1
|
Kawai-Kitahata F, Asahina Y, Kakinuma S, Inada K, Mochida T, Watakabe K, Nobusawa T, Shimizu T, Tsuchiya J, Miyoshi M, Kaneko S, Murakawa M, Nitta S, Nakagawa M, Kinowaki Y, Ban D, Tanaka S, Anzai T, Takano S, Maekawa S, Enomoto N, Okamoto R. Genetic alterations in hepatocellular carcinoma after sustained virological response in relation to the molecular characterization of metabolic diseases. Hepatol Res 2025. [PMID: 40423574 DOI: 10.1111/hepr.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
AIM The mechanism of hepatocarcinogenesis after sustained virological response (SVR) in hepatitis C virus (HCV) patients is unclear. We compared gene profiles of hepatocellular carcinoma (HCC) between HCV-SVR, steatotic liver disease (SLD), and HCV-non-SVR patients. METHODS This study analyzed 126 resected HCCs from patients with HCV and SLD, classifying them as HCV-SVR (n = 22), HCV-non-SVR (n = 56), and SLD (n = 48). Deep sequencing of 2910 hotspots in 55 cancer-related genes was conducted to examine mutations and copy number variations in both cancerous and background liver tissues. RESULTS The HCV-SVR group comprised more patients who consumed alcohol (45.5% vs. 15.7%, p = 0.008), were obese (54.5% vs. 17.9%, p = 0.002), and had dyslipidemia (18.2% vs. 3.6%, p = 0.029) and hyperuricemia (18.2% vs. 3.6%, p = 0.029) than the HCV-non-SVR group. Mutational profiling of the HCV-SVR HCC showed significantly lower alteration rates of AXIN1 (13.6% vs. 42.9%, p = 0.016), ARID2 (9.1% vs. 39.3%, p = 0.013), and TP53 (9.1% vs. 32.1%, p = 0.030) than HCV-non-SVR patients. Compared with HCV-non-SVR-HCC, SLD-HCCs showed significantly lower rates of TERT promoter mutations (62.5% vs. 85.7%, p = 0.004), ARID2 alterations (12.5% vs. 39.3%, p = 0.003), and AXIN1 alterations (12.5% vs. 42.9%, p = 0.002). HCV-SVR/MASH/MASLD/ALD-HCC had significantly lower alteration rates of the Wnt/β-catenin (41.4% vs. 60.7%, p = 0.048) and chromatin remodeling pathways (27.1% vs. 48.2%, p = 0.026) than HCV-non-SVR-HCC. CONCLUSIONS HCV-SVR HCC is linked to alcohol use and metabolic diseases, showing a mutational profile similar to SLD-HCC.
Collapse
Affiliation(s)
- Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Sei Kakinuma
- Department of Clinical and Diagnostic Laboratory Science, Institute of Science Tokyo, Tokyo, Japan
| | - Kento Inada
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Tomohiro Mochida
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Keiya Watakabe
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Tsubasa Nobusawa
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Taro Shimizu
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Advanced Therapeutic Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Institute of Science Tokyo, Tokyo, Japan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Shinichi Takano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Aceves-Ewing NM, Lanza DG, Marcogliese PC, Lu D, Hsu CW, Gonzalez M, Christiansen AE, Rasmussen TL, Ho AJ, Gaspero A, Seavitt J, Dickinson ME, Yuan B, Shayota BJ, Pachter S, Hu X, Day-Salvatore DL, Mackay L, Kanca O, Wangler MF, Potocki L, Rosenfeld JA, Lewis RA, Chao HT, Lee B, Lee S, Yamamoto S, Bellen HJ, Burrage LC, Heaney JD. Uncovering Phenotypic Expansion in AXIN2-Related Disorders through Precision Animal Modeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24318524. [PMID: 39677486 PMCID: PMC11643287 DOI: 10.1101/2024.12.05.24318524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Heterozygous pathogenic variants in AXIN2 are associated with oligodontia-colorectal cancer syndrome (ODCRCS), a disorder characterized by oligodontia, colorectal cancer, and in some cases, sparse hair and eyebrows. We have identified four individuals with one of two de novo , heterozygous variants (NM_004655.4:c.196G>A, p.(Glu66Lys) and c.199G>A, p.(Gly67Arg)) in AXIN2 whose presentations expand the phenotype of AXIN2-related disorders. In addition to ODCRCS features, these individuals have global developmental delay, microcephaly, and limb, ophthalmologic, and renal abnormalities. Structural modeling of these variants suggests that they disrupt AXIN2 binding to tankyrase, which regulates AXIN2 levels through PARsylation and subsequent proteasomal degradation. To test whether these variants produce a phenotype in vivo , we utilized an innovative prime editing N1 screen to phenotype heterozygous (p.E66K) mouse embryos, which were perinatal lethal with short palate and skeletal abnormalities, contrary to published viable Axin2 null mouse models. Modeling of the p.E66K variant in the Drosophila wing revealed gain-of-function activity compared to reference AXIN2. However, the variant showed loss-of-function activity in the fly eye compared to reference AXIN2, suggesting that the mechanism by which p.E66K affects AXIN2 function is cell context-dependent. Together, our studies in humans, mice, and flies demonstrate that specific variants in the tankyrase-binding domain of AXIN2 are pathogenic, leading to phenotypic expansion with context-dependent effects on AXIN2 function and WNT signaling. Moreover, the modeling strategies used to demonstrate variant pathogenicity may be beneficial for the resolution of other de novo heterozygous variants of uncertain significance associated with congenital anomalies in humans.
Collapse
|
5
|
Tang C, Tang C, Zhu X, Wang S, Yang Y, Miao Y, Zhao X, Jia L, Yang J, Su Y, Wang L, Wu C. Loss of AXIN1 regulates response to lenvatinib through a WNT/KDM5B/p15 signalling axis in hepatocellular carcinoma. Br J Pharmacol 2025; 182:1394-1409. [PMID: 39653061 DOI: 10.1111/bph.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE As a highly heterogeneous cancer, hepatocellular carcinoma (HCC) shows different response rates to the multi-kinase inhibitor lenvatinib. Thus, it is important to explore genetic biomarkers for precision lenvatinib therapy in HCC. EXPERIMENTAL APPROACH The effect and mechanism of AXIN1 mutation on HCC were revealed by cell proliferation assay, long-term clone formation assay, sphere formation assay and small molecule inhibitor library screening. A new therapeutic strategy targeting HCC with AXIN1 mutation was evaluated in humanized models (patient-derived xenograft [PDX] and patient-derived organoid [PDO]). KEY RESULTS Based on The Cancer Genome Atlas (TCGA) data, we screened 6 most frequently lost tumour suppressor genes in HCC (TP53, ARID1A, AXIN1, CDKN2A, ARID2 and PTEN) and identified AXIN1 as the most crucial gene for lenvatinib sensitivity. Further study showed that AXIN1-knockout HCC cells had a more malignant phenotype and lower sensitivity to lenvatinib in vitro and in vivo. Mechanistically, the WNT pathway and its target gene c-Myc were activated when AXIN1 was missing, and the expression of tumour suppressor p15 was inhibited by transcription co-repressors c-Myc and Miz-1, resulting in the exacerbation of the resistant phenotype. Screening of a library of epigenetic-related enzyme inhibitors showed that a KDM5B inhibitor up-regulated p15 expression, leading to increased sensitivity to lenvatinib in vitro and in vivo. CONCLUSION AND IMPLICATIONS AXIN1-deficient patients have a lower response to lenvatinib, which may be associated with suppression of p15 mediated by WNT pathway activation. KDM5B inhibitors can restore p15 levels, resulting in efficient killing of resistant cells in HCC.
Collapse
MESH Headings
- Xenograft Model Antitumor Assays
- Organoids
- Tumor Cells, Cultured
- Primary Cell Culture
- Axin Protein/genetics
- Axin Protein/metabolism
- Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Wnt Proteins/metabolism
- Cyclin-Dependent Kinase Inhibitor p15/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Precision Medicine/methods
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Humans
- Animals
- Mice
- Genes, Tumor Suppressor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Male
- Mice, Inbred BALB C
- RNA-Seq
- Loss of Function Mutation
- Down-Regulation
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Drug Synergism
- Adult
- Middle Aged
Collapse
Affiliation(s)
- Chengfang Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chu Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Xuanchi Zhu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Simeng Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yuan Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yu Miao
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyao Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| |
Collapse
|
6
|
De-Armas-Conde N, González-Rico FJ, Jaén-Torrejimeno I, Merino JM, López-Guerra D, Ordiales-Talavero A, Rojas-Holguín A, Marín-Díaz B, Ramón-Rodríguez J, Ordóñez-Mata L, Fernández-Salguero PM, Blanco-Fernández G. Involvement of β-catenin expression in hepatocellular carcinoma prognosis in a cohort of patients undergoing curative treatment. Surgery 2025; 178:108885. [PMID: 39448327 DOI: 10.1016/j.surg.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is a tumor of epithelial origin that arises from the action of different carcinogens on the hepatocytes and has a high worldwide incidence. The prognostic markers of this disease have not been completely established. Mutations in the gene encoding β-catenin are overexpressed in hepatocellular carcinoma. The objective of our study was to correlate the molecular expression of β-catenin in hepatocellular carcinoma with the already known prognostic markers. METHODS We conducted an observational and prospective cohort study on adult patients diagnosed with hepatocellular carcinoma from whom samples of nontumor and tumor liver parenchyma were taken intraoperatively to correlate the molecular expression of β-catenin in hepatocellular carcinoma with the known prognostic markers. RESULTS A total of 81 samples were collected, of which 48 met the inclusion criteria. The final sample was divided into patients with a diagnosis of hepatocellular carcinoma on a cirrhotic liver, corresponding to 31 patients (64.6%), and patients with a diagnosis of hepatocellular carcinoma on a noncirrhotic liver, corresponding to 17 patients (35.4%). We found that overexpression of β-catenin and the neutrophil/lymphocyte ratio are independently related to disease-free survival, and both overexpression and molecular repression of β-catenin are independently related. CONCLUSION Molecular overexpression of β-catenin in hepatocellular carcinoma compared with nontumor tissue is associated with worse disease-free survival, and its combination with a high neutrophil-lymphocyte ratio worsens this prognosis.
Collapse
Affiliation(s)
- Noelia De-Armas-Conde
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain
| | - Francisco Javier González-Rico
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Isabel Jaén-Torrejimeno
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Jaime M Merino
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Diego López-Guerra
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain; Universidad de Extremadura, Facultad de Medicina y Ciencias de la Salud, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Adela Rojas-Holguín
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain; Universidad de Extremadura, Facultad de Medicina y Ciencias de la Salud, Badajoz, Spain
| | - Beatriz Marín-Díaz
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Julen Ramón-Rodríguez
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain
| | - Laura Ordóñez-Mata
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Pedro M Fernández-Salguero
- Facultad de Ciencias, Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain
| | - Gerardo Blanco-Fernández
- Department of Hepato-pancreatic-biliary Surgery and Liver Transplantation. Hospital Universitario de Badajoz, Badajoz, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Campus de Badajoz, Badajoz, Spain; Universidad de Extremadura, Facultad de Medicina y Ciencias de la Salud, Badajoz, Spain.
| |
Collapse
|
7
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
8
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
9
|
Dai DL, Xie C, Zhong LY, Liu SX, Zhang LL, Zhang H, Wu XP, Wu ZM, Kang K, Li Y, Sun YM, Xia TL, Zhang CS, Zhang A, Shi M, Sun C, Chen ML, Zhao GX, Bu GL, Liu YT, Huang KY, Zhao Z, Li SX, Zhang XY, Yuan YF, Wen SJ, Zhang L, Li BK, Zhong Q, Zeng MS. AXIN1 boosts antiviral response through IRF3 stabilization and induced phase separation. Signal Transduct Target Ther 2024; 9:281. [PMID: 39384753 PMCID: PMC11464762 DOI: 10.1038/s41392-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we identify that AXIN1 acts as an effective regulator of antiviral innate immunity against both DNA and RNA virus infections. In the resting state, AXIN1 maintains the stability of the transcription factor interferon regulatory factor 3 (IRF3) by preventing p62-mediated autophagic degradation of IRF3. This is achieved by recruiting ubiquitin-specific peptidase 35 (USP35), which removes lysine (K) 48-linked ubiquitination at IRF3 K366. Upon virus infection, AXIN1 undergoes a phase separation triggered by phosphorylated TANK-binding kinase 1 (TBK1). This leads to increased phosphorylation of IRF3 and a boost in IFN-I production. Moreover, KYA1797K, a small molecule that binds to the AXIN1 RGS domain, enhances the AXIN1-IRF3 interaction and promotes the elimination of various highly pathogenic viruses. Clinically, patients with HBV-associated hepatocellular carcinoma (HCC) who show reduced AXIN1 expression in pericarcinoma tissues have low overall and disease-free survival rates, as well as higher HBV levels in their blood. Overall, our findings reveal how AXIN1 regulates IRF3 signaling and phase separation-mediated antiviral immune responses, underscoring the potential of the AXIN1 agonist KYA1797K as an effective antiviral agent.
Collapse
Affiliation(s)
- Dan-Ling Dai
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chu Xie
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lan-Yi Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shang-Xin Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Le-Le Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hua Zhang
- Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xing-Ping Wu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhou-Ming Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Yan Li
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ya-Meng Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tian-Liang Xia
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P. R. China
| | - Ao Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ming Shi
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Cong Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei-Ling Chen
- Department of Nuclear medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ge-Xin Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guo-Long Bu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Tao Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Kui-Yuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Zheng Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shu-Xin Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiao-Yong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yun-Fei Yuan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Jun Wen
- Medicinal Synthetic Chemistry Center, Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P. R. China
| | - Bin-Kui Li
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Qian Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Mu-Sheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
10
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Koriem KMM. Calculus bovis in hepatocellular carcinoma: Tumor molecular basis, Wnt/β-catenin pathway role, and protective mechanism. World J Gastroenterol 2024; 30:3959-3964. [PMID: 39351056 PMCID: PMC11438664 DOI: 10.3748/wjg.v30.i35.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we comment on the recent article by Huang et al. The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma (HCC), mechanism of Wnt/β-catenin pathway in HCC, and protective mechanism of Calculus bovis (CB) in HCC. Liver cancer is the fourth most common cause of cancer-related deaths globally. The most prevalent kind of primary liver cancer, HCC, is typically brought on by long-term viral infections (hepatitis B and C), non-alcoholic steatohepatitis, excessive alcohol consumption, and other conditions that can cause the liver to become chronically inflamed and cirrhotic. CB is a well-known traditional remedy in China and Japan and has been used extensively to treat a variety of diseases, such as high fever, convulsions, and stroke. Disturbances in lipid metabolism, cholesterol metabolism, bile acid metabolism, alcohol metabolism, and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis. Succinate, which is a tricarboxylic acid cycle intermediate, is vital to energy production and mitochondrial metabolism. It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies. The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development. Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway. In HCC liver carcinogenesis, Wnt/β-catenin signaling is activated by the expression of downstream target genes. Communication between the liver and the gut exists via the portal vein, biliary tract, and systemic circulation. This "gut-liver axis" controls intestinal physiology. One of the main factors contributing to the development, progression, and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway. Therefore, understanding this pathway is essential to treating HCC. Eleven ingredients of CB, particularly oleanolic acid, ergosterol, and ursolic acid, have anti-primary liver cancer properties. Additionally, CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis. CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment. In the future, clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression, development, and progress.
Collapse
Affiliation(s)
- Khaled Mohamed Mohamed Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
12
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
13
|
Zhang R, Li S, Schippers K, Eimers B, Niu J, Hornung BVH, van den Hout MCGN, van Ijcken WFJ, Peppelenbosch MP, Smits R. Unraveling the impact of AXIN1 mutations on HCC development: Insights from CRISPR/Cas9 repaired AXIN1-mutant liver cancer cell lines. PLoS One 2024; 19:e0304607. [PMID: 38848383 PMCID: PMC11161089 DOI: 10.1371/journal.pone.0304607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced β-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored β-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive β-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS Our study provides insights into the effects of repairing AXIN1 mutations on β-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming, China
| | - Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Kelly Schippers
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Boaz Eimers
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Bastian V. H. Hornung
- Erasmus Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Panova-Noeva M, Koeck T, Schoelch C, Schulz A, Prochaska JH, Michal M, Strauch K, Schuster AK, Lackner KJ, Münzel T, Hennige AM, Wild PS. Obesity-related inflammatory protein signature in cardiovascular clinical outcomes: results from the Gutenberg Health Study. Obesity (Silver Spring) 2024; 32:1198-1209. [PMID: 38664310 DOI: 10.1002/oby.24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The objective of this study was to investigate whether an obesity-related inflammatory protein signature (OIPS) is associated with adverse cardiovascular events. METHODS The Olink Target 96 Inflammation panel was performed in 6662 participants from the population-based Gutenberg Health Study (GHS). The OIPS was selected by a logistic regression model, and its association with cardiovascular outcomes was evaluated by Cox regression analysis. The GHS-derived OIPS was externally validated in the MyoVasc study. RESULTS The identified OIPS entailed 21 proteins involved in chemokine activity, tumor necrosis factor (TNF) receptor binding, and growth factor receptor binding. The signature revealed a novel positive association of axis inhibition protein 1 with obesity. The OIPS was associated with increased risk of all-cause and cardiac deaths, major adverse cardiovascular events, and incident coronary artery disease, independent of clinical covariates and established risk instruments. A BMI-stratified analysis confirmed the association of OIPS with increased death in those with obesity and overweight and with increased risk for coronary artery disease in those with obesity. The association of OIPS with increased risk of all-cause and cardiac deaths was validated in the MyoVasc cohort. CONCLUSIONS The OIPS showed a significant association with adverse clinical outcomes, particularly in those with overweight and obesity, and represents a promising tool for identifying patients at higher risk for worse cardiovascular outcomes.
Collapse
Affiliation(s)
- Marina Panova-Noeva
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
- Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Koeck
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Corinna Schoelch
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Michal
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute for Medical Biometrics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander K Schuster
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karl J Lackner
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Department of Cardiology-Cardiology I, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anita M Hennige
- Therapeutic Area CardioMetabolism & Respiratory, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Philipp S Wild
- Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
15
|
Kongsintaweesuk S, Klungsaeng S, Intuyod K, Techasen A, Pairojkul C, Luvira V, Pinlaor S, Pinlaor P. Microcystin-leucine arginine induces the proliferation of cholangiocytes and cholangiocarcinoma cells through the activation of the Wnt/β-catenin signaling pathway. Heliyon 2024; 10:e30104. [PMID: 38720699 PMCID: PMC11076882 DOI: 10.1016/j.heliyon.2024.e30104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Background Microcystin-leucine arginine (MC-LR) is a cyanobacterial hepatotoxic toxin found in water sources worldwide, including in northeastern Thailand, where opisthorchiasis-associated cholangiocarcinoma (CCA) is most prevalent. MC-LR is a potential carcinogen; however, its involvement in liver fluke-associated CCA remains ambiguous. Here, we aimed to evaluate the effect of MC-LR on the progression of CCA via the Wnt/β-catenin pathway in vitro. Methods Cell division, migration, cell cycle transition, and MC-LR transporter expression were evaluated in vitro through MTT assay, wound healing assay, flow cytometry, and immunofluorescence staining, respectively. Following a 24-h treatment of cultured cells with 1, 10, 100, and 1,000 nM of MC-LR, the proliferative effect of MC-LR on the Wnt/β-catenin signaling pathway was investigated using immunoblotting and qRT-PCR analysis. Immunohistochemistry was used to determine β-catenin expression in CCA tissue compared to adjacent tissue. Results Human immortalized cholangiocyte cells (MMNK-1) and a human cell line established from opisthorchiasis-associated CCA (KKU-213B) expressed the MC-LR transporter and internalized MC-LR. Exposure to 10 nM and 100 nM of MC-LR notably enhanced cells division and migration in both cell lines (P < 0.05) and markedly elevated the percentage of S phase cells (P < 0.05). MC-LR elevated PP2A expression by activating the Wnt/β-catenin signaling pathway and suppressing phosphatase activity. Inhibition of the β-catenin destruction complex genes (Axin1 and APC) led to the upregulation of β-catenin and its downstream target genes (Cyclin D1 and c-Jun). Inhibition of Wnt/β-catenin signaling by MSAB confirmed these results. Additionally, β-catenin was significantly expressed in cancerous tissue compared to adjacent areas (P < 0.001). Conclusions Our findings suggest that MC-LR promotes cell proliferation and progression of CCA through Wnt/β-catenin pathway. Further evaluation using invivo experiments is needed to confirm this observation. This finding could promote health awareness regarding MC-LR intake and risk of CCA.
Collapse
Affiliation(s)
- Suppakrit Kongsintaweesuk
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Medical Sciences Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
17
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
19
|
Karamad V, Sogutlu F, Ozkaya FC, Shademan B, Ebrahim W, El-Neketi M, Avci CB. Investigation of iso-propylchaetominine anticancer activity on apoptosis, cell cycle and Wnt signaling pathway in different cancer models. Fitoterapia 2024; 173:105789. [PMID: 38158162 DOI: 10.1016/j.fitote.2023.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Dysregulation of the Wnt signaling pathway contributes to the development of many cancer types. Natural compounds produced with biotechnological systems have been the focus of research for being a new drug candidate both with unlimited resources and cost-effective production. In this study, it was aimed to reveal the effects of isopropylchaetominine on cytotoxic, cytostatic, apoptotic and Wnt signaling pathways in brain, pancreatic and prostate cancer. The IC50 values of isopropylchaetominine in U-87 MG, PANC1, PC3 and LNCaP cells were calculated as 91.94 μM, 41.68 μM, 54.54 μM and 7.86 μM in 72nd h, respectively. The metabolite arrests the cell cycle in G0/G1 phase in each cancer cells. Iso-propylchaetominine induced a 4.3-fold and 1.9-fold increase in apoptosis in PC3 and PANC1 cells, respectively. The toxicity of isopropylchaetominine in healthy fibroblast cells was assessed using the annexin V method, and no significant apoptotic activity was observed between the groups treated with the active substance and untreated. In U-87 MG, PANC1, PC3, and LNCaP cells under treatment with isopropylchaetominin, the expression levels of DKK3, TLE1, AES, DKK1, FRZB, DAB2, AXIN1/2, PPARD, SFRP4, APC and SOX17 tumor suppressor genes increased significantly. Decreases in expression of Wnt1, Wnt2, Wnt3, Wnt4, Wnt5, Wnt6, Wnt10, Wnt11, FRZ2, FRZ3, FRZ7, TCF7L1, BCL9, PYGO, CCND2, c-MYC, WISP1 and CTNNB1 oncogenic genes were detected. All these result shows that isopropylchaetominine can present promising new treatment strategy in different cancer types.
Collapse
Affiliation(s)
- Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ferhat Can Ozkaya
- Aliaga Industrial Zone Technology Transfer Office, Aliaga, İzmir 35800, Turkey
| | - Behrouz Shademan
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
20
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
21
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
22
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 PMCID: PMC11528747 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H. Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Raghav A, Goo-Bo-Jeong. Two-Dimensional (2D) Based Hybrid Polymeric Nanoparticles as Novel Potential Therapeutics in the Treatment of Hepatocellular Carcinoma. ENGINEERING MATERIALS 2024:329-349. [DOI: 10.1007/978-981-99-8010-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
25
|
Gao X, Yi Y, Lv J, Li Y, Arulsamy K, Babu S, Bruno I, Zhang L, Cao Q, Chen K. Low RNA stability signifies strong expression regulatability of tumor suppressors. Nucleic Acids Res 2023; 51:11534-11548. [PMID: 37831104 PMCID: PMC10681714 DOI: 10.1093/nar/gkad838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
RNA expression of a gene is determined by not only transcriptional regulation, but also post-transcriptional regulation of RNA decay. The precise regulation of RNA stability in the cell plays an important role in normal development. Dysregulation of RNA stability can lead to diseases such as cancer. Here we found tumor suppressor RNAs tended to decay fast in normal cell types when compared with other RNAs. Consistent with a negative effect of m6A modification on RNA stability, we observed preferential deposition of m6A on tumor suppressor RNAs. Moreover, abundant m6A and fast decay of tumor suppressor RNAs both tended to be further enhanced in prostate cancer cells relative to normal prostate epithelial cells. Further, knockdown of m6A methyltransferase METTL3 and reader YTHDF2 in prostate cancer cells both posed stronger effect on tumor suppressor RNAs than on other RNAs. These results indicated a strong post transcriptional expression regulatability mediated by abundant m6A modification on tumor suppressor RNAs.
Collapse
Affiliation(s)
- Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Kulandaisamy Arulsamy
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Prostate Cancer Program, Dana-Farber Harvard cancer Center, Boston, MA 02115, USA
| |
Collapse
|
26
|
Tsai HW, Cheng SW, Chen CC, Chen IW, Ho CL. A combined bioinformatics and experimental approach identifies RMI2 as a Wnt/β-catenin signaling target gene related to hepatocellular carcinoma. BMC Cancer 2023; 23:1025. [PMID: 37875822 PMCID: PMC10594864 DOI: 10.1186/s12885-023-10655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/15/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The Wnt/β-catenin signaling pathway plays an important role in embryogenesis and tumorigenesis. In human cancer, abnormal activity of Wnt/β-catenin signaling pathway induces overexpressed of downstream genes, and initiate oncogene. There are several target genes known to be key players in tumorigenesis, such as c-myc, cyclin D1, MMPs or survivin. Therefore, identifying the target genes of Wnt/β-catenin signaling pathway is important to understanding Wnt/β-catenin-mediated carcinogenesis. In this study, we developed a combined bioinformatics and experimental approach to find potential target genes. METHODS Luciferase reporter assay was used to analyze the promoter activity of RMI2. WST1 cell proliferation assays and transwell assays were performed to determine the proliferation and migration capacities of RMI2 overexpressing or knockdown stable hepatic cells. Finally, xenograft experiments were performed to measure the tumor formation capacity in vivo. RESULTS The results showed that RMI2 mRNA was upregulated after LiCl treatment and Wnt3a-conditioned medium in a culture of SK-hep-1 cell lines. A chromatin immunoprecipitation (ChIP) assay showed that the β-catenin/T cell-specific factor (TCF) complex binds to the putative TCF binding site of the RMI2 promoter. We then found a TCF binding site at - 333/- 326 of the RMI2 promoter, which is crucial for β-catenin responsiveness in liver cell lines. RMI2 was overexpressed in hepatoma tissue and cell lines, and it promoted the migration and invasion of HCC cells. Moreover, RMI2 upregulated the expression of epithelial-mesenchymal transition (EMT) markers and the Wnt3a/β-catenin-related genes, but silencing RMI2 had the opposite effects. Notably, the expression of RMI2 was positively correlated with the clinical data of HCC patients who had significantly shorter overall survival (OS) and disease-free survival (DFS) (Both: P < 0.05). In addition, a total of 373 HCC patients' data from the Caner Genome Atlas project (TCGA) were used to validate our findings. CONCLUSIONS Taking all these findings together, we determined that RMI2 was a new target gene of the Wnt/β-catenin signaling pathway. We also found that RMI2 promotes EMT markers, HCC cell invasion, and metastasis, which indicated that RMI2 is a potential target for preventing or at least mitigating the progression of HCC.
Collapse
Affiliation(s)
- Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, 704, Taiwan
| | - Shu-Wen Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, 704, Taiwan
| | - Chou-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Business Management, CTBC Business School, Tainan, Taiwan
| | - I-Wen Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, 704, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan City, 704, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Alshahrani SH, Rakhimov N, Rana A, Alsaab HO, Hjazi A, Adile M, Abosaooda M, Abdulhussien Alazbjee AA, Alsalamy A, Mahmoudi R. Dishevelled: An emerging therapeutic oncogene in human cancers. Pathol Res Pract 2023; 250:154793. [PMID: 37683388 DOI: 10.1016/j.prp.2023.154793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of β-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs,Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Arti Rana
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Terhal P, Venhuizen AJ, Lessel D, Tan WH, Alswaid A, Grün R, Alzaidan HI, von Kroge S, Ragab N, Hempel M, Kubisch C, Novais E, Cristobal A, Tripolszki K, Bauer P, Fischer-Zirnsak B, Nievelstein RAJ, van Dijk A, Nikkels P, Oheim R, Hahn H, Bertoli-Avella A, Maurice MM, Kornak U. AXIN1 bi-allelic variants disrupting the C-terminal DIX domain cause craniometadiaphyseal osteosclerosis with hip dysplasia. Am J Hum Genet 2023; 110:1470-1481. [PMID: 37582359 PMCID: PMC10502735 DOI: 10.1016/j.ajhg.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the β-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.
Collapse
Affiliation(s)
- Paulien Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, 3584EA Utrecht, the Netherlands.
| | - Anton J Venhuizen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abdulrahman Alswaid
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, Riyadh 14611, Saudi Arabia; King Saud Bin Abdulaziz University For Health Sciences, Riyadh 22490, Saudi Arabia
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Hamad I Alzaidan
- Medical Genetics Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Nada Ragab
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Novais
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alba Cristobal
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | | | - Peter Bauer
- Centogene GmbH, 18055 Rostock, Germany; University Hospital Rostock, Internal Medicine, Hemato-oncology, 18057 Rostock, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rutger A J Nievelstein
- Department of Radiology & Nuclear Medicine, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Atty van Dijk
- Expert Center for Skeletal Dysplasia, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584EA Utrecht, the Netherlands
| | - Peter Nikkels
- Department of Pathology, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Madelon M Maurice
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany; Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
29
|
Schaeffer S, Gupta B, Calatayud AL, Calderaro J, Caruso S, Hirsch TZ, Pelletier L, Zucman-Rossi J, Rebouissou S. RSK2 inactivation cooperates with AXIN1 inactivation or β-catenin activation to promote hepatocarcinogenesis. J Hepatol 2023; 79:704-716. [PMID: 37201672 DOI: 10.1016/j.jhep.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or β-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or β-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or β-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.
Collapse
Affiliation(s)
- Samantha Schaeffer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Barkha Gupta
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Anna-Line Calatayud
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Julien Calderaro
- Service d'Anatomopathologie, Hôpital Henri Mondor, APHP, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Théo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.
| |
Collapse
|
30
|
Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42:629-652. [PMID: 36729264 DOI: 10.1007/s10555-023-10084-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and one of the leading causes of cancer-related death. The biological process of HCC is complex, with multiple factors leading to the broken of the balance of inactivation and activation of tumor suppressor genes and oncogenes, the abnormal activation of molecular signaling pathways, the differentiation of HCC cells, and the regulation of angiogenesis. Due to the insidious onset of HCC, at the time of first diagnosis, less than 30% of HCC patients are candidates for radical treatment. Systematic antitumor therapy is the hope for the treatment of patients with middle-advanced HCC. Despite the emergence of new systemic therapies, survival rates for advanced HCC patients remain low. The complex pathogenesis of HCC has inspired researchers to explore a variety of biomolecular targeted therapeutics targeting specific targets. Correct understanding of the molecular mechanism of HCC occurrence is key to seeking effective targeted therapy. Research on biomarkers for HCC treatment is also advancing. Here, we explore the molecular mechanism that are associated with HCC development, summarize targeted therapies for HCC, and discuss potential biomarkers that may drive therapies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
31
|
Haraoka Y, Miyake M, Ishitani T. Zebrafish imaging reveals hidden oncogenic-normal cell communication during primary tumorigenesis. Cell Struct Funct 2023; 48:113-121. [PMID: 37164759 PMCID: PMC10721949 DOI: 10.1247/csf.23026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Oncogenic mutations drive tumorigenesis, and single cells with oncogenic mutations act as the tumor seeds that gradually evolve into fully transformed tumors. However, oncogenic cell behavior and communication with neighboring cells during primary tumorigenesis remain poorly understood. We used the zebrafish, a small vertebrate model suitable for in vivo cell biology, to address these issues. We describe the cooperative and competitive communication between oncogenic cells and neighboring cells, as revealed by our recent zebrafish imaging studies. Newly generated oncogenic cells are actively eliminated by neighboring cells in healthy epithelia, whereas oncogenic cells cooperate with their neighbors to prime tumorigenesis in unhealthy epithelia via additional mutations or inflammation. In addition, we discuss the potential of zebrafish in vivo imaging to determine the initial steps of human tumorigenesis.Key words: zebrafish, imaging, cell-cell communication, cell competition, EDAC, senescence, primary tumorigenesis.
Collapse
Affiliation(s)
- Yukinari Haraoka
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mai Miyake
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Antony F, Kang X, Pundkar C, Wang C, Mishra A, Chen P, Babu RJ, Suryawanshi A. Targeting β-catenin using XAV939 nanoparticle promotes immunogenic cell death and suppresses conjunctival melanoma progression. Int J Pharm 2023; 640:123043. [PMID: 37172631 PMCID: PMC10399699 DOI: 10.1016/j.ijpharm.2023.123043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Many tumors dysregulate Wnt/β-catenin pathway to promote stem-cell-like phenotype, tumorigenesis, immunosuppression, and resistance to targeted cancer immunotherapies. Therefore, targeting this pathway is a promising therapeutic approach to suppress tumor progression and elicit robust anti-tumor immunity. In this study, using a nanoparticle formulation for XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we investigated the effect of β-catenin inhibition on melanoma cell viability, migration, and tumor progression using a mouse model of conjunctival melanoma. XAV-Nps were uniform and displayed near-spherical morphology with size stability for upto 5 days. We show that XAV-Np treatment of mouse melanoma cells significantly suppresses cell viability, tumor cell migration, and tumor spheroid formation compared to control nanoparticle (Con-Np) or free XAV939-treated groups. Further, we demonstrate that XAV-Np promotes immunogenic cell death (ICD) of tumor cells with a significant extracellular release or expression of ICD molecules, including high mobility group box 1 protein (HMGB1), calreticulin (CRT), and adenosine triphosphate (ATP). Finally, we show that local intra-tumoral delivery of XAV-Nps during conjunctival melanoma progression significantly suppresses tumor size and conjunctival melanoma progression compared to Con-Nps-treated animals. Collectively, our data suggest that selective inhibition of β-catenin in tumor cells using nanoparticle-based targeted delivery represents a novel approach to suppress tumor progression through increased tumor cell ICD.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
33
|
Liang B, Wang H, Qiao Y, Wang X, Qian M, Song X, Zhou Y, Zhang Y, Shang R, Che L, Chen Y, Huang Z, Wu H, Monga SP, Zeng Y, Calvisi DF, Chen X, Chen X. Differential requirement of Hippo cascade during CTNNB1 or AXIN1 mutation-driven hepatocarcinogenesis. Hepatology 2023; 77:1929-1942. [PMID: 35921500 PMCID: PMC10572102 DOI: 10.1002/hep.32693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS The requirement of YAP/TAZ in c-Met/β-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/β-Catenin HCCs. YAP is the major Hippo effector in c-Met/β-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.
Collapse
Affiliation(s)
- Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Haichuan Wang
- Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Manning Qian
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University (The 910 Hospital), Quanzhou, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Legend Biotech USA, New Jersey, USA
| | - Yifa Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wu
- Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Satdarshan P. Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yong Zeng
- Department of Liver Surgery, Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg 93053, Germany
| | - Xiaoping Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- University of Hawaii Cancer Center, Hawaii, USA
| |
Collapse
|
34
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
35
|
Wu Y, Yang S, Han L, Shang K, Zhang B, Gai X, Deng W, Liu F, Zhang H. β-catenin-IRP2-primed iron availability to mitochondrial metabolism is druggable for active β-catenin-mediated cancer. J Transl Med 2023; 21:50. [PMID: 36703130 PMCID: PMC9879242 DOI: 10.1186/s12967-023-03914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although β-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated β-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of β-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify β-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in β-catenin-activated cells. Online databases were analyzed for correlation between β-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS Iron chelators were identified as selective inhibitors against β-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed β-catenin-activated cell proliferation and tumor formation in mice. Mechanically, β-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired β-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced β-catenin-associated cell viability and tumor formation. CONCLUSIONS β-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of β-catenin-potentiated cancer.
Collapse
Affiliation(s)
- Yuting Wu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Shuhui Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Luyang Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Kezhuo Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Baohui Zhang
- grid.412449.e0000 0000 9678 1884Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Xiaochen Gai
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Weiwei Deng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Fangming Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, China
| |
Collapse
|
36
|
Muto S, Enta A, Maruya Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, Yamaura T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Hamada K, Suzuki H. Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines 2023; 11:biomedicines11010190. [PMID: 36672698 PMCID: PMC9855612 DOI: 10.3390/biomedicines11010190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The standard of care for advanced non-small-cell lung cancer (NSCLC) without driver-gene mutations is a combination of an anti-PD-1/PD-L1 antibody and chemotherapy, or an anti-PD-1/PD-L1 antibody and an anti-CTLA-4 antibody with or without chemotherapy. Although there were fewer cases of disease progression in the early stages of combination treatment than with anti-PD-1/PD-L1 antibodies alone, only approximately half of the patients had a long-term response. Therefore, it is necessary to elucidate the mechanisms of resistance to immune checkpoint inhibitors. Recent reports of such mechanisms include reduced cancer-cell immunogenicity, loss of major histocompatibility complex, dysfunctional tumor-intrinsic interferon-γ signaling, and oncogenic signaling leading to immunoediting. Among these, the Wnt/β-catenin pathway is a notable potential mechanism of immune escape and resistance to immune checkpoint inhibitors. In this review, we will summarize findings on these resistance mechanisms in NSCLC and other cancers, focusing on Wnt/β-catenin signaling. First, we will review the molecular biology of Wnt/β-catenin signaling, then discuss how it can induce immunoediting and resistance to immune checkpoint inhibitors. We will also describe other various mechanisms of immune-checkpoint-inhibitor resistance. Finally, we will propose therapeutic approaches to overcome these mechanisms.
Collapse
Affiliation(s)
- Satoshi Muto
- Correspondence: ; Tel.: +81-24-547-1252; Fax: +81-24-548-2735
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Timoteo VJ, Chiang KM, Yang HC, Pan WH. Common and ethnic-specific genetic determinants of hemoglobin concentration between Taiwanese Han Chinese and European Whites: findings from comparative two-stage genome-wide association studies. J Nutr Biochem 2023; 111:109126. [PMID: 35964923 DOI: 10.1016/j.jnutbio.2022.109126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022]
Abstract
Human iron nutrition is a result of interplays between genetic and environmental factors. However, there has been scarcity of data on the genetic variants associated with altered iron homeostasis and ethnic-specific associations are further lacking. In this study, we compared between the Taiwanese Han Chinese (HC) and European Whites the genetic determinants of hemoglobin (Hb) concentration, a biochemical parameter that in part reflects the amount of functional iron in the body. Through sex-specific two-stage genome-wide association studies (2S-GWAS), we observed the consistent Hb-association of SNPs in TMPRSS6 (chr 22), ABO (chr 9), and PRKCE (chr 2) across sexes in both ethnic groups. Specific to the Taiwanese HC, the Hb-association of AXIN1, together with other loci near the chr 16 alpha-globin gene cluster, was found novel. On the other hand, majority of the Hb-associated SNPs among Europeans were identified along the chr 6 major histocompatibility complex (MHC) region, which has established roles in immune system control. We report here strong Hb-associations of HFE and members of gene families (SLC17; H2A, H2B, H3, H4, H1; TRIM; ZSCAN, ZKSCAN, ZNF; HLA; BTN, OR), numerous SNPs in/nearby CARMIL1, PRRC2A, PSORS1C1, NOTCH4, TSBP1, C6orf15, and distinct associations with non-coding RNA genes. Our findings provide evidence for both common and ethnic-specific genetic determinants of Hb between East Asians and Caucasians. These will help to further our understanding of the iron and/or erythropoiesis physiology in humans and to identify high risk subgroups for iron imbalances - a primary requirement to meet the goal of precision nutrition for optimal health.
Collapse
Affiliation(s)
- Vanessa Joy Timoteo
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Kuang-Mao Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan.
| |
Collapse
|
38
|
Sanson R, Lazzara SL, Cune D, Pitasi CL, Trentesaux C, Fraudeau M, Letourneur F, Saintpierre B, Le Gall M, Bossard P, Terris B, Finetti P, Bertucci F, Mamessier E, Romagnolo B, Perret C. Axin1 Protects Colon Carcinogenesis by an Immune-Mediated Effect. Cell Mol Gastroenterol Hepatol 2023; 15:689-715. [PMID: 36356835 PMCID: PMC9874083 DOI: 10.1016/j.jcmgh.2022.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND & AIMS Axin1 is a negative regulator of wingless-type MMTV integration site family, member 1 (Wnt)/β-catenin signaling with tumor-suppressor function. The Wnt pathway has a critical role in the intestine, both during homeostasis and cancer, but the role of Axin1 remains elusive. METHODS We assessed the role of Axin1 in normal intestinal homeostasis, with control, epithelial-specific, Axin1-knockout mice (Axin1ΔIEC) and Axin2-knockout mice. We evaluated the tumor-suppressor function of Axin1 during chemically induced colorectal tumorigenesis and dextran sulfate sodium-induced colitis, and performed comparative gene expression profiling by whole-genome RNA sequencing. The clinical relevance of the Axin1-dependent gene expression signature then was tested in a database of 2239 clinical colorectal cancer (CRC) samples. RESULTS We found that Axin1 was dispensable for normal intestinal homeostasis and redundant with Axin2 for Wnt pathway down-regulation. Axin1 deficiency in intestinal epithelial cells rendered mice more susceptible to chemically induced colon carcinogenesis, but reduced dextran sulfate sodium-induced colitis by attenuating the induction of a proinflammatory program. RNA-seq analyses identified an interferon γ/T-helper1 immune program controlled by Axin1 that enhances the inflammatory response and protects against CRC. The Axin1-dependent gene expression signature was applied to human CRC samples and identified a group of patients with potential vulnerability to immune checkpoint blockade therapies. CONCLUSIONS Our study establishes, in vivo, that Axin1 has redundant function with Axin2 for Wnt down-regulation and infers a new role for Axin1. Physiologically, Axin1 stimulates gut inflammation via an interferon γ/Th1 program that prevents tumor growth. Linked to its T-cell-mediated effect, the colonic Axin1 signature offers therapeutic perspectives for CRC.
Collapse
Affiliation(s)
- Romain Sanson
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Silvia Luna Lazzara
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - David Cune
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Coralie Trentesaux
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Marie Fraudeau
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Franck Letourneur
- Genomic Facility, Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France
| | - Benjamin Saintpierre
- Genomic Facility, Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France
| | - Morgane Le Gall
- Proteomic Facility, Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France
| | - Pascale Bossard
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Benoit Terris
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Pathology Department, Hôpital Cochin, Paris, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM Unité Mixte de Recherche 1068, Centre National Recherche Scientifique Unité Mixte de Recherche 725, Marseille, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM Unité Mixte de Recherche 1068, Centre National Recherche Scientifique Unité Mixte de Recherche 725, Marseille, France
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM Unité Mixte de Recherche 1068, Centre National Recherche Scientifique Unité Mixte de Recherche 725, Marseille, France
| | - Béatrice Romagnolo
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| | - Christine Perret
- Université de Paris, Institut Cochin, INSERM, Centre National Recherche Scientifique, Paris, France; Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| |
Collapse
|
39
|
Zou G, Park JI. Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol 2023; 29:33-50. [PMID: 35785913 PMCID: PMC9845677 DOI: 10.3350/cmh.2022.0058] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023] Open
Abstract
The liver exhibits the highest recovery rate from acute injuries. However, in chronic liver disease, the long-term loss of hepatocytes often leads to adverse consequences such as fibrosis, cirrhosis, and liver cancer. The Wnt signaling plays a pivotal role in both liver regeneration and tumorigenesis. Therefore, manipulating the Wnt signaling has become an attractive approach to treating liver disease, including cancer. Nonetheless, given the crucial roles of Wnt signaling in physiological processes, blocking Wnt signaling can also cause several adverse effects. Recent studies have identified cancer-specific regulators of Wnt signaling, which would overcome the limitation of Wnt signaling target approaches. In this review, we discussed the role of Wnt signaling in liver regeneration, precancerous lesion, and liver cancer. Furthermore, we summarized the basic and clinical approaches of Wnt signaling blockade and proposed the therapeutic prospects of cancer-specific Wnt signaling blockade for liver cancer treatment.
Collapse
Affiliation(s)
- Gengyi Zou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author : Gengyi Zou Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd Unit 1054, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA,Jae-Il Park Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd. Unit 1052, Houston, TX 77030, USA Tel: +1-713-792-3659, Fax: +1-713-794-5369, E-mail:
| |
Collapse
|
40
|
Hepatocellular Carcinoma: Current Therapeutic Algorithm for Localized and Advanced Disease. JOURNAL OF ONCOLOGY 2022; 2022:3817724. [PMID: 36624801 PMCID: PMC9825221 DOI: 10.1155/2022/3817724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in patients with liver cirrhosis of various etiologies. In recent years, there has been an advance in the knowledge of molecular mechanisms and a better staging definition of patients which has allowed the development of new therapies that have entered the therapeutic workup of these patients. Deep information on molecular drivers of HCC contributed to the development of targeted therapies with remarkable benefits. The novel strategies of targeting immune evasion using immune checkpoint inhibitors and CAR-T and TCR-T therapeutics have also shown promising results. For advanced diseases, the therapeutic algorithm has been recently updated, thanks to the efficacy of combining immunotherapy and antiangiogenic therapy in the first-line setting, and new drugs, both as single-agents or combinations, are currently under investigation.
Collapse
|
41
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
42
|
Nagy G, Gerlei Z, Haboub-Sandil A, Görög D, Szabó J, Kóbori L, Huszty G, Bihari L, Rózsa B, Pőcze B, Máthé Z, Piros L. Optimizing Survival for Hepatocellular Carcinoma After Liver Transplantation: A Single-Center Report and Current Perspectives. Transplant Proc 2022; 54:2593-2597. [DOI: 10.1016/j.transproceed.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Kashyap A, Tripathi G, Tripathi A, Rao R, Kashyap M, Bhat A, Kumar D, Rajhans A, Kumar P, Chandrashekar DS, Mahmood R, Husain A, Zayed H, Bharti AC, Kashyap MK. RNA splicing: a dual-edged sword for hepatocellular carcinoma. Med Oncol 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
Affiliation(s)
- Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Manju Kashyap
- Facultad de Ingeniería Y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Deepak Kumar
- ThermoFisher Scientific, Carlsbad, CA, 92008, USA
| | - Anjali Rajhans
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | | | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaragatta (Shimoga), Jnanasahyadri, Karnataka, 577451, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India.
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
44
|
Abstract
Craniopharyngioma (CP) is an intracranial benign tumor that behaves aggressively due to its location, infiltration of the surrounding nervous tissue and high capacity for recurrence. Treatment of choice is surgery followed or not by radiotherapy. Recent advances in molecular biology techniques and the better understanding of the genetic alterations of the two histological types of CP have open new therapeutic perspectives with targeted drugs. Adamantinomatous CP (ACP) is associated with activating mutations of the CTNNB1 gene. Such mutations are accompanied by intracellular accumulation of β-catenin, an oncogenic protein that activates the intracellular Wnt/ β-catenin signaling pathway, which regulates the transcription of genes involved in cell proliferation. Therefore, the use of molecular therapies directed against the activation of the Wnt/ β-catenin pathway could be an attractive and promising therapeutic option in the management of ACPs. On the other hand, papillary CP (PCP) is associated with activating mutations in the BRAF gene. This gene encodes a BRAF protein that plays an important role in the intracellular mitogen-activated protein kinase (MAPK) signaling pathway, which also regulates cell proliferation. The use of BRAF inhibitors either in monotherapy or in combination with mitogen-activated protein kinase (MEK) inhibitors has demonstrated therapeutic efficacy in isolated clinical cases of relapsed PCPs. A preliminary report of a recent phase II clinical trial has shown a therapeutic response in 93.7% of patients with BRAF V600E -mutated PCP, with an 85% reduction in tumor size. In the present review we comment on the efficacy and safety of the different drugs being used in patients with PCP.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Calle Manuel de Falla 1, 28222, Madrid, Spain.
| |
Collapse
|
45
|
Dong X, Zhang X, Liu P, Tian Y, Li L, Gong P. Lipolysis-Stimulated Lipoprotein Receptor Impairs Hepatocellular Carcinoma and Inhibits the Oncogenic Activity of YAP1 via PPPY Motif. Front Oncol 2022; 12:896412. [PMID: 35586495 PMCID: PMC9108500 DOI: 10.3389/fonc.2022.896412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Lipolysis-stimulated lipoprotein receptor (LSR) is a type I single-pass transmembrane protein which is mainly expressed in the liver. In this study, we investigated if and how LSR is involved in the carcinogenesis of hepatocellular carcinoma (HCC). Experimental Design To evaluate if LSR was abnormally expressed in human HCC tissues, and how its expression was associated with the survival probability of patients, we obtained data from Gene Expression Omnibus and The Cancer Genome Atlas Program. To investigate if and how LSR regulates tumor growth, we knocked down and overexpressed LSR in human HCC cell lines. In addition, to evaluate the interaction between LSR and yes-associated protein1 (YAP1), we mutated LSR at PPPY motif, a binding site of YAP1. Results Totally, 454 patients were enrolled in the present study, and high expression of LSR significantly decreased the probability of death. Knockdown of LSR significantly increased the expansion of HCC cells and significantly promoted tumor growth. In addition, downregulation of LSR increased the nuclear accumulation and transcriptional function of YAP1. Conversely, overexpression of LSR impairs this function of YAP1 and phosphorylates YAP1 at serine 127. Of note, mutation of LSR at the PPPY motif could block the interaction between LSR and YAP1, and restore the transcriptional ability of YAP1. Conclusions The present study suggests that LSR binds to YAP1 via the PPPY motif. Thus, LSR increases the phosphorylation of YAP1 and impairs the growth of HCC. This highlights that targeting LSR might be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Liu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Tian
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Li
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
46
|
Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. BIOLOGY 2022; 11:biology11040585. [PMID: 35453784 PMCID: PMC9027240 DOI: 10.3390/biology11040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and its incidence is steadily increasing. The development of HCC is a complex, multi-step process that is accompanied by alterations in multiple signaling cascades. Recent years have seen advancement in understanding molecular signaling pathways that play central roles in hepatocarcinogenesis. Aberrant activation of YAP/TAZ, Hedgehog, or Wnt/β-catenin signaling is frequently found in a subset of HCC patients. Targeting the signaling pathway via small molecule inhibitors could be a promising therapeutic option for the subset of patients. In this review, we will introduce the signaling pathways, discuss their roles in the development of HCC, and propose a therapeutic approach targeting the signaling pathways in the context of HCC. Abstract Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. To date, receptor tyrosine kinases (RTKs) are the most favored molecular targets for the treatment of HCC, followed by immune checkpoint regulators such as PD-1, PD-L1, and CTLA-4. With less than desirable clinical outcomes from RTK inhibitors as well as immune checkpoint inhibitors (ICI) so far, novel molecular target therapies have been proposed for HCC. In this review, we will introduce diverse molecular signaling pathways that are aberrantly activated in HCC, focusing on YAP/TAZ, Hedgehog, and Wnt/β-catenin signaling pathways, and discuss potential therapeutic strategies targeting the signaling pathways in HCC.
Collapse
|
47
|
Abstract
Here we review the regulation of macropinocytosis by Wnt growth factor signaling. Canonical Wnt signaling is normally thought of as a regulator of nuclear β-catenin, but emerging results indicate that there is much more than β-catenin to the Wnt pathway. Macropinocytosis is transiently regulated by EGF-RTK-Ras-PI3K signaling. Recent studies show that Wnt signaling provides for sustained acquisition of nutrients by macropinocytosis. Endocytosis of Wnt-Lrp6-Fz receptor complexes triggers the sequestration of GSK3 and components of the cytosolic destruction complex such as Axin1 inside multivesicular bodies (MVBs) through the action of the ESCRT machinery. Wnt macropinocytosis can be induced both by the transcriptional loop of stabilized β-catenin, and by the inhibition of GSK3 even in the absence of new protein synthesis. The cell is poised for macropinocytosis, and all it requires for triggering of Pak1 and the actin machinery is the inhibition of GSK3. Striking lysosomal acidification, which requires macropinocytosis, is induced by GSK3 chemical inhibitors or Wnt protein. Wnt-induced macropinocytosis requires the ESCRT machinery that forms MVBs. In cancer cells, mutations in the tumor suppressors APC and Axin1 result in extensive macropinocytosis, which can be reversed by restoring wild-type protein. In basal cellular conditions, GSK3 functions to constitutively repress macropinocytosis.
Collapse
|
48
|
Proulx J, Ghaly M, Park IW, Borgmann K. HIV-1-Mediated Acceleration of Oncovirus-Related Non-AIDS-Defining Cancers. Biomedicines 2022; 10:biomedicines10040768. [PMID: 35453518 PMCID: PMC9024568 DOI: 10.3390/biomedicines10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the advent of combination antiretroviral therapy (cART), overall survival has been improved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading cause of death in people living with HIV in certain highly developed countries, such as France. However, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration of non-AIDS-defining cancers.
Collapse
|
49
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
50
|
Doi T, Hojo H, Ohba S, Obayashi K, Endo M, Ishizaki T, Katoh A, Kouji H. Involvement of activator protein-1 family members in β-catenin and p300 association on the genome of PANC-1 cells. Heliyon 2022; 8:e08890. [PMID: 35198763 PMCID: PMC8841382 DOI: 10.1016/j.heliyon.2022.e08890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
Wnt/β-catenin is believed to regulate different sets of genes with different coactivators, cAMP response element-binding protein (CREB)-binding protein (CBP) or p300. However, the factors that determine which coactivators act on a particular promoter remain elusive. ICG-001 is a specific inhibitor for β-catenin/CBP but not for β-catenin/p300. By taking advantage of the action of ICG-001, we sought to investigate regulatory mechanisms underlying β-catenin coactivator usage in human pancreatic carcinoma PANC-1 cells through combinatorial analysis of chromatin immunoprecipitation-sequencing and RNA-sequencing. CBP and p300 preferentially bound to regions with the TCF motif alone and with both the TCF and AP-1 motifs, respectively. ICG-001 increased β-catenin binding to regions with both the TCF and AP-1 motifs, flanking the genes induced by ICG-001, concomitant with the increments of the p300 and AP-1 component c-JUN binding. Taken together, AP-1 possibly coordinates β-catenin coactivator usage in PANC-1 cells. These results would further our understanding of the canonical Wnt/β-catenin signaling divergence.
Collapse
Affiliation(s)
- Tomomitsu Doi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Corresponding author.
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Akira Katoh
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Hiroyuki Kouji
- Translational Chemical Biology Laboratory, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Oita University Institute of Advanced Medicine, Inc., 17-20, Higashi Kasuga-machi, Oita-city, Oita, 870-0037, Japan
| |
Collapse
|