1
|
Kumar N, Yang ML, Sun P, Hunker KL, Li J, Jia J, Fan F, Wang J, Ning X, Gao W, Xu M, Zhang J, Chang L, Chen YE, Huo Y, Zhang Y, Ganesh SK. Genetic variation in CCDC93 is associated with elevated central systolic blood pressure, impaired arterial relaxation, and mitochondrial dysfunction. PLoS Genet 2024; 20:e1011151. [PMID: 39250516 PMCID: PMC11421807 DOI: 10.1371/journal.pgen.1011151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/24/2024] [Accepted: 01/23/2024] [Indexed: 09/11/2024] Open
Abstract
Genetic studies of blood pressure (BP) traits to date have been performed on conventional measures by brachial cuff sphygmomanometer for systolic BP (SBP) and diastolic BP, integrating several physiologic occurrences. Genetic associations with central SBP (cSBP) have not been well-studied. Genetic discovery studies of BP have been most often performed in European-ancestry samples. Here, we investigated genetic associations with cSBP in a Chinese population and functionally validated the impact of a novel associated coiled-coil domain containing 93 (CCDC93) gene on BP regulation. An exome-wide association study (EWAS) was performed using a mixed linear model of non-invasive cSBP and peripheral BP traits in a Han Chinese population (N = 5,954) from Beijing, China genotyped with a customized Illumina ExomeChip array. We identified four SNP-trait associations with three SNPs, including two novel associations (rs2165468-SBP and rs33975708-cSBP). rs33975708 is a coding variant in the CCDC93 gene, c.535C>T, p.Arg179Cys (MAF = 0.15%), and was associated with increased cSBP (β = 29.3 mmHg, P = 1.23x10-7). CRISPR/Cas9 genome editing was used to model the effect of Ccdc93 loss in mice. Homozygous Ccdc93 deletion was lethal prior to day 10.5 of embryonic development. Ccdc93+/- heterozygous mice were viable and morphologically normal, with 1.3-fold lower aortic Ccdc93 protein expression (P = 0.0041) and elevated SBP as compared to littermate Ccdc93+/+ controls (110±8 mmHg vs 125±10 mmHg, P = 0.016). Wire myography of Ccdc93+/- aortae showed impaired acetylcholine-induced relaxation and enhanced phenylephrine-induced contraction. RNA-Seq transcriptome analysis of Ccdc93+/- mouse thoracic aortae identified significantly enriched pathways altered in fatty acid metabolism and mitochondrial metabolism. Plasma free fatty acid levels were elevated in Ccdc93+/- mice (96±7mM vs 124±13mM, P = 0.0031) and aortic mitochondrial dysfunction was observed through aberrant Parkin and Nix protein expression. Together, our genetic and functional studies support a novel role of CCDC93 in the regulation of BP through its effects on vascular mitochondrial function and endothelial function.
Collapse
Affiliation(s)
- Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pengfei Sun
- Department of Cardiology, Peking University First hospital, Beijing, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jianping Li
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Jinghua Wang
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjia Ning
- Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Gao
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Ming Xu
- Department of Cardiology, Peking University Third hospital, Beijing, China
| | - Jifeng Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lin Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yong Huo
- Department of Cardiology, Peking University First hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- Hypertension Precision Diagnosis and Treatment Research Center, Peking University First Hospital, Beijing, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Associations between PHACTR1 gene polymorphisms and pulse pressure in Chinese Han population. Biosci Rep 2020; 40:224380. [PMID: 32420588 PMCID: PMC7276519 DOI: 10.1042/bsr20193779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
A genome-wide association study (GWAS) in Chinese twins was performed to explore associations between genes and pulse pressure (PP) in 2012, and detected a suggestive association in the phosphatase and actin regulator 1 (PHACTR1) gene on chromosome 6p24.1 (rs1223397, P=1.04e−07). The purpose of the present study was to investigate associations of PHACTR1 gene polymorphisms with PP in a Chinese population. We recruited 347 subjects with PP ≥ 65 mmHg as cases and 359 subjects with 30 ≤ PP ≤ 45 mmHg as controls. Seven single nucleotide polymorphisms (SNPs) in the PHACTR1 gene were genotyped. Logistic regression was performed to explore associations between SNPs and PP in codominant, additive, dominant, recessive and overdominant models. The Pearson’s χ2 test was applied to assess the relationships of haplotypes and PP. The A allele of rs9349379 had a positive effect on high PP. Multivariate logistic regression analysis showed that rs9349379 was significantly related to high PP in codominant [AA vs GG, 2.255 (1.132–4.492)], additive [GG vs GA vs AA, 1.368 (1.049–1.783)] and recessive [AA vs GA + GG, 2.062 (1.051–4.045)] models. The positive association between rs499818 and high PP was significant in codominant [AA vs GG, 3.483 (1.044–11.613)] and recessive [AA vs GG + GA, 3.716 (1.119–12.339)] models. No significant association of haplotypes with PP was detected. There was no significant interaction between six SNPs without strong linkage. In conclusion, the present study presents that rs9349379 and rs499818 in the PHACTR1 gene were significantly associated with PP in Chinese population. Future research should be conducted to confirm them.
Collapse
|
3
|
Zhao Y, Zhu R, Xiao T, Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses. J Headache Pain 2020; 21:13. [PMID: 32046629 PMCID: PMC7011260 DOI: 10.1186/s10194-020-01087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Numerous genetic variants from meta-analyses of observational studies and GWAS were reported to be associated with migraine susceptibility. However, due to the random errors in meta-analyses, the noteworthiness of the results showing statistically significant remains doubtful. Thus, we performed this field synopsis and re-analysis study to evaluate the noteworthiness using a Bayesian approach in hope of finding true associations. METHODS Relevant meta-analyses from observational studies and GWAS examining correlation between all genetic variants and migraine risk were included in our study by a PubMed search. Identification of noteworthy associations were analyzed by false-positive rate probability (FPRP) and Bayesian false discovery probability (BFDP). Using noteworthy variants, GO enrichment analysis were conducted through DAVID online tool. Then, the PPI network and hub genes were performed using STRING database and CytoHubba software. RESULTS As for 8 significant genetic variants from observational studies, none of which showed noteworthy at prior probability of 0.001. Out of 47 significant genetic variants in GWAS, 36 were noteworthy at prior probability of 0.000001 via FPRP or BFDP. We further found the pathways "positive regulation of cytosolic calcium ion concentration" and "inositol phosphate-mediated signaling" and hub genes including MEF2D, TSPAN2, PHACTR1, TRPM8 and PRDM16 related to migraine susceptibility. CONCLUSION Herein, we have identified several noteworthy variants for migraine susceptibility in this field synopsis. We hope these data would help identify novel genetic biomarkers and potential therapeutic target for migraine.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Tongling Xiao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
PHACTR1 genotype predicts coronary artery disease in patients with familial hypercholesterolemia. J Clin Lipidol 2018; 12:966-971. [DOI: 10.1016/j.jacl.2018.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 01/09/2023]
|
5
|
Winsvold BS, Bettella F, Witoelar A, Anttila V, Gormley P, Kurth T, Terwindt GM, Freilinger TM, Frei O, Shadrin A, Wang Y, Dale AM, van den Maagdenberg AMJM, Chasman DI, Nyholt DR, Palotie A, Andreassen OA, Zwart JA. Shared genetic risk between migraine and coronary artery disease: A genome-wide analysis of common variants. PLoS One 2017; 12:e0185663. [PMID: 28957430 PMCID: PMC5619824 DOI: 10.1371/journal.pone.0185663] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022] Open
Abstract
Migraine is a recurrent pain condition traditionally viewed as a neurovascular disorder, but little is known of its vascular basis. In epidemiological studies migraine is associated with an increased risk of cardiovascular disease, including coronary artery disease (CAD), suggesting shared pathogenic mechanisms. This study aimed to determine the genetic overlap between migraine and CAD, and to identify shared genetic risk loci, utilizing a conditional false discovery rate approach and data from two large-scale genome-wide association studies (GWAS) of CAD (C4D, 15,420 cases, 15,062 controls; CARDIoGRAM, 22,233 cases, 64,762 controls) and one of migraine (22,120 cases, 91,284 controls). We found significant enrichment of genetic variants associated with CAD as a function of their association with migraine, which was replicated across two independent CAD GWAS studies. One shared risk locus in the PHACTR1 gene (conjunctional false discovery rate for index SNP rs9349379 < 3.90 x 10−5), which was also identified in previous studies, explained much of the enrichment. Two further loci (in KCNK5 and AS3MT) showed evidence for shared risk (conjunctional false discovery rate < 0.05). The index SNPs at two of the three loci had opposite effect directions in migraine and CAD. Our results confirm previous reports that migraine and CAD share genetic risk loci in excess of what would be expected by chance, and highlight one shared risk locus in PHACTR1. Understanding the biological mechanisms underpinning this shared risk is likely to improve our understanding of both disorders.
Collapse
Affiliation(s)
- Bendik S. Winsvold
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Francesco Bettella
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aree Witoelar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Verneri Anttila
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Padhraig Gormley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tobias Kurth
- Institute of Public Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tobias M. Freilinger
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Oleksander Frei
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Center for Multimodal Imaging & Genetics, University of California, San Diego, La Jolla, California, United States of America
| | - Arn M. J. M. van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dale R. Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ole A. Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
6
|
Aherrahrou R, Aherrahrou Z, Schunkert H, Erdmann J. Coronary artery disease associated gene Phactr1 modulates severity of vascular calcification in vitro. Biochem Biophys Res Commun 2017; 491:396-402. [DOI: 10.1016/j.bbrc.2017.07.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
|
7
|
Kim SK, Avila JJ, Massett MP. Strain survey and genetic analysis of vasoreactivity in mouse aorta. Physiol Genomics 2016; 48:861-873. [PMID: 27764765 DOI: 10.1152/physiolgenomics.00054.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/25/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding the genetic influence on vascular reactivity is important for identifying genes underlying impaired vascular function. The purpose of this study was to characterize the genetic contribution to intrinsic vascular function and to identify loci associated with phenotypic variation in vascular reactivity in mice. Concentration response curves to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh), and sodium nitroprusside (SNP) were generated in aortic rings from male mice (12 wk old) from 27 inbred mouse strains. Significant strain-dependent differences were found for both maximal responses and sensitivity for each agent, except for SNP Max (%). Strain differences for maximal responses to ACh, PE, and KCl varied by two- to fivefold. On the basis of these large strain differences, we performed genome-wide association mapping (GWAS) to identify loci associated with variation in responses to these agents. GWAS for responses to ACh identified four significant and 19 suggestive loci. Several suggestive loci for responses to SNP, PE, and KCl (including one significant locus for KCl EC50) were also identified. These results demonstrate that intrinsic endothelial function, and more generally vascular function, is genetically determined and associated with multiple genomic loci. Furthermore, these results are supported by the finding that several genes residing in significant and suggestive loci for responses to ACh were previously identified in rat and/or human quantitative trait loci/GWAS for cardiovascular disease. This study represents the first step toward the unbiased comprehensive discovery of genetic determinants that regulate intrinsic vascular function, particularly endothelial function.
Collapse
Affiliation(s)
- Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Joshua J Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
8
|
PHACTR1 Gene Polymorphism Is Associated with Increased Risk of Developing Premature Coronary Artery Disease in Mexican Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080803. [PMID: 27517945 PMCID: PMC4997489 DOI: 10.3390/ijerph13080803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/17/2016] [Accepted: 08/01/2016] [Indexed: 12/24/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in the protein phosphatase and actin regulator 1 gene (PHACTR1) have been associated with susceptibility to develop several diseases, including cardiovascular disease. The purpose of this study was to evaluate the role of two polymorphisms (rs2026458 and rs9349379) of the PHACTR1 gene in the susceptibility to the risk of developing premature coronary artery disease (CAD) in the Mexican population. The genotype analysis was performed using 5’exonuclease TaqMan genotyping assays in a group of 994 patients with premature CAD and 703 controls. A similar genotype distribution of rs2026458 was observed in both groups; however, under an additive model adjusted by age, body mass index, type 2 diabetes mellitus, smoking, dyslipidemia, and hypertension, the rs9349379 G allele was associated with a higher risk for developing premature CAD (odds ratio (OR) = 1.22, 95% confidence interval (CI) = 1.03–1.46, p-value (p) = 0.024). The two PHACTR1 polymorphisms were not in linkage disequilibrium. In summary, our results suggest that the PHACTR1 rs9349379 polymorphism plays an important role in the risk of developing premature CAD in the Mexican population.
Collapse
|
9
|
Reschen ME, Lin D, Chalisey A, Soilleux EJ, O'Callaghan CA. Genetic and environmental risk factors for atherosclerosis regulate transcription of phosphatase and actin regulating gene PHACTR1. Atherosclerosis 2016; 250:95-105. [PMID: 27187934 PMCID: PMC4917897 DOI: 10.1016/j.atherosclerosis.2016.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Background and aims Coronary artery disease (CAD) risk is associated with non-coding genetic variants at the phosphatase and actin regulating protein 1(PHACTR1) gene locus. The PHACTR1 gene encodes an actin-binding protein with phosphatase regulating activity. The mechanism whereby PHACTR1 influences CAD risk is unknown. We hypothesized that PHACTR1 would be expressed in human cell types relevant to CAD and regulated by atherogenic or genetic factors. Methods and results Using immunohistochemistry, we demonstrate that PHACTR1 protein is expressed strongly in human atherosclerotic plaque macrophages, lipid-laden foam cells, adventitial lymphocytes and endothelial cells. Using a combination of genomic analysis and molecular techniques, we demonstrate that PHACTR1 is expressed as multiple previously uncharacterized transcripts in macrophages, foam cells, lymphocytes and endothelial cells. Immunoblotting confirmed a total absence of PHACTR1 in vascular smooth muscle cells. Real-time quantitative PCR showed that PHACTR1 is regulated by atherogenic and inflammatory stimuli. In aortic endothelial cells, oxLDL and TNF-alpha both upregulated an intermediate length transcript. A short transcript expressed only in immune cells was upregulated in macrophages by oxidized low-density lipoprotein, and oxidized phospholipids but suppressed by lipopolysaccharide or TNF-alpha. In primary human macrophages, we identified a novel expression quantitative trait locus (eQTL) specific for this short transcript, whereby the risk allele at CAD risk SNP rs9349379 is associated with reduced PHACTR1 expression, similar to the effect of an inflammatory stimulus. Conclusions Our data demonstrate that PHACTR1 is a key atherosclerosis candidate gene since it is regulated by atherogenic stimuli in macrophages and endothelial cells and we identify an effect of the genetic risk variant on PHACTR1 expression in macrophages that is similar to that of an inflammatory stimulus. PHACTR1 is expressed as two transcripts in both immune and endothelial cells in human atherosclerotic plaque. Oxidized-LDL upregulates a short PHACTR1 transcript, but suppresses an intermediate length transcript in macrophages. Lipopolysaccharide and TNF-alpha cause the opposite effect with strong suppression of the short transcript in macrophages. The coronary artery disease risk SNP, rs9349379, is associated with expression of the short transcript in macrophages. The effect of the coronary artery disease risk allele on PHACTR1 mirrors that of inflammatory stimuli.
Collapse
Affiliation(s)
- Michael E Reschen
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Anil Chalisey
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Elizabeth J Soilleux
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Department of Cellular Pathology, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Christopher A O'Callaghan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.
| |
Collapse
|
10
|
Jarray R, Pavoni S, Borriello L, Allain B, Lopez N, Bianco S, Liu WQ, Biard D, Demange L, Hermine O, Garbay C, Raynaud F, Lepelletier Y. Disruption of phactr-1 pathway triggers pro-inflammatory and pro-atherogenic factors: New insights in atherosclerosis development. Biochimie 2015; 118:151-61. [PMID: 26362351 DOI: 10.1016/j.biochi.2015.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/04/2015] [Indexed: 01/02/2023]
Abstract
Significant interest has recently emerged for phosphatase and actin regulatory protein (PHACTR1) gene in heart diseases prognosis. However, the functional role of phactr-1 protein remains elusive in heart related-diseases such as atherosclerosis, coronary artery calcification, ischaemic stroke, coronary artery stenosis and early-onset myocardial infarction. Phactr-1 is directly regulated by vascular endothelial growth factor A165 (VEGF-A165) through VEGF receptor 1 (VEGR-1) and Neuropilin-1 (NRP-1). Using an antagonist peptide approach to inhibit the interaction of VEGF-A165 to NRP-1 and VEGF-R1, we highlighted the importance of both cysteine residues located at the end of VEGF-A165 exon-7 and at the exon-8 to generate functional peptides, which decreased Phactr-1 expression. Here, we report original data showing Phactr-1 down-expression induces the expression of Matrix Metalloproteinase (MMP) regulators such as Tissue inhibitor of metalloproteinase (TIMP-1/-2) and Reversion-inducing-cysteine-rich protein with kazal motifs (RECK). Furthermore, focal adhesion kinases (FAK/PYK2/PAXILLIN) and metabolic stress (AMPK/CREB/eNOS) pathways were inhibited in endothelial cells. Moreover, the decrease of phactr-1 expression induced several factors implicated in atherosclerotic events such as oxidized low-density lipoprotein receptors (CD36, Clusterin, Cadherin-13), pro-inflammatory proteins including Thrombin, Thrombin receptor 1 (PAR-1), A Disintegrin And Metalloprotease domain-9/-17 (ADAM-9/-17), Trombospondin-2 and Galectin-3. Besides, Phactr-1 down-expression also induces emerging atherosclerosis biomarkers such as semicarbazide-sensitive amine oxidase (SSAO) and TGF-beta-inducible gene h3 (βIG-H3). In this report, we show for the first time the direct evidence of the phactr-1 biological function in the regulation of pro-atherosclerotic molecules. This intriguing result strengthened heart diseases PHACTR-1 single-nucleotide polymorphisms (SNP) correlation. Taken together, our result highlighted the pivotal role of phactr-1 protein in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Rafika Jarray
- Sup'Biotech, 66 Rue Guy Môquet, 94800 Villejuif, France; CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Serena Pavoni
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Lucia Borriello
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Barbara Allain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | | | - Sara Bianco
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Wang-Qing Liu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Denis Biard
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
| | - Luc Demange
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France; Institut de Chimie de Nice (ICN), UMR 7272 CNRS, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders, 24 Boulevard Montparnasse 75015 Paris, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, 24 Boulevard Montparnasse 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse 75015 Paris, France
| | - Christiane Garbay
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Françoise Raynaud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, 75270 Paris Cedex 06, France.
| | - Yves Lepelletier
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders, 24 Boulevard Montparnasse 75015 Paris, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, 24 Boulevard Montparnasse 75015 Paris, France; CNRS ERL 8254, 24 Boulevard Montparnasse 75015 Paris, France.
| |
Collapse
|
11
|
Winsvold BS, Nelson CP, Malik R, Gormley P, Anttila V, Vander Heiden J, Elliott KS, Jacobsen LM, Palta P, Amin N, de Vries B, Hämäläinen E, Freilinger T, Ikram MA, Kessler T, Koiranen M, Ligthart L, McMahon G, Pedersen LM, Willenborg C, Won HH, Olesen J, Artto V, Assimes TL, Blankenberg S, Boomsma DI, Cherkas L, Davey Smith G, Epstein SE, Erdmann J, Ferrari MD, Göbel H, Hall AS, Jarvelin MR, Kallela M, Kaprio J, Kathiresan S, Lehtimäki T, McPherson R, März W, Nyholt DR, O'Donnell CJ, Quaye L, Rader DJ, Raitakari O, Roberts R, Schunkert H, Schürks M, Stewart AFR, Terwindt GM, Thorsteinsdottir U, van den Maagdenberg AMJM, van Duijn C, Wessman M, Kurth T, Kubisch C, Dichgans M, Chasman DI, Cotsapas C, Zwart JA, Samani NJ, Palotie A. Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol Genet 2015; 1:e10. [PMID: 27066539 PMCID: PMC4821079 DOI: 10.1212/nxg.0000000000000010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/27/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD). METHODS Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci. RESULTS We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP). CONCLUSIONS The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders.
Collapse
Affiliation(s)
| | | | - Rainer Malik
- Author affiliations are provided at the end of the article
| | | | | | | | | | | | - Priit Palta
- Author affiliations are provided at the end of the article
| | - Najaf Amin
- Author affiliations are provided at the end of the article
| | | | | | | | - M Arfan Ikram
- Author affiliations are provided at the end of the article
| | | | | | | | - George McMahon
- Author affiliations are provided at the end of the article
| | | | | | - Hong-Hee Won
- Author affiliations are provided at the end of the article
| | - Jes Olesen
- Author affiliations are provided at the end of the article
| | - Ville Artto
- Author affiliations are provided at the end of the article
| | | | | | | | - Lynn Cherkas
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Hartmut Göbel
- Author affiliations are provided at the end of the article
| | | | | | - Mikko Kallela
- Author affiliations are provided at the end of the article
| | - Jaakko Kaprio
- Author affiliations are provided at the end of the article
| | | | | | - Ruth McPherson
- Author affiliations are provided at the end of the article
| | - Winfried März
- Author affiliations are provided at the end of the article
| | - Dale R Nyholt
- Author affiliations are provided at the end of the article
| | | | - Lydia Quaye
- Author affiliations are provided at the end of the article
| | - Daniel J Rader
- Author affiliations are provided at the end of the article
| | - Olli Raitakari
- Author affiliations are provided at the end of the article
| | - Robert Roberts
- Author affiliations are provided at the end of the article
| | | | - Markus Schürks
- Author affiliations are provided at the end of the article
| | | | | | | | | | | | - Maija Wessman
- Author affiliations are provided at the end of the article
| | - Tobias Kurth
- Author affiliations are provided at the end of the article
| | | | | | | | - Chris Cotsapas
- Author affiliations are provided at the end of the article
| | | | | | - Aarno Palotie
- Author affiliations are provided at the end of the article
| |
Collapse
|
12
|
Beaudoin M, Gupta RM, Won HH, Lo KS, Do R, Henderson CA, Lavoie-St-Amour C, Langlois S, Rivas D, Lehoux S, Kathiresan S, Tardif JC, Musunuru K, Lettre G. Myocardial Infarction-Associated SNP at 6p24 Interferes With MEF2 Binding and Associates With PHACTR1 Expression Levels in Human Coronary Arteries. Arterioscler Thromb Vasc Biol 2015; 35:1472-1479. [PMID: 25838425 DOI: 10.1161/atvbaha.115.305534] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Coronary artery disease (CAD), including myocardial infarction (MI), is the main cause of death in the world. Genome-wide association studies have identified dozens of single nucleotide polymorphisms (SNPs) associated with CAD/MI. One of the most robust CAD/MI genetic associations is with intronic SNPs in the gene PHACTR1 on chromosome 6p24. How these PHACTR1 SNPs influence CAD/MI risk, and whether PHACTR1 itself is the causal gene at the locus, is currently unknown. APPROACH AND RESULTS Using genetic fine-mapping and DNA resequencing experiments, we prioritized an intronic SNP (rs9349379) in PHACTR1 as causal variant. We showed that this variant is an expression quantitative trait locus for PHACTR1 expression in human coronary arteries. Experiments in endothelial cell extracts confirmed that alleles at rs9349379 are differentially bound by the transcription factors myocyte enhancer factor-2. We engineered a deletion of this myocyte enhancer factor-2-binding site using CRISPR/Cas9 genome-editing methodology. Heterozygous endothelial cells carrying this deletion express 35% less PHACTR1. Finally, we found no evidence that PHACTR1 expression levels are induced when stimulating human endothelial cells with vascular endothelial growth factor, tumor necrosis factor-α, or shear stress. CONCLUSIONS Our results establish a link between intronic SNPs in PHACTR1, myocyte enhancer factor-2 binding, and transcriptional functions at the locus, PHACTR1 expression levels in coronary arteries and CAD/MI risk. Because PHACTR1 SNPs are not associated with the traditional risk factors for CAD/MI (eg, blood lipids or pressure, diabetes mellitus), our results suggest that PHACTR1 may influence CAD/MI risk through as yet unknown mechanisms in the vascular endothelium.
Collapse
Affiliation(s)
- Mélissa Beaudoin
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
| | - Rajat M Gupta
- Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Hong-Hee Won
- Center of Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Ken Sin Lo
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
| | - Ron Do
- Center of Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Christopher A Henderson
- Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | | | - Simon Langlois
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
| | - Daniel Rivas
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Sainte-Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Sainte-Catherine, Montreal, Quebec, H3T 1E2, Canada
| | - Sekar Kathiresan
- Center of Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Kiran Musunuru
- Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Guillaume Lettre
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
13
|
Matsuoka R, Abe S, Tokoro F, Arai M, Noda T, Watanabe S, Horibe H, Fujimaki T, Oguri M, Kato K, Minatoguchi S, Yamada Y. Association of six genetic variants with myocardial infarction. Int J Mol Med 2015; 35:1451-9. [PMID: 25738804 DOI: 10.3892/ijmm.2015.2115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/09/2015] [Indexed: 11/05/2022] Open
Abstract
Although various genes that confer susceptibility to myocardial infarction (MI) have been identified for Caucasian populations in genome-wide association studies (GWAS), genetic variants related to this condition in Japanese individuals have not been identified definitively. The aim of the present study was to examine an association of MI in Japanese individuals with 29 polymorphisms identified as susceptibility loci for MI or coronary artery disease in Caucasian populations by meta-analyses of GWAS. The study subjects comprised 1,824 subjects with MI and 2,329 controls. Genotypes of the polymorphisms were determined by Luminex bead-based multiplex assay. To compensate for multiple comparisons, we adopted the criterion of a false discovery rate (FDR) of <0.05 for statistical significance for association. Comparisons of allele frequencies by the χ(2) test revealed that rs9369640 of the phosphatase and actin regulator 1 gene (PHACTR1, FDR=0.0007), rs4977574 of the CDKN2B antisense RNA 1 gene (CDKN2B-AS1, FDR=0.0038), rs264 of the lipoprotein lipase gene (LPL, FDR=0.0061), rs599839 of the proline/serine-rich coiled-coil 1 gene (PSRC1, FDR=0.0118), rs9319428 of the fms-related tyrosine kinase 1 gene (FLT1, FDR=0.0118) and rs12413409 of the cyclin and CBS domain divalent metal cation transport mediator 2 gene (CNNM2, FDR=0.0300) were significantly associated with MI. Multivariate logistic regression analysis with adjustment for covariates revealed that rs9369640 (P=0.0005; odds ratio, 0.89), rs4977574 (P=0.0001; odds ratio, 1.50), rs264 (P=0.0405; odds ratio, 0.85), rs599839 (P=0.0003; odds ratio, 0.68), rs9319428 (P=0.0155; odds ratio, 1.20) and rs12413409 (P=0.0076; odds ratio, 0.66) were significantly (P<0.05) associated with MI. PHACTR1, CDKN2B-AS1, LPL, PSRC1, FLT1 and CNNM2 may thus be susceptibility loci for MI in Japanese individuals.
Collapse
Affiliation(s)
- Reiko Matsuoka
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Shintaro Abe
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Fumitaka Tokoro
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Masazumi Arai
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Toshiyuki Noda
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Sachiro Watanabe
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe 511-0428, Japan
| | - Mitsutoshi Oguri
- Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya 453-8511, Japan
| | - Kimihiko Kato
- Department of Internal Medicine, Meitoh Hospital, Nagoya 465-0025, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu 514-8507, Japan
| |
Collapse
|