1
|
Ha ET, Haessler J, Taylor KD, Tuftin B, Briggs M, Parikh MA, Peterson SJ, Gerszten RE, Wilson JG, Kelsey K, Tahir UA, Seeman T, Rich SS, Carson AP, Post WS, Kooperberg C, Rotter JI, Raffield LM, Auer P, Reiner AP. The Relationship of Duffy Gene Polymorphism with High-Sensitivity C-Reactive Protein, Mortality, and Cardiovascular Outcomes in Black Individuals. Genes (Basel) 2024; 15:1382. [PMID: 39596582 PMCID: PMC11594091 DOI: 10.3390/genes15111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Black adults have higher incidence of all-cause mortality and worse cardiovascular disease (CVD) outcomes when compared to other U.S. populations. The Duffy chemokine receptor is not expressed on erythrocytes in a large majority of Black adults, but the clinical implications of this are unclear. Methods: Here, we investigated the relationship of Duffy receptor status, high-sensitivity C-reactive protein (hs-CRP), and mortality and incident CVD events (coronary heart disease, stroke, and heart failure) in self-identified Black members of three contemporary, longitudinal cohort studies (the Women's Health Initiative, Jackson Heart Study, and Multi-Ethnic Study of Atherosclerosis). Data on 14,358 Black participants (9023 Duffy-null and 5335 Duffy-receptor-positive, as defined using single-nucleotide polymorphism (SNP) rs2814778) were included in this analysis. Results: Duffy null was strongly associated with higher hs-CRP (meta-analysis p = 2.62 × 10-9), but the association was largely attenuated, though still marginally significant (p = 0.005), after conditioning on known CRP locus alleles in linkage disequilibrium with the Duffy gene. In our discovery cohorts, Duffy-null status appeared to be associated with a higher risk of all-cause mortality and incident stroke, though these associations were attenuated and non-significant following adjustment for traditional risk factors including hs-CRP. Moreover, the association of Duffy-null status with mortality could not be replicated in an independent sample of Black adults from the UK Biobank. Conclusions: These findings suggest that the higher levels of hs-CRP found in Duffy-null individuals may be in part independent of CRP alleles known to influence circulating levels of hs-CRP. During the follow-up of this community-based sample of Black participants, Duffy-null status was not associated with mortality or incident CVD events independently of traditional risk factors including hs-CRP.
Collapse
Affiliation(s)
- Edward T. Ha
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
| | - Jeffery Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (J.H.); (C.K.)
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (K.D.T.); (J.I.R.)
| | - Bjoernar Tuftin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.T.); (L.M.R.)
| | - Matt Briggs
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
| | - Manish A. Parikh
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephen J. Peterson
- Division of Cardiology, Department of Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (M.B.); (M.A.P.); (S.J.P.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
| | - Karl Kelsey
- Department of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA;
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (R.E.G.); (J.G.W.); (U.A.T.)
| | - Teresa Seeman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (J.H.); (C.K.)
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (K.D.T.); (J.I.R.)
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.T.); (L.M.R.)
| | - Paul Auer
- Division of Biostatistics and Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Alex P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
2
|
Ferro F, Spelat R, Pandit A, Martin-Ventura JL, Rabinovich GA, Contessotto P. Glycosylation of blood cells during the onset and progression of atherosclerosis and myocardial infarction. Trends Mol Med 2024; 30:178-196. [PMID: 38142190 DOI: 10.1016/j.molmed.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Protein glycosylation controls cell-cell and cell-extracellular matrix (ECM) communication in immune, vascular, and inflammatory processes, underlining the critical role of this process in the identification of disease biomarkers and the design of novel therapies. Emerging evidence highlights the critical role of blood cell glycosylation in the pathophysiology of atherosclerosis (ATH) and myocardial infarction (MI). Here, we review the role of glycosylation in the interplay between blood cells, particularly erythrocytes, and endothelial cells (ECs), highlighting the involvement of this critical post/cotranslational modification in settings of cardiovascular disease (CVD). Importantly, we focus on emerging preclinical studies and clinical trials based on glycan-targeted drugs to validate their therapeutic potential. These findings may help establish new trends in preventive medicine and delineate novel targeted therapies in CVD.
Collapse
Affiliation(s)
- Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - José L Martin-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland; Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Ha ET, Taylor KD, Raffield LM, Briggs M, Yee A, Elemento O, Parikh M, Peterson SJ, Frishman W, Gerszten RE, Wilson JG, Kelsey K, Tahir UA, Reiner A, Auer P, Seeman T, Rich SS, Carson AP, Post WS, Rotter JI, Aronow WS. The Relationship of Duffy Gene Polymorphism, High Sensitivity C-Reactive Protein, and Long-term Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.03.23293626. [PMID: 37609271 PMCID: PMC10441500 DOI: 10.1101/2023.08.03.23293626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Black adults have higher incidence of all-cause death and worse cardiovascular outcomes when compared to other populations. The Duffy chemokine receptor is not expressed in a large majority of Black adults and the clinical implications of this are unclear. Methods Here, we investigated the relationship of Duffy receptor status, high-sensitivity C-reactive protein (hs-CRP), and long-term cardiovascular outcomes in Black members of two contemporary, longitudinal cohort studies (the Jackson Heart Study and Multi-Ethnic Study of Atherosclerosis). Data on 4,307 Black participants (2,942 Duffy null and 1,365 Duffy receptor positive, as defined using Single Nucleotide Polymorphism (SNP) rs2814778) were included in this analysis. Results Duffy null was not independently associated with elevated levels of serum hs-CRP levels once conditioning for known CRP locus alleles in linkage disequilibrium with the Duffy gene. Duffy null status was not found to be independently associated with higher incidence of all-cause mortality or secondary outcomes after adjusting for possible confounders in Black participants. Conclusions These findings suggest that increased levels of hs-CRP found in Duffy null individuals is due to co-inheritance of CRP alleles known to influence circulating levels hs-CRP and that Duffy null status was not associated with worse adverse outcomes over the follow-up period in this cohort of well-balanced Black participants.
Collapse
|
4
|
Ren Y, Yan C, Yang H. Erythrocytes: Member of the Immune System that Should Not Be Ignored. Crit Rev Oncol Hematol 2023; 187:104039. [PMID: 37236411 DOI: 10.1016/j.critrevonc.2023.104039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Erythrocytes are the most abundant type of cells in the blood and have a relatively simple structure when mature; they have a long life-span in the circulatory system. The primary function of erythrocytes is as oxygen carriers; however, they also play an important role in the immune system. Erythrocytes recognize and adhere to antigens and promote phagocytosis. The abnormal morphology and function of erythrocytes are also involved in the pathological processes of some diseases. Owing to the large number and immune properties of erythrocytes, their immune functions should not be ignored. Currently, research on immunity is focused on immune cells other than erythrocytes. However, research on the immune function of erythrocytes and the development of erythrocyte-mediated applications is of great significance. Therefore, we aimed to review the relevant literature and summarize the immune functions of erythrocytes.
Collapse
Affiliation(s)
- Yijun Ren
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Chengkai Yan
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, China, 410000.
| |
Collapse
|
5
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
6
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
7
|
Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021; 14:14/696/eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.
Collapse
Affiliation(s)
- Julia C Gutjahr
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Naik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. .,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.,Centre for Inflammation and Therapeutic Innovation, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
8
|
Böhm EW, Pavlaki M, Chalikias G, Mikroulis D, Georgiadis GS, Tziakas DN, Konstantinides S, Schäfer K. Colocalization of Erythrocytes and Vascular Calcification in Human Atherosclerosis: A Systematic Histomorphometric Analysis. TH OPEN 2021; 5:e113-e124. [PMID: 33870075 PMCID: PMC8046517 DOI: 10.1055/s-0041-1725042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 11/03/2022] Open
Abstract
Background Intimal calcification typically develops in advanced atherosclerosis, and microcalcification may promote plaque progression and instability. Conversely, intraplaque hemorrhage and erythrocyte extravasation may stimulate osteoblastic differentiation and intralesional calcium phosphate deposition. The presence of erythrocytes and their main cellular components (membranes, hemoglobin, and iron) and colocalization with calcification has never been systematically studied. Methods and Results We examined three types of diseased vascular tissue specimens, namely, degenerative aortic valve stenosis ( n = 46), atherosclerotic carotid artery plaques ( n = 9), and abdominal aortic aneurysms ( n = 14). Biomaterial was obtained from symptomatic patients undergoing elective aortic valve replacement, carotid artery endatherectomy, or aortic aneurysm repair, respectively. Serial sections were stained using Masson-Goldner trichrome, Alizarin red S, and Perl's iron stain to visualize erythrocytes, extracelluar matrix and osteoid, calcium phosphate deposition, or the presence of iron and hemosiderin, respectively. Immunohistochemistry was employed to detect erythrocyte membranes (CD235a), hemoglobin or the hemoglobin scavenger receptor (CD163), endothelial cells (CD31), myofibroblasts (SMA), mesenchymal cells (osteopontin), or osteoblasts (periostin). Our analyses revealed a varying degree of intraplaque hemorrhage and that the majority of extravasated erythrocytes were lysed. Osteoid and calcifications also were frequently present, and erythrocyte membranes were significantly more prevalent in areas with calcification. Areas with extravasated erythrocytes frequently contained CD163-positive cells, although calcification also occurred in areas without CD163 immunosignals. Conclusion Our findings underline the presence of extravasated erythrocytes and their membranes in different types of vascular lesions, and their association with areas of calcification suggests an active role of erythrocytes in vascular disease processes.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Cardiology, University Medical Center, Mainz, Germany
| | - Maria Pavlaki
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Chalikias
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | - George S Georgiadis
- Department of Vascular Surgery, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios N Tziakas
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Katrin Schäfer
- Department of Cardiology, University Medical Center, Mainz, Germany
| |
Collapse
|
9
|
Ortega DC, Cárdenas H, Barreto G. Joint selection for two malaria resistance mutations in a south-west Colombian population. INFECTION GENETICS AND EVOLUTION 2020; 80:104188. [PMID: 31927074 DOI: 10.1016/j.meegid.2020.104188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/19/2022]
Abstract
In regions with an Afro-descendant population and where malaria is endemic, high frequencies of polymorphisms have been found that confer resistance to this disease, such as the haemoglobin S (HbS) and Duffy genes, which provide resistance to P. falciparum and P. vivax infection, respectively. The objective of this study was to evaluate the individual and joint selection actions of these two genes in an Afro-descendant Colombian population. A total of 819 individuals were analysed using stratified random sampling. PCR-RFLP and Hardy-Weinberg equilibrium deviation analysis (H-W eq.), linkage disequilibrium (LD), D'IS2 and D'ST2 indexes, neutrality tests, correlations and fitness were performed using Arlequin 3.5.2.2 and R 3.4.1 software. In general, the population showed neutrality and H-W eq. for the HbS gene but not for the Duffy gene (FYA/FYB, FYA/FYBES and FYB/FYBES genotypes were responsible for this deviation). LD between the HbS locus and the promoter region of the Duffy gene, a value D'IS2 = 0.001 and D'ST2 = 0.020 was found, an increase in fitness of the AS*FYBES/FYBES genotype combination (marked in adolescents and adults), and a strong correlation between these genotypes (Rho = 90%, p = .001) were found, evidencing a possible joint selection action for these two alleles. This work presents evidence of the action of natural selection, both individually and jointly, on malaria resistance genes, HbS and Duffy, in the Buenaventura population.
Collapse
Affiliation(s)
- Diana Carolina Ortega
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Heiber Cárdenas
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Guillermo Barreto
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
10
|
Zinicola M, Batista CP, Bringhenti L, Meira EBS, Lima FS, McDonough SP, Bicalho RC. Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle IV: Insulin resistance, dry matter intake, and blood parameters. J Dairy Sci 2019; 102:10340-10359. [PMID: 31495618 DOI: 10.3168/jds.2019-16337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
Abstract
We have shown in 2 independent studies that cows who received recombinant bovine interleukin-8 (rbIL-8) administered intrauterinely shortly after parturition have a significant and long-lasting increase in milk yield. In the present study, we hypothesized that the increased milk production associated with rbIL-8 treatment is a consequence of increased postpartum dry matter intake (DMI) and orchestrated homeorhetic changes that prioritize milk production. Cows were enrolled into 1 of 3 treatment groups: those assigned to the control group (CTR; n = 70) received an intrauterine (IU) administration of 500 mL of Dulbecco's phosphate-buffered saline (DPBS) solution and 1 mL of DPBS solution intravenously (IV; jugular vein), those assigned to the rbIL-8 IV group (rbIL8-IV, n = 70) received an IV injection of 167 μg of rbIL-8 and 500 mL of DPBS solution IU, and cows assigned to the rbIL-8 IU group (rbIL8-IU, n = 70) received an IU administration with 1,195 μg of rbIL-8 diluted in 499.5 mL of DPBS solution and 1 mL of DPBS solution IV. Animals were housed in a tiestall from calving to 30 d in milk (DIM) to measure DMI. Blood samples were collected daily from calving to 7 DIM and weekly until 28 DIM. Insulin resistance was evaluated using an intravenous glucose tolerance test and intravenous insulin challenge test (IVICT) in a subgroup of cows (n = 20/treatment) at 10 and 11 DIM, respectively. Additionally, liver biopsy samples were taken at 14 DIM from the same subgroup of cows to measure triglyceride levels and cell proliferation and apoptosis. Cows treated with rbIL8-IU produced more milk (CTR = 36.9 ± 1.5; rbIL8-IU = 38.5 ± 1.5; rbIL8-IV = 36.6 ± 1.5 kg/d), energy-corrected milk (CTR = 42.9 ± 0.9; rbIL8-IU = 46.1 ± 0.8; rbIL8-IV = 43.7 ± 0.9 kg/d), and fat-corrected milk (CTR = 44.3 ± 0.9; rbIL8-IU = 47.8 ± 0.9; rbIL8-IV = 45.2 ± 0.9 kg/d) yields when compared with CTR cows, and no differences were observed between rbIL8-IV and CTR cows. The administration of rbIL8-IU significantly increased DMI compared with CTR (CTR = 18.8 ± 0.3; rbIL8-IU = 19.9 ± 0.3; rbIL8-IV = 19.3 ± 0.3 kg/d). Recombinant bIL-8 treatment did not affect glucose, insulin, or fatty acids (i.e., IVICT only) concentrations or their area under the curve in response to an intravenous glucose tolerance test and IVICT when compared with CTR. Moreover, rbIL-8 treatment administered IU or IV increased liver triglyceride levels. Additionally, cows treated with rbIL8-IU tended to have lower odds of developing hyperketonemia (odds ratio = 0.46, 95% confidence interval: 0.19 to 1.10), lower odds of clinical ketosis and displaced abomasum combined (odds ratio = 0.17, 95% confidence interval: 0.03 to 0.89), and lower odds of diseases combined (odds ratio = 0.43, 95% confidence interval: 0.21 to 0.86) when compared with CTR. We conclude that the administration of rbIL8-IU increases DMI, milk production, fat-corrected milk, and energy-corrected milk while improving overall health during the postpartum period. This study supports the use of rbIL-8 administered IU shortly after calving to improve health and production responses in lactating cows.
Collapse
Affiliation(s)
- M Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - C P Batista
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - E B S Meira
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - F S Lima
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign 61802
| | - S P McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
11
|
Østerud B, Unruh D, Olsen JO, Kirchhofer D, Owens AP, Bogdanov VY. Procoagulant and proinflammatory effects of red blood cells on lipopolysaccharide-stimulated monocytes. J Thromb Haemost 2015; 13:1676-82. [PMID: 26176663 DOI: 10.1111/jth.13041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to evaluate the mechanisms underlying the effects of red blood cells (RBCs) on the reactivity of monocytes to lipopolysaccharide (LPS) stimulation. METHODS Measurements of tissue factor (TF) antigen and activity were performed on freshly isolated white blood cells (WBCs)/platelets resuspended in heparinized plasma, as well as cultured monocytic cells. RESULTS In a dose-dependent manner, RBCs significantly enhanced LPS-induced TF activity and antigen levels in blood monocytes; potentiation of TF activity by both human and murine RBCs did not require the presence of neutrophils and/or platelets. We also measured the levels of monocyte chemotactic protein-1 (MCP-1), the key proinflammatory chemokine that binds to duffy antigen receptor for chemokines (DARC) on RBC surface, in plasma and RBC lysates after the incubation of RBCs with WBC/platelets; at the concentrations corresponding to normal blood counts, RBCs exerted a significant influence on the free plasma levels of MCP-1, with about two-thirds of detectable MCP-1 post-LPS stimulation being associated with RBCs. Critically, DARC-deficient murine RBCs failed to enhance LPS-induced TF activity, confirming the mechanistic significance of RBC-DARC. CONCLUSIONS Our study reports a novel mechanism by which RBCs promote procoagulant and proinflammatory sequelae of WBC exposure to LPS, likely mediated by RBC-DARC in the microenvironment(s) that bring monocytes and RBCs in close proximity.
Collapse
Affiliation(s)
- B Østerud
- K.G. Jebsen TREC, IMB, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - D Unruh
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J O Olsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - D Kirchhofer
- Early Discovery Biochemistry, Genentech, Inc, San Francisco, CA, USA
| | - A P Owens
- Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - V Y Bogdanov
- Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Wan W, Liu Q, Lionakis MS, Marino APMP, Anderson SA, Swamydas M, Murphy PM. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res 2015; 106:478-87. [PMID: 25858253 PMCID: PMC4447808 DOI: 10.1093/cvr/cvv124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Atypical chemokine receptor 1 (Ackr1; previously known as the Duffy antigen receptor for chemokines or Darc) is thought to regulate acute inflammatory responses in part by scavenging inflammatory CC and CXC chemokines; however, evidence for a role in chronic inflammation has been lacking. Here we investigated the role of Ackr1 in chronic inflammation, in particular in the setting of atherogenesis, using the apolipoprotein E-deficient (ApoE(-/-)) mouse model. METHODS AND RESULTS Ackr1(-/-)ApoE(-/-) and Ackr1(+/+)ApoE(-/-) littermates were obtained by crossing ApoE(-/-) mice and Ackr1(-/-) mice on a C57BL/6J background. Ackr1 (+/+)ApoE(-/-)mice fed a Western diet up-regulated Ackr1 expression in the aorta and had markedly increased atherosclerotic lesion size compared with Ackr1(-/-)ApoE(-/-) mice. This difference was observed in both the whole aorta and the aortic root in both early and late stages of the model. Ackr1 deficiency did not affect serum cholesterol levels or macrophage, collagen or smooth muscle cell content in atherosclerotic plaques, but significantly reduced the expression of Ccl2 and Cxcl1 in the whole aorta of ApoE(-/-) mice. In addition, Ackr1 deficiency resulted in a modest decrease in T cell subset frequency and inflammatory mononuclear phagocyte content in aorta and blood in the model. CONCLUSIONS Ackr1 deficiency appears to be protective in the ApoE knockout model of atherogenesis, but it is associated with only modest changes in cytokine and chemokine expression as well as T-cell subset frequency and inflammatory macrophage content.
Collapse
Affiliation(s)
- Wuzhou Wan
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qian Liu
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ana Paula M P Marino
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stasia A Anderson
- National Heart, Lung and Blood Institute (NHLBI) Animal MRI Core, NIH, Bethesda, MD, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
13
|
Moreno Velásquez I, Kumar J, Björkbacka H, Nilsson J, Silveira A, Leander K, Berglund A, Strawbridge RJ, Ärnlöv J, Melander O, Almgren P, Lind L, Hamsten A, de Faire U, Gigante B. Duffy antigen receptor genetic variant and the association with Interleukin 8 levels. Cytokine 2015; 72:178-84. [PMID: 25647274 DOI: 10.1016/j.cyto.2014.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED The aim of this study is to identify loci associated with circulating levels of Interleukin 8 (IL8). We investigated the associations of 121,445 single nucleotide polymorphisms (SNPs) from the Illumina 200K CardioMetabochip with IL8 levels in 1077 controls from the Stockholm Heart Epidemiology Program (SHEEP) study, using linear regression under an additive model of inheritance. Five SNPs (rs12075A/G, rs13179413C/T, rs6907989T/A, rs9352745A/C, rs1779553T/C) reached the pre-defined threshold of genome-wide significance (p<1.0×10(-5)) and were tested for in silico replication in three independent populations, derived from the PIVUS, MDC-CC and SCARF studies. IL8 was measured in serum (SHEEP, PIVUS) and plasma (MDC-CC, SCARF). The strongest association was found with the SNP rs12075 A/G, Asp42Gly (p=1.6×10(-6)), mapping to the Duffy antigen receptor for chemokines (DARC) gene on chromosome 1. The minor allele G was associated with 15.6% and 10.4% reduction in serum IL8 per copy of the allele in SHEEP and PIVUS studies respectively. No association was observed between rs12075 and plasma IL8. CONCLUSION rs12075 was associated with serum levels but not with plasma levels of IL8. It is likely that serum IL8 represents the combination of levels of circulating plasma IL8 and additional chemokine liberated from the erythrocyte DARC reservoir due to clotting. These findings highlight the importance of understanding IL8 as a biomarker in cardiometabolic diseases.
Collapse
Affiliation(s)
- Ilais Moreno Velásquez
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jitender Kumar
- Dept of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Dept of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Dept of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Angela Silveira
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anita Berglund
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ärnlöv
- Dept of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Dept of Clinical Sciences, Lund University, Malmö, Sweden; Centre of Emergency Medicine, Skåne University Hospital, Malmö, Sweden
| | - Peter Almgren
- Hypertension and Cardiovascular Disease, Dept of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lars Lind
- Dept of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Dept of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Division of Cardiovascular Medicine, Dept of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Apostolakis S, Spandidos D. Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol Sin 2013; 34:1251-6. [PMID: 23974513 PMCID: PMC4002164 DOI: 10.1038/aps.2013.92] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/24/2013] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis is currently considered an inflammatory disease. Much attention has been focused on the potential role of inflammatory mediators as prognostic/diagnostic markers or therapeutic targets of atherosclerotic cardiovascular disease. CX3CL1 (or fractalkine) is a structurally and functionally unique chemokine with a well documented role in atherosclerosis. In its membrane bound form it promotes the firm adhesion of rolling leucocytes onto the vessel wall, while in its soluble form it serves as a potent chemoattractant for CX3CR1-expressing cells. Additionally, CX3CL1 exerts cytotoxic effects on the endothelium as well as anti-apoptotic and proliferative effects on vascular cells, affecting the context and stability of the atherosclerotic plaque. Studies on animal models have shown that the blockade of the CX3CL1/CX3CR1 pathway ameliorates the severity of atherosclerosis, while genetic epidemiology has confirmed that a genetically-defined less active CX3CL1/CX3CR1 pathway is associated with a reduced risk of atherosclerotic disease in humans. Although several studies support an important pathogenic role of CX3CL1/CX3CR1 in atherogenesis and plaque destabilization, this does not necessarily suggest that this pathway is a suitable therapeutic target or that CX3CL1 can serve as a prognostic/diagnostic biomarker. Further studies on the CX3CL1/CX3CR1 chemokine pathway are clearly warranted to justify the clinical relevance of its role in atherosclerosis.
Collapse
Affiliation(s)
- Stavros Apostolakis
- Department of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Demetrios Spandidos
- Department of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|