1
|
Abstract
Sperm competition was defined by Geoff Parker 50 years ago as the competition between sperm from two or more males over the fertilization of a set of eggs. Since the publication of his seminal paper, sperm competition has developed into a large field of research, and many aspects are still being discovered. One of the relatively poorly understood aspects is the importance of selection and competition among sperm within the ejaculate of a male. The sheer number of sperm present in a male's ejaculate suggests that the competition among sibling sperm produced by the same male may be intense. In this review, we summarize Parker's theoretical models generating predictions about the evolution of sperm traits under the control of the haploid gamete as opposed to the diploid male. We review the existing evidence of within-ejaculate competition from a wide range of fields and taxa. We also discuss the conceptual and practical hurdles we have been facing to study within-ejaculate sperm competition, and how novel technologies may help in addressing some of the currently open questions. This article is part of the theme issue ‘Fifty years of sperm competition’.
Collapse
Affiliation(s)
- Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
2
|
Silva Balbin Villaverde AI, Ogle RA, Lewis P, Carbone V, Velkov T, Netherton JK, Baker MA. Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis. Mol Cell Proteomics 2020; 19:1860-1875. [PMID: 32839225 DOI: 10.1074/mcp.ra120.002109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Indexed: 11/06/2022] Open
Abstract
After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC-MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.
Collapse
Affiliation(s)
- Ana Izabel Silva Balbin Villaverde
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Lewis
- Centre for Chemical Biology and Clinical Pharmacology, Department of Biology, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Vincenzo Carbone
- AgResearchGrasslands Research Centre, Palmerston North, New Zealand
| | - Tony Velkov
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, NSW, Australia
| | - Jacob K Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
3
|
Castellini C, Mattioli S, Bosco AD, Cotozzolo E, Cartoni Mancinelli A, Rende M, Stabile AM, Pistilli A. Nerve growth factor receptor role on rabbit sperm storage. Theriogenology 2020; 153:54-61. [PMID: 32442740 DOI: 10.1016/j.theriogenology.2020.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The influence of NGF in male reproduction in some animal species and humans has already been assessed. Many of these effects are mediated by the distribution and abundance of tropomyosin receptor kinase A (TrKA) and p75 neurotrophin (p75NTR) receptors on sperm cells. The aim of this research was to investigate the role of NGF and its receptors, TrKA and p75NTR, in rabbit sperm outcomes during in vitro storage. Major semen traits (kinetic parameters, apoptotic, necrotic and live sperm) were recorded in rabbit semen samples from 0 to 12 h of storage (every 4 h). Three experimental hypotheses were formulated: i) sperm storage changes NGF receptor abundance in rabbit sperm; ii) TrKA and p75NTR differently modulate NGF signalling (assessed by the neutralisation of receptors); iii) NGF-receptor interactions show different responses during storage (evaluated by the addition of exogenous NGF). The results demonstrate that: (i) the receptor number changed in a time-dependent manner with a significant increase in p75NTR after 8-12 h of storage; ii) the neutralisation of NGF receptors largely affected VCL, apoptotic, necrotic and live cells during sperm storage, i.e. blockade of TrKA significantly increased speed, capacitation, necrosis and apoptosis, whereas blockade of p75NTR improved motility and live cells; iii) the addition of exogenous human NGF (100 ng/mL) at different time points of storage (0, 4, 8 h) differently influenced sperm traits i.e. NGF addition at time 0 positively affected all the pro-vital traits (kinetic, live cells) whereas, after 4-8 h, the effect of NGF was null or negative. In conclusion, NGF affects kinetic and other physiological traits (capacitation, apoptosis and necrosis) of rabbit sperm in a time-dependent manner. Most of these modifications are modulated by the receptors involved (TrKA or p75NTR), which changed considerably during sperm storage (increase of p75NTR).
Collapse
Affiliation(s)
- Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06100, Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06100, Perugia, Italy.
| | - Alessandro Dal Bosco
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06100, Perugia, Italy
| | - Elisa Cotozzolo
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06100, Perugia, Italy
| | - Alice Cartoni Mancinelli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06100, Perugia, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, P.le Lucio Severi, 1, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| | - Anna Maria Stabile
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, P.le Lucio Severi, 1, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| | - Alessandra Pistilli
- Section of Human, Clinical and Forensic Anatomy, Department of Surgery and Biomedical Sciences, School of Medicine, University of Perugia, P.le Lucio Severi, 1, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
4
|
Leahy T, Rickard JP, Bernecic NC, Druart X, de Graaf SP. Ram seminal plasma and its functional proteomic assessment. Reproduction 2020; 157:R243-R256. [PMID: 30844754 DOI: 10.1530/rep-18-0627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
Ejaculation results in the confluence of epididymal spermatozoa with secretions of the accessory sex glands. This interaction is not a prerequisite for fertilisation success, but seminal factors do play a crucial role in prolonging the survival of spermatozoa both in vitro and in vivo by affording protection from handling induced stress and some selective mechanisms of the female reproductive tract. Reproductive biologists have long sought to identify specific factors in seminal plasma that influence sperm function and fertility in these contexts. Many seminal plasma proteins have been identified as diagnostic predictors of sperm function and have been isolated and applied in vitro to prevent sperm damage associated with the application of artificial reproductive technologies. Proteomic assessment of the spermatozoon, and its surroundings, has provided considerable advances towards these goals and allowed for greater understanding of their physiological function. In this review, the importance of seminal plasma will be examined through a proteomic lens to provide comprehensive analysis of the ram seminal proteome and detail the use of proteomic studies that correlate seminal plasma proteins with ram sperm function and preservation ability.
Collapse
Affiliation(s)
- T Leahy
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - N C Bernecic
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - X Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
5
|
Green C, Rickard JP, de Graaf SP, Crean AJ. From One Ejaculate to Another: Transference of Sperm Traits via Seminal Plasma Supplementation in the Ram. BIOLOGY 2020; 9:E33. [PMID: 32085377 PMCID: PMC7168205 DOI: 10.3390/biology9020033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Males can adjust sperm motility instantaneously in response to the perceived risk of sperm competition. The speed of this response suggests that sperm motility is regulated by changes in seminal plasma rather than changes in the sperm cells themselves. Hence, here we test whether inter-ejaculate variation in seminal plasma can be used to alter sperm quality prior to use in assisted reproductive technologies. We supplemented fresh ejaculates of Merino rams with seminal plasma collected from previous 'donor' ejaculates to test whether changes in sperm kinetics were related to the relative quality of donor to focal ejaculates. We found a positive relationship between the change in sperm traits before and after supplementation, and the difference in sperm traits between the donor and focal ejaculate. Hence, sperm motility can be either increased or decreased through the addition of seminal plasma from a superior or inferior ejaculate, respectively. This positive relationship held true even when seminal plasma was added from a previous ejaculate of the same ram, although the slope of the relationship depended on the identity of both the donor and receiver ram. These findings indicate that seminal plasma plays a key role in the control and regulation of sperm kinetics, and that sperm kinetic traits can be transferred from one ejaculate to another through seminal plasma supplementation.
Collapse
Affiliation(s)
- Christine Green
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jessica P. Rickard
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon P. de Graaf
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Angela J. Crean
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Roca J, Perez-Patiño C, Barranco I, Padilla LC, Martínez EA, Rodriguez-Martinez H, Parrilla I. Proteomics in fresh and preserved pig semen: Recent achievements and future challenges. Theriogenology 2020; 150:41-47. [PMID: 32088031 DOI: 10.1016/j.theriogenology.2020.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Proteins in semen, either in spermatozoa (SPZ) or seminal plasma (SP), are directly involved in molecular processes and biological pathways regulating sperm function, including fertilizing ability. Therefore, semen proteins are candidates of choice for biomarkers discovery for fertility and for sperm (dys)function. Mass spectrometry (MS)-based proteomics has opened up a new era for characterizing and quantifying the protein profile of SP and SPZ, as well as for unveiling the complex protein interactions involved in the activation of sperm functionality. This article overviews existing literature on MS-based proteomics regarding porcine semen, with a specific focus on the potential practical application of the results achieved so far. The weaknesses of current studies and the perspectives for future research in MS-based pig semen proteomics are also addressed.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain.
| | - Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Lorena C Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Emilio A Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| |
Collapse
|
7
|
Cyclin-CDK Complexes are Key Controllers of Capacitation-Dependent Actin Dynamics in Mammalian Spermatozoa. Int J Mol Sci 2019; 20:ijms20174236. [PMID: 31470670 PMCID: PMC6747110 DOI: 10.3390/ijms20174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional maturation process to acquire the competence to fertilize the female egg. During this process, called capacitation, the actin cytoskeleton dramatically changes its organization. First, actin fibers polymerize, forming a network over the anterior part of the sperm cells head, and then it rapidly depolymerizes and disappears during the exocytosis of the acrosome content (the acrosome reaction (AR)). Here, we developed a computational model representing the actin dynamics (AD) process on mature spermatozoa. In particular, we represented all the molecular events known to be involved in AD as a network of nodes linked by edges (the interactions). After the network enrichment, using an online resource (STRING), we carried out the statistical analysis on its topology, identifying the controllers of the system and validating them in an experiment of targeted versus random attack to the network. Interestingly, among them, we found that cyclin-dependent kinase (cyclin–CDK) complexes are acting as stronger controllers. This finding is of great interest since it suggests the key role that cyclin–CDK complexes could play in controlling AD during sperm capacitation, leading us to propose a new and interesting non-genomic role for these molecules.
Collapse
|
8
|
Guo Y, Jiang W, Yu W, Niu X, Liu F, Zhou T, Zhang H, Li Y, Zhu H, Zhou Z, Sha J, Guo X, Chen D. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J Proteomics 2019; 208:103478. [PMID: 31394311 DOI: 10.1016/j.jprot.2019.103478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
Asthenozoospermia, in which sperm motility is affected, is one of the primary causes of male infertility. However, the exact mechanism responsible for the defective motility remains unknown. It is important to identify the precise proteins or pathways involved in sperm motility. The present study analyzed five asthenozoospermic sperm samples and five healthy controls using TMT-based quantitative method and identified 152 differentially expressed proteins, with 84 upregulated and 68 downregulated in asthenozoospermia. Four proteins (GPI, MDH1, PGAM1 and PGAM2) were found in several over-represented energy metabolism pathways using bioinformatics analysis. Glucose-6-phosphate isomerase (GPI), a rate-limiting enzyme converting glucose-6-phosphate to fructose-6-phosphate, was found to be significantly decreased in asthenozoospermia by Western blotting and ELISA on an extended sample size. Furthermore, substitution of glucose with fructose-6-phosphate significantly promoted asthenozoospermic sperm motility in vitro. Taken together, our results suggest that the poor motility of sperm in asthenozoospermia may partly result from defects in GPI-associated energy metabolism. SIGNIFICANCE: To identify the key proteins or pathways involved in sperm motility, the accurate TMT-based quantitative method was applied to characterize protein profiles of asthenozoospermic sperm. GPI, an enzyme involved in energy metabolism, was found to be differentially abundant, and validated by extended sample analysis. The supplement of the product of GPI, fructose-6-phosphate, could significantly improve sperm motility. Our study could provide new insights into the molecular basis of sperm motility and the improvement of motility in asthenozoospermia.
Collapse
Affiliation(s)
- Yueshuai Guo
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China; State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Wen Jiang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Weiling Yu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xin Niu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Fangjuan Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Daozhen Chen
- Central Laboratory, The affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China.
| |
Collapse
|
9
|
Park YJ, Pang WK, Ryu DY, Song WH, Rahman MS, Pang MG. Optimized combination of multiple biomarkers to improve diagnostic accuracy in male fertility. Theriogenology 2019; 139:106-112. [PMID: 31401475 DOI: 10.1016/j.theriogenology.2019.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
Artificial insemination is the general method of breeding for genetic improvement in offspring. However, almost half of the insemination cases fail to achieve full-term pregnancy, due to male infertility or subfertility. To maximize the success of insemination, accurate semen quality testing is required prior to insemination. Even though basic semen analyses have been used to provide preliminary information, it cannot fully identify the superior or inferior fertility bulls. Therefore, more powerful and easy to use methods for the prediction of male fertility are required, such as proteomic or microarray chips. During past decades, omics approaches have been developed and suggested the numerous fertility-related potential biomarkers. Our previous study identified the fertility related protein markers, enolase1 (ENO1), ATP synthase, H+ transporting, mitochondrial F1 complex, beta subunit (ATP5B), voltage-dependent anion channel 2 (VDAC2), phospholipid hydroperoxide glutathione peroxide (GPx4), and ubiquinol-cytochrome-c reductase complex core protein 2 (UQCRC2) in bovine spermatozoa. In the present study, we perform a marker combination assay using the western blot data of ENO1, ATP5B, VDAC2, GPx4, and UQCRC2 from 20 individual bull semen samples. And then, we identified the predictive ability of these markers for normal (non-return rate (NRR) ≥ 70%) and normal fertility (NRR<70%) in bulls. ENO1, a single protein marker, achieved an area under the curve (AUC) of 0.86 and 90% discriminatory power between normal and below-normal fertility bulls, with 90% sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Although no meaningful changes existed in overall accuracy (70-85%) to discriminate the normal and below-normal fertility between ENO1 single marker and combined marker panels, multiple marker combination methods using ENO1, VDAC2, GPx4, and UQCRC2 provided absolute sensitivity and NPV, with higher specificity (70%) and PPV (77%). ENO1 can be used as a fertility marker candidate, but there were limitations for providing absolute information about normal and below-normal fertility. Although the combined use of fertility-related markers cannot provide absolute accuracy, it can help in indicating below-normal fertility in bulls. These results may contribute to the maintenance cost in the animal industry, via selection of bulls with inferior fertility.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
10
|
Engel KM, Baumann S, Rolle-Kampczyk U, Schiller J, von Bergen M, Grunewald S. Metabolomic profiling reveals correlations between spermiogram parameters and the metabolites present in human spermatozoa and seminal plasma. PLoS One 2019; 14:e0211679. [PMID: 30785892 PMCID: PMC6382115 DOI: 10.1371/journal.pone.0211679] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023] Open
Abstract
In 50% of all infertility cases, the male is subfertile or infertile, however, the underlying mechanisms are often unknown. Even when assisted reproductive procedures such as in vitro fertilization and intracytoplasmic sperm injection are performed, the causes of male factor infertility frequently remain elusive. Since the overall activity of cells is closely linked to their metabolic capacity, we analyzed a panel of 180 metabolites in human sperm and seminal plasma and elucidated their associations with spermiogram parameters. Therefore, metabolites from a group of 20 healthy donors were investigated using a targeted LC-MS/MS approach. The correlation analyses of the amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and sugars from sperm and seminal plasma with standard spermiogram parameters revealed that metabolites in sperm are closely related to sperm motility, whereas those in seminal plasma are closely related to sperm concentration and morphology. This study provides essential insights into the metabolome of human sperm and seminal plasma and its associations with sperm functions. This metabolomics technique could be a promising screening tool to detect the factors of male infertility in cases where the cause of infertility is unclear.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, Leipzig, Germany
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Sonja Grunewald
- Training Center of the European Academy of Andrology (EAA), Dermatology, Venerology and Allergology Clinic, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
11
|
Pérez-Patiño C, Parrilla I, Li J, Barranco I, Martínez EA, Rodriguez-Martínez H, Roca J. The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Mol Cell Proteomics 2019; 18:41-50. [PMID: 30257877 PMCID: PMC6317480 DOI: 10.1074/mcp.ra118.000840] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
Proteins are essential for sperm function, including their fertilizing capacity. Pig spermatozoa, emitted in well-defined ejaculate fractions, vary in their functionality, which could be related to different sperm protein composition. This study aimed (i) to update the porcine sperm proteome and (ii) to identify proteins differentially expressed in mature spermatozoa from cauda epididymis and those delivered in separate ejaculate fractions. Ejaculates from nine mature and fertile boars were manually collected in three separate portions: the first 10 ml of the sperm-rich ejaculate fraction (SRF), the rest of the SRF and the post-SRF. The contents of cauda epididymides of the boars were collected post-mortem by retrograde duct perfusion, generating four different semen sources for each boar. Following centrifugation, the resulting pellets of each semen source were initially pooled and later split to generate two technical replicates per source. The resulting eight sperm samples (two per semen source) were subjected to iTRAQ-based 2D-LC-MS/MS for protein identification and quantification. A total of 1,723 proteins were identified (974 of Sus scrofa taxonomy) and 1,602 of them were also quantified (960 of Sus scrofa taxonomy). After an ANOVA test, 32 Sus scrofa proteins showed quantitative differences (p < 0.01) among semen sources, which was particularly relevant for sperm functionality in the post-SRF. The present study showed that the proteome of boar spermatozoa is remodeled during ejaculation involving proteins clearly implicated in sperm function. The findings provide valuable groundwork for further studies focused on identifying protein biomarkers of sperm fertility.
Collapse
Affiliation(s)
- Cristina Pérez-Patiño
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Junwei Li
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Emilio A Martínez
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain;.
| |
Collapse
|
12
|
Analysis of sex ratio on bovine in vitro fertilized embryos using sex determination kit treated sperm. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.3.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Martín-Hidalgo D, Bragado MJ, García-Marín LJ, Gil Anaya MC. Supplementation of freezing/thawing media with GSK3 inhibitor alsterpaullone does not bypass the harmful effect of cryopreservation on boar spermatozoa. Anim Reprod Sci 2018; 196:176-183. [DOI: 10.1016/j.anireprosci.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023]
|
14
|
Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol 2018; 49:195-208. [PMID: 29453757 DOI: 10.1007/s10735-018-9759-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Spermatogenesis starts within the seminiferous tubules of the testis by mitotic division of spermatogonia that produces spermatocytes. Meiotic division of these spermatocytes produces haploid spermatids that differentiate into spermatozoa. In this study, we examined the expression of ENaC and CFTR (a Cl- channel) in rat testicular sections using confocal microscopic immunofluorescence. The structural integrity of the seminiferous tubule sections was verified by precise phalloidin staining of the actin fibers located abundantly at both basal and adluminal tight junctions. The acrosome forming regions in the round spermatids were stained using an FITC coupled lectin (wheat germ agglutinin). In all phases of the germ cells (spermatogonia, spermatocytes, and spermatids) ENaC was localized in cytoplasmic pools. Prior to spermiation, ENaC immunofluorescence appeared along the tails of the spermatids. In spermatozoa isolated from the epididymis, ENaC was localized at the acrosome and a central region of the sperm flagellum. The mature sperm are transcriptionally silent. Hence, we suggest that ENaC subunits in cytoplasmic pools in germ cells serve as the source of ENaC subunits located along the tail of spermatozoa. The locations of ENaC is compatible with a possible role in the acrosomal reaction and sperm mobility. In contrast to ENaC, CFTR immunofluorescence was most strongly observed specifically within the Sertoli cell nuclei. Based on the nuclear localization of CFTR we suggest that, in addition to its role as an ion channel, CFTR may have an independent role in gene regulation within the nuclei.
Collapse
|
15
|
Feugang JM, Liao SF, Willard ST, Ryan PL. In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genomics 2018; 19:62. [PMID: 29347914 PMCID: PMC5774113 DOI: 10.1186/s12864-018-4442-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
Background Mature spermatozoa contain numerous epididymal and seminal plasma proteins, which full identification through high-throughput technologies may allow for a better understanding of the sperm biology. Therefore, we conducted a global proteomic analysis of boar spermatozoa through shotgun and gel-based methodologies. Results The total proteins were extracted from mature spermatozoa and subjecsted to proteome analyses. Functional analyses of gene ontology representations and pathway enrichments were conducted on the shotgun dataset, followed by immunology and gene expression validations. Shotgun and gel-based approaches allowed the detection of 2728 proteins and 2123 spots, respectively. Approximately 38% and 59% of total proteins were respectively fully and partially annotated, and 3% were unknown. Gene ontology analysis indicated high proportions of proteins associated with intracellular and cytoplasm localizations, protein and nucleic acid binding, hydrolase and transferase activities, and cellular, metabolic, and regulation of biological processes. Proteins associated with phosphorylation processes and mitochondrial membranes, nucleic acid binding, and phosphate and phosphorous metabolics represented 77% of the dataset. Pathways associated with oxidative phosphorylation, citrate cycle, and extra-cellular matrix-receptor interaction were significantly enriched. Protein complex, intracellular organelle, cytoskeletal parts, fertilization and reproduction, and gap junction pathway were significantly enriched within the top 116 highly abundant proteins. Nine randomly selected protein candidates were confirmed with gel-based identification, immunofluorescence detection, and mRNA expression. Conclusions This study offers an in-depth proteomic mapping of mature boar spermatozoa that will enable comparative and discovery research for the improvement of male fertility. Electronic supplementary material The online version of this article (10.1186/s12864-018-4442-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
16
|
Yadav SK, Gangwar DK, Singh J, Tikadar CK, Khanna VV, Saini S, Dholpuria S, Palta P, Manik RS, Singh MK, Singla SK. An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm. Vet World 2017; 10:498-504. [PMID: 28620252 PMCID: PMC5465762 DOI: 10.14202/vetworld.2017.498-504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Separation of X- and Y-chromosome bearing sperm has been practiced for selection of desired sex of offspring to increase the profit in livestock industries. At present, fluorescence-activated cell sorter is the only successful method for separation of X- and Y-chromosome bearing sperm. This technology is based on the differences in DNA content between these two types of sperm and has been commercialized for bovine sperm. However, this technology still has problems in terms of high economic cost, sperm damage, and lower pregnancy rates compared to unsorted semen. Therefore, an inexpensive, convenient, and non-invasive approach for sperm sexing would be of benefit to agricultural sector. Within this perspective, immunological sperm sexing method is one of the attractive choices to separate X- and Y-chromosome bearing sperm. This article reviews the current knowledge about immunological approaches, viz., H-Y antigen, sex-specific antigens, and differentially expressed proteins for sperm sexing. Moreover, this review also highlighted the different methods for identification of X- and Y-sperm.
Collapse
Affiliation(s)
- Shiv Kumar Yadav
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Dharmendra Kumar Gangwar
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Jarnail Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Chiranjeev Kumar Tikadar
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - V Vinoth Khanna
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Sudha Saini
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Sunny Dholpuria
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Radhey Shyam Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
17
|
Gilany K, Minai-Tehrani A, Amini M, Agharezaee N, Arjmand B. The Challenge of Human Spermatozoa Proteome: A Systematic Review. J Reprod Infertil 2017; 18:267-279. [PMID: 29062791 PMCID: PMC5641436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently, there are 20,197 human protein-coding genes in the most expertly curated database (UniProtKB/Swiss-Pro). Big efforts have been made by the international consortium, the Chromosome-Centric Human Proteome Project (C-HPP) and independent researchers, to map human proteome. In brief, anno 2017 the human proteome was outlined. The male factor contributes to 50% of infertility in couples. However, there are limited human spermatozoa proteomic studies. Firstly, the development of the mapping of the human spermatozoa was analyzed. The human spermatozoa have been used as a model for missing proteins. It has been shown that human spermatozoa are excellent sources for finding missing proteins. Y chromosome proteome mapping is led by Iran. However, it seems that it is extremely challenging to map the human spermatozoa Y chromosome proteins based on current mass spectrometry-based proteomics technology. Post-translation modifications (PTMs) of human spermatozoa proteome are the most unexplored area and currently the exact role of PTMs in male infertility is unknown. Additionally, the clinical human spermatozoa proteomic analysis, anno 2017 was done in this study.
Collapse
Affiliation(s)
- Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author: Kambiz Gilany, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, P.O. Box: 19615-1177 E-mail:
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Amini
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloofar Agharezaee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran, Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Agarwal A, Bertolla RP, Samanta L. Sperm proteomics: potential impact on male infertility treatment. Expert Rev Proteomics 2016; 13:285-96. [DOI: 10.1586/14789450.2016.1151357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Beltrán C, Treviño CL, Mata-Martínez E, Chávez JC, Sánchez-Cárdenas C, Baker M, Darszon A. Role of Ion Channels in the Sperm Acrosome Reaction. SPERM ACROSOME BIOGENESIS AND FUNCTION DURING FERTILIZATION 2016; 220:35-69. [DOI: 10.1007/978-3-319-30567-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Clausen MV, Nissen P, Poulsen H. The α4 isoform of the Na⁺,K⁺-ATPase is tuned for changing extracellular environments. FEBS J 2015; 283:282-93. [PMID: 26476261 DOI: 10.1111/febs.13567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
Abstract
In their journey from the male to the female reproductive tract, spermatozoa are confronted with a constantly changing environment. To cope with the associated challenges, spermatozoa express a distinct set of transporters, channels and pumps. One of the membrane proteins unique to spermatozoa is the α4 isoform of the Na(+) ,K(+) -ATPase. In addition to α4, spermatozoa express the ubiquous α1 variant. To get a detailed understanding of how α1 and α4 differ, and why spermatozoa need an additional Na(+) ,K(+) -ATPase, we have conducted an electrophysiological comparison of the rodent isoforms (rat α4 versus mouse α1-3) using the Xenopus oocyte expression system. We demonstrate isoform-specific differences in the voltage sensitivity of steady-state turnover, with α2 being the more sensitive, and α1 and α2 having faster Na(+) release kinetics than α3 and α4. Our data further show that the α1 and α2 turnover rates are fast compared with those of α3 and α4. Finally, α4 is less influenced by changes in extracellular Na(+) and temperature than α1. Based on these findings, we discuss the possibility that evolution has selected robust activity rather than rapid turnover for α4.
Collapse
Affiliation(s)
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| |
Collapse
|
21
|
Zhou T, Xia X, Liu J, Wang G, Guo Y, Guo X, Wang X, Sha J. Beyond single modification: Reanalysis of the acetylproteome of human sperm reveals widespread multiple modifications. J Proteomics 2015; 126:296-302. [DOI: 10.1016/j.jprot.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 01/25/2023]
|
22
|
Codina M, Estanyol JM, Fidalgo MJ, Ballescà JL, Oliva R. Advances in sperm proteomics: best-practise methodology and clinical potential. Expert Rev Proteomics 2015; 12:255-77. [PMID: 25921224 DOI: 10.1586/14789450.2015.1040769] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.
Collapse
Affiliation(s)
- Montserrat Codina
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Baker MA, Weinberg A, Hetherington L, Villaverde AISB, Velkov T. Analysis of protein thiol changes occurring during rat sperm epididymal maturation. Biol Reprod 2014; 92:11. [PMID: 25411390 DOI: 10.1095/biolreprod.114.123679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The maturation of spermatozoa throughout the epididymal environment occurs in the complete absence of nuclear protein biosynthesis. As such, these cells rely heavily on posttranslational modifications of existing proteins in order to obtain the potential for fertilization. We have used an OxiCat approach to label both free and oxidized cysteine residues in rat sperm proteins and compared the ratio of reduced:oxidized peptides as these cells undergo epididymal transit. In all, 20 peptides, corresponding to 15 proteins, underwent a change in their redox status. Included in this list were A-kinase anchoring protein 4 and fatty acid-binding protein 9. Both of these proteins undergo intradisulfide bonding, leading to reduced solubility and, in the case of the latter, is likely to cause a loss of protein function. Interestingly, two glycolytic enzymes, hexokinase-1 and lactate dehydrogenase, also display increased cysteine oxidation during epididymal transit, which may be involved in the regulation of the enzyme activities.
Collapse
Affiliation(s)
- Mark A Baker
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Anita Weinberg
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Discipline of Biological Sciences, University of Newcastle. Callaghan, New South Wales, Australia
| | | | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Nirlipta Swain
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Luna Samanta
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| |
Collapse
|
25
|
Abstract
Sperm RNA has been linked recently to trans-generational, non-Mendelian patterns of inheritance. Originally dismissed as “residual” to spermatogenesis, some sperm RNA may have postfertilization functions including the transmission of acquired characteristics. Sperm RNA may help explain how trans-generational effects are transmitted and it may also have implications for assisted reproductive technologies (ART) where sperm are subjected to considerable, ex vivo manual handling. The presence of sperm RNA was originally a controversial topic because nuclear gene expression is switched off in the mature mammalian spermatozoon. With the recent application of next generation sequencing (NGS), an unexpectedly rich and complex repertoire of RNAs has been revealed in the sperm of several species that makes its residual presence counterintuitive. What follows is a personal survey of the science behind our understanding of sperm RNA and its functional significance based on experimental observations from my laboratory as well as many others who have contributed to the field over the years and are continuing to contribute today. The narrative begins with a historical perspective and ends with some educated speculation on where research into sperm RNA is likely to lead us in the next 10 years or so.
Collapse
|
26
|
Schrader SM, Marlow KL. Assessing the reproductive health of men with occupational exposures. Asian J Androl 2014; 16:23-30. [PMID: 24369130 PMCID: PMC3901877 DOI: 10.4103/1008-682x.122352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022] Open
Abstract
The earliest report linking environmental (occupational) exposure to adverse human male reproductive effects dates back to1775 when an English physician, Percival Pott, reported a high incidence of scrotal cancer in chimney sweeps. This observation led to safety regulations in the form of bathing requirements for these workers. The fact that male-mediated reproductive harm in humans may be a result of toxicant exposures did not become firmly established until relatively recently, when Lancranjan studied lead-exposed workers in Romania in 1975, and later in 1977, when Whorton examined the effects of dibromochloropropane (DBCP) on male workers in California. Since these discoveries, several additional human reproductive toxicants have been identified through the convergence of laboratory and observational findings. Many research gaps remain, as the pool of potential human exposures with undetermined effects on male reproduction is vast. This review provides an overview of methods used to study the effects of exposures on male reproduction and their reproductive health, with a primary emphasis on the implementation and interpretation of human studies. Emphasis will be on occupational exposures, although much of the information is also useful in assessing environmental studies, occupational exposures are usually much higher and better defined.
Collapse
Affiliation(s)
- Steven M Schrader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| | - Katherine L Marlow
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| |
Collapse
|
27
|
Jockusch H, Holland A, Staunton L, Schmitt-John T, Heimann P, Dowling P, Ohlendieck K. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: The wobbler mouse model of globozoospermia. Proteomics 2013; 14:839-52. [DOI: 10.1002/pmic.201300189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Harald Jockusch
- Department of Developmental Biology and Molecular Pathology; University of Bielefeld; Bielefeld Germany
| | - Ashling Holland
- Department of Biology; National University of Ireland; Maynooth Ireland
| | - Lisa Staunton
- Department of Biology; National University of Ireland; Maynooth Ireland
| | - Thomas Schmitt-John
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus Denmark
| | - Peter Heimann
- Department of Cell Biology; University of Bielefeld; Bielefeld Germany
| | - Paul Dowling
- National Institute for Cellular Biotechnology; Dublin City University; Dublin Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Ireland
| |
Collapse
|
28
|
De Canio M, Soggiu A, Piras C, Bonizzi L, Galli A, Urbani A, Roncada P. Differential protein profile in sexed bovine semen: shotgun proteomics investigation. MOLECULAR BIOSYSTEMS 2013; 10:1264-71. [PMID: 24226273 DOI: 10.1039/c3mb70306a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The preparation of sexed semen is based on the differential DNA content between the X and Y chromosome bearing sperm cells determined by fluorescence-activated cell sorting. In spite of its intrinsic limitations this represents the only effective method. However, the employment of sexed sperm for breeding food producing animals on a large scale requires additional knowledge in the protein repertoire for the development of improved methods to differentiate X and Y sperm cells maintaining high vitality. In order to address this issue, we performed a comparative shotgun proteomic investigation by nUPLC-MS/MS to characterize sexed bovine semen. The protein profiles of these two types of sperm cells have shown differential expression of proteins that may be directly associated with the main components of cytoskeletal structures of flagellum, as the axoneme, outer dense fibers and fibrous sheath, as well as glycolytic enzymes and calmodulin, involved in the energetic metabolism regulation. Overall these results may provide a base to a better comprehension of the biological features of sperm cells and may be useful to the development of alternative methods of separation.
Collapse
Affiliation(s)
- Michele De Canio
- Dipartimento di Scienze Veterinarie e Sanità Pubblica (DIVET), Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kichine E, Di Falco M, Hales BF, Robaire B, Chan P. Analysis of the sperm head protein profiles in fertile men: consistency across time in the levels of expression of heat shock proteins and peroxiredoxins. PLoS One 2013; 8:e77471. [PMID: 24204839 PMCID: PMC3813703 DOI: 10.1371/journal.pone.0077471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/02/2013] [Indexed: 12/28/2022] Open
Abstract
We investigated the identity and quantitative variations of proteins extracted from human sperm heads using a label-free Gel-MS approach. Sperm samples were obtained from three men with high sperm counts at three different time points. This design allowed us to analyse intra-individual and inter-individual variations of the human sperm head proteome. Each time point was analyzed in triplicate to minimize any background artifactual effects of the methodology on the variation analyses. Intra-individual analysis using the spectral counting method revealed that the expression levels of 90% of the common proteins identified in three samples collected at various time-points, separated by several months, had a coefficient of variation of less than 0.5 for each man. Across individuals, the expression level of more than 80% of the proteins had a CV under 0.7. Interestingly, 83 common proteins were found within the core proteome as defined by the intra- and inter-variation analyses set criteria (CV<0.7). Some of these uniformly expressed proteins were chaperones, peroxiredoxins, isomerases, and cytoskeletal proteins. Although there is a significant level of inter-individual variation in the protein profiles of human sperm heads even in a well-defined group of men with high sperm counts, the consistent expression levels of a wide range of proteins points to their essential role during spermatogenesis.
Collapse
Affiliation(s)
- Elsa Kichine
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Marcos Di Falco
- Structural and Functional Genomics Centre, Concordia University, Montreal, Quebec, Canada
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Montreal, Quebec, Canada
| | - Peter Chan
- Department of Urology, McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
30
|
Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2013; 20:40-62. [DOI: 10.1093/humupd/dmt046] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
31
|
Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics. Asian J Androl 2013; 15:594-602. [PMID: 23852026 DOI: 10.1038/aja.2013.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/27/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022] Open
Abstract
Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis.
Collapse
|
32
|
Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol 2013; 38:576-94. [PMID: 23131516 DOI: 10.1590/s1677-55382012000500002] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/15/2022] Open
Abstract
Unexplained male infertility is a diagnosis reserved for men in whom routine semen analyses results are within normal values and physical as well as endocrine abnormalities were ruled out. In addition to erectile problems and coital factors, immunologic causes and sperm dysfunction may contribute to such condition. New etiologies of unexplained male infertility include low level leukocytospermia and mitochondrial DNA polymerase gene polymorphism. Contemporary andrology may reveal cellular and sub-cellular sperm dysfunctions which may explain subfertility in such cases, thus aiding the clinician to direct the further work-up, diagnosis and counseling of the infertile male. The objective of this article is to highlight the concept of unexplained male infertility and focuses on the diagnosis and treatment of this condition in the era of modern andrology and assisted reproductive techniques. Extensive literature review was performed using the search engines: Pubmed, Science-direct, Ovid and Scopus.
Collapse
Affiliation(s)
- Alaa Hamada
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
33
|
Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 2013; 13:61-74. [PMID: 23161668 DOI: 10.1002/pmic.201200350] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023]
Abstract
Subcellular proteomics not only deepens our knowledge of what proteins are present within cells, but also opens our understanding as to where those proteins reside. Given the highly differentiated, cross-linked state of spermatozoa, such studies have proven difficult to perform. In this study we have fractionated spermatozoa into two components, consisting of either the head or flagellar region. Following SDS-PAGE, 1 mm slices were digested and used for LC-MS/MS analysis. In total, 1429 proteins were identified with 721 proteins being exclusively found in the tail and 521 exclusively in the head. Not only is this the largest reported proteomic analysis of human spermatozoa, but also it has provided novel insights into the compartmentalization of proteins, particularly receptors, never previously reported to be present in this cell type.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B, Yadav S, du Plessis S. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol 2013; 11:48. [PMID: 23688036 PMCID: PMC3716960 DOI: 10.1186/1477-7827-11-48] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress plays a key role in the etiology of male infertility. Significant alterations in the sperm proteome are associated with poor semen quality. The aim of the present study was to examine if elevated levels of reactive oxygen species cause an alteration in the proteomic profile of spermatozoa. METHODS This prospective study consisted of 52 subjects: 32 infertile men and 20 normal donors. Seminal ejaculates were classified as ROS+ or ROS- and evaluated for their proteomic profile. Samples were pooled and subjected to LC-MS/MS analysis through in-solution digestion of proteins for peptide characterization. The expression profile of proteins present in human spermatozoa was examined using proteomic and bioinformatic analysis to elucidate the regulatory pathways of oxidative stress. RESULTS Of the 74 proteins identified, 10 proteins with a 2-fold difference were overexpressed and 5 were underexpressed in the ROS+ group; energy metabolism and regulation, carbohydrate metabolic processes such as gluconeogenesis and glycolysis, protein modifications and oxidative stress regulation were some of the metabolic processes affected in ROS+ group. CONCLUSIONS We have identified proteins involved in a variety of functions associated with response and management of oxidative stress. In the present study we focused on proteins that showed a high degree of differential expression and thus, have a greater impact on the fertilizing potential of the spermatozoa. While proteomic analyses identified the potential biomarkers, further studies through Western Blot are necessary to validate the biomarker status of the proteins in pathological conditions.
Collapse
Affiliation(s)
- Rakesh Sharma
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gayatri Mohanty
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Permanent address: Ravenshaw University, Cuttack, Odisha, India
| | - Alaa J Hamada
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Banu Gopalan
- Bioinformatics Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomic Core Lab, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Satya Yadav
- Molecular Biotechnology Core lab, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefan du Plessis
- Medical Physiology, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
35
|
Characterization of 3-hydroxyisobutyrate dehydrogenase, HIBADH, as a sperm-motility marker. J Assist Reprod Genet 2013; 30:505-12. [PMID: 23423614 DOI: 10.1007/s10815-013-9954-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Asthenozoospermia is a major cause of male infertility. However, the molecular mechanisms underlying sperm-motility defects remain largely unknown in the majority of cases. In our previous study, we applied a proteomic approach to identify unknown proteins that were downregulated in spermatozoa with low motility compared to spermatozoa with good motility. Several sperm motility- related proteins have been identified. In this study, 3-hydroxyisobutyrate dehydrogenase (HIBADH), one of the proteins identified using the proteomic tools, is further characterized. METHODS Reverse-transcription polymerase chain reactions (RT-PCR), western blotting, and immunofluorescence assays (IFA) were preformed to investigate the expression pattern. The enzymatic activity of HIBADH was evaluated in sperm with good (>50 %), moderate (< 50 %) and lower motility (< 20 %). RESULTS Using RT-PCR, we found that transcripts of HIBADH are enriched in the cerebellum, heart, skeletal muscle, uterus, placenta, and testes of male humans. In western blotting, it is expressed in the placenta, testes, and spermatozoa. During spermiogenesis, HIBADH is located at the mid-piece (a specialized development from the mitochondria) of elongating, elongated, and mature sperm. The enzymatic activity of HIBADH in sperm with moderate and lower motility were significantly reduced compared with good motility (P<0.0001 and P<0.05, respectively). CONCLUSIONS Our study indicated that HIBADH is involved in the mitochondrial function of spermatozoa, and maintains sperm motility. It may serve as a sperm-motility marker.
Collapse
|
36
|
Abstract
Ca2+i signalling is pivotal to sperm function. Progesterone, the best-characterized agonist of human sperm Ca2+i signalling, stimulates a biphasic [Ca2+]i rise, comprising a transient and subsequent sustained phase. In accordance with recent reports that progesterone directly activates CatSper, the [Ca2+]i transient was detectable in the anterior flagellum (where CatSper is expressed) 1–2 s before responses in the head and neck. Pre-treatment with 5 μM 2-APB (2-aminoethoxydiphenyl borate), which enhances activity of store-operated channel proteins (Orai) by facilitating interaction with their activator [STIM (stromal interaction molecule)] ‘amplified’ progesterone-induced [Ca2+]i transients at the sperm neck/midpiece without modifying kinetics. The flagellar [Ca2+]i response was unchanged. 2-APB (5 μM) also enhanced the sustained response in the midpiece, possibly reflecting mitochondrial Ca2+ accumulation downstream of the potentiated [Ca2+]i transient. Pre-treatment with 50–100 μM 2-APB failed to potentiate the transient and suppressed sustained [Ca2+]i elevation. When applied during the [Ca2+]i plateau, 50–100 μM 2-APB caused a transient fall in [Ca2+]i, which then recovered despite the continued presence of 2-APB. Loperamide (a chemically different store-operated channel agonist) enhanced the progesterone-induced [Ca2+]i signal and potentiated progesterone-induced hyperactivated motility. Neither 2-APB nor loperamide raised pHi (which would activate CatSper) and both compounds inhibited CatSper currents. STIM and Orai were detected and localized primarily to the neck/midpiece and acrosome where Ca2+ stores are present and the effects of 2-APB are focussed, but store-operated currents could not be detected in human sperm. We propose that 2-APB-sensitive channels amplify [Ca2+]i elevation induced by progesterone (and other CatSper agonists), amplifying, propagating and providing spatio-temporal complexity in [Ca2+]i signals of human sperm.
Collapse
|
37
|
Abstract
To succeed in fertilization, spermatozoa must decode environmental cues which require a set of ion channels. Recent findings have revealed that K(+) and Cl(-) channels participate in some of the main sperm functions. This work reviews the evidence indicating the involvement of K(+) and Cl(-) channels in motility, maturation, and the acrosome reaction, and the advancement in identifying their molecular identity and modes of regulation. Improving our insight on how these channels operate will strengthen our ability to surmount some infertility problems, improve animal breeding, preserve biodiversity, and develop selective and secure male contraceptives.
Collapse
|
38
|
Fu-Jun L, Xiao-Fang S. Comparative analysis of human reproductive proteomes identifies candidate proteins of sperm maturation. Mol Biol Rep 2012; 39:10257-63. [PMID: 23053934 DOI: 10.1007/s11033-012-1902-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/30/2012] [Indexed: 01/23/2023]
Abstract
Male reproductive proteomes provide basis for studying gene products and its involvement or regulation in sperm physiology. Here, a comparative study between these proteomes was performed to find potential proteins and functions associated with human sperm maturation. Seven reproductive proteomes associated with human sperm physiology were integrated. Gene ontology analysis were performed using DAVID and Panther tools to determine enriched functions. Total of 270 proteins overlapped between epididymal, prostatic milieu and sperm proteome were thought to be candidate proteins involved in sperm maturation, and they showed enriched functions of proteasomal protein catabolic process and protein folding. 34 epididymal milieu proteins and 274 prostatic milieu proteins were contributed to the composition of seminal fluids proteome. Literatures have confirmed the involvements in sperm maturation of many of these proteins The spatial expressions of 24 epididymal milieu proteins involved in chaperone and antioxidant activity were authenticated by real-time RT-PCR. These proteins may serve as candidate molecules for future studies of sperm maturation and male infertility.
Collapse
Affiliation(s)
- Liu Fu-Jun
- Central Laboratory, Yu-Huang-Ding Hospital/Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | | |
Collapse
|
39
|
Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res 2012; 11:5252-64. [PMID: 22954305 DOI: 10.1021/pr300468m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Claydon AJ, Ramm SA, Pennington A, Hurst JL, Stockley P, Beynon R. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling. Mol Cell Proteomics 2012; 11:M111.014993. [PMID: 22331477 DOI: 10.1074/mcp.m111.014993] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.
Collapse
Affiliation(s)
- Amy J Claydon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
De Jonge C. Semen analysis: looking for an upgrade in class. Fertil Steril 2012; 97:260-6. [DOI: 10.1016/j.fertnstert.2011.12.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/20/2022]
|
42
|
Aitken RJ, Henkel RR. Sperm cell biology: current perspectives and future prospects. Asian J Androl 2011; 13:3-5. [PMID: 21102477 DOI: 10.1038/aja.2010.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|