1
|
miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab 2021; 53:101306. [PMID: 34298200 PMCID: PMC8363881 DOI: 10.1016/j.molmet.2021.101306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients. Type 2 diabetes (T2DM) vessels show exacerbated remodeling in organ culture and increased Kv1.3 expression. The inhibition of vessel remodeling with Kv1.3 blockers is increased in T2DM vessels. VSMCs from T2DM patients retain epigenetic changes in primary cultures. Upregulation of miR-126 contributes to the metabolic memory of T2DM VSMCs. Upregulation of miR-126 potentiates Kv1.3-dependent mechanisms in T2DM VSMCs.
Collapse
|
2
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
3
|
Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca 2+-activated K + channels in uterine arteries. Hypertens Res 2021; 44:1079-1086. [PMID: 34103696 DOI: 10.1038/s41440-021-00675-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/08/2022]
Abstract
Decreased secretion of melatonin was reported to be associated with an enhanced risk of hypertension and diabetes. However, the effect of melatonin on gestational hypertension (GH) and the underlying mechanism remain unclear. A GH mouse model was established via electrical stimulation. The hypertensive phenotypes were indicated by systolic blood pressure (SBP) and urinary protein levels. Uterine artery (UtA) endothelial function was detected by relaxation, peak systolic velocity (PSV), end-diastolic velocity (EDV), resistance index (RI) and pulsatility index (PI). Protein expression levels were determined using immunochemistry and Western blots. Pregnancy outcomes were indicated by the fetal live ratio, fetal weight and placental weight. Melatonin supplementation ameliorated hypertensive phenotypes in the mice with GH and enhanced UtA endothelial response to acetylcholine. The BKCa potassium channel was involved in the effect of melatonin on UtA endothelial function, and melatonin promoted BKCa potassium channel expression and function in UtAs. Finally, melatonin improved pregnancy outcomes in pregnant mice. In conclusion, melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses hypertension-induced decreases in Ca2+-activated K+ channels in uterine arteries.
Collapse
|
4
|
Gresch A, Düfer M. Dextromethorphan and Dextrorphan Influence Insulin Secretion by Interacting with K ATP and L-type Ca 2+ Channels in Pancreatic β-Cells. J Pharmacol Exp Ther 2020; 375:10-20. [PMID: 32665318 DOI: 10.1124/jpet.120.265835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The NMDA receptor antagonist dextromethorphan (DXM) and its metabolite dextrorphan (DXO) have been recommended for treatment of type 2 diabetes mellitus because of their beneficial effects on insulin secretion. This study investigates how different key points of the stimulus-secretion coupling in mouse islets and β-cells are influenced by DXM or DXO. Both compounds elevated insulin secretion, electrical activity, and [Ca2+]c in islets at a concentration of 100 µM along with a stimulating glucose concentration. DXO and DXM increased insulin secretion approximately 30-fold at a substimulatory glucose concentration (3 mM). Patch-clamp experiments revealed that 100 µM DXM directly inhibited KATP channels by about 70%. Of note, DXM decreased the current through L-type Ca2+ channels about 25%, leading to a transient reduction in Ca2+ action potentials. This interaction might explain why elevating DXM to 500 µM drastically decreased insulin release. DXO inhibited KATP channels almost equally. In islets of KATP channel-deficient sulfonylurea receptor 1 knockout mice, the elevating effects of 100 µM DXM on [Ca2+]c and insulin release were completely lost. By contrast, 100 µM DXO still increased glucose-stimulated insulin release around 60%. In summary, DXM-induced alterations in stimulus-secretion coupling of wild-type islets result from a direct block of KATP channels and are partly counteracted by inhibition of L-type Ca2+ channels. The stimulatory effect of DXO seems to be based on a combined antagonism on KATP channels and NMDA receptors and already occurs under resting conditions. Consequently, both compounds seem not to be suitable candidates for treatment of type 2 diabetes mellitus. SIGNIFICANCE STATEMENT: This study shows that the use of dextromethorphan as an antidiabetic drug can cause unpredictable alterations in insulin secretion by direct interaction with KATP and L-type Ca2+ channels besides its actual target, the NMDA receptor.
Collapse
Affiliation(s)
- Anne Gresch
- University of Münster, Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Münster, Germany
| | - Martina Düfer
- University of Münster, Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, Münster, Germany
| |
Collapse
|
5
|
Yang CH, Mangiafico SP, Waibel M, Loudovaris T, Loh K, Thomas HE, Morahan G, Andrikopoulos S. E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia 2020; 63:1333-1348. [PMID: 32356104 DOI: 10.1007/s00125-020-05137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Reduced insulin secretion results in hyperglycaemia and diabetes involving a complex aetiology that is yet to be fully elucidated. Genetic susceptibility is a key factor in beta cell dysfunction and hyperglycaemia but the responsible genes have not been defined. The Collaborative Cross (CC) is a recombinant inbred mouse panel with diverse genetic backgrounds allowing the identification of complex trait genes that are relevant to human diseases. The aim of this study was to identify and characterise genes associated with hyperglycaemia. METHODS Using an unbiased genome-wide association study, we examined random blood glucose and insulin sensitivity in 53 genetically unique mouse strains from the CC population. The influences of hyperglycaemia susceptibility quantitative trait loci (QTLs) were investigated by examining glucose tolerance, insulin secretion, pancreatic histology and gene expression in the susceptible mice. Expression of candidate genes and their association with insulin secretion were examined in human islets. Mechanisms underlying reduced insulin secretion were studied in MIN6 cells using RNA interference. RESULTS Wide variations in blood glucose levels and the related metabolic traits (insulin sensitivity and body weight) were observed in the CC population. We showed that elevated blood glucose in the CC strains was not due to insulin resistance nor obesity but resulted from reduced insulin secretion. This insulin secretory defect was demonstrated to be independent of abnormalities in islet morphology, beta cell mass and pancreatic insulin content. Gene mapping identified the E2f8 (p = 2.19 × 10-15) and Dlg2 loci (p = 3.83 × 10-8) on chromosome 7 to be significantly associated with hyperglycaemia susceptibility. Fine mapping the implicated regions using congenic mice demonstrated that these two loci have independent effects on insulin secretion in vivo. Significantly, our results revealed that increased E2F8 and DLG2 gene expression are correlated with enhanced insulin secretory function in human islets. Furthermore, loss-of-function studies in MIN6 cells demonstrated that E2f8 is involved in insulin secretion through an ATP-sensitive K+ channel-dependent pathway, which leads to a 30% reduction in Abcc8 expression. Similarly, knockdown of Dlg2 gene expression resulted in impaired insulin secretion in response to glucose and non-glucose stimuli. CONCLUSIONS/INTERPRETATION Collectively, these findings suggest that E2F transcription factor 8 (E2F8) and discs large homologue 2 (DLG2) regulate insulin secretion. The CC resource enables the identification of E2f8 and Dlg2 as novel genes associated with hyperglycaemia due to reduced insulin secretion in pancreatic beta cells. Taken together, our results provide better understanding of the molecular control of insulin secretion and further support the use of the CC resource to identify novel genes relevant to human diseases.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia.
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Michaela Waibel
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Thomas Loudovaris
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Kim Loh
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Level 7, Lance Townsend Building, Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
6
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
7
|
Yang JF, Cheng N, Ren S, Liu XM, Li XT. Characterization and molecular basis for the block of Kv1.3 channels induced by carvedilol in HEK293 cells. Eur J Pharmacol 2018; 834:206-212. [PMID: 30016664 DOI: 10.1016/j.ejphar.2018.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Carvedilol is a non-selective β-adrenoreceptor antagonist and exhibits a wide range of biological activities. The voltage-gated K+ (Kv) channel is one of the target ion channels of this compound. The rapidly activating Kv1.3 channel is expressed in several different tissues and plays an important role in the regulation of physiological functions, including cell proliferation and apoptosis. However, little is known about the possible action of carvedilol on Kv1.3 currents. Using the whole-cell configuration of the patch-clamp technique, we have revealed that exposure to carvedilol produced a concentration-dependent blocking of Kv1.3 channels heterologously expressed in HEK293 cells, with an IC50 value of 9.7 μM. This chemical decelerated the deactivation tail current of Kv1.3 currents, resulting in a tail crossover phenomenon. In addition, carvedilol generated a markedly hyperpolarizing shift (20 mV) of the inactivation curve, but failed to affect the activation curve. Mutagenesis experiments of Kv1.3 channels identified G427 and H451, two related sites of TEA block, as important residues for carvedilol-mediated blocking. The present results suggest that carvedilol acts directly on Kv1.3 currents by inducing closed- and open-channel block and helps to elucidate the mechanisms of action of this compound on Kv channels.
Collapse
Affiliation(s)
- Jin-Feng Yang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Neng Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiang-Ming Liu
- GongQing Institute of Science and Technology, Gongqing City 332020, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
8
|
Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA. Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 2016; 7:178. [PMID: 27242550 PMCID: PMC4871887 DOI: 10.3389/fphys.2016.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3−∕−) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3−∕− mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3−∕− male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3−∕− mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3−∕− mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
Collapse
Affiliation(s)
- Christopher P Kovach
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | | | - James M Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Debra A Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA; Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
9
|
Yan L, Liu X, Liu WX, Tan XQ, Xiong F, Gu N, Hao W, Gao X, Cao JM. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells. NANOTECHNOLOGY 2015; 26:505103. [PMID: 26584910 DOI: 10.1088/0957-4484/26/50/505103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron oxide nanoparticles may exert modulatory effects on T cell immune activities and anti-inflammation effects.
Collapse
Affiliation(s)
- Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Spear JM, Koborssy DA, Schwartz AB, Johnson AJ, Audhya A, Fadool DA, Stagg SM. Kv1.3 contains an alternative C-terminal ER exit motif and is recruited into COPII vesicles by Sec24a. BMC BIOCHEMISTRY 2015; 16:16. [PMID: 26156069 PMCID: PMC4497498 DOI: 10.1186/s12858-015-0045-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
Abstract
Background Potassium channels play a fundamental role in resetting the resting membrane potential of excitable cells. Determining the intracellular trafficking and localization mechanisms of potassium channels provides a platform to fully characterize their maturation and functionality. Previous investigations have discovered residues or motifs that exist in their primary structure, which directly promote anterograde trafficking of nascent potassium channels. Recently, a non-conical di-acidic motif (E483/484) has been discovered in the C-terminus of the mammalian homologue of the Shaker voltage-gated potassium channel subfamily member 3 (Kv1.3), and was shown to disrupt the anterograde trafficking of Kv1.3. Results We have further investigated the intracellular trafficking requirements of Kv1.3 both in vivo and in vitro. First, three alternative C-terminal acidic residues, E443, E445, E447 were probed for their involvement within the early secretory pathway of Kv1.3. Single point (E443A, E445A, and E447A) and double point (E443A-E445A, E445A-E447A) mutations exhibited no significant changes in their endoplasmic reticulum (ER) retention. The triple point mutant E443A-E445A-E447A displayed a modest ER retention while deletion of the C-terminus showed dramatic ER retention. Second, we demonstrate in vivo the requirement for the Sec24a isoform to confer anterograde trafficking using a siRNA knockdown assay. Third, we show in vitro the association of recombinantly expressed Kv1.3 and Sec24a proteins. Conclusion These results expand upon previous studies aimed at deciphering the Kv1.3 secretory trafficking mechanisms and further show in vitro evidence of the association between Kv1.3 and the COPII cargo adaptor subunit isoform Sec24a. Electronic supplementary material The online version of this article (doi:10.1186/s12858-015-0045-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John M Spear
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA.
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA.
| | - Austin B Schwartz
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA.
| | - Adam J Johnson
- Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA.
| | - Anjon Audhya
- Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA.
| | - Debra A Fadool
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA. .,Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA. .,Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA. .,Department of Chemistry and Biochemistry, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA.
| |
Collapse
|
11
|
Hosseinzadeh Z, Warsi J, Elvira B, Almilaji A, Shumilina E, Lang F. Up-regulation of Kv1.3 Channels by Janus Kinase 2. J Membr Biol 2015; 248:309-17. [DOI: 10.1007/s00232-015-9772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
|
12
|
Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F. Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 2014; 39:609-22. [PMID: 25571875 DOI: 10.1159/000368472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Klotho, a protein mainly produced in the kidney and released into circulating blood, contributes to the negative regulation of 1,25(OH)2D3 formation and is thus a powerful regulator of mineral metabolism. As β-glucuronidase, alpha Klotho protein further regulates the stability of several carriers and channels in the plasma membrane and thus regulates channel and transporter activity. Accordingly, alpha Klotho protein participates in the regulation of diverse functions seemingly unrelated to mineral metabolism including lymphocyte function. The present study explored the impact of alpha Klotho protein on the voltage gated K+ channel Kv1.3. METHODS cRNA encoding Kv1.3 (KCNA3) was injected into Xenopus oocytes and depolarization induced outward current in Kv1.3 expressing Xenopus oocytes determined utilizing dual electrode voltage clamp. Experiments were performed without or with prior treatment with recombinant human Klotho protein (50 ng/ml, 24 hours) in the absence or presence of a β-glucuronidase inhibitor D-saccharic acid-1,4-lactone (DSAL, 10 µM). Moreover, the voltage gated K+ current was determined in Jcam lymphoma cells by whole cell patch clamp following 24 hours incubation without or with recombinant human Klotho protein (50 ng/ml, 24 hours). Kv1.3 protein abundance in Jcam cells was determined utilising fluorescent antibodies in flow cytometry. RESULTS In Kv1.3 expressing Xenopus oocytes the Kv1.3 currents and the protein abundance of Kv1.3 were both significantly enhanced after treatment with recombinant human Klotho protein (50 ng/ml, 24 hours), an effect reversed by presence of DSAL. Moreover, treatment with recombinant human Klotho protein increased Kv currents and Kv1.3 protein abundance in Jcam cells. CONCLUSION Alpha Klotho protein enhances Kv1.3 channel abundance and Kv1.3 currents in the plasma membrane, an effect depending on its β-glucuronidase activity.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ngala RA, Zaibi MS, Langlands K, Stocker CJ, Arch JRS, Cawthorne MA. Stimulation of glucose uptake in murine soleus muscle and adipocytes by 5-(4-phenoxybutoxy)psoralen (PAP-1) may be mediated by Kv1.5 rather than Kv1.3. PeerJ 2014. [PMID: 25320682 DOI: 10.7717/peerj.614.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kv1 channels are shaker-related potassium channels that influence insulin sensitivity. Kv1.3(-/-) mice are protected from diet-induced insulin resistance and some studies suggest that Kv1.3 inhibitors provide similar protection. However, it is unclear whether blockade of Kv1.3 in adipocytes or skeletal muscle increases glucose uptake. There is no evidence that the related channel Kv1.5 has any influence on insulin sensitivity and its expression in adipose tissue has not been reported. PAP-1 is a selective inhibitor of Kv1.3, with 23-fold, 32-fold and 125-fold lower potencies as an inhibitor of Kv1.5, Kv1.1 and Kv1.2 respectively. Soleus muscles from wild-type and genetically obese ob/ob mice were incubated with 2-deoxy[1-(14)C]-glucose for 45 min and formation of 2-deoxy[1-(14)C]-glucose-6-phosphate was measured. White adipocytes were incubated with D-[U-(14)C]-glucose for 1 h. TNFα and Il-6 secretion from white adipose tissue pieces were measured by enzyme-linked-immunoassay. In the absence of insulin, a high concentration (3 µM) of PAP-1 stimulated 2-deoxy[1-14C]-glucose uptake in soleus muscle of wild-type and obese mice by 30% and 40% respectively, and in adipocytes by 20% and 50% respectively. PAP-1 also stimulated glucose uptake by adipocytes at the lower concentration of 1 µM, but at 300 nM, which is still 150-fold higher than its EC50 value for inhibition of the Kv1.3 channel, it had no effect. In the presence of insulin, PAP-1 (3 µM) had a significant effect only in adipocytes from obese mice. PAP-1 (3 µM) reduced the secretion of TNFα by adipose tissue but had no effect on the secretion of IL-6. Expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was determined by RT-PCR. Kv1.3 and Kv1.5 mRNA were detected in liver, gastrocnemius muscle, soleus muscle and white adipose tissue from wild-type and ob/ob mice, except that Kv1.3 could not be detected in gastrocnemius muscle, nor Kv1.5 in liver, of wild-type mice. Expression of both genes was generally higher in liver and muscle of ob/ob mice compared to wild-type mice. Kv1.5 appeared to be expressed more highly than Kv1.3 in soleus muscle, adipose tissue and adipocytes of wild-type mice. Expression of Kv1.2 appeared to be similar to that of Kv1.3 in soleus muscle and adipose tissue, but Kv1.2 was undetectable in adipocytes. Kv1.1 could not be detected in soleus muscle, adipose tissue or adipocytes. We conclude that inhibition of Kv1 channels by PAP-1 stimulates glucose uptake by adipocytes and soleus muscle of wild-type and ob/ob mice, and reduces the secretion of TNFα by adipose tissue. However, these effects are more likely due to inhibition of Kv1.5 than to inhibition of Kv1.3 channels.
Collapse
Affiliation(s)
- Robert A Ngala
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Mohamed S Zaibi
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Kenneth Langlands
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Claire J Stocker
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Jonathan R S Arch
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Michael A Cawthorne
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| |
Collapse
|
14
|
Ngala RA, Zaibi MS, Langlands K, Stocker CJ, Arch JRS, Cawthorne MA. Stimulation of glucose uptake in murine soleus muscle and adipocytes by 5-(4-phenoxybutoxy)psoralen (PAP-1) may be mediated by Kv1.5 rather than Kv1.3. PeerJ 2014; 2:e614. [PMID: 25320682 PMCID: PMC4193404 DOI: 10.7717/peerj.614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/17/2014] [Indexed: 01/08/2023] Open
Abstract
Kv1 channels are shaker-related potassium channels that influence insulin sensitivity. Kv1.3−/− mice are protected from diet-induced insulin resistance and some studies suggest that Kv1.3 inhibitors provide similar protection. However, it is unclear whether blockade of Kv1.3 in adipocytes or skeletal muscle increases glucose uptake. There is no evidence that the related channel Kv1.5 has any influence on insulin sensitivity and its expression in adipose tissue has not been reported. PAP-1 is a selective inhibitor of Kv1.3, with 23-fold, 32-fold and 125-fold lower potencies as an inhibitor of Kv1.5, Kv1.1 and Kv1.2 respectively. Soleus muscles from wild-type and genetically obese ob/ob mice were incubated with 2-deoxy[1-14C]-glucose for 45 min and formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. White adipocytes were incubated with D-[U-14C]-glucose for 1 h. TNFα and Il-6 secretion from white adipose tissue pieces were measured by enzyme-linked-immunoassay. In the absence of insulin, a high concentration (3 µM) of PAP-1 stimulated 2-deoxy[1-14C]-glucose uptake in soleus muscle of wild-type and obese mice by 30% and 40% respectively, and in adipocytes by 20% and 50% respectively. PAP-1 also stimulated glucose uptake by adipocytes at the lower concentration of 1 µM, but at 300 nM, which is still 150-fold higher than its EC50 value for inhibition of the Kv1.3 channel, it had no effect. In the presence of insulin, PAP-1 (3 µM) had a significant effect only in adipocytes from obese mice. PAP-1 (3 µM) reduced the secretion of TNFα by adipose tissue but had no effect on the secretion of IL-6. Expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was determined by RT-PCR. Kv1.3 and Kv1.5 mRNA were detected in liver, gastrocnemius muscle, soleus muscle and white adipose tissue from wild-type and ob/ob mice, except that Kv1.3 could not be detected in gastrocnemius muscle, nor Kv1.5 in liver, of wild-type mice. Expression of both genes was generally higher in liver and muscle of ob/ob mice compared to wild-type mice. Kv1.5 appeared to be expressed more highly than Kv1.3 in soleus muscle, adipose tissue and adipocytes of wild-type mice. Expression of Kv1.2 appeared to be similar to that of Kv1.3 in soleus muscle and adipose tissue, but Kv1.2 was undetectable in adipocytes. Kv1.1 could not be detected in soleus muscle, adipose tissue or adipocytes. We conclude that inhibition of Kv1 channels by PAP-1 stimulates glucose uptake by adipocytes and soleus muscle of wild-type and ob/ob mice, and reduces the secretion of TNFα by adipose tissue. However, these effects are more likely due to inhibition of Kv1.5 than to inhibition of Kv1.3 channels.
Collapse
Affiliation(s)
- Robert A Ngala
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Mohamed S Zaibi
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Kenneth Langlands
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Claire J Stocker
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Jonathan R S Arch
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| | - Michael A Cawthorne
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham , Buckingham , UK
| |
Collapse
|
15
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
16
|
Ion Channels. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
18
|
Verspohl EJ. Novel Pharmacological Approaches to the Treatment of Type 2 Diabetes. Pharmacol Rev 2012; 64:188-237. [DOI: 10.1124/pr.110.003319] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Fadool DA, Tucker K, Pedarzani P. Mitral cells of the olfactory bulb perform metabolic sensing and are disrupted by obesity at the level of the Kv1.3 ion channel. PLoS One 2011; 6:e24921. [PMID: 21966386 PMCID: PMC3178571 DOI: 10.1371/journal.pone.0024921] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/19/2011] [Indexed: 12/12/2022] Open
Abstract
Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized that the system additionally functions to encode internal chemistry via the detection of chemicals that are important indicators of metabolic state. We here uncovered that the olfactory bulb (OB) subserves as an internal sensor of metabolism via insulin-induced modulation of the potassium channel Kv1.3. Using an adult slice preparation of the olfactory bulb, we found that evoked neural activity in Kv1.3-expressing mitral cells is enhanced following acute insulin application. Insulin mediated changes in mitral cell excitability are predominantly due to the modulation of Kv1.3 channels as evidenced by the lack of effect in slices from Kv1.3-null mice. Moreover, a selective Kv1.3 peptide blocker (ShK186) inhibits more than 80% of the outward current in parallel voltage-clamp studies, whereby insulin significantly decreases the peak current magnitude without altering the kinetics of inactivation or deactivation. Mice that were chronically administered insulin using intranasal delivery approaches exhibited either an elevation in basal firing frequency or fired a single cluster of action potentials. Following chronic administration of the hormone, mitral cells were inhibited by application of acute insulin rather than excited. Mice made obese through a diet of ∼32% fat exhibited prominent changes in mitral cell action potential shape and clustering behavior, whereby the subsequent response to acute insulin stimulation was either attenuated or completely absent. Our results implicate an inappropriate neural function of olfactory sensors following exposure to chronic levels of the hormone insulin (diabetes) or increased body weight (obesity).
Collapse
Affiliation(s)
- Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, Florida, United States of America
- Department of Biological Sciences, The Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Kristal Tucker
- Program in Neuroscience, The Florida State University, Tallahassee, Florida, United States of America
| | - Paola Pedarzani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Weiss L, Bernstein S, Jones R, Amunugama R, Krizman D, Jebailey L, Almogi-Hazan O, Yekhtin Z, Shiner R, Reibstein I, Triche E, Slavin S, Or R, Barnea ER. Preimplantation factor (PIF) analog prevents type I diabetes mellitus (TIDM) development by preserving pancreatic function in NOD mice. Endocrine 2011; 40:41-54. [PMID: 21424847 DOI: 10.1007/s12020-011-9438-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/07/2023]
Abstract
Preimplantation factor (PIF) is a novel embryo-secreted immunomodulatory peptide. Its synthetic analog (sPIF) modulates maternal immunity without suppression. There is an urgent need to develop agents that could prevent the development of type 1 diabetes mellitus (TIDM). Herein, we examine sPIF's preventive effect on TIDM development by using acute adoptive-transfer (ATDM) and spontaneously developing (SDM) in non-obese diabetic (NOD) murine models. Diabetes was evaluated by urinary and plasma glucose, intraperitoneal glucose tolerance test (IPGTT), pancreatic islets insulin staining by immunohistochemistry and by pancreatic proteome evaluation using mass spectrometry, followed by signal pathway analysis. Continuous administration of sPIF for 4-weeks prevents diabetes development in ATDM model in >90% of recipients demonstrated by normal IPGTT, preserved islets architecture, number, and insulin staining. (P < 0.01). sPIF effect was specific; its protective effects are not replicated by scrambled PIF (χ(2) = 0.009) control. sPIF led also to increased circulating Th2 and Th1 cytokines. In SDM model, 4-week continuous sPIF administration prevented onset of diabetes for 21 weeks post-therapy (P < 0.01). Low-dose sPIF administration for 16 weeks prevented diabetes development up to 14 weeks post-therapy, evidenced by preserved islets architecture and insulin staining. In SDM model, pancreatic proteome pathway analysis demonstrated that sPIF regulates protein traffic, prevents protein misfolding and aggregation, and reduces oxidative stress and islets apoptosis, leading to preserved insulin staining. sPIF further increased insulin receptor expression and reduced actin and tubulin proteins, thereby blocking neutrophil invasion and inflammation. Exocrine pancreatic function was also preserved. sPIF administration results in marked prevention of spontaneous and induced adoptive-transfer diabetes suggesting its potential effectiveness in treating early-stage TIDM.
Collapse
Affiliation(s)
- Lola Weiss
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital Ein Kerem, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|