal syndrome (TRPS) is a rare autosomal dominant disorder characterized by craniofacial and skeletal malformations including short stature, thin scalp hair, sparse lateral eyebrows, a pear‐shaped nose, and cone‐shaped epiphyses. This condition is caused by haploinsufficiency or dominant‐negative effect of the TRPS1 gene. Methods In this study, we analyzed the clinical and genetic data of five unrelated TRPS patients. They were suspected of having TRPS on the basis of clinical and radiological features including typical hair and facial features, as well as varying degrees of skeletal abnormalities. Next‐generation sequencing was performed to identify variants of the TRPS1 gene in the five patients. Results In patient 1, we found a novel mutation at c.1338C>A (p.Tyr446*) (de novo). Patient 2 had a novel phenotype of hydrocephaly and Arnold–Chiari syndrome and we also found a maternally inherited novel mutation at c.2657C>A (p.Ser886*). Patient 3 had a de novo novel mutation at c.2726G>C (p.Cys909Ser) leading to more severe phenotypes. Patient 4 had a paternally inherited known mutation at c.2762G>A (p.Arg921Gln). Patient 5 with a novel phenotype of hepatopathy had a novel deletion at [GRCh37] del(8)(q23.3‐q24.11) chr8:g.116,420,724‐119,124,058 (over 2,700 kb). In addition, the patient 3 who harboring missense variants in the GATA binding domain of TRPS1 showed more severe craniofacial and skeletal phenotypes. Conclusions We describe four novel mutations and two novel phenotypes in five patients. The mutational and phenotypic spectrum of TRPS is broadened by our study on TRPS mutations. Our results reveal the significance of molecular analysis of TRPS1 for improving the clinical diagnosis of TRPS.
Collapse
Affiliation(s)
- Chen Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanrong Qing
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Xu S, Lian Q, Wu J, Li L, Song J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC MEDICAL GENETICS 2020; 21:158. [PMID: 32746809 PMCID: PMC7398275 DOI: 10.1186/s12881-020-01096-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Background Okur-Chung neurodevelopmental syndrome (OCNDS) and tricho-rhino-phalangeal syndrome type I (TRPSI) are rare Mendelian diseases. OCNDS is caused by CSNK2A1 gene variants and TRPSI is caused by the TRPS1gene. However, to have two Mendelian diseases in one patient is even rarer. Case presentation A 6-year-10-month-old boy characterized by special facial features, short stature and mental retardation was referred to our pediatric endocrinology department. Whole-exome sequencing (WES) was done to detect the molecular basis of his disease. This patient was confirmed to carry two variants in the CSNK2A1 gene and one in the TRPS1 gene. The variant in the CSNK2A1 gene was vertically transmitted from his father, and the variant in TRPS1 gene from his mother. These two variants are classified as pathogenic and the causes of the presentation in this child. This patient’s father and mother have subsequently been diagnosed as having OCNDS and TRPSI respectively. Conclusion This is the first reported case of a dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in the same patient. This patient is the first published example of vertical transmission of this recurrent CSN2A1 variant from parent to child. A novel variant in the TRPS1 gene that is pathogenic was also identified. In conclusion, identification of the variants in this patient expands the phenotypes and molecular basis of dual Mendelian diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China. .,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China. .,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China.
| | - Jinzhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Jia Song
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| |
Collapse
|
46
|
Nakamichi R, Kurimoto R, Tabata Y, Asahara H. Transcriptional, epigenetic and microRNA regulation of growth plate. Bone 2020; 137:115434. [PMID: 32422296 PMCID: PMC7387102 DOI: 10.1016/j.bone.2020.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Endochondral ossification is a critical event in bone formation, particularly in long shaft bones. Many cellular differentiation processes work in concert to facilitate the generation of cartilage primordium to formation of trabecular structures, all of which occur within the growth plate. Previous studies have revealed that the growth plate is tightly regulated by various transcription factors, epigenetic systems, and microRNAs. Hence, understanding these mechanisms that regulate the growth plate is crucial to furthering the current understanding on skeletal diseases, and in formulating effective treatment strategies. In this review, we focus on describing the function and mechanisms of the transcription factors, epigenetic systems, and microRNAs known to regulate the growth plate.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Tabata
- Department of Orthopaedic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hirosi Asahara
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA; Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
47
|
Saito K, Michon F, Yamada A, Inuzuka H, Yamaguchi S, Fukumoto E, Yoshizaki K, Nakamura T, Arakaki M, Chiba Y, Ishikawa M, Okano H, Thesleff I, Fukumoto S. Sox21 Regulates Anapc10 Expression and Determines the Fate of Ectodermal Organ. iScience 2020; 23:101329. [PMID: 32674056 PMCID: PMC7363706 DOI: 10.1016/j.isci.2020.101329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The transcription factor Sox21 is expressed in the epithelium of developing teeth. The present study aimed to determine the role of Sox21 in tooth development. We found that disruption of Sox21 caused severe enamel hypoplasia, regional osteoporosis, and ectopic hair formation in the gingiva in Sox21 knockout incisors. Differentiation markers were lost in ameloblasts, which formed hair follicles expressing hair keratins. Molecular analysis and chromatin immunoprecipitation sequencing indicated that Sox21 regulated Anapc10, which recognizes substrates for ubiquitination-mediated degradation, and determined dental-epithelial versus hair follicle cell fate. Disruption of either Sox21 or Anapc10 induced Smad3 expression, accelerated TGF-β1-induced promotion of epithelial-to-mesenchymal transition (EMT), and resulted in E-cadherin degradation via Skp2. We conclude that Sox21 disruption in the dental epithelium leads to the formation of a unique microenvironment promoting hair formation and that Sox21 controls dental epithelial differentiation and enamel formation by inhibiting EMT via Anapc10. Sox21 was induced by Shh in dental epithelial cells Sox21 deficiency in dental epithelium caused differentiation into hair cells Sox21 deficiency did not cause differentiation into mature ameloblasts Anapc10 induced by Sox21 bound to Fzr1 and regulated EMT via Skp2
Collapse
Affiliation(s)
- Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Frederic Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Institute for Neurosciences of Montpellier, Inserm U1051, University of Montpellier, 34295 Montpellier, France
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoko Yamaguchi
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Emiko Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Makiko Arakaki
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Kantaputra PN, Coury SA, Tan WH. Impaired dentin mineralization, supernumerary teeth, hypoplastic mandibular condyles with long condylar necks, and a TRPS1 mutation. Arch Oral Biol 2020; 116:104735. [PMID: 32442662 DOI: 10.1016/j.archoralbio.2020.104735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022]
Abstract
Tricho-rhino-phalangeal syndrome type I, an autosomal dominant condition, is caused by heterozygous pathogenic variants in a zinc finger transcription factor, TRPS1, which has important roles in development of endochondral bones, teeth, and hair. Clinical manifestations of the patients include short stature, sparse, fine and slow-growing scalp hair, bulbous nose, supernumerary teeth, hip dysplasia, brachydactyly, and cone-shaped epiphyses of the phalangeal bones. OBJECTIVE To clinically, radiographically, and molecular genetically investigate a patient with tricho-rhino-phalangeal syndrome type I. MATERIALS AND METHODS Clinical and radiographic examination and mutation analysis of TRPS1 were performed. RESULTS Clinical and radiographic examination indicated the patient had tricho-rhino-phalangeal syndrome type I. Sequencing of the TRPS1 gene revealed a heterozygous pathogenic variant (c.2762G>A; p.Arg921Gln). Oral examination showed supernumerary teeth, large dental pulp spaces, dental pulp stones, microdontia of the maxillary permanent lateral incisors, absence of the mandibular left second premolar and short root of the maxillary right second premolar, and hypoplastic mandibular condyles with long condylar necks. CONCLUSION TRPS1 has an important function in regulating bone and dentin mineralization. Having large dental pulp spaces suggests that impaired dentin mineralization was the result of the TRPS1 pathogenic variant. This is the first patient with a TRPS1 pathogenic variant who had impaired dentin mineralization. This is also the third report showing the association between TRPS1 pathogenic variants and the presence of supernumerary teeth.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| | - Stephanie A Coury
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Nik Kantaputra P, Jotikasthira D, Carlson B, Wongmaneerung T, Quarto N, Khankasikum T, Powcharoen W, Intachai W, Tripuwabhrut K. TRPS1 mutation associated with trichorhinophalangeal syndrome type 1 with 15 supernumerary teeth, hypoplastic mandibular condyles with slender condylar necks and unique hair morphology. J Dermatol 2020; 47:774-778. [PMID: 32347565 DOI: 10.1111/1346-8138.15360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/29/2020] [Indexed: 11/27/2022]
Abstract
Trichorhinophalangeal syndrome type 1 (TRPS1; Online Mendelian Inheritance in Man #190350) is an autosomal dominant disorder caused by mutations in TRPS1. We report a Thai male with TRPS1 who carried a c.1842C>T (p.Arg615Ter) mutation. He had 15 supernumerary teeth, double mental foramina, hypoplastic mandibular condyles with slender condylar necks and unique ultrastructural hair findings. Body hair was absent. The hair in the area of a congenital melanocytic nevus had a greater number of hair cuticles than normal. Occipital hair had abnormal hair follicles and cuticles. The scale edges of the hair cuticles were detached and rolled up. Hypoplastic mandibular condyles with slender condylar necks, double mental foramina and the rolled up edges of hair cuticles have not been reported in patients with TRPS1.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Dhirawat Jotikasthira
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Bruce Carlson
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Natalina Quarto
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Warit Powcharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Worrachet Intachai
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanich Tripuwabhrut
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
50
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|