1
|
John P, Sriram S, Palanichamy C, Subash PT, Sudandiradoss C. A multifarious bacterial surface display: potential platform for biotechnological applications. Crit Rev Microbiol 2025:1-26. [PMID: 39955766 DOI: 10.1080/1040841x.2025.2461054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.
Collapse
Affiliation(s)
- Pearl John
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srineevas Sriram
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandresh Palanichamy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P T Subash
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Ramezani Khorsand F, Hakimi Naeini S, Molakarimi M, Dehnavi E, Zeinoddini M, Sajedi RH. Surface display provides an efficient expression system for production of recombinant proteins and bacterial whole cell biosensor in E. coli. Anal Biochem 2024; 694:115599. [PMID: 38964699 DOI: 10.1016/j.ab.2024.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green fluorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 μM concentration range, respectively, with a 1.3 nM and 0.14 μM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.
Collapse
Affiliation(s)
- Fereshteh Ramezani Khorsand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Saghi Hakimi Naeini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Ehsan Dehnavi
- Gene Transfer Pioneers (GTP) Research Group, Incubation Center of Pharmaceutical Technologies, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
3
|
Zhang R, Ye N, Wang Z, Yang S, Li J. A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins. Cell Mol Bioeng 2024; 17:453-465. [PMID: 39513006 PMCID: PMC11538204 DOI: 10.1007/s12195-024-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in E. coli as a new strategy to improve the surface display of recombinant proteins. Methods We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out ompA in two E. coli strains, K-12 MG1655 and E. coli BL-21, which have broad research and therapeutic applications. We then combined ompA knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade. Results A total of six different display constructs were tested for their display levels by flow cytometry, showing that the ompA knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains. Conclusions By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology's relevance in the field. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00819-w.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
4
|
Yang M, Luo S, Zhou Q, Lu J, Chen J. Immersion immunization with recombinant Saccharomyces cerevisiae displaying ORF25 induced protective immunity against cyprinid herpesvirus 2. JOURNAL OF FISH DISEASES 2024; 47:e13996. [PMID: 38973170 DOI: 10.1111/jfd.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Displaying antigens on yeast surface as an oral vaccine has been widely explored, while its potential as an immersion vaccine has not been evaluated. Here, an immersion vaccine was prepared by displaying ORF25 of Cyprinid herpesvirus 2 (CyHV-2) on the surface of Saccharomyces cerevisiae. Carassius auratus gibelio was immersion immunized by 2 × 107 CFU/mL yeast for 2 h, and reinforce the immunity using the same method 14 days after the first immunization. The results showed that ORF25 specific antibody in immunized crucian carp serum was detected at a high level, and the mRNA expression level of IgM, IgT, IL-1β, and IFN-1 in vaccinated head-kidney and spleen tissues were higher than the control group, indicating that innate and adaptive immunity were induced. Moreover, the immersion vaccination provided effective protection for fish against CyHV-2, leading to a relative percent survival of 50.2%. Meanwhile, immersion vaccination restrained virus replication and histological damage in CyHV-2 infected crucian carp. Our data suggested that immersion immunization of S. cerevisiae-displayed ORF25 could be served as a candidate vaccine to prevent CyHV-2 infection.
Collapse
Affiliation(s)
- Maoxia Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Qianjin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Yu Y, Tang X, Duan C, Suo J, Crouch C, Zhang S, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Microneme-located VP2 in Eimeria acervulina elicits effective protective immunity against infectious bursal disease virus. Infect Immun 2024; 92:e0045623. [PMID: 38179959 PMCID: PMC10863409 DOI: 10.1128/iai.00456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Using transgenic Eimeria spp. to deliver exogenous antigens is a viable option for developing multivalent live vaccines. Previous research revealed that the location of antigen expression in recombinant Eimeria dictates the magnitude and type of immune responses. In this study, we constructed genetically modified Eimeria acervulina that expressed VP2 protein, a protective antigen from infectious bursal disease virus (IBDV), on the surface or in the microneme of sporozoites. After vaccination, VP2-specific antibody was readily detected in specific pathogen-free chickens receiving transgenic E. acervulina parasites expressing VP2 in microneme, but animals vaccinated with which expressing VP2 on surface failed to produce detectable antibody after two times immunizations. Moreover, the bursal lesion of microneme-located VP2 transgenic E. acervulina immunized chickens was less severe compared with un-immunized animals after IBDV challenge infection. Therefore, genetically modified E. acervulina that express IBDV-derived VP2 in micronemes are effective in inducing specific antibody responses against VP2, while parasites that have VP2 expression on cell surface are not suitable. Thus, the use of Eimeria parasites as vaccine vectors needs to consider the proper targeting of exogenous immunogens. Our results have implications for the design of other vector vaccines.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Bejing, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhao B, Guo Y, Sun R, Zhang L, Yang L, Mei X, Zhang L, Huang J. Quadrivalent hemagglutinin and adhesion expressed on Saccharomyces cerevisiae induce protective immunity against Mycoplasma gallisepticum infection and improve gut microbiota. Microb Pathog 2024; 187:106511. [PMID: 38168552 DOI: 10.1016/j.micpath.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Mycoplasma gallisepticum (MG) infection causes infectious respiratory diseases in poultry, causing economic losses to the poultry industry. Therefore, this study aims to develop a safe, convenient, and effective multivalent recombinant Saccharomyces cerevisiae vaccine candidate and to explore its potential for oral immunization as a subunit vaccine. Mycoplasma gallisepticum Cytadhesin (MGC) and variable lipoprotein and hemagglutinin (vlhA) are associated with the pathogenesis of MG. In this study, a quadrivalent recombinant Saccharomyces cerevisiae (ST1814G-MG) displaying on MGC2, MGC3, VLH5, and VLH3, proteins was innovatively constructed, and its protective efficiency was evaluated in birds. The results showed that oral immunization with ST1814G-MG stimulates specific antibodies in chickens, reshapes the composition of the gut microbiota, reduces the Mycoplasma loading and pulmonary disease injury in the lungs. In addition, we found that oral ST1814G-MG had better protection against MG infection than an inactivated vaccine, and co-administration with the inactivated vaccine was even more effective. The results suggest that ST1814G-MG is a potentially safer and effective agent for controlling MG infection.
Collapse
Affiliation(s)
- Baiping Zhao
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Xuefeng Mei
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Lloren KKS, Lee JH. Live-Attenuated Salmonella-Based Oral Vaccine Candidates Expressing PCV2d Cap and Rep by Novel Expression Plasmids as a Vaccination Strategy for Mucosal and Systemic Immune Responses against PCV2d. Vaccines (Basel) 2023; 11:1777. [PMID: 38140182 PMCID: PMC10748173 DOI: 10.3390/vaccines11121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral vaccines are highly envisaged for veterinary applications due to their convenience and ability to induce protective mucosal immunity as the first line of defense. The present investigation harnessed live-attenuated Salmonella Typhimurium to orally deliver novel expression vector systems containing the Cap and Rep genes from porcine circovirus type 2 (PCV2), a significant swine pathogen. The antigen expression by the vaccine candidates JOL2885 and JOL2886, comprising eukaryotic pJHL204 and pro-eukaryotic expression pJHL270 plasmids, respectively, was confirmed by Western blot and IFA. We evaluated their immunogenicity and protective efficacy through oral vaccination in a mouse model. This approach elicited both mucosal and systemic immunity against PCV2d. Oral administration of the candidates induced PCV2-specific sIgA, serum IgG antibodies, and neutralizing antibodies, resulting in reduced viral loads in the livers and lungs of PCV2d-challenged mice. T-lymphocyte proliferation and flow-cytometry assays confirmed enhanced cellular immune responses after oral inoculation. The synchronized elicitation of both Th1 and Th2 responses was also confirmed by enhanced expression of TNF-α, IFN-γ, IL-4, MHC-I, and MHC-II. Our findings highlight the effectiveness and safety of the constructs with an engineered-attenuated S. Typhimurium, suggesting its potential application as an oral PCV2 vaccine candidate.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
8
|
Hao K, Wang Y, Zhu B, Yu F, Zhao Z, Wang GX. Recombinant surface display vaccine enhances the immersion immune effect against grass carp reovirus in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109160. [PMID: 37858787 DOI: 10.1016/j.fsi.2023.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Grass carp (Ctenopharyngodon idella) is subject to a hemorrhagic disease caused by grass carp reovirus (GCRV), which can lead to mass mortality in grass carp culture, causing significant economic loss. Vaccination is the most promising strategy for the prevention of infectious diseases. Immersion vaccination is considered the most effective disease prevention method for juvenile fish because it can be implemented on many fish at once and administered without causing stress. However, immune responses by immersion vaccination are markedly less robust due to the skin barrier and insufficient antigen uptake. The display of heterologous proteins on the cell surface has been explored as a delivery system for viral antigens in veterinary and human vaccine studies. To improve the efficacy of the immersion vaccine, the major capsid protein (VP7) of GCRV was co-displayed with Aeromonas hydrophila outer membrane protein a (OmpA) and major adhesion protein (Mah) on the outer membrane surface of nonpathogenic Escherichia coli BL21 using the anchoring motif of ice-nucleation protein (Inp). The immune responses and protection efficiency against GCRV infection via both the injection and immersion routes were evaluated. The results indicated that the activities of anti-oxidant enzymes (ACP, AKP, SOD and T-AOC), as well as the expression of immune-related genes (TNF-α, IL-1β, MHCI and IgM) and specific VP7 antibody levels, were strongly increased in the grass carp from 7 to 21 days post-injection inoculation in a dose dependent manner. The cumulative mortality rates of injection-vaccinated groups were much lower than those of the control group after the GCRV challenge, and the relative percent survival (RPS) was greater than 80 %. Vitally, the surface co-display of vp7-Mah protein conferred marked protection to grass carp against GCRV infection after immersion administration (RPS >50 %); this was consistent with the production of high level of specific serum antibodies, non-specific immune responses, and the expression of immune-related genes. Moreover, the invasion analysis further showed that surface co-display of the vp7-Mah protein indeed significantly improved the invasion of E. coli BL21 (DE3) in vitro. Altogether, this study demonstrated that surface display GCRV core antigen vaccine system accompanied by invasion component from aquatic pathogenic microorganism is an effective prophylactic against GCRV viral diseases via the immersion administration approach.
Collapse
Affiliation(s)
- Kai Hao
- College of Oceanography, Hohai University, Nanjing, 210098, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Yu Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Fei Yu
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
9
|
Markthaler D, Ghosh R. Computational prediction of extracellular loops of the Por39 outer membrane porin of Rhodospirillum rubrum suitable for epitope surface display. Comput Struct Biotechnol J 2023; 21:2483-2494. [PMID: 37077176 PMCID: PMC10106341 DOI: 10.1016/j.csbj.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Outer membrane porins from Gram-negative bacteria are established vehicles for the production of vaccines. Typically, one or more of the extracellular loops of a porin are replaced by a peptide encoding a foreign epitope, and recombinant porin is then used as a vaccine. However, many host strains are potentially pathogenic, and also produce toxic lipopolysaccharide (LPS), both of which are undesirable for safety reasons. In contrast, the outer membrane porins from photosynthetic, purple bacteria have no known human pathology and produce only weakly toxic LPS. The purple bacterium Rhodospirillum rubrum is well-suited for large-scale biotechnology, and expresses a major porin, Por39, which is a candidate for a vaccine platform. Unfortunately, the atomic structure of Por39 could not be determined so far, and Por39 shows only a weak homology to other porins of known structure, making the assignment of external loops difficult. Here, we construct a knowledge-based model of Por39 using secondary structure constraints from both the low sequence homology to the 2POR porin from Rhodobacter capsulatus, for which the X-ray structure is known, as well as those obtained using secondary structure prediction packages. The secondary structure predictions were used to constrain a three-dimensional model created using the I-TASSER package. The modelling procedure was validated by predicting the structure of 2POR using the same strategy, but excluding the 2POR X-ray structure from the I-TASSER database. The final Por39 model allows three external loops to be defined precisely, and could also be used to obtain an initial model for the closely related Por41 using molecular modelling. These structures provide a good starting point for the insertion of epitopes with vaccine potential.
Collapse
|
10
|
Zhang H, Xie R, Zhang H, Sun R, Li S, Xia C, Li Z, Zhang L, Guo Y, Huang J. Recombinant Hemagglutinin protein and DNA-RNA-combined nucleic acid vaccines harbored by Yeast elicit protective immunity against H9N2 Avian Influenza infection. Poult Sci 2023; 102:102662. [PMID: 37043959 PMCID: PMC10140169 DOI: 10.1016/j.psj.2023.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
A safe, convenience, and effective vaccine for controlling avian influenza virus infection is crucial in scale poultry production. Yeasts are considered useful vaccine vehicles for the delivery of antigens, which has been used to protect human and animal health. We report here the development of H9N2 strain hemagglutinin (HA)-based recombinant protein vaccines (rH9HA) and DNA-RNA-combined vaccine (rH9-DNA-RNA) in Saccharomyces cerevisiae for the first time. The immunogenicity assay indicated that both rH9HA and rH9-DNA-RNA could induce robust production of serum IgG, mucosal sIgA, and cellular immune responses. The reshape and diversification of gut microbiota and an enriched Lactobacillus, Debaryomyces were observed after oral immunization with rH9HA or rH9-DNA-RNA yeast vaccine, which might contribute to modulate the intestinal mucosal immunity and antiviral process. Oral immunized birds with either rH9HA or rH9-DNA-RNA were effectively protected from H9N2 virus challenge. Our findings suggested that yeast-derived H9N2 HA-based recombinant protein vaccines and DNA-RNA-combined nucleic acid vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of avian influenza vaccines to achieve good protection effect.
Collapse
|
11
|
Attenuated Salmonella Typhimurium with truncated LPS and outer membrane-displayed RGD peptide for cancer therapy. Biomed Pharmacother 2022; 155:113682. [PMID: 36095964 DOI: 10.1016/j.biopha.2022.113682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Gram-negative, facultatively anaerobic bacteria Salmonella Typhimurium is a candidate agent or delivery vector for cancer therapy. Effective targeted therapies in addition to radiotherapy, chemotherapy and surgery have been urgently needed as an alternative or supplement. This study expected to further improve the tumor-targeting ability of Salmonella bacteria through genetic modifications. Based on an auxotrophic Salmonella bacterial strain (D2), we constructed Salmonella mutants with altered LPS length to facilitate displaying the RGD4C targeting peptide on the outer membrane surface of Salmonella. The expression of RGD4C peptide in fusion with OmpA was identified by outer membrane protein extraction and WB detection in different mutant strains. However, flow cytometry analysis following immunofluorescence staining demonstrated that the extracellular length of Salmonella LPS did affect the surface display of RGD4C peptide. The strain D2-RGD4C that synthesized intact LPS including lipid A, core oligosaccharides and O antigen polysaccharides could hardly display RGD4C peptide, showing the same fluorescence signal intensity as the strains not expressing RGD4C peptide. Among different strains, D2 ∆rfaJ-RGD4C that synthesized truncated LPS including lipid A and partial core oligosaccharides was capable of displaying RGD4C peptide most efficiently and showed the highest ability to target HUVECs expressing αV integrin and tumor tissue with abundant neovascularization. Animal experiments also demonstrated that this tumor-targeting attenuated Salmonella strain to simultaneously deliver endostatin and TRAIL, two agents with different anti-tumor activities, could significantly inhibit tumor growth and prolong mouse survival. Thus, our studies revealed that Salmonella could be genetically engineered to improve its tumor targeting via the truncation of LPS and surface display of targeting peptides, thereby eliciting superior anti-tumor effects through targeted delivery of drug molecules.
Collapse
|
12
|
A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22. Int J Mol Sci 2022; 23:ijms23169059. [PMID: 36012334 PMCID: PMC9409196 DOI: 10.3390/ijms23169059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.
Collapse
|
13
|
Wiull K, Boysen P, Kuczkowska K, Moen LF, Carlsen H, Eijsink VGH, Mathiesen G. Comparison of the Immunogenic Properties of Lactiplantibacillus plantarum Carrying the Mycobacterial Ag85B-ESAT-6 Antigen at Various Cellular Localizations. Front Microbiol 2022; 13:900922. [PMID: 35722346 PMCID: PMC9204040 DOI: 10.3389/fmicb.2022.900922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Kamilla Wiull,
| | - Preben Boysen
- Faculty of Veterinary Medicine, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Katarzyna Kuczkowska
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lars Fredrik Moen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- Geir Mathiesen,
| |
Collapse
|
14
|
Qin D, Bai Y, Li Y, Huang Y, Li L, Wang G, Qu Y, Wang J, Yu LY, Hou X. Changes in Gut Microbiota by the Lactobacillus casei Anchoring the K88 Fimbrial Protein Prevented Newborn Piglets From Clinical Diarrhea. Front Cell Infect Microbiol 2022; 12:842007. [PMID: 35372106 PMCID: PMC8972131 DOI: 10.3389/fcimb.2022.842007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In the last 20 years, accumulating evidence indicates that the gut microbiota contribute to the development, maturation, and regulation of the host immune system and mediate host anti-pathogen defenses. Lactobacillus casei (L.casei) is a normal flora of the gastrointestinal tract in mammals and, as a great mucosal delivery vehicle, has wide use in bioengineering. However, the diarrhea prevention role of commensal intestinal microbiota interfered by the recombinant L.casei (rL.casei) in newborn piglets is not well understood. In our study, newborn piglets orally fed with the rL.casei surface displayed the fimbrial protein K88 of enterotoxigenic Escherichia coli (ETEC) and their feces were collected for a period of time after feeding. The next-generation sequencing of these fecal samples showed that the relative abundance of L.casei was significantly increased. The oral administration of rL.casei altered the intestinal microbial community as evidenced by altered microbial diversity and microbial taxonomic composition. Remarkably, the functional enhancing of the intestinal bacterial community by rL.casei was positively correlated with membrane transport, replication, and repair (p < 0.05). The specific antibody detection indicates that high levels of anti-K88 secretory immunoglobulin A (sIgA) were induced in fecal samples and systemic immunoglobulin G was produced in serum. The diarrhea rate in piglets caused by ETEC K88 was decreased by about 24%. Thus, the oral administration of rL.casei not only activated the mucosal and humoral immune responses in vivo but also contributed to shape the intestinal probiotics in newborn piglets and to significantly reduce the diarrhea rates of newborn piglets.
Collapse
Affiliation(s)
- Da Qin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongfei Bai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Li
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanmei Huang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liyang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guihua Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Qu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiabin Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li-Yun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Li-Yun Yu, ; Xilin Hou,
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Li-Yun Yu, ; Xilin Hou,
| |
Collapse
|
15
|
An Escherichia coli carrier vaccine with surface-displayed protein MAP3061c elicits protective immunity against Mycobacterium paratuberculosis in mice. Res Vet Sci 2021; 141:180-189. [PMID: 34763254 DOI: 10.1016/j.rvsc.2021.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Johne's disease, or paratuberculosis, is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This disease occurs worldwide and results in considerable economic losses in the livestock industry. There are no effective treatments for Johne's disease, so there is an urgent need to develop an efficient, economical, and stable vaccine for MAP control. Here, a live Escherichia coli (E. coli) surface display vaccine harboring the MAP3061c gene was developed through an ice nucleation protein (INP) surface display system. The experimental data demonstrated that MAP3061c has strong immunogenicity and that the surface displayed vaccine can stimulate mice to produce high levels of antibodies. Both CD4+ and CD8+ T cell counts as well as several cytokines - including IFN-γ, IL-4, IL-10, IL-17A and IL-23 - were significantly increased in the display vaccine group. Post-vaccination challenge with MAP in mice resulted in improved fitness of the mice as demonstrated by a lack of weight loss. Pathological results revealed that the surface display vaccine could reduce the degree of pathological damage and slowed the course of disease. Taken together, our data suggests that the E. coli carrier vaccine with surface-displayed MAP3061c elicits protective immunity against MAP, providing new insights into the development of a MAP vaccine.
Collapse
|
16
|
Lin CH, Chen JJ, Cheng CM. Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection. J Microbiol Biotechnol 2021; 31:1088-1097. [PMID: 34226401 PMCID: PMC9705906 DOI: 10.4014/jmb.2103.03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Ph.D. Program of Aquatic Science and Technology in Industry, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan
| | - Jun-Jie Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan
| | - Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City 80778, Taiwan,Corresponding author Phone: +886-7-3617141#23713 Fax: +886-7-6112025 E-mail:
| |
Collapse
|
17
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
18
|
Zhang C, Guo S, Zhao Z, Guo ZR, Ma R, Wang GX, Zhu B. Surface display of spring viremia of carp virus glycoprotein on Lactococcus lactis and its protection efficacy in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2020; 104:262-268. [PMID: 32534229 DOI: 10.1016/j.fsi.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Spring viremia of carp virus (SVCV) causes devastating disease in aquaculture, resulting in significant economic impact. To develop an effective means against SVCV infection, a Lactococcus lactis (L.lactis) based subunit vaccine (pNZ-UGA) was developed based on surface displaying of SVCV glycoprotein using anchoring motif of the cA (C terminus of the peptidoglyvsn-binding) domains of AcmA, a major autolysin from L.lactis. The surface expression of SVCV glycoprotein was verified by indirect immunofluorescence assay. The efficacy of the constructed vaccine was further evaluated in common carp. The results showed that the higher levels of specific IgM could be detected in fish vaccinated with pNZ-UGA, compared with that in PBS and L.lactis groups. Immune-related genes including TNF-α, IL-6b, IL-1β, Cxcr 1, Cxca, IFNg2b, I-IFN, and IgM expression in pNZ-UGA group were strongly up-regulated, revealing that robust innate immune response was induced. Notably, the lowest cumulative mortality (13.46%) was observed in fish vaccinated with pNZ-UGA vaccine after SVCV challenge, whereas the cumulative mortality were 100.00% and 92.31% in PBS and L.lactis groups, respectively. This study suggests the potential use of the recombinant L.lactis with surface displaying antigen proteins as effective vaccines against SVCV and other fish virus infection.
Collapse
Affiliation(s)
- Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Sheng Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zi-Rao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
19
|
Yeast display platform technology to prepare oral vaccine against lethal H7N9 virus challenge in mice. Microb Cell Fact 2020; 19:53. [PMID: 32122351 PMCID: PMC7053147 DOI: 10.1186/s12934-020-01316-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background Existing methods for preparing influenza vaccines pose the greatest challenge against highly pandemic avian influenza H7N9 outbreak in the poultry and humans. Exploring a new strategy for manufacturing and delivering a safe and effective H7N9 vaccine is needed urgently. Results An alternative approach is to develop an influenza H7N9 oral vaccine based on yeast display technology in a timely manner. Hemagglutinin (HA) of A/Anhui/1/2013 (AH-H7N9) is used as a model antigen and characterized its expression on the surface of Saccharomyces cerevisiae (S.cerevisiae) EBY 100. Mice administrated orally with S.cerevisiae EBY100/pYD5-HA produced significant titers of IgG antibody as well as significant amounts of cytokines IFN-γ and IL-4. Importantly, S.cerevisiae EBY100/pYD5-HA could provide effective immune protection against homologous A/Anhui/1/2013 (AH-H7N9) virus challenge. Conclusions Our findings suggest that platform based on yeast surface technology provides an alternative approach to prepare a promising influenza H7N9 oral vaccine candidate that can significantly shorten the preparedness period and result in effective protection against influenza A pandemic.
Collapse
|
20
|
Bai Y, Wang G, Qi H, Wang Y, Xu C, Yue L, Hou X, Yu L. Immunogenicity of 987P fimbriae of enterotoxigenic Escherichia coli surface-displayed on Lactobacillus casei. Res Vet Sci 2020; 128:308-314. [DOI: 10.1016/j.rvsc.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 12/27/2022]
|
21
|
Jiang Y, Jia S, Zheng D, Li F, Wang S, Wang L, Qiao X, Cui W, Tang L, Xu Y, Xia X, Li Y. Protective Immunity against Canine Distemper Virus in Dogs Induced by Intranasal Immunization with a Recombinant Probiotic Expressing the Viral H Protein. Vaccines (Basel) 2019; 7:vaccines7040213. [PMID: 31835572 PMCID: PMC6963260 DOI: 10.3390/vaccines7040213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Canine distemper virus (CDV) elicits a severe contagious disease in a broad range of hosts. CDV mortality rates are 50% in domestic dogs and 100% in ferrets. Its primary infection sites are respiratory and intestinal mucosa. This study aimed to develop an effective mucosal CDV vaccine using a non-antibiotic marked probiotic pPGΔCm-T7g10-EGFP-H/L. casei 393 strain expressing the CDV H protein. Its immunogenicity in BALB/c mice was evaluated using intranasal and oral vaccinations, whereas in dogs the intranasal route was used for vaccination. Our results indicate that this probiotic vaccine can stimulate a high level of secretory immunoglobulin A (sIgA)-based mucosal and IgG-based humoral immune responses in mice. SIgA levels in the nasal lavage and lungs were significantly higher in intranasally vaccinated mice than those in orally vaccinated mice. Both antigen-specific IgG and sIgA antibodies were effectively elicited in dogs through the intranasal route and demonstrated superior immunogenicity. The immune protection efficacy of the probiotic vaccine was evaluated by challenging the immunized dogs with virulent CDV 42 days after primary immunization. Dogs of the pPGΔCm-T7g10-EGFP-H/L. casei 393 group were completely protected against CDV. The proposed probiotic vaccine could be promising for protection against CDV infection in dogs.
Collapse
Affiliation(s)
- Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Dianzhong Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Fengsai Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Shengwen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130000, China
- Correspondence: (X.X.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.J.); (S.J.); (D.Z.); (F.L.); (S.W.); (L.W.); (X.Q.); (W.C.); (L.T.); (Y.X.)
- Correspondence: (X.X.); (Y.L.); Tel./Fax: +86-451-5519-0363 (Y.L.)
| |
Collapse
|
22
|
Ma Y, Liu Y, Wu Y, Jia L, Liu X, Wang Q, Zhang Y. An attenuated Vibrio harveyi surface display of envelope protein VP28 to be protective against WSSV and vibriosis as an immunoactivator for Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 95:195-202. [PMID: 31604149 DOI: 10.1016/j.fsi.2019.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Surface display can expose foreign antigenic protein on the surface of the vaccine vector, which is promising choice to elicit better immune responses. In this study, we apply this strategy to develop an immunoactivator by using a live attenuated Vibrio harveyi as an antigenic protein carrier with surface displayed VP28, a major envelope protein of white spot syndrome virus (WSSV), for two major pathogens of Litopenaeus vannamei. As a result, the immunoactivator showed self-limited growth and attenuation of virulence in shrimp via different inoculation routes either with single-repetitive dose or high dose. Moreover, either intramuscular injection or oral administration of the immunoactivator did not affect growth of shrimp body weight or cause pathologic changes. Additionally, the rapid immunoprotection was induced by the immunoactivator after administration for one week with highly relative percent survival (RPS) more than 90% against both V. harveyi and WSSV. Until 4 weeks post administration, the immunoactivator still possessed efficient immune effect with no less than 60% RPS for both pathogens. Totally, the attenuated V. harveyi surface displaying VP28 could be a potential immunoactivator for WSSV and vibriosis control in L. vannamei.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai, 200237, China
| | - Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Jia
- Tianjin Bohai Fishery Research Institute, Chinese Academy of Fishery Sciences, Tianjin, 300221, China.
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Mariculture Animal Vaccines, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China
| |
Collapse
|
23
|
Liu D, Geng H, Zhang Z, Xing Y, Yang D, Liu Z, Wang D. An Effective Platform for Exploring Rotavirus Receptors by Bacterial Surface Display System. Virol Sin 2019; 35:103-109. [PMID: 31777010 PMCID: PMC7035415 DOI: 10.1007/s12250-019-00174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is a major foodborne pathogen. For RV prevention and control, it is a key to uncover the interaction mechanism between virus and its receptors. However, it is hard to specially purify the viral receptors, including histo-blood group antigens (HBGAs). Previously, the protruding domain protein (P protein) of human norovirus (genotype II.4) was displayed on the surface of Escherichia coli, and it specifically recognized and captured the viral ligands. In order to further verify the feasibility of the system, P protein was replaced by VP8* of RV (G9P[8]) in this study. In the system, VP8* could be correctly released by thrombin treatment with antigenicity retaining, which was confirmed by Western blot and Enzyme-Linked Immunosorbent Assays. Type A HBGAs from porcine gastric mucin (PGM) were recognized and captured by this system. From saliva mixture, the captured viral receptor bound with displayed VP8* was confirmed positive with monoclonal antibody against type A HBGAs. It indicated that the target ligands could be easily separated from the complex matrix. These results demonstrate that the bacterial surface display system will be an effective platform to explore viral receptors/ligands from cell lines or food matrix.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haoran Geng
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zilei Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Yifan Xing
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danlu Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhicheng Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Food Safety and Engineering Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
25
|
Su H, Liu Q, Wang S, Curtiss R, Kong Q. Regulated Delayed Shigella flexneri 2a O-antigen Synthesis in Live Recombinant Salmonella enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Am J Cancer Res 2019; 9:3565-3579. [PMID: 31281498 PMCID: PMC6587160 DOI: 10.7150/thno.33046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/21/2019] [Indexed: 12/02/2022] Open
Abstract
Shigella flexneri (S. flexneri), a leading cause of bacillary dysentery, is a major public health concern particularly affecting children in developing nations. We have constructed a novel attenuated Salmonella vaccine system based on the regulated delayed antigen synthesis (RDAS) and regulated delayed expression of attenuating phenotype (RDEAP) systems for delivering the S. flexneri 2a (Sf2a) O-antigen. Methods: The new Salmonella vaccine platform was constructed through chromosomal integration of the araC PBAD lacI and araC PBAD wbaP cassettes, resulting in a gradual depletion of WbaP enzyme. An expression vector, encoding Sf2a O-antigen biosynthesis under the control of the LacI-repressible Ptrc promoter, was maintained in the Salmonella vaccine strain through antibiotic-independent selection. Mice immunized with the vaccine candidates were evaluated for cell-mediate and humoral immune responses. Results: In the presence of exogenous arabinose, the Salmonella vaccine strain synthesized native Salmonella LPS as a consequence of WbaP expression. Moreover, arabinose supported LacI expression, thereby repressing Sf2a O-antigen production. In the absence of arabinose in vivo, native Salmonella LPS synthesis is repressed whilst the synthesis of the Sf2a O-antigen is induced. Murine immunization with the Salmonella vaccine strain elicited robust Sf2a-specific protective immune responses together with long term immunity. Conclusion: These findings demonstrate the protective efficacy of recombinant Sf2a O-antigen delivered by a Salmonella vaccine platform.
Collapse
|
26
|
Chen T, Wang K, Chi X, Zhou L, Li J, Liu L, Zheng Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Construction of a bacterial surface display system based on outer membrane protein F. Microb Cell Fact 2019; 18:70. [PMID: 30971255 PMCID: PMC6458713 DOI: 10.1186/s12934-019-1120-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial surface display systems were developed to surface expose heterologous proteins or peptides for different applications, such as peptide libraries screening and live bacterial vaccine design. Various outer membrane proteins, such as outer membrane protein A (OmpA), OmpC and outer membrane pore protein E precursor (PhoE), have been used as carriers for surface display, fused to the proteins or peptides of interest in Gram-negative bacteria. Here, we investigated the utility of constitutively expressed OmpF for the display of foreign immune epitopes on the Escherichia coli cell surface and then compared it with plasmid-induced expression of OmpF and OmpC. Results Enhanced expression of OmpF was linked to a mutation in the OmpF promoter sequence. This mutation rendered OmpF an ideal carrier protein for the enriched display of a target of interest on the bacterial surface. To this end, we grafted two peptides, harboring important epitopes of the hepatitis B virus (HBV) S antigen and human papilloma virus (HPV) L2 protein, onto OmpF of E. coli by genome editing. The resultant fused OmpF proteins were constitutively expressed in the edited E. coli and purified by membrane component extraction. The epitope that displayed on the bacterial surface was verified by SDS-PAGE, western blotting, flow cytometry, and immunoelectron microscopy of the intact bacteria. We further compared this constitutive expression with plasmid-induced expression of OmpF and OmpC in bacterial cells using the same methods for verification. We found that plasmid-induced expression is much less efficient than constitutive expression of OmpF from the bacterial genome. Conclusions Enhanced expression of OmpF in a plasmid-independent manner provides an amenable way to display epitopes on the bacterial surface and sheds light on ways to engineer bacteria for biotechnological applications. Electronic supplementary material The online version of this article (10.1186/s12934-019-1120-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaihang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xin Chi
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lizhi Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiajia Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yingbin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
27
|
Yao Y, Ding Q, Ou L. Biosynthesis of (deoxy)guanosine-5'-triphosphate by GMP kinase and acetate kinase fixed on the surface of E. coli. Enzyme Microb Technol 2018; 122:82-89. [PMID: 30638512 DOI: 10.1016/j.enzmictec.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/23/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
(Deoxy)guanosine-5'-triphosphate (5'-(d)GTP), the precursor for synthesizing DNA or RNA in vivo, is an important raw material for various modern biotechnologies based on PCR. In this study, we investigated the application of whole-cell catalysts constructed by bacterial cell surface display in biosynthetic reactions of 5'-(d)GTP from (deoxy)guanosine-5'-monophosphate (5'-(d)GMP). By N-terminal or N- and C-terminal fusion of the ice nucleation protein, we successfully displayed the GMP kinase of Lactobacillus bulgaricus and the acetate kinase of E. coli on the surface of E. coli cells. A large amount of soluble target protein was obtained upon induction with 0.2 mM IPTG at 25 °C for 30 h. The conversion of dGMP was up to 91% when catalysed by the surface-displayed enzymes at 37 °C for 4 h. Up to 95% of the GMP was converted after 3 h of reaction. The stability of the whole-cell catalyst at 37 °C was very good. The enzyme activity was maintained above 50% after 9 rounds of recovery. Our research showed that only one-twentieth of the initial substrate concentration of added ATP was sufficient to meet the reaction requirements.
Collapse
Affiliation(s)
- Yefeng Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingbao Ding
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| | - Ling Ou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
28
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
29
|
Lee MJ, Kim P. Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application. Front Microbiol 2018; 9:2523. [PMID: 30416490 PMCID: PMC6213972 DOI: 10.3389/fmicb.2018.02523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a soil-derived gram-positive actinobacterium, has been widely used for the production of biochemical molecules such as amino acids (i.e., L-glutamate and L-lysine), nucleic acids, alcohols, and organic acids. The metabolism of the bacterium has been engineered to increase the production of the target biochemical molecule, which requires a cytosolic enzyme expression. As recent demand for new proteinaceous biologics (such as antibodies, growth factors, and hormones) increase, C. glutamicum is attracting industrial interest as a recombinant protein expression host for therapeutic protein production due to the advantages such as low protease activity without endotoxin activity. In this review, we have summarized the recent studies on the heterologous expression of the recombinant protein in C. glutamicum for metabolic engineering, expansion of substrate availability, and recombinant protein secretion. We have also outlined the advances in genetic components such as promoters, surface anchoring systems, and secretory signal sequences in C. glutamicum for effective recombinant protein expression.
Collapse
Affiliation(s)
| | - Pil Kim
- Department of Biotechnology, The Catholirc University of Korea, Bucheon, South Korea
| |
Collapse
|
30
|
Maqsood I, Shi W, Wang L, Wang X, Han B, Zhao H, Nadeem A, Moshin B, Saima K, Jamal S, Din M, Xu Y, Tang L, Li Y. Immunogenicity and protective efficacy of orally administered recombinant Lactobacillus plantarum expressing VP2 protein against IBDV in chicken. J Appl Microbiol 2018; 125:1670-1681. [PMID: 30118165 PMCID: PMC7166448 DOI: 10.1111/jam.14073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
AIM To develop an effective oral vaccine against the very virulent infectious bursal disease virus (vvIBDV), we generated two recombinant Lactobacillus plantarum strains (pPG612-VP2/LP and pPG612-T7g10-VP2/LP, which carried the T7g10 translational enhancer) that displayed the VP2 protein on the surface, and compared the humoral and cellular immune responses against vvIBDV in chickens. METHODS AND RESULTS We genetically engineered the L. plantarum strains pPG612-VP2/LP and pPG612-T7g10-VP2/LP constitutively expressing the VP2 protein of vvIBDV. We found that the T7g10 enhancer efficiently upregulates VP2 expression in pPG612-T7g10-VP2/LP. Orally administered, pPG612-T7g10-VP2/LP exhibited significant levels of protection (87·5%) against vvIBDV in chickens, indicating improved immunogenicity. Chickens in the pPG612-T7g10-VP2/LP group produced higher levels of interferons (IFN-γ) and interleukins (IL-2 and IL-4) than those in the pPG612-VP2/LP group. CD8+ and CD4+ lymphocyte counts indicated greater stimulation in the pPG612-T7g10-VP2/LP group (13·3 and 21·0% respectively) than in the pPG612-VP2/LP group (10·4 and 14·0% respectively). Thus, pPG612-T7g10-VP2/LP could induce strong humoral and cellular immune responses against vvIBDV. CONCLUSIONS The recombinant L. plantarum that expresses pPG612-T7g10-VP2 is a promising candidate for oral vaccine development against vvIBDV. SIGNIFICANCE AND IMPACT OF THE STUDY The recombinant Lactobacillus delivery system provides a promising strategy for vaccine development against vvIBDV in chickens.
Collapse
Affiliation(s)
- I. Maqsood
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - W. Shi
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - L. Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - X. Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - B. Han
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - H. Zhao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - A.M. Nadeem
- College of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - B.S. Moshin
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - K. Saima
- College of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - S.S. Jamal
- Department of ManagementHarbin Institute of TechnologyHarbinChina
| | - M.F. Din
- Department of Molecular GeneticsChinese Academy of Science (CAS)University of Science and Technology (USTC)HefeiChina
| | - Y. Xu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - L. Tang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Y. Li
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
31
|
Khatun MA, Hoque MA, Zhang Y, Lu T, Cui L, Zhou NY, Feng Y. Bacterial Consortium-Based Sensing System for Detecting Organophosphorus Pesticides. Anal Chem 2018; 90:10577-10584. [DOI: 10.1021/acs.analchem.8b02709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Hao K, Chen XH, Qi XZ, Zhu B, Wang GX, Ling F. Display of GCRV vp7 protein on the surface of Escherichia coli and its immunoprotective effects in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 72:199-209. [PMID: 29102630 DOI: 10.1016/j.fsi.2017.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Infection with Grass carp reovirus (GCRV) is becoming unprecedentedly widespread in grass carp (Ctenopharyngodon idella) aquaculture industry, yet the management of GCRV infection still remains a challenge. Therefore, it is of importance to develop effective means against GCRV. As a delivery system of viral antigens, surface displaying of heterologous proteins on bacteria using anchoring motifs has successfully been implemented in human and veterinary vaccines research. In this study, a novel vaccine (BL21/InpN/vp7) was developed based on surface displaying a major capsid protein (vp7) of GCRV using the anchoring motif of N-terminal unique domain of ice-nucleation protein (InpN) on Escherichia coli BL21 (DE3) vaccine. Then the grass carp were immunized by surface displaying BL21/InpN/vp7 vaccine against GCRV using both intraperitoneal injection and bath immunization and their immune responses were tested. The results revealed that some non-specific immune parameters (acid phosphatase (ACP), alkaline phosphatase (AKP) and total antioxidant capacity (T-AOC)) were strongly increased in grass carp post injection inoculation (vp7 dose ranged from 10 to 20 μg). The specific antibody levels against GCRV and the transcriptional of immune-related genes (TNF-α, IL-1β, MHCI and IgM) were also significantly enhanced in grass carp by injection inoculation (vp7 dose ranged from 5 to 20 μg). On the other hand, only the highest dose of bath vaccination significantly induced the production of specific antibody and up-regulated transcriptions of several immune-related genes (IgM and MHCI) in grass carp. The lower cumulative mortality of grass carp in vaccinated groups after GCRV challenge clearly demonstrated that surface displayed vp7 vaccine could protect fish against GCRV infection. The relative percentage survival (RPS) value in injection vaccinated group (88.89%) was much higher compared to bath group (18.89%), which was in consistent with the production of specific serum antibodies, non-specific immune response and immune related genes expression. To sum up, our results indicated the surface display of heterologous antigenic proteins on E. coli BL21 (DE3) using the anchoring motif of ice-nucleation protein may provide a promising approach to the vaccine development of aquatic animals and suggested its potential to be used as vaccine to fight against GCRV infection.
Collapse
Affiliation(s)
- Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao-Zhou Qi
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Chen H, Ullah J, Jia J. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis. J Mol Microbiol Biotechnol 2017; 27:159-167. [DOI: 10.1159/000475177] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of <i>Clostridium</i> and <i>Bacillus</i> are spore formers, but the most suitable choice for display is <i>Bacillus subtilis</i> because, according to the WHO, it is safe to humans and considered as “GRAS” (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein.
Collapse
|
34
|
Bi X, Yin J, Nguyen GKT, Rao C, Halim NBA, Hemu X, Tam JP, Liu CF. Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelase 1. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Juan Yin
- Lee Kong Chian School of Medicine; Nanyang Technological University; 59 Nanyang Drive Singapore 636921 Singapore
| | - Giang K. T. Nguyen
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chang Rao
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Nurashikin Bte Abdul Halim
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Xinya Hemu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - James P. Tam
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
35
|
Bi X, Yin J, Nguyen GKT, Rao C, Halim NBA, Hemu X, Tam JP, Liu CF. Enzymatic Engineering of Live Bacterial Cell Surfaces Using Butelase 1. Angew Chem Int Ed Engl 2017; 56:7822-7825. [DOI: 10.1002/anie.201703317] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Juan Yin
- Lee Kong Chian School of Medicine; Nanyang Technological University; 59 Nanyang Drive Singapore 636921 Singapore
| | - Giang K. T. Nguyen
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chang Rao
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Nurashikin Bte Abdul Halim
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Xinya Hemu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - James P. Tam
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
36
|
Ravikumar S, Baylon MG, Park SJ, Choi JI. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 2017; 16:62. [PMID: 28410609 PMCID: PMC5391612 DOI: 10.1186/s12934-017-0675-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Two-component regulatory systems (TCRSs) mediate cellular response by coupling sensing and regulatory mechanisms. TCRSs are comprised of a histidine kinase (HK), which serves as a sensor, and a response regulator, which regulates expression of the effector gene after being phosphorylated by HK. Using these attributes, bacterial TCRSs can be engineered to design microbial systems for different applications. This review focuses on the current advances in TCRS-based biosensors and on the design of microbial systems for bioremediation and their potential application in biorefinery.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Mary Grace Baylon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
37
|
|
38
|
Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, Min JH, Hong Y, Choy HE, Min JJ. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy. Theranostics 2016; 6:1672-82. [PMID: 27446500 PMCID: PMC4955065 DOI: 10.7150/thno.16135] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/16/2016] [Indexed: 01/10/2023] Open
Abstract
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
Collapse
|
39
|
Elahipanah S, Radmanesh P, Luo W, O'Brien PJ, Rogozhnikov D, Yousaf MN. Rewiring Gram-Negative Bacteria Cell Surfaces with Bio-Orthogonal Chemistry via Liposome Fusion. Bioconjug Chem 2016; 27:1082-9. [PMID: 27019118 DOI: 10.1021/acs.bioconjchem.6b00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to tailor bacteria cell surfaces with non-native molecules is critical to advance the study of bacteria communication, cell behavior, and for next-generation therapeutics to improve livestock and human health. Such modifications would allow for novel control over cell behavior, cell-cell interactions, biofilm formation, adjuvant conjugation, and imaging. Current methods to engineer bacteria surfaces have made major advances but rely on complicated, slow, and often expensive molecular biology and metabolic manipulation methods with limited scope on the type of molecules installed onto the surface. In this report, we introduce a new straightforward method based on liposome fusion to engineer Gram-negative bacteria cells with bio-orthogonal groups that can subsequently be conjugated to a range of molecules (biomolecules, small molecules, probes, proteins, nucleic acids, ligands, and radiolabels) for further studies and programmed behavior of bacteria. This method is fast, efficient, inexpensive, and useful for installing a broad scope of ligands and biomolecules to Gram-negative bacteria surfaces.
Collapse
Affiliation(s)
- Sina Elahipanah
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Parham Radmanesh
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Wei Luo
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Paul J O'Brien
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Dmitry Rogozhnikov
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Muhammad N Yousaf
- Department of Chemistry, Centre for Research in Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada.,OrganoLinX Inc. , Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
40
|
Rational design of xylose dehydrogenase for improved thermostability and its application in development of efficient enzymatic biofuel cell. Enzyme Microb Technol 2016; 84:78-85. [DOI: 10.1016/j.enzmictec.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
|
41
|
Salverda MLM, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JWR, van der Ark A, Stork M, van der Ley P. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 2016; 34:1025-33. [PMID: 26801064 DOI: 10.1016/j.vaccine.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Merijn L M Salverda
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Sanne M Meinderts
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Immunology of Infectious Diseases and Vaccines (IIV), National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
42
|
Niu M, Yu Q, Tian P, Gao Z, Wang D, Shi X. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands. Front Microbiol 2015; 6:1448. [PMID: 26733983 PMCID: PMC4686607 DOI: 10.3389/fmicb.2015.01448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3′ terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5′ terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs.
Collapse
Affiliation(s)
- Mengya Niu
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Qianqian Yu
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture Albany, CA, USA
| | - Zhiyong Gao
- Beijing Center for Diseases Prevention and Control Beijing, China
| | - Dapeng Wang
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| | - Xianming Shi
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
43
|
Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol 2015. [PMID: 26210951 DOI: 10.1016/j.vetmic.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of a universal influenza vaccine that provides broad cross protection against existing and unforeseen influenza viruses is a critical challenge. In this study, we constructed and expressed conserved sM2 and HA2 influenza antigens with cholera toxin subunit A1 (CTA1) on the surface of Lactobacillus casei (pgsA-CTA1sM2HA2/L. casei). Oral and nasal administrations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and their isotypes (IgG1 & IgG2a) as well as mucosal IgA. The mucosal administration of pgsA-CTA1sM2HA2/L. casei may also significantly increase the levels of sM2- or HA2-specific cell-mediated immunity because increased release of both IFN-γ and IL-4 was observed. The recombinant pgsA-CTA1sM2HA2/L. casei provided better protection of BALB/c mice against 10 times the 50% mouse lethal doses (MLD50) of homologous A/EM/Korea/W149/06(H5N1) or A/Aquatic bird/Korea/W81/2005 (H5N2) and heterologous A/Puerto Rico/8/34(H1N1), or A/Chicken/Korea/116/2004(H9N2) or A/Philippines/2/08(H3N2) viruses, compared with L. casei harboring sM2HA2 and also the protection was maintained up to seven months after administration. These results indicate that recombinant L. casei expressing the highly conserved sM2, HA2 of influenza and CTA1 as a mucosal adjuvant could be a potential mucosal vaccine candidate or tool to protect against divergent influenza viruses for human and animal.
Collapse
|
44
|
Bao S, Yu S, Guo X, Zhang F, Sun Y, Tan L, Duan Y, Lu F, Qiu X, Ding C. Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of mycoplasma
adhesion proteins. J Appl Microbiol 2015; 119:236-44. [DOI: 10.1111/jam.12824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022]
Affiliation(s)
- S. Bao
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
- College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - S. Yu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - X. Guo
- College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - F. Zhang
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - Y. Sun
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - L. Tan
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - Y. Duan
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - F. Lu
- College of Veterinary Medicine; Gansu Agricultural University; Lanzhou China
| | - X. Qiu
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| | - C. Ding
- Shanghai Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Shanghai China
| |
Collapse
|
45
|
Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X. Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res 2015; 11:85. [PMID: 25880824 PMCID: PMC4389297 DOI: 10.1186/s12917-015-0399-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat in poultry. Current influenza vaccines predominantly focus on hemagglutinin (HA) which anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. However, Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. The aim of this study was to evaluate the protective immunity of NA based on Lactococcus lactis (L.lactis) expression system against homologous H5N1 virus challenge in a chicken model. RESULTS L.lactis/pNZ2103-NA which NA is derived from A/Vietnam/1203/2004 (H5N1) (VN/1203/04) was constructed based on L.lactis constitutive expression system in this study. Chickens vaccinated orally with 10(12) colony-forming unit (CFU) of L.lactis/pNZ2103-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titer compared with chickens administered orally with saline or L.lactis/pNZ2103 control. Most importantly, the results revealed that chickens administered orally with L.lactis/pNZ2103-NA were completely protected from a lethal H5N1 virus challenge. CONCLUSIONS The data obtained in the present study indicate that recombinant L.lactis/pNZ2103-NA in the absence of adjuvant can be considered an effective mucosal vaccine against H5N1 infection in chickens via oral administration. Further, these findings support that recombinant L.lactis/pNZ2103-NA can be used to perform mass vaccination in poultry during A/H5N1 pandemic.
Collapse
Affiliation(s)
- Han Lei
- School of Medicine, Southwest Jiaotong University, Chengdu, 6111756, China. .,Department of Biomedical Engineering, State University of New York, Binghamton, 13902, USA. .,Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Jiexiu Ouyang
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Daxian Zhao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Huifeng Jiao
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Handing Shu
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| | - Xinqi Ge
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China.
| |
Collapse
|
46
|
Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis. Cryobiology 2014; 69:110-8. [PMID: 24930584 DOI: 10.1016/j.cryobiol.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022]
Abstract
An ice nucleating protein (INP) coding region with 66% sequence identity to the INP of Pseudomonas syringae was previously cloned from P. borealis, a plant beneficial soil bacterium. Ice nucleating activity (INA) in the P. borealis DL7 strain was highest after transfer of cultures to temperatures just above freezing. The corresponding INP coding sequence (inaPb or ina) was used to construct recombinant plasmids, with recombinant expression visualized using a green fluorescent protein marker (gfp encoding GFP). Although the P. borealis strain was originally isolated by ice-affinity, bacterial cultures with membrane-associated INP-GFP did not adsorb to pre-formed ice. Employment of a shuttle vector allowed expression of ina-gfp in both Escherichia coli and Pseudomonas cells. At 27 °C, diffuse fluorescence appeared throughout the cells and was associated with low INA. However, after transfer of cultures to 4 °C, the protein localized to the poles coincident with high INA. Transformants with truncated INP sequences ligated to either gfp, or an antifreeze protein-gfp fusion showed that the repetitive ice-nucleation domain was not necessary for localization. Such localization is consistent with the flanking residues of the INP associating with a temperature-dependent secretion apparatus. A polar location would facilitate INP-INP interactions resulting in the formation of larger aggregates, serving to increase INA. Expression of INPs by P. borealis could function as an efficient atmospheric dispersal mechanism for these soil bacteria, which are less likely to use these proteins for nutrient procurement, as has been suggested for P. syringae.
Collapse
|
47
|
Chowdhury MYE, Li R, Kim JH, Park ME, Kim TH, Pathinayake P, Weeratunga P, Song MK, Son HY, Hong SP, Sung MH, Lee JS, Kim CJ. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One 2014; 9:e94051. [PMID: 24714362 PMCID: PMC3979752 DOI: 10.1371/journal.pone.0094051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/11/2014] [Indexed: 01/31/2023] Open
Abstract
To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes.
Collapse
Affiliation(s)
- Mohammed Y. E. Chowdhury
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Rui Li
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Min-Eun Park
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prabuddha Pathinayake
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prasanna Weeratunga
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Hwa-Young Son
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | | | | | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| | - Chul-Joong Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| |
Collapse
|
48
|
Liu JK, Wei CH, Hou XL, Yu LY. Passive protection of mice pups through oral or intranasal immunization of dams with recombinant Lactobacillus casei vaccine against ETEC F41. Res Vet Sci 2014; 96:283-7. [DOI: 10.1016/j.rvsc.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
49
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
50
|
Park JP, Choi MJ, Kim SH, Lee SH, Lee H. Preparation of sticky Escherichia coli through surface display of an adhesive catecholamine moiety. Appl Environ Microbiol 2014; 80:43-53. [PMID: 24123747 PMCID: PMC3911018 DOI: 10.1128/aem.02223-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/06/2013] [Indexed: 11/20/2022] Open
Abstract
Mussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine on Escherichia coli surfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineered E. coli exhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered sticky E. coli is that no chemistry for cell attachment are necessary, and the ability of spontaneous E. coli attachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded sticky E. coli that can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others.
Collapse
Affiliation(s)
- Joseph P. Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Min-Jung Choi
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Se Hun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hwan Lee
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Haeshin Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|