1
|
Vong KI, Lee S, Au KS, Crowley TB, Capra V, Martino J, Haller M, Araújo C, Machado HR, George R, Gerding B, James KN, Stanley V, Jiang N, Alu K, Meave N, Nidhiry AS, Jiwani F, Tang I, Nisal A, Jhamb I, Patel A, Patel A, McEvoy-Venneri J, Barrows C, Shen C, Ha YJ, Howarth R, Strain M, Ashley-Koch AE, Azam M, Mumtaz S, Bot GM, Finnell RH, Kibar Z, Marwan AI, Melikishvili G, Meltzer HS, Mutchinick OM, Stevenson DA, Mroczkowski HJ, Ostrander B, Schindewolf E, Moldenhauer J, Zackai EH, Emanuel BS, Garcia-Minaur S, Nowakowska BA, Stevenson RE, Zaki MS, Northrup H, McNamara HK, Aldinger KA, Phelps IG, Deng M, Glass IA, Morrow B, McDonald-McGinn DM, Sanna-Cherchi S, Lamb DJ, Gleeson JG. Risk of meningomyelocele mediated by the common 22q11.2 deletion. Science 2024; 384:584-590. [PMID: 38696583 DOI: 10.1126/science.adl1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.
Collapse
Affiliation(s)
- Keng Ioi Vong
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA
| | - T Blaine Crowley
- 22q and You Center, Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Meade Haller
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
| | - Camila Araújo
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Hélio R Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Renee George
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Bryn Gerding
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kiely N James
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Nan Jiang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Kameron Alu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Naomi Meave
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Anna S Nidhiry
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Fiza Jiwani
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Isaac Tang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ashna Nisal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Ishani Jhamb
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Aakash Patel
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Jennifer McEvoy-Venneri
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Celina Shen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Yoo-Jin Ha
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Robyn Howarth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Punjab 47000, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab 46000, Pakistan
| | - Gyang Markus Bot
- Neurosurgery Division, Department of Surgery, Jos University Teaching Hospital, Jos 930105, Nigeria
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Human Genetics, Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoha Kibar
- Department of Neurosciences, University of Montreal and CHU Sainte Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ahmed I Marwan
- Division of Pediatric Surgery, University of Colorado School of Medicine, Children's Hospital of Colorado, Colorado Fetal Care Center, Aurora, CO 80045, USA
| | - Gia Melikishvili
- Department of Pediatrics, MediClubGeorgia Medical Center, Tbilisi 0160, Georgia
| | - Hal S Meltzer
- Department of Neurosurgery, University of California San Diego, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - David A Stevenson
- Division of Medical Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Henry J Mroczkowski
- Division of Medical Genetics, University of Tennessee Health Science Campus, Memphis, TN 38163, USA
| | - Betsy Ostrander
- Division of Pediatric Neurology, Primary Children's Hospital, University of Utah, Salt Lake City, UT 84113, USA
| | - Erica Schindewolf
- Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julie Moldenhauer
- Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- 22q and You Center, Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly S Emanuel
- 22q and You Center, Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixto Garcia-Minaur
- Clinical Genetics Section, Institute of Medical and Molecular Genetics, University Hospital La Paz, 28046 Madrid, Spain
| | - Beata A Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka, 01-211 Warsaw, Poland
| | - Roger E Stevenson
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Hanna K McNamara
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
| | - Ian G Phelps
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Mei Deng
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Ian A Glass
- Departments of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Bernice Morrow
- Division of Translational Genetics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donna M McDonald-McGinn
- 22q and You Center, Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Human Biology and Medical Genetics, Sapienza University, 00185-Rome RM, Italy
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, NY 10027, USA
| | - Dolores J Lamb
- Center for Reproductive Medicine, Department of Molecular and Cellular Biology and Scott Department of Urology, Baylor College of Medicine, TX 77030, USA
- Department of Urology, Center for Reproductive Genomics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA
| |
Collapse
|
2
|
Guo C, Lv X, Zhang Q, Yi L, Ren Y, Li Z, Yan J, Zheng S, Sun M, Liu S. CRKL but not CRKII contributes to hemin-induced erythroid differentiation of CML. J Cell Mol Med 2024; 28:e18308. [PMID: 38683131 PMCID: PMC11057422 DOI: 10.1111/jcmm.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.
Collapse
MESH Headings
- Humans
- Hemin/pharmacology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- K562 Cells
- Cell Differentiation/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Erythroid Cells/metabolism
- Erythroid Cells/drug effects
- Erythroid Cells/pathology
- Erythroid Cells/cytology
- Proto-Oncogene Proteins c-crk/metabolism
- Proto-Oncogene Proteins c-crk/genetics
- Erythropoiesis/genetics
- Erythropoiesis/drug effects
- MAP Kinase Signaling System/drug effects
- 3' Untranslated Regions
- Gene Expression Regulation, Leukemic/drug effects
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xinxin Lv
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Qiuling Zhang
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Lina Yi
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Yingying Ren
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical UniversityInstitute of Stem Cell Transplantation of Dalian Medical UniversityDalianLiaoningChina
| | - Shanliang Zheng
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Ming‐Zhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
3
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Dettori C, Ronca F, Di Buono G, Saba A, Di Lupo F, Polini B, Ricardi C, Frascarelli S, Cetani F, Marcocci C, Zucchi R, Chiellini G, Scalese M, Saponaro F. Performance in Behavioral Testing in an Animal Model of Post-Surgical Hypoparathyroidism. J Pers Med 2024; 14:215. [PMID: 38392648 PMCID: PMC10890136 DOI: 10.3390/jpm14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hypoparathyroidism (HypoPT) is characterized by hypocalcemia and undetectable/inappropriately low PTH. Post-surgical HypoPT (PS-HypoPT) is the most common cause. Patients with PS-HypoPT present neuropsychological symptoms, probably due to the PTH deprivation in the central nervous system (CNS). However, these mechanisms are still not elucidated. The aim of this study was to evaluate the effects of PTH deprivation on CNS in an animal model of PS-HypoPT via a cognitive/behavioral assessment approach. METHODS A surgical rat model of PS-HypoPT was obtained and treated with calcium to maintain normocalcemia. Twenty PS-HypoPT rats and twenty sham-operated controls (Crl) underwent behavioral testing in a Morris Water Maze (MWM), Open Field (OF), and Elevated Plus Maze (EPM). RESULTS In the MWM, PTx rats showed a higher Escape Latency Time compared to Crl rats (p < 0.05); we observed a statistically significant improvement in the performance (day 1 to 8 p < 0.001), which was less pronounced in PTx group. In the OF test, the time and distance spent in the zone of interest were significantly lower in the PTx group compared with the Crl (p < 0.01 and p < 0.01). In the EPM experiment, the time spent in the close arm was significantly higher in the PTx group compared with the Crl (p < 0.01). CONCLUSIONS This animal model of PS-HypoPT shows an impairment in spatial memory, which improved after training, and a marked anxiety-like behavior, resembling the condition of patients with PS-HypoPT. Further studies are needed to elucidate mechanisms.
Collapse
Affiliation(s)
- Cristina Dettori
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Francesca Ronca
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Giulia Di Buono
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Francesca Di Lupo
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Beatrice Polini
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Caterina Ricardi
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Sabina Frascarelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Filomena Cetani
- Endocrine Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | | | - Riccardo Zucchi
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| | - Marco Scalese
- Institute of Clinical Physiology, National Council of Research, 56126 Pisa, Italy
| | - Federica Saponaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care, 56126 Pisa, Italy
| |
Collapse
|
5
|
Stergas HR, Dillon-Martin M, Dumas CM, Hansen NA, Carasi-Schwartz FJ, D'Amico AR, Finnegan KM, Juch U, Kane KR, Kaplan IE, Masengarb ML, Melero ME, Meyer LE, Sacher CR, Scriven EA, Ebert AM, Ballif BA. CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS Lett 2024; 598:302-320. [PMID: 38058169 DOI: 10.1002/1873-3468.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
CRK adaptor proteins are important for signal transduction mechanisms driving cell proliferation and positioning during vertebrate central nervous system development. Zebrafish lacking both CRK family members exhibit small, disorganized retinas with 50% penetrance. The goal of this study was to determine whether another adaptor protein might functionally compensate for the loss of CRK adaptors. Expression patterns in developing zebrafish, and bioinformatic analyses of the motifs recognized by their SH2 and SH3 domains, suggest NCK adaptors are well-positioned to compensate for loss of CRK adaptors. In support of this hypothesis, proteomic analyses found CRK and NCK adaptors share overlapping interacting partners including known regulators of cell adhesion and migration, suggesting their functional intersection in neurodevelopment.
Collapse
Affiliation(s)
| | | | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Nicole A Hansen
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Alex R D'Amico
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kylie M Finnegan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Uatchet Juch
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Keeley R Kane
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Isabel E Kaplan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Marina E Melero
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Lauren E Meyer
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Conrad R Sacher
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Evan A Scriven
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
7
|
Shin W, Kutmon M, Mina E, van Amelsvoort T, Evelo CT, Ehrhart F. Exploring pathway interactions to detect molecular mechanisms of disease: 22q11.2 deletion syndrome. Orphanet J Rare Dis 2023; 18:335. [PMID: 37872602 PMCID: PMC10594698 DOI: 10.1186/s13023-023-02953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND 22q11.2 Deletion Syndrome (22q11DS) is a genetic disorder characterized by the deletion of adjacent genes at a location specified as q11.2 of chromosome 22, resulting in an array of clinical phenotypes including autistic spectrum disorder, schizophrenia, congenital heart defects, and immune deficiency. Many characteristics of the disorder are known, such as the phenotypic variability of the disease and the biological processes associated with it; however, the exact and systemic molecular mechanisms between the deleted area and its resulting clinical phenotypic expression, for example that of neuropsychiatric diseases, are not yet fully understood. RESULTS Using previously published transcriptomics data (GEO:GSE59216), we constructed two datasets: one set compares 22q11DS patients experiencing neuropsychiatric diseases versus healthy controls, and the other set 22q11DS patients without neuropsychiatric diseases versus healthy controls. We modified and applied the pathway interaction method, originally proposed by Kelder et al. (2011), on a network created using the WikiPathways pathway repository and the STRING protein-protein interaction database. We identified genes and biological processes that were exclusively associated with the development of neuropsychiatric diseases among the 22q11DS patients. Compared with the 22q11DS patients without neuropsychiatric diseases, patients experiencing neuropsychiatric diseases showed significant overrepresentation of regulated genes involving the natural killer cell function and the PI3K/Akt signalling pathway, with affected genes being closely associated with downregulation of CRK like proto-oncogene adaptor protein. Both the pathway interaction and the pathway overrepresentation analysis observed the disruption of the same biological processes, even though the exact lists of genes collected by the two methods were different. CONCLUSIONS Using the pathway interaction method, we were able to detect a molecular network that could possibly explain the development of neuropsychiatric diseases among the 22q11DS patients. This way, our method was able to complement the pathway overrepresentation analysis, by filling the knowledge gaps on how the affected pathways are linked to the original deletion on chromosome 22. We expect our pathway interaction method could be used for problems with similar contexts, where complex genetic mechanisms need to be identified to explain the resulting phenotypic plasticity.
Collapse
Affiliation(s)
- Woosub Shin
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Eleni Mina
- Leiden University, Leiden, The Netherlands
| | | | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6229 ER, The Netherlands.
- Psychiatry & Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Wu B, Wu B, Benkaci S, Shi L, Lu P, Park T, Morrow BE, Wang Y, Zhou B. Crk and Crkl Are Required in the Endocardial Lineage for Heart Valve Development. J Am Heart Assoc 2023; 12:e029683. [PMID: 37702066 PMCID: PMC10547300 DOI: 10.1161/jaha.123.029683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Background Endocardial cells are a major progenitor population that gives rise to heart valves through endocardial cushion formation by endocardial to mesenchymal transformation and the subsequent endocardial cushion remodeling. Genetic variants that affect these developmental processes can lead to congenital heart valve defects. Crk and Crkl are ubiquitously expressed genes encoding cytoplasmic adaptors essential for cell signaling. This study aims to explore the specific role of Crk and Crkl in the endocardial lineage during heart valve development. Methods and Results We deleted Crk and Crkl specifically in the endocardial lineage. The resultant heart valve morphology was evaluated by histological analysis, and the underlying cellular and molecular mechanisms were investigated by immunostaining and quantitative reverse transcription polymerase chain reaction. We found that the targeted deletion of Crk and Crkl impeded the remodeling of endocardial cushions at the atrioventricular canal into the atrioventricular valves. We showed that apoptosis was temporally increased in the remodeling atrioventricular endocardial cushions, and this developmentally upregulated apoptosis was repressed by deletion of Crk and Crkl. Loss of Crk and Crkl also resulted in altered extracellular matrix production and organization in the remodeling atrioventricular endocardial cushions. These morphogenic defects were associated with altered expression of genes in BMP (bone morphogenetic protein), connective tissue growth factor, and WNT signaling pathways, and reduced extracellular signal-regulated kinase signaling activities. Conclusions Our findings support that Crk and Crkl have shared functions in the endocardial lineage that critically regulate atrioventricular valve development; together, they likely coordinate the morphogenic signals involved in the remodeling of the atrioventricular endocardial cushions.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Brian Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Sonia Benkaci
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Lijie Shi
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Pengfei Lu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri‐Kansas City School of MedicineKansas CityMO
| | | | - Yidong Wang
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Cardiovascular Research Center, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Bin Zhou
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
9
|
Shi L, Song H, Zhou B, Morrow BE. Crk/Crkl regulates early angiogenesis in mouse embryos by accelerating endothelial cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548782. [PMID: 37503032 PMCID: PMC10369973 DOI: 10.1101/2023.07.12.548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rationale Ubiquitously expressed cytoplasmic adaptors CRK and CRKL mediate multiple signaling pathways in mammalian embryogenesis. They are also associated with cardiovascular defects occurring in Miller-Dieker syndrome and 22q11.2 deletion syndrome, respectively. The embryonic mesoderm contributes to the formation of the cardiovascular system, yet the roles that Crk and Crkl play there are not understood on a single cell level. Objectives To determine functions of Crk and Crkl in the embryonic mesoderm during early mouse vascular development. Secondly, we will examine the molecular mechanisms responsible for early embryonic endothelial cell (EC) defects by performing single cell RNA-sequencing (scRNA-seq) and in vivo validation experiments. Methods and Results Inactivation of both Crk and Crkl together using Mesp1 Cre resulted embryonic lethality with severe vascular defects. Although vasculogenesis appeared normal, angiogenesis was disrupted both in the yolk sac and embryo proper, leading to disorganized vascular networks. We performed scRNA-seq of the Mesp1 Cre mesodermal lineage and found that there was upregulation of a great number of angiogenesis and cell migration related genes in ECs in the mutants, including NOTCH signaling genes such as Dll4 and Hey1 . Further bioinformatic analysis of EC subpopulations identified a relative increase in the number of more differentiated angiogenic ECs and decrease in EC progenitors. Consistent with this, we identified an expansion of Dll4 expressing cells within abnormal arteries, in vivo . Also, our bioinformatic data indicates that there is dysregulated expression of lineage genes that promote EC differentiation causing accelerated cell fate progression during EC differentiation. Conclusions Our results show that Crk and Crkl are crucial for regulating early embryonic angiogenesis. Combined inactivation of Crk/Crkl caused precocious EC maturation with an increase of atypical differentiated angiogenic ECs and failed vascular remodeling. This is in part due to increased NOTCH signaling and altered expression of cell migration genes.
Collapse
|
10
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Guan Z, Liang Y, Wang X, Zhu Z, Yang A, Li S, Yu J, Niu B, Wang J. Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis. Neurochem Res 2022; 47:3709-3722. [PMID: 35960485 DOI: 10.1007/s11064-022-03717-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein-protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
12
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
[Genetic characteristics of microtia-associated syndromes in neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:614-619. [PMID: 35762425 PMCID: PMC9250400 DOI: 10.7499/j.issn.1008-8830.2203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microtia is the second most common maxillofacial birth defect in neonates and has an prevalence rate of 3.06/10 000 in China, and 20%-60% of microtia cases is associated with a certain type of syndrome. This article elaborates on the clinical phenotypes and genetic characteristics of three microtia-associated syndromes (MASs) with high prevalence, high incidence rate of ear deformity, and definite genetic etiology, i.e., oculo-auriculo-vertebral spectrum, branchio-oto-renal spectrum disorder, and Treacher-Collins syndrome, and summarizes another three common MASs, so as to provide a reference for the genetic diagnosis of neonatal MAS.
Collapse
|
14
|
Funato N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 2022; 10:jdb10020018. [PMID: 35645294 PMCID: PMC9149807 DOI: 10.3390/jdb10020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Advanced Therapeutic Sciences, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
15
|
Takeichi T, Lee JYW, Okuno Y, Miyasaka Y, Murase Y, Yoshikawa T, Tanahashi K, Nishida E, Okamoto T, Ito K, Muro Y, Sugiura K, Ohno T, McGrath JA, Akiyama M. Autoinflammatory Keratinization Disease With Hepatitis and Autism Reveals Roles for JAK1 Kinase Hyperactivity in Autoinflammation. Front Immunol 2022; 12:737747. [PMID: 35046931 PMCID: PMC8761858 DOI: 10.3389/fimmu.2021.737747] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023] Open
Abstract
Heterozygous mutations in JAK1 which result in JAK-STAT hyperactivity have been implicated in an autosomal dominant disorder that features multi-organ immune dysregulation. This study identifies another previously unreported heterozygous missense JAK1 mutation, H596D, in an individual with a unique autoinflammatory keratinization disease associated with early-onset liver dysfunction and autism. Using CRISPR-Cas9 gene targeting, we generated mice with an identical Jak1 knock-in missense mutation (Jak1H595D/+;I596I/+;Y597Y/+ mice) that recapitulated key aspects of the human phenotype. RNA sequencing of samples isolated from the Jak1H595D/+;I596I/+;Y597Y/+ mice revealed the upregulation of genes associated with the hyperactivation of tyrosine kinases and NF-κB signaling. Interestingly, there was a strong correlation between genes downregulated in Jak1H595D/+;I596I/+;Y597Y/+ mice and those downregulated in the brain of model mice with 22q11.2 deletion syndrome that showed cognitive and behavioral deficits, such as autism spectrum disorders. Our findings expand the phenotypic spectrum of JAK1-associated disease and underscore how JAK1 dysfunction contributes to this autoinflammatory disorder.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - John Y W Lee
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takenori Yoshikawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kana Tanahashi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Nishida
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuya Okamoto
- Division of Pediatric Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Komei Ito
- Department of Allergology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
17
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|
18
|
Atli EI, Atli E, Yalcintepe S, Demir S, Mail C, Eker D, Ozen Y, Gurkan H. Clinical Features of Aberrations Chromosome 22q: A Pilot Study. Glob Med Genet 2021; 9:42-50. [PMID: 35169783 PMCID: PMC8837404 DOI: 10.1055/s-0041-1739496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Abstract
Objective
A significant number of genetic variations have been identified in chromosome 22, using molecular genetic techniques. Various genomic disorders on chromosome 22, including cat's eye syndrome caused by extra copies of the proximal region of the 22q chromosome, are now well-defined. Our aim in the study was to show phenotypic variability associated with rearrangements of the 22q chromosomal region.
Methods
We focused our study on clinical aspects of these disorders, including genetic testing, genotype-phenotype correlation, and potential treatments. A total of 998 patients were referred for genetic analysis (Karyotyping, MLPA, array-CGH) during January 2015 to February 2020 because of intellectual deficiency, behavior issues, and/or multiple congenital abnormalities in several genetics departments. Informed consent was obtained from all the patients and/or their parents.
Results
22q11.21 or 22q13.33 microdeletions and 22q11.22-q11.23 microduplication were identified in 31 patients out of referrals. The 22q aberrations were detected in 31/998 patients, giving a prevalence of 3.1%. In this study, 18 patients with 22q11.2 (LCR22A-H) deletion, three patients with 22q13.31 deletion, 9 patients with 22q11.2 duplication and one patient with 22q13.31 duplication were identified. We report on the clinical and molecular characterization of 31 individuals with distal deletions and duplications of chromosome 22q.
Conclusions
The current study demonstrated in the largest postnatal case series reporting the whole spectrum of atypical phenotypic and genotypic variations at 22q. We believe that when all the phenotypic differences are taken into account, various anomalies including developmental delay and intellectual disability might be considered as an indication to search for aberrations of 22q along with congenital heart diseases.
Collapse
Affiliation(s)
- Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Cisem Mail
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Damla Eker
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Ozen
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
19
|
Shi L, Racedo SE, Diacou A, Park T, Zhou B, Morrow BE. Crk and Crkl have shared functions in neural crest cells for cardiac outflow tract septation and vascular smooth muscle differentiation. Hum Mol Genet 2021; 31:1197-1215. [PMID: 34686881 PMCID: PMC9029238 DOI: 10.1093/hmg/ddab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
Collapse
Affiliation(s)
- Lijie Shi
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Taeju Park
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Lozic M, Minarik L, Racetin A, Filipovic N, Saraga Babic M, Vukojevic K. CRKL, AIFM3, AIF, BCL2, and UBASH3A during Human Kidney Development. Int J Mol Sci 2021; 22:ijms22179183. [PMID: 34502088 PMCID: PMC8431184 DOI: 10.3390/ijms22179183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.
Collapse
Affiliation(s)
- Mirela Lozic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Luka Minarik
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Mirna Saraga Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| |
Collapse
|
21
|
Stergas HR, Kalbag Z, St Clair RM, Talbot JC, Ballif BA, Ebert AM. Crk adaptor proteins are necessary for the development of the zebrafish retina. Dev Dyn 2021; 251:362-376. [PMID: 34268820 DOI: 10.1002/dvdy.402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The development of the central nervous system (CNS) requires critical cell signaling molecules to coordinate cell proliferation and migration in order to structure the adult tissue. Chicken tumor virus #10 Regulator of Kinase (CRK) and CRK-like (CRKL) are adaptor proteins with pre-metazoan ancestry and are known to be required for patterning laminated structures downstream of Reelin (RELN), such as the cerebral cortex, cerebellum, and hippocampus. CRK and CRKL also play crucial roles in a variety of other growth factor and extracellular matrix signaling cascades. The neuronal retina is another highly laminated structure within the CNS that is dependent on migration for proper development, but the cell signaling mechanisms behind neuronal positioning in the retina are only partly understood. RESULTS We find that crk and crkl have largely overlapping expression within the developing zebrafish nervous system. We find that their disruption results in smaller eye size and loss of retinal lamination. CONCLUSIONS Our data indicate that Crk adaptors are critical for proper development of the zebrafish neural retina in a crk/crkl dose-dependent manner.
Collapse
Affiliation(s)
- Helaina R Stergas
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Zoë Kalbag
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Riley M St Clair
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Jared C Talbot
- School of Biology and Ecology, The University of Maine, Orono, Maine, USA
| | - Bryan A Ballif
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| | - Alicia M Ebert
- Department of Biology, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
22
|
Kim JH, Kim K, Kim I, Seong S, Kook H, Kim KK, Koh JT, Kim N. Bifunctional Role of CrkL during Bone Remodeling. Int J Mol Sci 2021; 22:ijms22137007. [PMID: 34209812 PMCID: PMC8269069 DOI: 10.3390/ijms22137007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts, osteoclasts, and their coupling signals.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (J.H.K.); (K.K.); (I.K.); (S.S.); (H.K.); (K.K.K.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-61-379-2835
| |
Collapse
|
23
|
Total Anomalous Pulmonary Venous Connection in Mother and Son with a Central 22q11.2 Microdeletion. Case Rep Genet 2021; 2021:5539855. [PMID: 34221520 PMCID: PMC8213480 DOI: 10.1155/2021/5539855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this clinical report, we describe a male infant and his mother, who had similar congenital heart defects. They were both diagnosed neonatally with total anomalous pulmonary venous connection (TAPVC) in combination with other heart defects. Neither of the two had any other organ malformations or dysmorphic facial features. SNP-array identified a central 22q11.2 microdeletion in the male infant and his mother as well as in the maternal grandmother and maternal aunt. The mother and the maternal aunt additionally harbored a 15q11.2 BP1-BP2 microdeletion. The maternal grandmother was unaffected by heart disease. However, heart computed tomography scan of the maternal aunt revealed a quadricuspid aortic valve. Additionally, the maternal grandmother and the maternal aunt both had significant learning disabilities. Rarely, TAPVC has been described in patients with the common 22q11.2 microdeletions. However, to the best of our knowledge, TAPVC has not previously been reported in patients with this small central 22q11.2 microdeletion. Haploinsufficiency of TBX1 was originally thought to be the main cause of the 22q11.2 microdeletion syndrome phenotype, but TBX1 is not included in the atypical central 22q11.2 microdeletion. Previous reports have suggested an association between TAPVC and the 15q11.2 BP1-BP2 microdeletion. Our report does not support this association as the maternal aunt, who harbors both microdeletions, is unaffected by TAPVC, and the male infant affected by TAPVC does not harbor the 15q11.2 BP1-BP2 microdeletion. Our findings support that genes located in the central 22q11.2 region are important for heart development and that haploinsufficiency of these genes plays a crucial role in the development of the rare heart defect TAPVC.
Collapse
|
24
|
Esteves de Lima J, Bou Akar R, Mansour M, Rocancourt D, Buckingham M, Relaix F. M-Cadherin Is a PAX3 Target During Myotome Patterning. Front Cell Dev Biol 2021; 9:652652. [PMID: 33869209 PMCID: PMC8047199 DOI: 10.3389/fcell.2021.652652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Reem Bou Akar
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Myriam Mansour
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| |
Collapse
|
25
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
26
|
Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021; 10:cells10040739. [PMID: 33801580 PMCID: PMC8065463 DOI: 10.3390/cells10040739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
27
|
Kanazawa T, Michida H, Uchino Y, Ishihara A, Zhang S, Tabata S, Suzuki Y, Imamoto A, Okada M. Cell shape-based chemical screening reveals an epigenetic network mediated by focal adhesions. FEBS J 2021; 288:5613-5628. [PMID: 33768715 DOI: 10.1111/febs.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Adapter proteins CRK and CRKL participate in a variety of signaling pathways, including cell adhesion, and fate regulation of mammalian cells. However, the molecular functions of CRK/CRKL in epigenetic regulation remain largely unknown. Here, we developed a pipeline to evaluate cell morphology using high-content image analysis combined with chemical screening of kinase and epigenetic modulators. We found that CRK/CRKL modulates gene regulatory networks associated with cell morphology through epigenetic alteration in mouse embryonic fibroblasts. Integrated epigenome and transcriptome analyses revealed that CRK/CRKL is involved in super-enhancer activity and upregulation of Cdt1, Rin1, and Spp1 expression for the regulation of cell morphology. Screening of a library of 80 epigenetic inhibitors showed that histone H3 modifiers, euchromatic histone methyltransferase 2 and mitogen- and stress-activated kinase 1, may be important for CRK/CRKL-mediated morphological changes. Taken together, our results indicate that CRK/CRKL plays a critical role in gene regulatory networks through epigenetic modification. DATABASES: Chromatin immunoprecipitation sequencing and RNA sequencing data were deposited in the DNA Data Bank of Japan under DRA011080 and DRA011081 accession numbers, respectively.
Collapse
Affiliation(s)
- Tomomi Kanazawa
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Hiroki Michida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yuki Uchino
- Graduate School of Medical Life Sciences, Yokohama City University, Japan
| | - Akari Ishihara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Suxiang Zhang
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sho Tabata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Akira Imamoto
- The Ben May Department for Cancer Research, The University of Chicago, IL, USA
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Graduate School of Medical Life Sciences, Yokohama City University, Japan.,RIKEN Integrative Medical Sciences, Yokohama, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
28
|
Jorgez CJ, Seth A, Wilken N, Bournat JC, Chen CH, Lamb DJ. E2F1 regulates testicular descent and controls spermatogenesis by influencing WNT4 signaling. Development 2021; 148:dev191189. [PMID: 33441379 PMCID: PMC7823160 DOI: 10.1242/dev.191189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both Wnt4 and E2f1 in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on E2f1 repression of Wnt4, supporting a role for Wnt4 in germ cell survival. In the future, modulation of WNT4 expression in men with cryptorchidism and spermatogenic failure due to E2F1 copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.
Collapse
Affiliation(s)
- Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Wilken
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Brady Urology Department, Center for Reproductive Genomics and Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
29
|
Yamauchi T, Kang G, Hiroi N. Heterozygosity of murine Crkl does not recapitulate behavioral dimensions of human 22q11.2 hemizygosity. GENES BRAIN AND BEHAVIOR 2020; 20:e12719. [PMID: 33269541 DOI: 10.1111/gbb.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Deletions in 22q11.2 human chromosome are known to be associated with psychiatric disorders, such as intellectual disability, schizophrenia, autism spectrum disorder, and anxiety disorders. This copy number variation includes a 3.0 Mb deletion and a nested proximal 1.5 Mb hemizygous deletion in the same region. Evidence indicates that the distal 22q11.2 region outside the nested 1.5 Mb deletion also might be contributory in humans. However, the precise genetic architecture within the distal region responsible for psychiatric disorders remains unclear, and this issue cannot be experimentally evaluated beyond the correlation in humans. As CRKL (CRK-like Proto-Oncogene, Adaptor Protein) is one of the genes encoded in the distal 22q11.2 segment and its homozygous deletion causes physical phenotypes of 22q11.2 hemizygous deletion, we tested the hypothesis that its murine homolog Crkl contributes to behavioral phenotypes relevant to psychiatric disorders in mice. Congenic Crkl heterozygosity reduced thigmotaxis, an anxiety-related behavior, in an inescapable open field, but had no apparent effect on social interaction, spontaneous alternation in a T-maze, anxiety-like behavior in an elevated plus maze, or motor activity in an open field. Our data indicate that the heterozygosity of murine Crkl does not recapitulate social deficits, working memory deficits, repetitive behavior traits or hyperactivity of human 22q11.2 hemizygous deletion. Moreover, while 22q11.2 hemizygous deletion is associated with high levels of phobia and anxiety in humans, our data suggest that Crkl heterozygosity rather acts as a protective factor for phobia-like behavior in an open field.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
30
|
Groopman EE, Povysil G, Goldstein DB, Gharavi AG. Rare genetic causes of complex kidney and urological diseases. Nat Rev Nephrol 2020; 16:641-656. [PMID: 32807983 PMCID: PMC7772719 DOI: 10.1038/s41581-020-0325-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Although often considered a single-entity, chronic kidney disease (CKD) comprises many pathophysiologically distinct disorders that result in persistently abnormal kidney structure and/or function, and encompass both monogenic and polygenic aetiologies. Rare inherited forms of CKD frequently span diverse phenotypes, reflecting genetic phenomena including pleiotropy, incomplete penetrance and variable expressivity. Use of chromosomal microarray and massively parallel sequencing technologies has revealed that genomic disorders and monogenic aetiologies contribute meaningfully to seemingly complex forms of CKD across different clinically defined subgroups and are characterized by high genetic and phenotypic heterogeneity. Investigations of prevalent genomic disorders in CKD have integrated genetic, bioinformatic and functional studies to pinpoint the genetic drivers underlying their renal and extra-renal manifestations, revealing both monogenic and polygenic mechanisms. Similarly, massively parallel sequencing-based analyses have identified gene- and allele-level variation that contribute to the clinically diverse phenotypes observed for many monogenic forms of nephropathy. Genome-wide sequencing studies suggest that dual genetic diagnoses are found in at least 5% of patients in whom a genetic cause of disease is identified, highlighting the fact that complex phenotypes can also arise from multilocus variation. A multifaceted approach that incorporates genetic and phenotypic data from large, diverse cohorts will help to elucidate the complex relationships between genotype and phenotype for different forms of CKD, supporting personalized medicine for individuals with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
- Center for Precision Medicine and Genomics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
32
|
Crk1/2 and CrkL play critical roles in maintaining podocyte morphology and function. Exp Cell Res 2020; 394:112135. [PMID: 32535035 DOI: 10.1016/j.yexcr.2020.112135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Podocytes are actin-rich epithelial cells whose effacement and detachment are the main cause of glomerular disease. Crk family proteins: Crk1/2 and CrkL are reported to be important intracellular signaling proteins that are involved in many biological processes. However, the roles of them in maintaining podocyte morphology and function remain poorly understood. In this study, specific knocking down of Crk1/2 and CrkL in podocytes caused abnormal cell morphology, actin cytoskeleton rearrangement and dysfunction in cell adhesion, spreading, migration, and viability. The p130Cas, focal adhesion kinase, phosphatidylinositol 3-kinase/Akt, p38 and JNK signaling pathways involved in these alterations. Furthermore, knocking down CrkL alone conferred a more modest phenotype than did the Crk1/2 knockdown and the double knockdown. Kidney biopsy specimens from patients with focal segmental glomerulosclerosis and minimal change nephropathy showed downregulation of Crk1/2 and CrkL in glomeruli. In zebrafish embryos, Crk1/2 and CrkL knockdown compromised the morphology and caused abnormal glomerular development. Thus, our results suggest that Crk1/2 and CrkL expression are important in podocytes; loss of either will cause podocyte dysfunction, leading to foot process effacement and podocyte detachment.
Collapse
|
33
|
Roy NH, Mammadli M, Burkhardt JK, Karimi M. CrkL is required for donor T cell migration to GvHD target organs. Oncotarget 2020; 11:1505-1514. [PMID: 32391120 PMCID: PMC7197453 DOI: 10.18632/oncotarget.27509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/17/2020] [Indexed: 01/21/2023] Open
Abstract
The success of cancer therapies based on allogeneic hematopoietic stem cell transplant relies on the ability to separate graft-versus-host disease (GvHD) from graft-versus-tumor (GVT) responses. Controlling donor T cell migration into peripheral tissues is a viable option to limit unwanted tissue damage, but a lack of specific targets limits progress on this front. Here, we show that the adaptor protein CrkL, but not the closely related family members CrkI or CrkII, is a crucial regulator of T cell migration. In vitro, CrkL-deficient T cells fail to polymerize actin in response to the integrin ligand ICAM-1, resulting in defective migration. Using a mouse model of GvHD/GVT, we found that while CrkL-deficient T cells can efficiently eliminate hematopoietic tumors they are unable to migrate into inflamed organs, such as the liver and small intestine, and thus do not cause GvHD. These results suggest a specific role for CrkL in trafficking to peripheral organs but not the lymphatic system. In line with this, we found that although CrkL-deficient T cells could clear hematopoietic tumors, they failed to clear the same tumor growing subcutaneously, highlighting the role of CrkL in controlling T cell migration into peripheral tissues. Our results define a unique role for CrkL in controlling T cell migration, and suggest that CrkL function could be therapeutically targeted to enhance the efficacy of immunotherapies involving allogeneic donor cells.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
34
|
Imamoto A, Ki S, Li L, Iwamoto K, Maruthamuthu V, Devany J, Lu O, Kanazawa T, Zhang S, Yamada T, Hirayama A, Fukuda S, Suzuki Y, Okada M. Essential role of the Crk family-dosage in DiGeorge-like anomaly and metabolic homeostasis. Life Sci Alliance 2020; 3:3/2/e201900635. [PMID: 32041892 PMCID: PMC7010317 DOI: 10.26508/lsa.201900635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CRK and CRKL (CRK-like) encode adapter proteins with similar biochemical properties. Here, we show that a 50% reduction of the family-combined dosage generates developmental defects, including aspects of DiGeorge/del22q11 syndrome in mice. Like the mouse homologs of two 22q11.21 genes CRKL and TBX1, Crk and Tbx1 also genetically interact, thus suggesting that pathways shared by the three genes participate in organogenesis affected in the syndrome. We also show that Crk and Crkl are required during mesoderm development, and Crk/Crkl deficiency results in small cell size and abnormal mesenchyme behavior in primary embryonic fibroblasts. Our systems-wide analyses reveal impaired glycolysis, associated with low Hif1a protein levels as well as reduced histone H3K27 acetylation in several key glycolysis genes. Furthermore, Crk/Crkl deficiency sensitizes MEFs to 2-deoxy-D-glucose, a competitive inhibitor of glycolysis, to induce cell blebbing. Activated Rapgef1, a Crk/Crkl-downstream effector, rescues several aspects of the cell phenotype, including proliferation, cell size, focal adhesions, and phosphorylation of p70 S6k1 and ribosomal protein S6. Our investigations demonstrate that Crk/Crkl-shared pathways orchestrate metabolic homeostasis and cell behavior through widespread epigenetic controls.
Collapse
Affiliation(s)
- Akira Imamoto
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Sewon Ki
- RIKEN Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Leiming Li
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Kazunari Iwamoto
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Ocean Lu
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Tomomi Kanazawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Suxiang Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Mariko Okada
- RIKEN Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan .,Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
35
|
Zhao Y, Diacou A, Johnston HR, Musfee FI, McDonald-McGinn DM, McGinn D, Crowley TB, Repetto GM, Swillen A, Breckpot J, Vermeesch JR, Kates WR, Digilio MC, Unolt M, Marino B, Pontillo M, Armando M, Di Fabio F, Vicari S, van den Bree M, Moss H, Owen MJ, Murphy KC, Murphy CM, Murphy D, Schoch K, Shashi V, Tassone F, Simon TJ, Shprintzen RJ, Campbell L, Philip N, Heine-Suñer D, García-Miñaúr S, Fernández L, Bearden CE, Vingerhoets C, van Amelsvoort T, Eliez S, Schneider M, Vorstman JAS, Gothelf D, Zackai E, Agopian AJ, Gur RE, Bassett AS, Emanuel BS, Goldmuntz E, Mitchell LE, Wang T, Morrow BE. Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects. Am J Hum Genet 2020; 106:26-40. [PMID: 31870554 PMCID: PMC7077921 DOI: 10.1016/j.ajhg.2019.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadi I Musfee
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas 77225, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Daniel McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile
| | - Ann Swillen
- Center for Human Genetics, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13202, USA; Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY 13202, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome 00165, Italy; Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome 00165, Italy; Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva 1211, Switzerland
| | - Fabio Di Fabio
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome 00185, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Hospital, Rome 00165, Italy; Department of Psychiatry, Catholic University, Rome 00153, Italy
| | - Marianne van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales CF24 4HQ, UK
| | - Hayley Moss
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales CF24 4HQ, UK
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 505095, Ireland
| | - Clodagh M Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London SE5 8AF, UK; Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London SE5 8AZ, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London SE5 8AF, UK; Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London SE5 8AZ, UK
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Flora Tassone
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, CA 95817, USA
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, CA 95817, USA
| | | | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle 2258, Australia
| | - Nicole Philip
- Department of Medical Genetics, Aix-Marseille University, Marseille 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca 07120, Spain
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid 28046, Spain
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva 1211, Switzerland
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, 3584 CG, the Netherlands
| | - Doron Gothelf
- The Child Psychiatry Unit, Edmond and Lily Sapfra Children's Hospital, Sackler Faculty of Medicine, Tel Aviv University and Sheba Medical Center, Tel Aviv, 52621, Israel
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - A J Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas 77225, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anne S Bassett
- Dalglish Family 22q Clinic, Clinical Genetics Research Program, Toronto M5T 1L8, Ontario Canada; Toronto General Hospital, Centre for Addiction and Mental Health, Toronto M5T 1L8, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto M5T 1L8, Ontario, Canada
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas 77225, USA
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Morrow BE, McDonald-McGinn DM, Emanuel BS, Vermeesch JR, Scambler PJ. Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet A 2019; 176:2070-2081. [PMID: 30380194 DOI: 10.1002/ajmg.a.40504] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.
Collapse
Affiliation(s)
- Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joris R Vermeesch
- Center for Human Genetics, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Peter J Scambler
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
37
|
Spracklen AJ, Thornton-Kolbe EM, Bonner AN, Florea A, Compton PJ, Fernandez-Gonzalez R, Peifer M. The Crk adapter protein is essential for Drosophila embryogenesis, where it regulates multiple actin-dependent morphogenic events. Mol Biol Cell 2019; 30:2399-2421. [PMID: 31318326 PMCID: PMC6741062 DOI: 10.1091/mbc.e19-05-0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small Src homology domain 2 (SH2) and 3 (SH3) adapter proteins regulate cell fate and behavior by mediating interactions between cell surface receptors and downstream signaling effectors in many signal transduction pathways. The CT10 regulator of kinase (Crk) family has tissue-specific roles in phagocytosis, cell migration, and neuronal development and mediates oncogenic signaling in pathways like that of Abelson kinase. However, redundancy among the two mammalian family members and the position of the Drosophila gene on the fourth chromosome precluded assessment of Crk's full role in embryogenesis. We circumvented these limitations with short hairpin RNA and CRISPR technology to assess Crk's function in Drosophila morphogenesis. We found that Crk is essential beginning in the first few hours of development, where it ensures accurate mitosis by regulating orchestrated dynamics of the actin cytoskeleton to keep mitotic spindles in syncytial embryos from colliding. In this role, it positively regulates cortical localization of the actin-related protein 2/3 complex (Arp2/3), its regulator suppressor of cAMP receptor (SCAR), and filamentous actin to actin caps and pseudocleavage furrows. Crk loss leads to the loss of nuclei and formation of multinucleate cells. We also found roles for Crk in embryonic wound healing and in axon patterning in the nervous system, where it localizes to the axons and midline glia. Thus, Crk regulates diverse events in embryogenesis that require orchestrated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma M Thornton-Kolbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alison N Bonner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alexandru Florea
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Peter J Compton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
38
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
39
|
Mokrysheva NG, Krupinova JA, Voronkova IA. Parathyroid glands: the normal development, anatomy and histological structure. ACTA ACUST UNITED AC 2019. [DOI: 10.14341/serg10039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parathyroid glands (PG) are endocrine glands, which are the most important humoral regulators of calcium and phosphorus metabolism in the body. They were first described by an Englishman Richard Owen in 1849. Most of patients have four PG – upper and lower. In 13% of cases there are more than four PG. The glands arise as diverticula from the endoderm of the third and fourth branchial pouches between the fifth and twelfth week of gestation. The IV branchial pouch forms the upper gland, and III pouch forms the inferior gland.
The parathyroid hormone production has been demonstrated as early as 83/7 weeks gestational age. The formation, migration, differentiation and functioning of the PGs are determined by a number of genes and changes in them could lead to disfunction in these processes. The ectopic of PG is possible when migration violation (up to 22% of cases). The most common location of the ectopic PG is parenchyma of the thymus and thyroid gland. Each PG is richly vascularized and it is surrounded by a thin connective tissue. In adults, there are two types of parenchymal cells: the chief cells (active and inactive forms) and the oxyphil cells. During the life, the ratio of types of parenchymal cells and their activity have been changing, as well as the characteristics of the stroma.
Collapse
|
40
|
Navarrete-Rodríguez E, Del-Rio-Navarro B, García-Fajardo D, Baay-Guzmán G, Espinosa-Padilla S, Medina-Torres E, Moguel-Molina N, Sánchez-Curiel-Loyo M, Nájera-Martínez N, Navarro-Munguía J, Reyes-Noriega N, Balderrábano-Saucedo N, Sánchez-Urbina R, Delgado CG, Sienra-Monge J, Morán-Barroso V. Microdeletion 22q11.2 syndrome: Does thymus incidental surgical resection affect its immunological profile? Allergol Immunopathol (Madr) 2019; 47:141-151. [PMID: 30292446 DOI: 10.1016/j.aller.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The del22q11 syndrome patients present immunological abnormalities associated to thymus alterations. Up to 75% of them present cardiopathies and thymus is frequently removed during surgery. The thymectomy per se has a deleterious effect concerning lymphocyte subpopulations, and T cell function. When compared to healthy controls, these patients have higher infections propensity of variable severity. The factors behind these variations are unknown. We compared immunological profiles of del22q11.2 Syndrome patients with and without thymectomy to establish its effect in the immune profile. METHODS Forty-six del22q11.2 syndrome patients from 1 to 16 years old, 19 of them with partial or total thymectomy were included. Heart disease type, heart surgery, infections events and thymus resection were identified. Immunoglobulin levels, flow cytometry for lymphocytes subpopulations and TREC levels were determined, and statistical analyses were performed. RESULTS The thymectomy group had a lower lymphocyte index, both regarding total cell count and when comparing age-adjusted Z scores. Also, CD3+, CD4+ and CD8+ lower levels were observed in this group, the lowest count in those patients who had undergone thymus resection during the first year of life. Their TREC level median was 23.6/μL vs 16.1μL in the non-thymus group (p=0.22). No differences were identified regarding immunoglobulin levels or infection events frequencies over the previous year. CONCLUSION Patients with del22q11.2 syndrome subjected to thymus resection present lower lymphocyte and TREC indexes when compared to patients without thymectomy. This situation may be influenced by the age at the surgery and the time elapsed since the procedure.
Collapse
|
41
|
Hasten E, McDonald-McGinn DM, Crowley TB, Zackai E, Emanuel BS, Morrow BE, Racedo SE. Dysregulation of TBX1 dosage in the anterior heart field results in congenital heart disease resembling the 22q11.2 duplication syndrome. Hum Mol Genet 2019; 27:1847-1857. [PMID: 29509905 DOI: 10.1093/hmg/ddy078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
Non-allelic homologous recombination events on chromosome 22q11.2 during meiosis can result in either the deletion (22q11.2DS) or duplication (22q11.2DupS) syndrome. Although the spectrum and frequency of congenital heart disease (CHD) are known for 22q11.2DS, there is less known for 22q11.2DupS. We now evaluated cardiac phenotypes in 235 subjects with 22q11.2DupS including 102 subjects we collected and 133 subjects that were previously reported as a confirmation and found 25% have CHD, mostly affecting the cardiac outflow tract (OFT). Previous studies have shown that global loss or gain of function (LOF; GOF) of mouse Tbx1, encoding a T-box transcription factor mapping to the region of synteny to 22q11.2, results in similar OFT defects. To further evaluate Tbx1 function in the progenitor cells forming the cardiac OFT, termed the anterior heart field, Tbx1 was overexpressed using the Mef2c-AHF-Cre driver (Tbx1 GOF). Here we found that all resulting conditional GOF embryos had a persistent truncus arteriosus (PTA), similar to what was previously reported for conditional Tbx1 LOF mutant embryos. To understand the basis for the PTA in the conditional GOF embryos, we found that proliferation in the Mef2c-AHF-Cre lineage cells before migrating to the heart, was reduced and critical genes were oppositely changed in this tissue in Tbx1 GOF embryos versus conditional LOF embryos. These results suggest that a major function of TBX1 in the AHF is to maintain the normal balance of expression of key cardiac developmental genes required to form the aorta and pulmonary trunk, which is disrupted in 22q11.2DS and 22q11.2DupS.
Collapse
Affiliation(s)
- Erica Hasten
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terrence B Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
42
|
Downregulation of genes outside the deleted region in individuals with 22q11.2 deletion syndrome. Hum Genet 2019; 138:93-103. [PMID: 30627818 DOI: 10.1007/s00439-018-01967-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is caused by recurrent hemizygous deletions of chromosome 22q11.2. The phenotype of the syndrome is complex and varies widely among individuals. Little is known about the role of the different genes located in 22q11.2, and we hypothesized that genetic risk factors lying elsewhere in the genome might contribute to the phenotype. Here, we present the whole-genome gene expression data of 11 patients with approximately 3 Mb deletions. Apart from the hemizygous genes mapped to the 22q11.2 region, the TUBA8 and GNAZ genes, neighboring the deleted interval but in normal copy number, showed altered expression. When genes mapped to other chromosomes were considered in the gene expression analysis, a genome-wide dysregulation was observed, with increased or decreased expression levels. The enriched pathways of these genes were related to immune response, a deficiency that is frequently observed in 22q11.2DS patients. We also used the hypothesis-free weighted gene co-expression network analysis (WGCNA), which revealed the co-expression gene network modules with clear connection to mechanisms associated with 22q11.2DS such as immune response and schizophrenia. These findings, combined with the traditional gene expression profile, can be used for the identification of potential pathways and genes not previously considered to be related to the 22q11.2 deletion syndrome.
Collapse
|
43
|
Roy NH, MacKay JL, Robertson TF, Hammer DA, Burkhardt JK. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal 2018; 11:eaat3178. [PMID: 30538176 PMCID: PMC6333317 DOI: 10.1126/scisignal.aat3178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell entry into inflamed tissue involves firm adhesion, spreading, and migration of the T cells across endothelial barriers. These events depend on "outside-in" signals through which engaged integrins direct cytoskeletal reorganization. We investigated the molecular events that mediate this process and found that T cells from mice lacking expression of the adaptor protein Crk exhibited defects in phenotypes induced by the integrin lymphocyte function-associated antigen 1 (LFA-1), namely, actin polymerization, leading edge formation, and two-dimensional cell migration. Crk protein was an essential mediator of LFA-1 signaling-induced phosphorylation of the E3 ubiquitin ligase c-Cbl and its subsequent interaction with the phosphatidylinositol 3-kinase (PI3K) subunit p85, thus promoting PI3K activity and cytoskeletal remodeling. In addition, we found that Crk proteins were required for T cells to respond to changes in substrate stiffness, as measured by alterations in cell spreading and differential phosphorylation of the force-sensitive protein CasL. These findings identify Crk proteins as key intermediates coupling LFA-1 signals to actin remodeling and provide mechanistic insights into how T cells sense and respond to substrate stiffness.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna L MacKay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Nabekura T, Chen Z, Schroeder C, Park T, Vivier E, Lanier LL, Liu D. Crk Adaptor Proteins Regulate NK Cell Expansion and Differentiation during Mouse Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:3420-3428. [PMID: 29618525 DOI: 10.4049/jimmunol.1701639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Natural killer cells are critical in the immune response to infection and malignancy. Prior studies have demonstrated that Crk family proteins can influence cell apoptosis, proliferation, and cell transformation. In this study, we investigated the role of Crk family proteins in mouse NK cell differentiation and host defense using a mouse CMV infection model. The number of NK cells, maturational state, and the majority of the NKR repertoire was similar in Crk x Crk-like (CrkL)-double-deficient and wild type NK cells. However, Crk family proteins were required for optimal activation, IFN-γ production, expansion, and differentiation of Ly49H+ NK cells, as well as host defense during mouse CMV infection. The diminished function of Crk x CrkL-double-deficient NK cells correlated with decreased phosphorylation of STAT4 and STAT1 in response to IL-12 and IFN-α stimulation, respectively. Together, our findings analyzing NK cell-specific Crk-deficient mice provide insights into the role of Crk family proteins in NK cell function and host defense.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030
| | - Casey Schroeder
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030
| | - Taeju Park
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, MO 64108
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13288 Marseille, France; and
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030; .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
45
|
Aiello FB, Guszczynski T, Li W, Hixon JA, Jiang Q, Hodge DL, Massignan T, Di Lisio C, Merchant A, Procopio AD, Bonetto V, Durum SK. IL-7-induced phosphorylation of the adaptor Crk-like and other targets. Cell Signal 2018; 47:131-141. [PMID: 29581031 DOI: 10.1016/j.cellsig.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
IL-7 is required for T cell differentiation and mature T cell homeostasis and promotes pro-B cell proliferation and survival. Tyrosine phosphorylation plays a central role in IL-7 signaling. We identified by two-dimensional electrophoresis followed by anti-phosphotyrosine immunoblotting and mass spectrometry sixteen tyrosine phosphorylated proteins from the IL-7-dependent cell line D1. IL-7 stimulation induced the phosphorylation of the proteins STI1, ATIC and hnRNPH, involved in pathways related to survival, proliferation and gene expression, respectively, and increased the phosphorylation of CrkL, a member of a family of adaptors including the highly homologous Crk isoforms CrkII and CrkI, important in multiple signaling pathways. We observed an increased phosphorylation of CrkL in murine pro-B cells and in murine and human T cells. In addition, IL-7 increased the association of CrkL with the transcription factor Stat5, essential for IL-7 pro-survival activity. The selective tyrosine kinase inhibitor Imatinib. counteracted the IL-7 pro-survival effect in D1 cells and decreased CrkL phosphorylation. These data suggested that CrkL could play a pro-survival role in IL-7-mediated signaling. We observed that pro-B cells also expressed, in addition to CrkL, the Crk isoforms CrkII and CrkI and therefore utilized pro-B cells conditionally deficient in all three to evaluate the role of these proteins. The observation that the IL-7 pro-survival effect was reduced in Crk/CrkL conditionally-deficient pro-B cells further pointed to a pro-survival role of these adaptors. To further evaluate the role of these proteins, gene expression studies were performed in Crk/CrkL conditionally-deficient pro-B cells. IL-7 decreased the transcription of the receptor LAIR1, which inhibits B cell proliferation, in a Crk/CrkL-dependent manner, suggesting that the Crk family of proteins may promote pro-B cell proliferation. Our data contribute to the understanding of IL-7 signaling and suggest the involvement of Crk family proteins in pathways promoting survival and proliferation.
Collapse
Affiliation(s)
- Francesca B Aiello
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Tad Guszczynski
- Molecular Targets Laboratory, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Wenqing Li
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Julie A Hixon
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Qiong Jiang
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Deborah L Hodge
- Laboratory of Experimental Medicine, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Tania Massignan
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy
| | - Chiara Di Lisio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, via dei Vestini, 66013 Chieti, Italy.
| | - Anand Merchant
- Center for Cancer Research, NIH, Bethesda, MD 20892, USA.
| | - Antonio D Procopio
- Department of Clinical and Medical Sciences, Marche Polytechnic University, via Tronto 10, 60100 Ancona, Italy.
| | - Valentina Bonetto
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy.
| | - Scott K Durum
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| |
Collapse
|
46
|
Clements CC, Wenger TL, Zoltowski AR, Bertollo JR, Miller JS, de Marchena AB, Mitteer LM, Carey JC, Yerys BE, Zackai EH, Emanuel BS, McDonald-McGinn DM, Schultz RT. Critical region within 22q11.2 linked to higher rate of autism spectrum disorder. Mol Autism 2017; 8:58. [PMID: 29090080 PMCID: PMC5658953 DOI: 10.1186/s13229-017-0171-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022] Open
Abstract
Background Previous studies have reported no clear critical region for medical comorbidities in children with deletions or duplications of 22q11.2. The purpose of this study was to evaluate whether individuals with small nested deletions or duplications of the LCR-A to B region of 22q11.2 show an elevated rate of autism spectrum disorder (ASD) compared to individuals with deletions or duplications that do not include this region. Methods We recruited 46 patients with nested deletions (n = 33) or duplications (n = 13) of 22q11.2, including LCR-A to B (ndel = 11), LCR-A to C (ndel = 4), LCR-B to D (ndel = 14; ndup = 8), LCR-C to D (ndel = 4; ndup = 2), and smaller nested regions (n = 3). Parent questionnaire, record review, and, for a subset, in-person evaluation were used for ASD diagnostic classification. Rates of ASD in individuals with involvement of LCR-B to LCR-D were compared with Fisher’s exact test to LCR-A to LCR-B for deletions, and to a previously published sample of LCR-A to LCR-D for duplications. The rates of medical comorbidities and psychiatric diagnoses were determined from questionnaires and chart review. We also report group mean differences on psychiatric questionnaires. Results Individuals with deletions involving LCR-A to B showed a 39–44% rate of ASD compared to 0% in individuals whose deletions did not involve LCR-A to B. We observed similar rates of medical comorbidities in individuals with involvement of LCR-A to B and LCR-B to D for both duplications and deletions, consistent with prior studies. Conclusions Children with nested deletions of 22q11.2 may be at greater risk for autism spectrum disorder if the region includes LCR-A to LCR-B. Replication is needed. Electronic supplementary material The online version of this article (10.1186/s13229-017-0171-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlin C Clements
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104 USA
| | - Tara L Wenger
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Pediatrics, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105 USA
| | - Alisa R Zoltowski
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232 USA
| | - Jennifer R Bertollo
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA
| | - Judith S Miller
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Ashley B de Marchena
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Behavioral and Social Science, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104 USA
| | - Lauren M Mitteer
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - John C Carey
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA
| | - Benjamin E Yerys
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Elaine H Zackai
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Beverly S Emanuel
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Robert T Schultz
- Center for Autism Research, The Children's Hospital of Philadelphia, 2716 South Street, Philadelphia, PA 19104 USA.,Department of Psychiatry, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA.,Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| |
Collapse
|
47
|
Schachner ER, Sedlmayr JC, Schott R, Lyson TR, Sanders RK, Lambertz M. Pulmonary anatomy and a case of unilateral aplasia in a common snapping turtle (Chelydra serpentina): developmental perspectives on cryptodiran lungs. J Anat 2017; 231:835-848. [PMID: 29063595 DOI: 10.1111/joa.12722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/07/2023] Open
Abstract
The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member of Testudines; however, very little is known concerning developmental anomalies and soft tissue pathologies of turtles and other reptiles. Here, we present an unusual case of unilateral pulmonary aplasia, asymmetrical carapacial kyphosis, and mild scoliosis in a live adult C. serpentina. The detailed three-dimensional (3D) anatomy of the respiratory system in both the pathological and normal adult C. serpentina, and a hatchling are visualized using computed tomography (CT), microCT, and 3D digital anatomical models. In the pathological turtle, the right lung consists of an extrapulmonary bronchus that terminates in a blind stump with no lung present. The left lung is hyperinflated relative to the normal adult, occupying the extra coelomic space facilitated by the unusual mid-carapacial kyphotic bulge. The bronchial tree of the left lung retains the overall bauplan of the normal specimens, with some minor downstream variation in the number of secondary airways. The primary difference between the internal pulmonary structure of the pathological individual and that of a normal adult is a marked increase in the surface area and density of the parenchymal tissue originating from the secondary airways, a 14.3% increase in the surface area to volume ratio. Despite this, the aplasia has not had an impact upon the ability of the turtle to survive; however, it did interfere with aquatic locomotion and buoyancy control under water. This turtle represents a striking example of a non-fatal congenital defect and compensatory visceral hypertrophy.
Collapse
Affiliation(s)
- E R Schachner
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J C Sedlmayr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - R Schott
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN, USA
| | - T R Lyson
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA
| | - R K Sanders
- Department of Diagnostic Imaging, North Canyon Medical Center, Gooding, ID, USA
| | - M Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Sektion Herpetologie, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| |
Collapse
|
48
|
Gupta KH, Goldufsky JW, Wood SJ, Tardi NJ, Moorthy GS, Gilbert DZ, Zayas JP, Hahm E, Altintas MM, Reiser J, Shafikhani SH. Apoptosis and Compensatory Proliferation Signaling Are Coupled by CrkI-Containing Microvesicles. Dev Cell 2017. [PMID: 28633020 DOI: 10.1016/j.devcel.2017.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apoptosis has been implicated in compensatory proliferation signaling (CPS), whereby dying cells induce proliferation in neighboring cells as a means to restore homeostasis. The nature of signaling between apoptotic cells and their neighboring cells remains largely unknown. Here we show that a fraction of apoptotic cells produce and release CrkI-containing microvesicles (distinct from exosomes and apoptotic bodies), which induce proliferation in neighboring cells upon contact. We provide visual evidence of CPS by videomicroscopy. We show that purified vesicles in vitro and in vivo are sufficient to stimulate proliferation in other cells. Our data demonstrate that CrkI inactivation by ExoT bacterial toxin or by mutagenesis blocks vesicle formation in apoptotic cells and inhibits CPS, thus uncoupling apoptosis from CPS. We further show that c-Jun amino-terminal kinase (JNK) plays a pivotal role in mediating vesicle-induced CPS in recipient cells. CPS could have important ramifications in diseases that involve apoptotic cell death.
Collapse
Affiliation(s)
- Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen J Wood
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gayathri S Moorthy
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Douglas Z Gilbert
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janet P Zayas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Flore G, Cioffi S, Bilio M, Illingworth E. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb Cortex 2017; 27:2210-2225. [PMID: 27005988 DOI: 10.1093/cercor/bhw076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm.
Collapse
Affiliation(s)
- Gemma Flore
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Bio-Ker srl, c/o Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Elizabeth Illingworth
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
50
|
Murine model indicates 22q11.2 signaling adaptor CRKL is a dosage-sensitive regulator of genitourinary development. Proc Natl Acad Sci U S A 2017; 114:4981-4986. [PMID: 28439006 DOI: 10.1073/pnas.1619523114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The spectrum of congenital anomalies affecting either the upper tract (kidneys and ureters) or lower tract (reproductive organs) of the genitourinary (GU) system are fundamentally linked by the developmental origin of multiple GU tissues, including the kidneys, gonads, and reproductive ductal systems: the intermediate mesoderm. Although ∼31% of DiGeorge/del22q11.2 syndrome patients exhibit GU defects, little focus has been placed on the molecular etiology of GU defects in this syndrome. Among del22q11.2 patients exhibiting GU anomalies, we have mapped the smallest relevant region to only five genes, including CRKLCRKL encodes a src-homology adaptor protein implicated in mediating tyrosine kinase signaling, and is expressed in the developing GU-tract in mice and humans. Here we show that Crkl mutant embryos exhibit gene dosage-dependent growth restriction, and homozygous mutants exhibit upper GU defects at a microdissection-detectable rate of 23%. RNA-sequencing revealed that 52 genes are differentially regulated in response to uncoupling Crkl from its signaling pathways in the developing kidney, including a fivefold up-regulation of Foxd1, a known regulator of nephron progenitor differentiation. Additionally, Crkl heterozygous adult males exhibit cryptorchidism, lower testis weight, lower sperm count, and subfertility. Together, these data indicate that CRKL is intimately involved in normal development of both the upper and lower GU tracts, and disruption of CRKL contributes to the high incidence of GU defects associated with deletion at 22q11.2.
Collapse
|