1
|
Ortega E. Is Immunological Memory a Burden in Times of COVID-19? Trends Immunol 2020; 41:855. [PMID: 32863132 PMCID: PMC7420604 DOI: 10.1016/j.it.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Ciudad Universitaria, CDMX, CP 04510, México.
| |
Collapse
|
2
|
|
3
|
Filip-Crawford G, Neuberg SL. Homosexuality and Pro-Gay Ideology as Pathogens? Implications of a Disease-Spread Lay Model for Understanding Anti-Gay Behaviors. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2016; 20:332-364. [DOI: 10.1177/1088868315601613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Negative behaviors targeting gay men and lesbians range from violent physical assault to casting a vote against gay marriage, with very different implications for those targeted. Existing accounts of such actions, however, are unable to differentially predict specific anti-gay behaviors, leaving a large theoretical hole in the literature and hindering the design of effective interventions. We propose (a) that many sexually prejudiced laypersons conceptualize homosexuality and pro-gay ideology as “contaminants” analogous to infectious pathogens and (b) that anti-gay behaviors can thus be viewed as strategic attempts to prevent, contain, treat, or eradicate the “pathogens” of homosexuality and pro-gay ideology. By considering analogues to disease-spread processes (e.g., susceptibility of specific subpopulations, inoculation procedures, prevalence in the local environment, interconnections among community members), we derive novel predictions regarding the incidence and nature of anti-gay behaviors and provide leverage for creating more tailored interventions to reduce such discrimination.
Collapse
|
4
|
Protein disulfide isomerase A3-specific Th1 effector cells infiltrate colon cancer tissue of patients with circulating anti-protein disulfide isomerase A3 autoantibodies. Transl Res 2016; 171:17-28.e1-2. [PMID: 26772958 DOI: 10.1016/j.trsl.2015.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023]
Abstract
To investigate novel colorectal cancer (CRC)-associated antigens that could be targets of humoral or cellular responses, we analyzed the reactivity of serum from a long-surviving CRC patient (for more than 100 months of follow-up) in clinical remission, by serologic proteome analysis. Two-dimensional Western blotting (2D-WB) and mass spectrometry analysis revealed a strong reactivity of this serum against protein disulfide isomerase A3 (PDIA3). Anti-PDIA3 antibodies are not a diagnostic marker of CRC, 2D-WB and Luminex analysis revealed that they were equally present in about 10% of sera from healthy subjects and CRC patients. Kaplan-Meier analysis of survival in CRC patient cohort, after 48 months of follow-up, showed a trend of higher survival in patients with increased levels of autoantibodies to PDIA3. Therefore, the interplay between the presence of these antibodies and T-cell response was investigated. Peripheral blood T cells from CRC patients with high immunoglobulin G (IgG) reactivity to PDIA3 also secreted interferon gamma (IFN-γ) when stimulated in vitro with recombinant PDIA3, whereas those from CRC with low IgG reactivity to PDIA3 did not. PDIA3-pulsed dendritic cells efficiently induced proliferation and IFN-γ production of autologous CD4(+) and CD8(+) T cells. Finally, ex vivo analysis of tumor-infiltrating T lymphocytes from CRC patients with autoantibodies to PDIA3 revealed that PDIA3-specific Th1 effector cells accumulated in tumor tissue. These data indicate that the presence of autoantibodies to PDIA3 favors the development of an efficient and specific T-cell response against PDIA3 in CRC patients. These results may be relevant for the design of novel immunotherapeutic strategies in CRC patients.
Collapse
|
5
|
Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. J Hematol Oncol 2013; 6:67. [PMID: 24010981 PMCID: PMC3844582 DOI: 10.1186/1756-8722-6-67] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera. Methods and results The serum reactivity of GEM from inception to invasive cancer, and in resectable or advanced human PDAC was tested by two-dimensional electrophoresis Western blot against proteins from murine and human PDAC cell lines, respectively. A common mouse-to-human autoantibody signature, directed against six antigens identified by MALDI-TOF mass spectrometry, was determined. Of the six antigens, Ezrin displayed the highest frequency of autoantibodies in GEM with early disease and in PDAC patients with resectable disease. The diagnostic value of Ezrin-autoantibodies to discriminate PDAC from controls was further shown by ELISA and ROC analyses (P < 0.0001). This observation was confirmed in prediagnostic sera from the EPIC prospective study in patients who eventually developed PDAC (with a mean time lag of 61.2 months between blood drawing and PDAC diagnosis). A combination of Ezrin-autoantibodies with CA19.9 serum levels and phosphorylated α-Enolase autoantibodies showed an overall diagnostic accuracy of 0.96 ± 0.02. Conclusions Autoantibodies against Ezrin are induced early in PDAC and their combination with other serological markers may provide a predictive and diagnostic signature.
Collapse
|
6
|
Abstract
B lymphocytes are often considered a homogenous population. However, B cells in both mouse and humans are comprised of distinct subpopulations that differ in development, phenotype, function, and microenvironmental niches. Much of our understanding about how these different B-cells populations mount antibody responses has been derived from experimental findings in mouse models and based on the use of model antigens. These reductionist studies performed over decades have been invaluable in defining the parameters of the B-cell antibody response to different types of antigens. However, these antigens also are now known to differ in a significant manner from bona fide physiological pathogens, and precisely how these different B-cell subsets divide labor in the primary humoral immune defense of pathogens is less well understood. While there are no absolutes in this area, there are recurring themes that divide the roles of B-cell subsets to different arms of the antibody response. This review provides an overview of rules that govern the B-cell labor roles, exceptions that break these rules, and models that have been used to define them.
Collapse
Affiliation(s)
- Cristina L Swanson
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO, USA
| | | | | |
Collapse
|
7
|
Dai N, Cao XJ, Li MX, Qing Y, Liao L, Lu XF, Zhang SH, Li Z, Yang YX, Wang D. Serum APE1 autoantibodies: a novel potential tumor marker and predictor of chemotherapeutic efficacy in non-small cell lung cancer. PLoS One 2013; 8:e58001. [PMID: 23472128 PMCID: PMC3589448 DOI: 10.1371/journal.pone.0058001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/29/2013] [Indexed: 12/31/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1), which has the dual functions of both DNA repair and redox activity, has been reported to be highly expressed in non-small cell lung cancer (NSCLC), and this appears to be a characteristic related to chemotherapy resistance. In this study, we identified serum APE1 autoantibodies (APE1-AAbs) in NSCLC patients and healthy controls by immunoblotting and investigated the expression of APE1-AAbs by indirect ELISA from the serum of 292 NSCLC patients and 300 healthy controls. In addition, serum APE1-AAbs level alterations of 91 patients were monitored before and after chemotherapy. Our results showed that serum APE1-AAbs can be detected in both NSCLC patients and healthy controls. Serum APE1-AAbs were significantly higher than those of healthy controls and closely related to APE1 antigen levels both in tumor tissues and the peripheral blood. Moreover, the change in levels of serum APE1-AAbs in NSCLC is closely associated with the response to chemotherapy. These results suggest that APE1-AAbs is a potential tumor marker and predictor of therapeutic efficacy in NSCLC.
Collapse
Affiliation(s)
- Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xiao-Jing Cao
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Meng-Xia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Ling Liao
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xian-Feng Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Shi-Heng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yu-Xin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
8
|
Ma S. Low viral persistence of an immunological model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2012; 9:809-817. [PMID: 23311423 DOI: 10.3934/mbe.2012.9.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.
Collapse
Affiliation(s)
- Suqi Ma
- Department of Mathematics, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Peperzak V, Vikstrom IB, Tarlinton DM. Through a glass less darkly: apoptosis and the germinal center response to antigen. Immunol Rev 2012; 247:93-106. [DOI: 10.1111/j.1600-065x.2012.01123.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Chen JS, Kuo YB, Chou YP, Chan CC, Fan CW, Chen KT, Huang YS, Chan EC. Detection of autoantibodies against Rabphilin-3A-like protein as a potential biomarker in patient's sera of colorectal cancer. Clin Chim Acta 2011; 412:1417-22. [PMID: 21536019 DOI: 10.1016/j.cca.2011.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 02/09/2023]
Abstract
BACKGROUND Rabphilin-3A-like (RPH3AL) protein functions in the regulation of hormone exocytosis, and mutations in the RPHA3L gene have been associated with tumorigenesis in colorectal cancer (CRC). We evaluated the potential use of anti-RPH3AL autoantibodies as a marker for CRC detection. METHODS Sera from 84 patients with CRC and 63 healthy controls were analysed for the presence of RPH3AL autoantibodies with a Western blotting assay. RESULTS The frequencies of RPH3AL autoantibodies in the early stage, advanced stage and all CRC patients were 64.7%, 78.0% and 72.6%, respectively. These values are significantly higher than the frequency of RPH3AL autoantibodies in healthy controls (15.9%, P<0.001). Although the presence of RPH3AL autoantibodies did not correlate with clinical parameters, RPH3AL autoantibodies were found in 69.4% (34/49) of CRC patients who were negative for carcinoembryonic antigen. The value of the area under the receiver operating characteristic curve of RPH3AL autoantibody was 0.84, which suggests that screening for these autoantibodies could potentially be used for CRC diagnosis. CONCLUSION Circulating RPH3AL autoantibodies are prevalent in patients with CRC, and detection of these autoantibodies might provide a novel non-invasive approach for CRC diagnosis.
Collapse
Affiliation(s)
- Jinn-Shiun Chen
- Department of Colorectal Surgery, Chang Gung Memorial Hospital, Tao Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
12
|
Graw F, Magnus C, Regoes RR. Theoretical analysis of the evolution of immune memory. BMC Evol Biol 2010; 10:380. [PMID: 21143840 PMCID: PMC3018457 DOI: 10.1186/1471-2148-10-380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of an immune system to remember pathogens improves the chance of the host to survive a second exposure to the same pathogen. This immunological memory has evolved in response to the pathogen environment of the hosts. In vertebrates, the memory of previous infection is physiologically accomplished by the development of memory T and B cells. Many questions concerning the generation and maintenance of immunological memory are still debated. Is there a limit to how many memory cells a host can generate and maintain? If there is a limit, how should new cells be incorporated into a filled memory compartment? And how many different pathogens should the immune system remember? RESULTS In this study, we examine how memory traits evolve as a response to different pathogen environments using an individual-based model. We find that even without a cost related to the maintenance of a memory pool, the positive effect of bigger memory pool sizes saturates. The optimal diversity of a limited memory pool is determined by the probability of re-infection, rather than by the prevalence of a pathogen in the environment, or the frequency of exposure. CONCLUSIONS Relating immune memory traits to the pathogen environment of the hosts, our population biological framework sheds light on the evolutionary determinants of immune memory.
Collapse
|
13
|
Vikstrom I, Tarlinton DM. B cell memory and the role of apoptosis in its formation. Mol Immunol 2010; 48:1301-6. [PMID: 21144588 DOI: 10.1016/j.molimm.2010.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 12/20/2022]
Abstract
B cell memory consists of quiescent memory B cell and bone marrow plasma cell populations, generated in germinal centers during immune responses to T cell dependent antigens. The regulation of cell survival, both within germinal centers and in the maintenance of the effector cells generated in this response, is central to the qualitative and quantitative regulation of memory. In spite of this, the pro- and anti-apoptotic molecules that control survival in these peri-antigenic B cell immune compartments are poorly defined. In this review, we discuss the current perception of the main apoptotic regulators of germinal center B cell, plasma cell, and memory B cell survival during the formation, affinity maturation and maintenance of immunological memory.
Collapse
Affiliation(s)
- Ingela Vikstrom
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | |
Collapse
|
14
|
T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration. Infect Immun 2010; 78:3950-6. [PMID: 20584971 DOI: 10.1128/iai.00371-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells. In this study, we examined the role of Cxcl13-dependent B cell migration using Borrelia hermsii infection or intraperitoneal immunization with pneumococcal polysaccharide or 4-hydroxy-3-nitrophenyl-acetyl (NP)-Ficoll, all of which induce robust antibody responses from B1b cells. Surprisingly, we found that antibody responses to B. hermsii or to FhbA, an antigenic target of B1b cells, and the resolution of bacteremia were indistinguishable between wild-type and Cxcl13-/- mice. Importantly, we did not observe an expansion of peritoneal B1b cell numbers in Cxcl13-/- mice. Nonetheless, mice that had resolved infection were resistant to reinfection, indicating that the peritoneal B1b cell reservoir is not required for controlling B. hermsii. Furthermore, despite a reduced peritoneal B1b compartment, immunization with pneumococcal polysaccharide vaccine yielded comparable antigen-specific antibody responses in wild-type and Cxcl13-/- mice and conferred protection against Streptococcus pneumoniae. Likewise, immunization with NP-Ficoll elicited similar antibody responses in wild-type and Cxcl13-/- mice. These data demonstrate that homing of B1 cells into the coelomic cavity is not a requirement for generating protective TI antibody responses, even when antigen is initially localized to this anatomical compartment.
Collapse
|
15
|
Seyerl M, Kirchberger S, Majdic O, Seipelt J, Jindra C, Schrauf C, Stöckl J. Human rhinoviruses induce IL-35-producing Treg via induction of B7-H1 (CD274) and sialoadhesin (CD169) on DC. Eur J Immunol 2010; 40:321-9. [PMID: 19950173 DOI: 10.1002/eji.200939527] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IL-35 is a heterodimer of EBV-induced gene 3 and of the p35 subunit of IL-12, and recently identified as an inhibitory cytokine produced by natural Treg in mice, but not in humans. Here we demonstrate that DC activated by human rhinoviruses (R-DC) induce IL-35 production and release, as well as a suppressor function in CD4(+) and CD8(+) T cells derived from human peripheral blood but not in naïve T cells from cord blood. The induction of IL-35-producing T cells by R-DC was FOXP3-independent, but blocking of B7-H1 (CD274) and sialoadhesin (CD169) on R-DC with mAb against both receptors prevented the induction of IL-35. Thus, the combinatorial signal delivered by R-DC to T cells via B7-H1 and sialoadhesin is crucial for the induction of human IL-35(+) Treg. These results demonstrate a novel pathway and its components for the induction of immune-inhibitory T cells.
Collapse
Affiliation(s)
- Maria Seyerl
- Institute of Immunology, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
17
|
Tan HT, Low J, Lim SG, Chung MCM. Serum autoantibodies as biomarkers for early cancer detection. FEBS J 2009; 276:6880-904. [DOI: 10.1111/j.1742-4658.2009.07396.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Curno O, Behnke JM, McElligott AG, Reader T, Barnard CJ. Mothers produce less aggressive sons with altered immunity when there is a threat of disease during pregnancy. Proc Biol Sci 2009; 276:1047-54. [PMID: 19129100 DOI: 10.1098/rspb.2008.1612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Maternal experience before and during pregnancy is known to play a key role in offspring development. However, the influence of social cues about disease in the maternal environment has not been explored. We indirectly exposed pregnant mice to infected neighbours by housing them next to non-contagious conspecifics infected with Babesia microti. We examined the effect of this indirect immunological exposure on both the females and their adult offspring. Exposed females had higher levels of serum corticosterone and increased kidney growth compared with those with uninfected neighbours. These exposed females subsequently produced offspring that as adults showed an accelerated immune response to B. microti and less aggression in social groups. We suggest that ambient information regarding disease is used adaptively to maximize offspring survival and reproductive success in a challenging environment. Our results shed light on the impact of social information and maternal effects on life histories, and have important consequences for our understanding of epidemiology and individual disease susceptibility in humans and other animals. They also lead us to question the suitability of some laboratory housing conditions during experimental procedures, which may impact negatively upon both animal welfare and the validity of animal science.
Collapse
Affiliation(s)
- Olivia Curno
- School of Biology, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | |
Collapse
|
19
|
Kijanka G, Murphy D. Protein arrays as tools for serum autoantibody marker discovery in cancer. J Proteomics 2009; 72:936-44. [PMID: 19258055 DOI: 10.1016/j.jprot.2009.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 11/17/2022]
Abstract
Protein array technology has begun to play a significant role in the study of protein-protein interactions and in the identification of antigenic targets of serum autoantibodies in a variety of autoimmune disorders. More recently, this technology has been applied to the identification of autoantibody signatures in cancer. The identification of tumour-associated antigens (TAAs) recognised by the patient's immune response represents an exciting approach to identify novel diagnostic cancer biomarkers and may contribute towards a better understanding of the molecular mechanisms involved. Circulating autoantibodies have not only been used to identify TAAs as diagnostic/prognostic markers and potential therapeutic targets, they also represent excellent biomarkers for the early detection of tumours and potential markers for monitoring the efficacy of treatment. Protein array technology offers the ability to screen the humoral immune response in cancer against thousands of proteins in a high throughput technique, thus readily identifying new panels of TAAs. Such an approach should not only aid in improved diagnostics, but has already contributed to the identification of complex autoantibody signatures that may represent disease subgroups, early diagnostics and facilitated the analysis of vaccine trials.
Collapse
Affiliation(s)
- Gregor Kijanka
- Centre for Human Proteomics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
20
|
Mansfield JM, Paulnock DM. Genetic manipulation of African trypanosomes as a tool to dissect the immunobiology of infection. Parasite Immunol 2008; 30:245-53. [PMID: 18208450 DOI: 10.1111/j.1365-3024.2007.01003.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) coat of African trypanosomes exhibits immunobiological functions distinct from its prominent role as a variant surface antigen. In order to address questions regarding immune stealth effects of VSG switch-variant coats, and the innate immune system activating effects of shed VSG substituents, several groups have genetically modified the ability of trypanosomes to express or release VSG during infection of the mammalian host. The role of mosaic surface coats expressed by VSG switch-variants (VSG double-expressors) in escaping early immune detection, and the role of VSG glycosylphosphatidylinositol (GPI) anchor substituents in regulating host immunity have been revealed, respectively, by stable co-expression of an exogenous VSG gene in trypanosomes expressing an endogenous VSG gene, and by knocking out the genetic locus for GPI-phospholipase C (PLC) that releases VSG from the membrane. Both approaches to genetic modification of African trypanosomes have suggested interesting and unexpected immunobiological effects associated with surface coat molecules.
Collapse
Affiliation(s)
- J M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
21
|
Alugupalli KR. A distinct role for B1b lymphocytes in T cell-independent immunity. Curr Top Microbiol Immunol 2008; 319:105-30. [PMID: 18080416 DOI: 10.1007/978-3-540-73900-5_5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens.
Collapse
Affiliation(s)
- K R Alugupalli
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 726, Philadelphia, PA 19107, USA.
| |
Collapse
|
22
|
Bergamin F, Vincent IE, Summerfield A, McCullough KC. Essential role of antigen-presenting cell-derived BAFF for antibody responses. Eur J Immunol 2007; 37:3122-30. [PMID: 17935087 DOI: 10.1002/eji.200636791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antigen-presenting cells (APC) are directly involved in survival, growth and differentiation of naive B cells and in immunoglobulin class switch recombination. Less is known about the contribution of APC to memory B cell responses. We employed an in vitro model to investigate the secondary humoral response against foot-and-mouth disease virus, with cells from a natural host of the virus - the pig. This response is T cell-dependent. Under conditions of limited T cell help, defined as a low T-to-B cell ratio or by the replacement of T cells with interleukin-2 only, the antibody response was dependent on APC. These included monocytes and monocyte-derived DC, but not plasmacytoid DC. APC mediated their help through soluble factors, particularly soluble B cell-activating factor belonging to the TNF family (BAFF). Our results suggest that the 'ménage à trois' concept, saying that both APC and T cells have a direct effect in B cell activation, is also valid for secondary B cell responses, and imply an important role for BAFF under conditions that might be physiologically relevant in secondary lymphoid organs.
Collapse
Affiliation(s)
- Fabio Bergamin
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | | | | |
Collapse
|
23
|
Castillo-Méndez SI, Zago CA, Sardinha LR, Freitas do Rosário AP, Alvarez JM, D'Império Lima MR. Characterization of the spleen B-cell compartment at the early and late blood-stage Plasmodium chabaudi malaria. Scand J Immunol 2007; 66:309-19. [PMID: 17635808 DOI: 10.1111/j.1365-3083.2007.01972.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyclonal B-cell activation is a feature of the early spleen cell response to blood-stage Plasmodium chabaudi malaria. Immunity to blood-stage malaria is guaranteed by the generation of B cells able to produce parasite-specific antibodies mainly from the immunoglobulin (Ig)G2a isotype. In the present study, we characterized the spleen B-cell compartment during blood-stage P. chabaudi infection. The numbers of B220(+) and B220(LOW) CD138(+) (plasma) cells increased sharply between days 4 and 7 post-infection (p.i.). At this time B220(+) cells expressed surface (s)IgM, but nearly all B220(LOW) CD138(+) cells showed concomitantly intracellular (i)IgM and IgG2a. Both follicular and marginal zone B cells were activated expressing high amounts of CD69. At day 40 p.i., B220(LOW) CD138(+) cell population was still increased but, differently from acute infection, 61.1% of these cells were positive for iIgG2a while only 14.2% expressed iIgM. Moreover, at days 20 and 40 p.i., 29.2% and 13.0% of B220(+) cells expressed sIgG2a, respectively. According to cell size and expression of CD80, CD86, CD11b, CD44 and CD38, B220(+) sIgG2a(+) cells had a phenotype characteristic of activated/memory B cells. Furthermore, 14.1% of B220(+) sIgG2a(+) cells at day 30 p.i. expressed a marginal zone B-cell phenotype. Importantly, B cells from 40-day-infected mice were very efficient in presenting parasite antigens leading to proliferation of both CD4(+) and CD8(+) cells. Our results contribute for understanding the dynamics of B cells during P. chabaudi infection, underlying the mechanisms of antigen presentation and antibody production, which are essential for the acquisition of protective immunity against malaria.
Collapse
Affiliation(s)
- S I Castillo-Méndez
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
24
|
Zanetti M. Immunity and protection, the unfolding of a tale. Immunol Res 2007; 38:305-18. [DOI: 10.1007/s12026-007-0005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/16/2023]
|
25
|
Annoni A, Battaglia M, Follenzi A, Lombardo A, Sergi-Sergi L, Naldini L, Roncarolo MG. The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood 2007; 110:1788-96. [PMID: 17495135 DOI: 10.1182/blood-2006-11-059873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Systemic delivery of lentiviral vector (LV) in immunocompetent mice leads to efficient in vivo cell transduction and expression of the encoded protein under the control of the ubiquitous promoter of human cytomegalovirus (CMV). However, antitransgene immune response results in clearance of transduced cells 4 weeks after injection. T regulatory cells (Tregs), which have been demonstrated to control immune responses in vivo, were tested for their ability to suppress antitransgene response leading to stable long-term expression. Adoptive transfer of natural CD4(+)CD25(+) Tregs (nTregs) isolated from wild type (wt) mice or from transgene tolerant transgenic (tg) mice did not suppress the antitransgene immune response after LV delivery. These data demonstrate that neither increasing the endogenous pool of natural Tregs nor transferring nTregs selected in a transgene-expressing thymus can modulate the immune response and mediate sustained transgene expression. Conversely, adoptive transfer of antigen-presenting cells (APCs) isolated from transgene-tolerant tg mice efficiently reduced the immune response leading to stable LV-encoded protein expression in vivo. Reduction of CD8(+) effector T cells was observed in LV-treated mice coinjected with transgene-expressing APCs compared with control mice. These data indicate that antitransgene immune response can be modulated by transgene-expressing APCs possibly through deletion of effector T cells.
Collapse
Affiliation(s)
- Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
De Boer RJ. Understanding the failure of CD8+ T-cell vaccination against simian/human immunodeficiency virus. J Virol 2007; 81:2838-48. [PMID: 17202215 PMCID: PMC1865966 DOI: 10.1128/jvi.01914-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology UU, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
27
|
Mumprecht S, Matter M, Pavelic V, Ochsenbein AF. Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections. Blood 2006; 108:3406-13. [PMID: 16873671 DOI: 10.1182/blood-2006-04-018705] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Imatinib mesylate (imatinib) is a potent inhibitor of defined tyrosine kinases (TKs) and is effective in the treatment of malignancies characterized by constitutive activation of these TKs such as chronic myeloid leukemia and gastrointestinal stromal tumors. TKs also play an important role in T-cell receptor (TCR) signal transduction. Inhibitory as well as stimulating effects of imatinib on T cells and dendritic cells have been described. Here, we analyzed the effects of imatinib treatment on antiviral immune responses in vivo. Primary cytotoxic T-cell (CTL) responses were not impaired in imatinib-treated mice after infection with lymphocytic choriomeningitis virus (LCMV) or after immunization with a tumor cell line expressing LCMV glycoprotein (LCMV-GP). Similarly, neutralizing antibody responses to vesicular stomatitis virus (VSV) were not affected. In contrast, secondary expansion of LCMV-specific memory CTLs was reduced in vitro and in vivo, resulting in impaired protection against reinfection. In addition, imatinib treatment delayed the onset of diabetes in a CTL-induced diabetes model. In summary, imatinib treatment in vivo selectively inhibits the expansion of antigen-experienced memory CTLs without affecting primary T- or B-cell responses. Therefore, imatinib may be efficacious in the suppression of CTL-mediated immunopathology in autoimmune diseases without the risk of acquiring viral infections.
Collapse
Affiliation(s)
- Sabine Mumprecht
- Tumor Immunology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
28
|
Abstract
B-cell memory is provided by populations of quiescent memory B cells and long-lived plasma cells. Whereas it is clear that both of these cell populations arise from germinal centres, the signals and circumstances that trigger germinal-centre B cells to enter and then persist in memory compartments are poorly defined. Here, I propose that germinal centres produce memory B cells and plasma cells throughout the immune response and that memory B cells arise by the emigration of B cells that are chosen at random from the pool available in the germinal centre. The ability of such emigrants to survive as memory B cells depends on their germinal-centre 'history', with the persistence of high-affinity B-cell variants being favoured.
Collapse
Affiliation(s)
- David Tarlinton
- David Tarlinton is at The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia.
| |
Collapse
|
29
|
Zinkernagel RM, Hengartner H. Protective 'immunity' by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called 'immunological memory'. Immunol Rev 2006; 211:310-9. [PMID: 16824138 DOI: 10.1111/j.0105-2896.2006.00402.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The idea of immunological memory originally arose from the observation that survivors of infections were subsequently resistant to disease caused by the same infection. While most immunologists accept a special 'remembering' memory quality, we have argued previously and document here that increased resistance against re-infection, i.e. immunity, reflects low-level antigen-driven T- and B-cell responses, resulting in elevated serum or mucosal titers of protective antibodies or of activated T cells, respectively. Periodic antigen re-exposure is from within, by persisting infection (long-term) or by immune complexes (short-term), or from without, by low-level re-infections. This simple concept is supported by clinical evidence and model experiments but is often ignored, although this concept, but not so-called 'immunological memory', as defined in textbooks (i.e. earlier and better responses of a primed host), is compatible with evolutionary maternal antibody transfer of protection as well as immunity against existing infections. The concept of 'immunity without immunological remembering memory' explains why it is easy to generate vaccines against acute cytopathic infections, particularly those of early childhood, where neutralizing antibodies are the key to protection, because it has been validated by adoptive transfer of maternal antibodies. It also explains why we have not succeeded (yet?) to generate truly protective vaccines against persisting infections, because we cannot imitate 'infection immunity' that is long-lasting, generating protective T- and B-cell stimulation against variable infections without causing disease by either immunopathology or tolerance.
Collapse
Affiliation(s)
- Rolf M Zinkernagel
- University Hospital Zürich, Institute of Experimental Immunology, Zürich, Switzerland.
| | | |
Collapse
|
30
|
Abstract
Concepts of cell-cell interactions in adaptive immunity have alternated between the simple and the complex. The notion that one population of small, circulating lymphocytes is responsible for adaptive immunity was sequentially supplanted by the concept of separate T and B lymphocyte populations that cooperate to produce IgG antibody responses, by a three-cell model in which a myeloid APC initiates these cooperative lymphoid responses, by the recognition of T cell subsets, and by the idea that CD8+ T cell subset responses to graft antigens depend on CD4+ T cell subset activity. Simplicity was reintroduced with the revelation that CD8+ T cells can act independently of CD4+ T cells against acute viral infections. The pendulum has swung again toward complexity with recognition of the distinct and conjoint contributions of innate stimuli, APCs, NK and NKT cells, Tregs, and CD4+ helper T cells to CD8+ T cell behavior during acute and chronic infections or as memory cells. The renewed appreciation that multiple, sometimes rare cell types must communicate during cell-mediated immune responses has led to questions about how such interactions are orchestrated within organized lymphoid tissues. We review recent advances in deciphering the specific contribution of CD4+ T cells to physiologically useful CD8+ T cell responses, the signals involved in producing acute effectors versus long-lived memory cells, and the mechanisms underlying the cell-cell associations involved in delivery of such signals. We propose a model based on these new findings that may serve as a general paradigm for cellular interactions that occur in an inflamed lymph node during the initiation of immune responses.
Collapse
Affiliation(s)
- Flora Castellino
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
31
|
Abstract
In response to infection, antigen-specific CD8+ T cells undergo massive expansion in numbers, acquire effector mechanisms, and disseminate throughout the body. The expansion phase is followed by a contraction (death) phase, where 90-95% of antigen-specific CD8+ T cells are eliminated. The remaining antigen-specific CD8+ T cells form the initial memory pool, which can be stably maintained for life. In this review, we discuss evidence that early events after infection 'program' CD8+ T cells to expand, contract, and generate memory in a fashion that is largely insensitive to the duration of infection or antigen display. Recent data demonstrate, despite numerical stability, that memory CD8+ T-cell populations undergo phenotypic and functional changes with time after immunization. However, the early suggestion that specific markers can be used to identify memory CD8+ T cells has not been supported by recent studies. Thus, we argue that specific functional characteristics, such as the ability to persist and undergo vigorous secondary expansion leading to elevated memory cell numbers, remain the best markers of 'good' memory cells. Finally, we discuss experimental approaches to manipulate and accelerate generation of CD8+ T cells with memory characteristics, and how these systems can inform both basic and applied immunology.
Collapse
|
32
|
Dubois ME, Demick KP, Mansfield JM. Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system. Infect Immun 2005; 73:2690-7. [PMID: 15845470 PMCID: PMC1087325 DOI: 10.1128/iai.73.5.2690-2697.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host resistance to African trypanosomiasis is partially dependent on an early and strong T-independent B-cell response against the variant surface glycoprotein (VSG) coat expressed by trypanosomes. The repetitive array of surface epitopes displayed by a monotypic surface coat, in which identical VSG molecules are closely packed together in a uniform architectural display, cross-links cognate B-cell receptors and initiates T-independent B-cell activation events. However, this repetitive array of identical VSG epitopes is altered during the process of antigenic variation, when former and nascent VSG proteins are transiently expressed together in a mosaic surface coat. Thus, T-independent B-cell recognition of the trypanosome surface coat may be disrupted by the introduction of heterologous VSG molecules into the coat structure. To address this hypothesis, we transformed Trypanosoma brucei rhodesiense LouTat 1 with the 117 VSG gene from Trypanosoma brucei brucei MiTat 1.4 in order to produce VSG double expressers; coexpression of the exogenous 117 gene along with the endogenous LouTat 1 VSG gene resulted in the display of a mosaic VSG coat. Results presented here demonstrate that the host's ability to produce VSG-specific antibodies and activate B cells during early infection with VSG double expressers is compromised relative to that during infection with the parental strain, which displays a monotypic coat. These findings suggest a previously unrecognized mechanism of immune response evasion in which coat-switching trypanosomes fail to directly activate B cells until coat VSG homogeneity is achieved. This process affords an immunological advantage to trypanosomes during the process of antigenic variation.
Collapse
Affiliation(s)
- Melissa E Dubois
- Department of Bacteriology, University of Wisconsin-Madison, 1925 Willow Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
33
|
Blink EJ, Light A, Kallies A, Nutt SL, Hodgkin PD, Tarlinton DM. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. ACTA ACUST UNITED AC 2005; 201:545-54. [PMID: 15710653 PMCID: PMC2213050 DOI: 10.1084/jem.20042060] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunization with a T cell–dependent antigen elicits production of specific memory B cells and antibody-secreting cells (ASCs). The kinetic and developmental relationships between these populations and the phenotypic forms they and their precursors may take remain unclear. Therefore, we examined the early stages of a primary immune response, focusing on the appearance of antigen-specific B cells in blood. Within 1 wk, antigen-specific B cells appear in the blood with either a memory phenotype or as immunoglobulin (Ig)G1 ASCs expressing blimp-1. The memory cells have mutated VH genes; respond to the chemokine CXCL13 but not CXCL12, suggesting recirculation to secondary lymphoid organs; uniformly express B220; show limited differentiation potential unless stimulated by antigen; and develop independently of blimp-1 expression. The antigen-specific IgG1 ASCs in blood show affinity maturation paralleling that of bone marrow ASCs, raising the possibility that this compartment is established directly by blood-borne ASCs. We find no evidence for a blimp-1–expressing preplasma memory compartment, suggesting germinal center output is restricted to ASCs and B220+ memory B cells, and this is sufficient to account for the process of affinity maturation.
Collapse
Affiliation(s)
- Elizabeth J Blink
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Jansen VAA, Altes HK, Funk GA, Wodarz D. Contrasting B cell- and T cell-based protective vaccines. J Theor Biol 2004; 234:39-48. [PMID: 15721034 DOI: 10.1016/j.jtbi.2004.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/19/2022]
Abstract
A substantial research effort is devoted to the development of vaccines based on T cells. Such a vaccine would provide a means to protect against infection with HIV and stop the current pandemic. Here we investigate the possibility to develop a protective T cell-based vaccine. We do this by means of a mathematical model which describes the dynamics of a pathogen and the immune system in the early stages of infection. We compare an immune response that is near immediate--as is the case for a humoral response--with that of a response in which the effector cells have to be formed from precursor cells--as occurs in T cell responses. The latter applies to a T cell-based vaccine. A near immediate response is associated with a threshold number of effector cells above which an infection cannot take hold. For a T cell-based vaccine this threshold increases with the amount of antigen the immune system is exposed to. For small initial doses, as one would naturally expect to occur, this gives rise to impractically large thresholds. Thus, although a T cell vaccine might work against a high dose exposure, it might fail when exposed against to a low-dose exposure. This limits, we argue, the efficacy of T cell-based vaccines.
Collapse
Affiliation(s)
- Vincent A A Jansen
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | | | | | | |
Collapse
|
35
|
Zanetti M, Castiglioni P, Rizzi M, Wheeler M, Gerloni M. B lymphocytes as antigen-presenting cell-based genetic vaccines. Immunol Rev 2004; 199:264-78. [PMID: 15233740 DOI: 10.1111/j.0105-2896.2004.00152.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inoculation of plasmid DNA is a simple way to immunize, but it is characterized by low immunogenicity, which has hampered the development of effective DNA vaccines for human use. Here, we discuss how poor immunogenicity can be solved and present our proposal: genetically programmed B lymphocytes as antigen-presenting cell (APC) vaccines. First, we demonstrate that mature B lymphocytes take up plasmid DNA spontaneously, i.e., in the absence of any facilitating molecule or event, spontaneous lymphocyte transgenesis. Second, we demonstrate that transgenic B lymphocytes are easily and reproducibly turned into functional APCs with dual characteristics: upregulation of costimulatory molecules and endogenous synthesis of antigen. Used as immunogens in mice, transgenic B lymphocytes induce robust and long-lasting T-cell immunity after single intravenous injection. Surprisingly, immunity and protection against lethal virus challenge can be obtained with a single intravenous injection of 3 x 10(2) transgenic lymphocytes. The new approach is discussed relative to the advantage of targeting secondary lymphoid organs with genetically programmed B lymphocytes and the advantage offered with respect to low antigen dose. We suggest that these properties reflect on simple characteristics, such as time synchronization and initial localization to secondary lymphoid organs of APCs endowed with protracted synthesis and presentation of antigen to T cells.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, CA 92093-0837, USA.
| | | | | | | | | |
Collapse
|
36
|
Mycko MP, Waldner H, Anderson DE, Bourcier KD, Wucherpfennig KW, Kuchroo VK, Hafler DA. Cross-Reactive TCR Responses to Self Antigens Presented by Different MHC Class II Molecules. THE JOURNAL OF IMMUNOLOGY 2004; 173:1689-98. [PMID: 15265898 DOI: 10.4049/jimmunol.173.3.1689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigen Presentation
- Autoantigens/immunology
- CD4 Antigens/immunology
- Cross Reactions
- Encephalomyelitis, Autoimmune, Experimental/immunology
- HLA-DR Antigens/immunology
- HLA-DR alpha-Chains
- HLA-DRB1 Chains
- Humans
- Hybridomas/immunology
- L Cells
- Lymphocyte Activation
- Membrane Proteins/metabolism
- Mice
- Molecular Sequence Data
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Myelin Basic Protein/immunology
- Peptide Fragments/immunology
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- Transfection
Collapse
Affiliation(s)
- Marcin P Mycko
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Burkett PR, Koka R, Chien M, Boone DL, Ma A. Generation, maintenance, and function of memory T cells. Adv Immunol 2004; 83:191-231. [PMID: 15135632 DOI: 10.1016/s0065-2776(04)83006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Patrick R Burkett
- Department of Medicine and the Ben May Institute for Cancer Research, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Gerloni M, Rizzi M, Castiglioni P, Zanetti M. T cell immunity using transgenic B lymphocytes. Proc Natl Acad Sci U S A 2004; 101:3892-7. [PMID: 15004284 PMCID: PMC374340 DOI: 10.1073/pnas.0400138101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (approximately 10(2)). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.
Collapse
Affiliation(s)
- Mara Gerloni
- Department of Medicine and Cancer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0837, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Memory is a central characteristic of immune responses. It is defined as an elevated number of specific immune cells that remain after resolution of infection and can protect the host against reinfection. The evolution of immunological memory is subject to debate. The advantages of memory discussed so far include protection from reinfection, control of chronic infection, and the transfer of immune function to the next generation. Mathematical models are used to identify a new force that can drive the evolution of immunological memory: the duration of memory can regulate the degree of competition between different pathogens. While a long duration of memory provides lasting protection against reinfection, it may also allow an inferior pathogen species to persist. This can be detrimental for the host if the inferior pathogen is more virulent. On the other hand, a shorter duration of memory ensures that an inferior pathogen species is excluded. This can be beneficial for the host if the inferior pathogen is more virulent. Thus, while in the absence of pathogen diversity memory is always expected to evolve to a long duration, under specific circumstances, memory can evolve toward shorter durations in the presence of pathogen diversity.
Collapse
Affiliation(s)
- Dominik Wodarz
- Fred Hutchison Cancer Research Center, 1100 Fairview Avenue North, MP-665, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
Chambers RS, Johnston SA. High-level generation of polyclonal antibodies by genetic immunization. Nat Biotechnol 2003; 21:1088-92. [PMID: 12910245 DOI: 10.1038/nbt858] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 06/24/2003] [Indexed: 11/09/2022]
Abstract
Antibodies are important tools for investigating the proteome, but current methods for producing them have become a rate-limiting step. A primary obstacle in most methods for generating antibodies or antibody-like molecules is the requirement for at least microgram quantities of purified protein. We have developed a technology for producing antibodies using genetic immunization. Genetic immunization-based antibody production offers several advantages, including high throughput and high specificity. Moreover, antibodies produced from genetically immunized animals are more likely to recognize the native protein. Here we show that a genetic immunization-based system can be used to efficiently raise useful antibodies to a wide range of antigens. We accomplished this by linking the antigen gene to various elements that enhance antigenicity and by codelivering plasmids encoding genetic adjuvants. Our system, which was tested by immunizing mice with >130 antigens, has shown a final success rate of 84%.
Collapse
Affiliation(s)
- Ross S Chambers
- Center for Biomedical Inventions, Department of Internal Medicine, University of Texas-Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, USA.
| | | |
Collapse
|
41
|
Abstract
This review summarizes the general parameters of cell- and antibody-mediated immune protection and the basic mechanisms responsible for what we call immunological memory. From this basis, the various successes and difficulties of vaccines are evaluated with respect to the role of antigen in maintaining protective immunity. Based on the fact that in humans during the first 12-48 months maternal antibodies from milk and serum protect against classical acute childhood and other infections, the concept is developed that maternal antibodies attenuate most infections of babies and infants and turn them into effective vaccines. If this "natural vaccination" under passive protective conditions does not occur, acute childhood diseases may be severe, unless infants are actively vaccinated with conventional vaccines early enough, i.e., in synchronization with the immune system's maturation. Although vaccines are available against the classical childhood diseases, they are not available for many seemingly milder childhood infections such as gastrointestinal and respiratory infections; these may eventually trigger immunopathological diseases. These changing balances between humans and infections caused by changes in nursing habits but also in hygiene levels may well be involved in changing disease patterns including increased frequencies of certain autoimmune and degenerative diseases.
Collapse
Affiliation(s)
- Rolf M Zinkernagel
- Institute for Experimental Immunology, University Hospital, Zurich CH-8091, Switzerland.
| |
Collapse
|
42
|
Bocharov G, Klenerman P, Ehl S. Modelling the dynamics of LCMV infection in mice: II. Compartmental structure and immunopathology. J Theor Biol 2003; 221:349-78. [PMID: 12642113 DOI: 10.1006/jtbi.2003.3180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we develop a mathematical model for analysis of the compartmental aspects and immunopathology of lymphocytic choriomeningitis virus (LCMV) infection in mice. We used sets of original and published data on systemic (extrasplenic) virus distribution to estimate the parameters of virus growth and elimination for spleen and other anatomical compartments, such as the liver, kidney, thymus and lung as well as transfer rates between blood and the above organs. A mathematical model quantitatively integrating the virus distribution kinetics in the host, the specific cytotoxic T lymphocyte (CTL) response in spleen and the re-circulation of effector CTL between spleen, blood and liver is advanced to describe the CTL-mediated immunopathology (hepatitis) in mice infected with LCMV. For intravenous and "peripheral" routes of infection we examine the severity of the liver disease, as a function of the virus dose and the host's immune status characterized by the numbers of precursor and/or cytolytic effector CTL. The model is used to predict the efficacy of protection against virus persistence and disease in a localized viral infection as a function of the composition of CTL population. The modelling analysis suggests quantitative demands to CTL memory for maximal protection against a wide range of doses of infection with a primarily peripheral site of virus replication without the risk of favoring immunopathology. It specifies objectives for CTL vaccination to ensure virus elimination with minimal immunopathology vs. vaccination for disease.
Collapse
Affiliation(s)
- Gennady Bocharov
- Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
43
|
De Geest BR, Van Linthout SA, Collen D. Humoral immune response in mice against a circulating antigen induced by adenoviral transfer is strictly dependent on expression in antigen-presenting cells. Blood 2003; 101:2551-6. [PMID: 12446451 DOI: 10.1182/blood-2002-07-2146] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviral transfer of human apo A-I in Balb/c mice induces a strong humoral immune response against the transgene product when expression is driven from the ubiquitously active CMV promoter but induces no immune response when driven by the hepatocyte-specific 256-base pair apo A-I promoter. Here the hypothesis was tested, which is that the humoral immune response against the circulating transgene product correlates with its expression in antigen-presenting cells. No humoral immune response was observed after adenoviral transfer of vectors with human apo A-I expression driven by the hepatocyte-specific apo C-II or 1.5-kilobase (kb) human alpha(1)-antitrypsin promoter, but antibodies were induced after transfer with vectors driven by the ubiquitously active U1b promoter and the murine MHCII E beta promoter. A strict correlation was observed between antigen expression in the spleen and the occurrence of an immune response. Coinjection of the 1.5-kb human alpha(1)-antitrypsin and the murine MHCII E beta promoter-driven vectors resulted in a very short-lived humoral immune response against human apo A-I, suggesting that the time course of human apo A-I expression is a critical determinant of the development of tolerance for human apo A-I. High titers of antibodies against human apo A-I after subcutaneous gene transfer with the MHCII E beta promoter-driven vector underscore the potential of this promoter for vaccination purposes. In conclusion, humoral immune response in mice against a circulating antigen induced by adenoviral transfer is strictly dependent on expression in antigen-presenting cells.
Collapse
Affiliation(s)
- Bart R De Geest
- Center for Molecular and Vascular Biology, Department for Molecular and Cardiovascular Research, Leuven, Belgium.
| | | | | |
Collapse
|
44
|
Hein WR, Griebel PJ. A road less travelled: large animal models in immunological research. Nat Rev Immunol 2003; 3:79-84. [PMID: 12511878 DOI: 10.1038/nri977] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The main advances in immunology have been forged or underpinned by animal experiments. However, animal research now focuses excessively on one laboratory species, and there is too much redundant repetition and too few transfers from basic discovery to successful clinical application. These features can be improved markedly by placing more emphasis on biological relevance when evaluating animal models and by taking greater advantage of the unique experimental opportunities that are offered by large animals.
Collapse
Affiliation(s)
- Wayne R Hein
- AgResearch Limited, Wallaceville Animal Research Centre, Ward Street, PO Box 40063, Upper Hutt, New Zealand.
| | | |
Collapse
|
45
|
Abstract
The evolutionary benefits of immunological memory are important: whereas antibodies can be transmitted to offspring by their mother and thereby benefit the species, T cell memory may function to help the individual combat persistent infection in peripheral tissues. Although experimental immunological memory is largely maintained antigen-independently, protective immunity is antigen-dependent.
Collapse
Affiliation(s)
- Rolf M Zinkernagel
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
46
|
Abstract
The many immunological observations and results from in-vitro or in-vivo experiments vary, and their interpretations differ enormously. A major problem is that within a normal distribution of biological phenomena, which are measurable with many methods, virtually anything is possible. Within a coevolutionary context, the definition of biologically relevant thresholds is an important key to improve our understanding of weaknesses and strengths of the immune system. This review is a personal view, comparing textbook rules and experiments using model antigens with observations on immunity against infections or tumors to critically evaluate our perception and understanding of specificity, affinity maturation, antigen presentation, selection of the class of the immune response, immunological memory and protective immunity, positive selection of T cells and self/nonself discrimination.
Collapse
Affiliation(s)
- Rolf M Zinkernagel
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
47
|
Berard M, Tough DF. Qualitative differences between naïve and memory T cells. Immunology 2002; 106:127-38. [PMID: 12047742 PMCID: PMC1782715 DOI: 10.1046/j.1365-2567.2002.01447.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 04/17/2002] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marion Berard
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK
| | | |
Collapse
|
48
|
Tan EM. Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest 2001; 108:1411-5. [PMID: 11714730 PMCID: PMC209427 DOI: 10.1172/jci14451] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- E M Tan
- The Scripps Research Institute, MEM131, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
49
|
Luzyanina T, Engelborghs K, Ehl S, Klenerman P, Bocharov G. Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math Biosci 2001; 173:1-23. [PMID: 11576559 DOI: 10.1016/s0025-5564(01)00072-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many important viruses persist at very low levels in the body in the face of host immunity, and may influence the maintenance of this state of 'infection immunity'. To analyse low level viral persistence in quantitative terms, we use a mathematical model of antiviral cytotoxic T lymphocyte (CTL) response to lymphocytic choriomeningitis virus (LCMV). This model, described by a non-linear system of delay differential equations (DDEs), is studied using numerical bifurcation analysis techniques for DDEs. Domains where low level LCMV coexistence with CTL memory is possible, either as an equilibrium state or an oscillatory pattern, are identified in spaces of the model parameters characterising the interaction between virus and CTL populations. Our analysis suggests that the coexistence of replication competent virus below the conventional detection limit (of about 100 pfu per spleen) in the immune host as an equilibrium state requires the per day relative growth rate of the virus population to decrease at least 5-fold compared to the acute phase of infection. Oscillatory patterns in the dynamics of persisting LCMV and CTL memory, with virus population varying between 1 and 100 pfu per spleen, are possible within quite narrow intervals of the rates of virus growth and precursor CTL population death. Whereas the virus replication rate appears to determine the stability of the low level virus persistence, it does not affect the steady-state level of the viral population, except for very low values.
Collapse
Affiliation(s)
- T Luzyanina
- Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee-Leuven, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Flores-Romo L. In vivo maturation and migration of dendritic cells. Immunology 2001; 102:255-62. [PMID: 11298823 PMCID: PMC1783189 DOI: 10.1046/j.1365-2567.2001.01204.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Accepted: 12/20/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- L Flores-Romo
- Department of Experimental Pathology, CINVESTAV-IPN, Zacatenco, México City, Mexico.
| |
Collapse
|