1
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
2
|
Liu X, Xi H, Han S, Zhang H, Hu J. Zearalenone induces oxidative stress and autophagy in goat Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114571. [PMID: 36708663 DOI: 10.1016/j.ecoenv.2023.114571] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Zearalenone (ZEA), one of the non-steroidal estrogen mycotoxin, can cause male reproductive damage and genotoxicity in mammals. Testicular oxidative injury is an important factor causing male sterility. Testicular Sertoli cells are essential for spermatogenesis and male fertility. At present, the mechanism of oxidative injury in dairy goat Sertoli cells after exposure to ZEA remains unclear. This study explored the effects of ZEA on oxidative stress and autophagy in dairy goat Sertoli cells. It was found that treatment of primary Sertoli cells with 25, 50 and 100 μmol/L ZEA for 24 h can promote ROS production, decrease cell viability, antioxidant enzyme activity and mitochondrial membrane potential, induce caspase-dependent cell apoptosis and autophagy activity. ZEA-induced autophagy was confirmed by LC3-I/LC3-II transformation. More importantly, N-acetylcysteine (NAC) pretreatment can remarkably inhibit ZEA-induced oxidative stress, apoptosis and autophagy in Sertoli cells by eliminating ROS. In conclusion, this study indicates that ZEA induces oxidative stress and autophagy in dairy goat Sertoli cells by promoting ROS production.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Shuaiqi Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongyun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
3
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
4
|
Chen L, Luo Y, Chen Y, Wang L, Wang X, Zhang G, Ji K, Liu H. Time Course Analysis of Transcriptome in Human Myometrium Depending on Labor Duration and Correlating With Postpartum Blood Loss. Front Genet 2022; 13:812105. [PMID: 35836580 PMCID: PMC9273953 DOI: 10.3389/fgene.2022.812105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
The maintenance of coordinated powerful episodic contractions of the uterus is the crucial factor for normal labor. The uterine contractility is gradually enhanced with the progression of labor, which is related to the gene expression of the myometrium. Competing endogenous RNA (ceRNA) can also regulate the gene expression. To better understand the role of ceRNA network in labor, transcriptome sequencing was performed on the myometrium of 17 parturients at different labor durations (0–24 h). From this, expression levels of mRNA, long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) were correlated with labor duration. Then, targeting relationships between mRNAs, lncRNAs, circRNAs, and miRNAs were predicted, and the ceRNA regulatory network was established. The mRNA expression patterns associated with cervical dilation and postpartum bleeding were further investigated. This analysis identified 932 RNAs positively correlated with labor duration (859 mRNAs, 28 lncRNAs, and 45 circRNAs) and 153 RNAs negatively correlated with labor duration (122 mRNAs, 28 lncRNAs, and 3 miRNAs). These mRNAs were involved in protein metabolism, transport, and cytoskeleton functions. According to the targeting relationship among these ceRNAs and mRNAs, a ceRNA network consisting of 3 miRNAs, 72 mRNAs, 2 circRNAs, and 1 lncRNA was established. In addition, two mRNA expression patterns were established using time-series analysis of mRNA expression in different phases of cervical dilation. A ceRNA network analysis for blood loss was performed; postpartum bleeding was closely related to inflammatory response, angiogenesis, and hemostasis. This study identified human myometrial transcriptome and established the ceRNA regulatory network depending on labor duration and highlighted the dynamic changes that occur at ceRNAs during parturition, which need to be considered more in the future to better understand how changes in gene expression are relevant to functional changes in human myometrium at labor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kaiyuan Ji
- *Correspondence: Huishu Liu, ; Kaiyuan Ji,
| | - Huishu Liu
- *Correspondence: Huishu Liu, ; Kaiyuan Ji,
| |
Collapse
|
5
|
Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol 2021; 12:746486. [PMID: 34956045 PMCID: PMC8695500 DOI: 10.3389/fneur.2021.746486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
A Novel Oxygen Carrier (M101) Attenuates Ischemia-Reperfusion Injuries during Static Cold Storage in Steatotic Livers. Int J Mol Sci 2021; 22:ijms22168542. [PMID: 34445250 PMCID: PMC8395216 DOI: 10.3390/ijms22168542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
The combined impact of an increasing demand for liver transplantation and a growing incidence of nonalcoholic liver disease has provided the impetus for the development of innovative strategies to preserve steatotic livers. A natural oxygen carrier, HEMO2life®, which contains M101 that is extracted from a marine invertebrate, has been used for static cold storage (SCS) and has shown superior results in organ preservation. A total of 36 livers were procured from obese Zucker rats and randomly divided into three groups, i.e., control, SCS-24H and SCS-24H + M101 (M101 at 1 g/L), mimicking the gold standard of organ preservation. Ex situ machine perfusion for 2 h was used to evaluate the quality of the livers. Perfusates were sampled for functional assessment, biochemical analysis and subsequent biopsies were performed for assessment of ischemia-reperfusion markers. Transaminases, GDH and lactate levels at the end of reperfusion were significantly lower in the group preserved with M101 (p < 0.05). Protection from reactive oxygen species (low MDA and higher production of NO2-NO3) and less inflammation (HMGB1) were also observed in this group (p < 0.05). Bcl-1 and caspase-3 were higher in the SCS-24H group (p < 0.05) and presented more histological damage than those preserved with HEMO2life®. These data demonstrate, for the first time, that the addition of HEMO2life® to the preservation solution significantly protects steatotic livers during SCS by decreasing reperfusion injury and improving graft function.
Collapse
|
7
|
Tirpude NV, Sharma A, Joshi R, Kumari M, Acharya V. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-κB and TGF-β/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113894. [PMID: 33516930 DOI: 10.1016/j.jep.2021.113894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is growing inclination towards developing bioactive molecule-based strategies for the management of allergic airway inflammation associated respiratory diseases. Vitex negundo Linn., also known as Nirgundi, is one such medicinal plant enriched with phytochemicals and used for inflammatory and respiratory disorders including asthma in traditional system of medicine. Preliminary studies have claimed anti-tussive and bronchodilator potential of V. negundo Linn. However, its attributes as well as molecular mechanism (s) in modulation of asthma mediated by allergic inflammation are yet to be delineated scientifically. AIM OF THE STUDY Present study attempted to assess the effectiveness of Vitex negundo leaf extract (VNLE) in mitigation of allergen induced inflammation associated asthmatic lung damage with emphasis to delineate its molecular mechanism (s). MATERIALS AND METHODS Allergic lung inflammation was established in Balb/c mice using Ovalbumin-lipopolysaccharide (OVA-LPS). Several allergic inflammatory parameters, histopathological changes, alveolar macrophage activation and signalling pathways were assessed to examine protective effects of VNLE. UHPLC-DAD-QTOF-ESI-IMS was used to characterize VLNE. RESULTS VNLE administration effectively attenuated LPS-induced oxi-inflammatory stress in macrophages suggesting its anti-inflammatory potential. Further, VNLE showed protective effect in mitigating asthmatic lung damage as evident by reversal of pathological changes including inflammatory cell influx, congestion, fibrosis, bronchial thickness and alveolar collapse observed in allergen group. VNLE suppressed expressions of inflammatory Th1/Th2 cytokines, chemokines, endopeptidases (MMPs), oxidative effector enzyme (iNOS), adhesion molecules, IL-4/IFN-γ release with simultaneous enhancement in levels of IL-10, IFN-γ, MUC3 and tight junction proteins. Subsequent mechanistic investigation revealed that OVA-LPS concomitantly enhanced phosphorylation of NF-κB, PI3K, Akt and p38MAPKs and downregulated AMPK which was categorically counteracted by VNLE treatment. VNLE also suppressed OVA-LPS induced fibrosis, apoptosis, autophagy and gap junction proteins which were affirmed by reduction in TGF-β, Smad2/3/4, Caspase9/3, Bax, LC3A/B, connexin 50, connexin 43 and enhancement in Bcl2 expression. Additionally, suppression of alveolar macrophage activation, inflammatory cells in blood and elevation of splenic CD8+T cells was demonstrated. UHPLC-DAD-QTOF-ESI-IMS revealed presence of iridoids glycoside and phenolics which might contribute these findings. CONCLUSION These findings confer protective effect of VNLE in attenuation of allergic lung inflammation and suggest that it could be considered as valuable medicinal source for developing safe natural therapeutics for mitigation of allergic inflammation during asthma.
Collapse
Affiliation(s)
- Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| | - Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Monika Kumari
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
8
|
Xu MS, Yin LM, Cheng AF, Zhang YJ, Zhang D, Tao MM, Deng YY, Ge LB, Shan CL. Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex. Front Cell Dev Biol 2021; 9:634347. [PMID: 33777942 PMCID: PMC7991082 DOI: 10.3389/fcell.2021.634347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death. Reperfusion is a critical stage after thrombolysis or thrombectomy, accompanied by oxidative stress, excitotoxicity, neuroinflammation, and defects in synapse structure. The process is closely related to the dephosphorylation of actin-binding proteins (e.g., cofilin-1) by specific phosphatases. Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited studies have directly investigated reperfusion-induced reorganization of actin-binding protein, and little is known about the gene expression of actin-binding proteins. The exact mechanism is still uncertain. The motor cortex is very important to save nerve function; therefore, we chose the penumbra to study the relationship between cerebral ischemia-reperfusion and actin-binding protein. After transient middle cerebral artery occlusion (MCAO) and reperfusion, we confirmed reperfusion and motor function deficit by cerebral blood flow and gait analysis. PCR was used to screen the high expression mRNAs in penumbra of the motor cortex. The high expression of cofilin in this region was confirmed by immunohistochemistry (IHC) and Western blot (WB). The change in cofilin-1 expression appears at the same time as gait imbalance, especially maximum variation and left front swing. It is suggested that cofilin-1 may partially affect motor cortex function. This result provides a potential mechanism for understanding cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Ming-Shu Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Jie Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao-Miao Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Yi Deng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Bao Ge
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Jiang L, Shen X, Dun Y, Xie M, Fu S, Zhang W, Qiu L, Ripley-Gonzalez JW, Liu S. Exercise combined with trimetazidine improves anti-fatal stress capacity through enhancing autophagy and heat shock protein 70 of myocardium in mice. Int J Med Sci 2021; 18:1680-1686. [PMID: 33746584 PMCID: PMC7976563 DOI: 10.7150/ijms.53899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-stress capacity is important to resist the occurrence of adverse events. To observe the effects of exercise, trimetazidine alone or combined on the anti-stress capacity of mice, and further explore its potential mechanism. Methods: Forty-four C57BL/6 male mice aged 8 weeks were randomly divided into four groups (n=11 for each group): control group (group C), exercise group (group E), trimetazidine group (group T), exercise combined with trimetazidine group (group TE). After the intervention, each group was randomly subdivided into the exhaustive exercise (EE, n=6) and the non-EE (n=5) subgroups. The mice in the EE-subgroup underwent EE. Mice were sacrificed 12 hours later after EE. The myocardial ultrastructure and autophagosomes were observed under an electron microscope. The expression of autophagy-related proteins: BNIP3, LC3-II, and P62 were analyzed and the heat shock protein 70 mRNA transcription and protein expression were also investigated. Results: Exercise or trimetazidine increased the expression of BNIP3, LC3-II, and heat shock protein 70, decreased the expression of P62 pre- and post-EE while the combination has the synergistic effect. Conclusion: Exercise and trimetazidine, alone or combined enhanced the anti-stress capacity of mice significantly. The underlying mechanism may be associated with the promotion of autography and the expression of heat shock protein 70.
Collapse
Affiliation(s)
- Lingjun Jiang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China.,Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075, Ulm, Germany
| | - Xuanlin Shen
- Department of Rehabilitation, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu 215500, P.R China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Murong Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Jeffrey W Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| |
Collapse
|
10
|
Samidurai A, Ockaili R, Cain C, Roh SK, Filippone SM, Kraskauskas D, Kukreja RC, Das A. Differential Regulation of mTOR Complexes with miR-302a Attenuates Myocardial Reperfusion Injury in Diabetes. iScience 2020; 23:101863. [PMID: 33319180 PMCID: PMC7725936 DOI: 10.1016/j.isci.2020.101863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023] Open
Abstract
Persistent activation of mTOR (mammalian target of rapamycin) in diabetes increases the vulnerability of the heart to ischemia/reperfusion (I/R) injury. We show here that infusion of rapamycin (mTOR inhibitor) at reperfusion following ischemia reduced myocardial infarct size and apoptosis with restoration of cardiac function in type 1 diabetic rabbits. Likewise, treatment with rapamycin protected hyperglycemic human-pluripotent-stem-cells-derived cardiomyocytes (HG-hiPSC-CMs) following simulated ischemia (SI) and reoxygenation (RO). Phosphorylation of S6 (mTORC1 marker) was increased, whereas AKT phosphorylation (mTORC2 marker) and microRNA-302a were reduced with concomitant increase of its target, PTEN, following I/R injury in diabetic heart and HG-hiPSC-CMs. Rapamycin inhibited mTORC1 and PTEN, but augmented mTORC2 with restoration of miRNA-302a under diabetic conditions. Inhibition of miRNA-302a blocked mTORC2 and abolished rapamycin-induced protection against SI/RO injury in HG-hiPSC-CMs. We conclude that rapamycin attenuates reperfusion injury in diabetic heart through inhibition of PTEN and mTORC1 with restoration of miR-302a-mTORC2 signaling. miR-302a and AKT phosphorylation are suppressed in post-ischemic diabetic heart Negative regulator of insulin signaling, PTEN, is induced after ischemia reperfusion miRNA-302a-mimic abolishes ischemic injury in hyperglycemic human iPS cardiocytes Rapamycin treatment restores miR-302a-mTORC2 cardioprotective signaling in diabetes
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Chad Cain
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Scott M Filippone
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| |
Collapse
|
11
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2020; 27:1665-1672. [PMID: 32430716 DOI: 10.1007/s43032-020-00198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huiping Hu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Abraham Nick Morse
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Jingying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Yunshan Chen
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
12
|
Abstract
Sestrins are a family of proteins that respond to a variety of environmental stresses, including genotoxic, oxidative, and nutritional stresses. Sestrins affect multiple signaling pathways: AMP-activated protein kinase, mammalian target of rapamycin complexes, insulin-AKT, and redox signaling pathways. By regulating these pathways, Sestrins are thought to help adapt to stressful environments and subsequently restore cell and tissue homeostasis. In this review, we describe how Sestrins mediate physiological stress responses in the context of nutritional and chemical stresses (liver), physical movement and exercise (skeletal muscle), and chemical, physical, and inflammatory injuries (heart). These findings also support the idea that Sestrins are a molecular mediator of hormesis, a paradoxical beneficial effect of low- or moderate-level stresses in living organisms.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Allison H Kowalsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
13
|
Wang M, Lee H, Elkin K, Bardhi R, Guan L, Chandra A, Geng X, Ding Y. Detrimental and Beneficial Effect of Autophagy and a Potential Therapeutic Target after Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8372647. [PMID: 33688357 PMCID: PMC7924073 DOI: 10.1155/2020/8372647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
Autophagy, a physiologic mechanism that promotes energy recycling and orderly degradation through self-regulated disassembly of cellular components, helps maintain homeostasis. A series of evidences suggest that autophagy is activated as a response to ischemia and has been well-characterized as a therapeutic target. However, the role of autophagy after ischemia remains controversial. Activated-autophagy can remove necrotic substances against ischemic injury to promote cell survival. On the contrary, activation of autophagy may further aggravate ischemic injury, causing cell death. Therefore, the present review will examine the current understanding of the precise mechanism and role of autophagy in ischemia and recent neuroprotective therapies on autophagy, drug therapies, and nondrug therapies, including electroacupuncture (EA).
Collapse
Affiliation(s)
- Meng Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Redina Bardhi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
14
|
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324:113117. [DOI: 10.1016/j.expneurol.2019.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
15
|
Ramprasath T, Freddy AJ, Velmurugan G, Tomar D, Rekha B, Suvekbala V, Ramasamy S. Context-Dependent Regulation of Nrf2/ARE Axis on Vascular Cell Function during Hyperglycemic Condition. Curr Diabetes Rev 2020; 16:797-806. [PMID: 32000646 DOI: 10.2174/1573399816666200130094512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/03/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is associated with an increased risk of micro and macrovascular complications. During hyperglycemic conditions, endothelial cells and vascular smooth muscle cells are exquisitely sensitive to high glucose. This high glucose-induced sustained reactive oxygen species production leads to redox imbalance, which is associated with endothelial dysfunction and vascular wall remodeling. Nrf2, a redox-regulated transcription factor plays a key role in the antioxidant response element (ARE)-mediated expression of antioxidant genes. Although accumulating data indicate the molecular mechanisms underpinning the Nrf2 regulated redox balance, understanding the influence of the Nrf2/ARE axis during hyperglycemic condition on vascular cells is paramount. This review focuses on the context-dependent role of Nrf2/ARE signaling on vascular endothelial and smooth muscle cell function during hyperglycemic conditions. This review also highlights improving the Nrf2 system in vascular tissues, which could be a potential therapeutic strategy for vascular dysfunction.
Collapse
Affiliation(s)
- Tharmarajan Ramprasath
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Allen John Freddy
- Department of Zoology, Madras Christian College, Chennai 600 059, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, KMCH Research Foundation, Kovai Medical Center & Hospital, Coimbatore 641 014, Tamil Nadu, India
| | - Dhanendra Tomar
- Center for Translational Medicine, Temple University, Philadelphia 19140, United States
| | - Balakrishnan Rekha
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- Department of Biomedical Sciences & Technology, Noorul Islam Centre for Higher Education, Kumaracoil, Thucklay, Tamilnadu 629180, India
| | - Subbiah Ramasamy
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
16
|
Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B. Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 131:29-40. [PMID: 31004678 DOI: 10.1016/j.yjmcc.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | | | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
17
|
Wang L, Hu H, Morse AN, Han X, Bao J, Yang J, Chen Y, Liu H. Activation of Autophagy in Human Uterine Myometrium During Labor. Reprod Sci 2019:1933719119834351. [PMID: 30845895 DOI: 10.1177/1933719119834351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE: The purpose of this study was to analyze the autophagy of the human uterine myometrium during the labor. METHODS: We collected uterine myometrium strips from term, singleton, nulliparous healthy women undergoing cesarean delivery before labor (nonlabor group, n = 10) or during normal labor (in-labor group, n = 10) without rupturing of membrane. The indications for cesarean delivery were breech presentation or maternal request. Transmission electron microscopy was used to observe autophagosomes. Reverse transcriptase polymerase chain reaction, immunofluorescence, and Western blot were used to quantify the messenger RNA (mRNA) and protein level of the autophagy markers LC3B, P62, and Beclin-1 in the uterine muscle strips. RESULTS: There were no differences between both groups in maternal age, body mass index, gestational week, neonatal weight, operative bleeding, and postpartum bleeding. Transmission electron micrographs showed that autophagosomes existed in myometrial tissue in both groups. There were more autophagosomes in the in-labor group than in the nonlabor group, and the difference had significance. The in-labor group had significantly greater LC3B mRNA expression but significantly lower P62 mRNA expression compared with the nonlabor group. Semiquantitative immunofluorescence in uterine myometrial cells in the in-labor group showed increased LC3B puncta formation and greater Beclin-1 expression but reduced P62 puncta formation compared with the nonlabor group. The ratio of LC3BII/I proteins was significantly higher, but P62 protein was significantly lower in the in-labor group compared with the nonlabor group. The Beclin-1 mRNA and protein expressions were not significantly different between the 2 groups. CONCLUSION: Autophagy was activated in human uterine myometrium during labor and might play an important role in maintaining uterine contraction function.
Collapse
Affiliation(s)
- Lele Wang
- 1 Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiping Hu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Abraham Nick Morse
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinjia Han
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingying Yang
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- 2 Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Grosso RA, Caldarone PVS, Sánchez MC, Chiabrando GA, Colombo MI, Fader CM. Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor. Biosci Rep 2019; 39:BSR20181156. [PMID: 30523204 PMCID: PMC6328880 DOI: 10.1042/bsr20181156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Hemin is an erythropoietic inductor capable of inducing autophagy in erythroid-like cell lines. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor involved in a wide range of cellular processes, such as proliferation, differentiation, and metabolism. Our aim was to evaluate whether LRP1 is responsible for hemin activity in K562 cells, with the results demonstrating a three-fold increase in LRP1 gene expression levels (P-values <0.001) when assessed by quantitative real-time RT-PCR (qRT-PCR). Moreover, a 70% higher protein amount was observed compared with control condition (P-values <0.01) by Western blot (WB). Time kinetic assays demonstrated a peak in light chain 3 (LC3) II (LC3II) levels after 8 h of hemin stimulation and the localization of LRP1 in the autophagosome structures. Silencing LRP1 by siRNA decreased drastically the hemin-induced autophagy activity by almost 80% compared with control cells (P-values <0.01). Confocal localization and biochemical analysis indicated a significant redistribution of LRP1 from early endosomes and recycling compartments to late endosomes and autophagolysosomes, where the receptor is degraded. We conclude that LRP1 is responsible for hemin-induced autophagy activity in the erythroblastic cell line and that hemin-LRP1 complex activation promotes a self-regulation of the receptor. Our results suggest that hemin, via the LRP1 receptor, favors erythroid maturation by inducing an autophagic response, making it a possible therapeutic candidate to help in the treatment of hematological disorders.
Collapse
Affiliation(s)
- Ruben Adrian Grosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paula Virginia Subirada Caldarone
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - María Cecilia Sánchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gustavo Alberto Chiabrando
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - María Isabel Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Universidad Nacional de Cuyo, Facultad de Odontología, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
19
|
Cheng CY, Kao ST, Lee YC. Ferulic Acid Exerts Anti-apoptotic Effects against Ischemic Injury by Activating HSP70/Bcl-2- and HSP70/Autophagy-Mediated Signaling after Permanent Focal Cerebral Ischemia in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:39-61. [PMID: 30612456 DOI: 10.1142/s0192415x19500034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study assessed the anti-apoptotic effects of the administration of ferulic acid (FrA) in rats 30 min before middle cerebral artery occlusion (MCAo) followed by 3 d of ischemia and the involvement of 70 kDa heat shock protein (HSP70)-mediated signaling in the penumbral cortex. Our results demonstrated that FrA pretreatment at doses of 80 mg/kg (FrA-80 mg) and 100 mg/kg (FrA-100 mg) effectively ameliorated neurological functions and reduced the numbers of cytochrome c-, cleaved caspase-3-, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the penumbral cortex 3 d after ischemia. Moreover, FrA-80 mg and FrA-100 mg pretreatment markedly upregulated cytosolic HSP70, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) A/B-II and autophagy-related protein 5 (Atg5) expression; cytosolic and mitochondrial X-linked inhibitor of apoptosis (XIAP) expression and the Bcl-2/Bax ratio. FrA pretreatment downregulated cytosolic cytochrome c, apoptosis-inducing factor (AIF), procathepsin B, and cathepsin B expression and mitochondrial and cytosolic second mitochondria-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with a low isoelectric point (Smac/DIABLO) expression in the penumbral cortex. Pretreatment with VER155008, a HSP70 family inhibitor, significantly inhibited the effects of FrA-100 mg on the expression of the aforementioned proteins expression in the penumbral cortex. FrA-80 mg and FrA-100 mg pretreatment exerts neuroprotective effects against caspase-dependent and -independent apoptosis through activating HSP70/Bcl-2- and HSP70/autophagy-induced signaling pathways. Furthermore, the HSP70/Bcl-2- and HSP70/autophagy-induced anti-apoptotic effects of FrA pretreatment can be attributed to the regulation of Bax/cytochrome c/Smac/DIABLO/XIAP/ caspase-3- (or Bax/AIF-) and Beclin-1/LC3A/B-II/Atg5-mediated signaling, respectively, in the penumbral cortex 3 d after permanent MCAo.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- * School of Post-Baccalaureate Chinese Medicine, College of Chinese medicine, China Medical University, Taichung 40402, Taiwan.,¶ Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan
| | - Shung-Te Kao
- † School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chen Lee
- ‡ Research Center for Chinese Medicine & Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,§ Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,∥ Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan
| |
Collapse
|
20
|
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. Pharmacol Ther 2018; 191:1-22. [PMID: 29909238 PMCID: PMC6195437 DOI: 10.1016/j.pharmthera.2018.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/05/2018] [Indexed: 12/16/2022]
Abstract
Although advances in medical technology and health care have improved the early diagnosis and management for cardiorenal metabolic disorders, the prevalence of obesity, insulin resistance, diabetes, hypertension, dyslipidemia, and kidney disease remains high. Findings from numerous population-based studies, clinical trials, and experimental evidence have consolidated a number of theories for the pathogenesis of cardiorenal metabolic anomalies including resistance to the metabolic action of insulin, abnormal glucose and lipid metabolism, oxidative and nitrosative stress, endoplasmic reticulum (ER) stress, apoptosis, mitochondrial damage, and inflammation. Accumulating evidence has recently suggested a pivotal role for proteotoxicity, the unfavorable effects of poor protein quality control, in the pathophysiology of metabolic dysregulation and related cardiovascular complications. The ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathways, two major although distinct cellular clearance machineries, govern protein quality control by degradation and clearance of long-lived or damaged proteins and organelles. Ample evidence has depicted an important role for protein quality control, particularly autophagy, in the maintenance of metabolic homeostasis. To this end, autophagy offers promising targets for novel strategies to prevent and treat cardiorenal metabolic diseases. Targeting autophagy using pharmacological or natural agents exhibits exciting new strategies for the growing problem of cardiorenal metabolic disorders.
Collapse
Affiliation(s)
- Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Adam T Whaley-Connell
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - James R Sowers
- Research Service, Harry S Truman Memorial Veterans' Hospital, University of Missouri-Columbia School of Medicine, Columbia, MO, USA; Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
21
|
Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins (Basel) 2018; 10:toxins10050184. [PMID: 29724047 PMCID: PMC5983240 DOI: 10.3390/toxins10050184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis.
Collapse
|
22
|
Drevytska T, Gonchar E, Okhai I, Lynnyk O, Mankovska I, Klionsky D, Dosenko V. The protective effect of Hif3a RNA interference and HIF-prolyl hydroxylase inhibition on cardiomyocytes under anoxia-reoxygenation. Life Sci 2018; 202:131-139. [PMID: 29660430 DOI: 10.1016/j.lfs.2018.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψm). Furthermore, application of anti-Hif3a siRNA led to an increase in mRNA expression of Epo, Igf1, Slc2a1/Glut-1, and Slc2a4/Glut-4. Similar results were observed with HIF-prolyl hydroxylase inhibition, which additionally upregulated the mRNA expression of Epor, Tert, and Pdk1. Hif3a RNA-interference and application of HIF-prolyl hydroxylase inhibitor during A/R modelling led to an increase of Δψm on 11.5 and 11.9 mV respectively, compared to the control groups. Thus, Hif3a RNA interference and HIF-prolyl hydroxylase inhibition protect cardiomyocytes against A/R injury via the HIF signaling pathway.
Collapse
Affiliation(s)
- T Drevytska
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine.
| | - E Gonchar
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - I Okhai
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - O Lynnyk
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - I Mankovska
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - D Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - V Dosenko
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| |
Collapse
|
23
|
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol 2018; 163-164:98-117. [DOI: 10.1016/j.pneurobio.2018.01.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
24
|
Wang G, Dai G, Song J, Zhu M, Liu Y, Hou X, Ke Z, Zhou Y, Qiu H, Wang F, Jiang N, Jia X, Feng L. Lactone Component From Ligusticum chuanxiong Alleviates Myocardial Ischemia Injury Through Inhibiting Autophagy. Front Pharmacol 2018; 9:301. [PMID: 29651246 PMCID: PMC5884868 DOI: 10.3389/fphar.2018.00301] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
The dysregulation of autophagy is associated with a series of cardiovascular diseases, such as myocardial ischemia injury. Lactone component from Ligusticum chuanxiong (LLC) is the major constituent of the traditional Chinese herb L. chuanxiong Hort., which has been reported to hold potential cardioprotective effects. In this study, to determine whether LLC protects the heart through regulation of autophagy, we explored the effects of LLC on cardioprotection and autophagy in myocardial ischemia injured rats and H9c2 cardiomyocytes. Our results showed that LLC significantly reduced infarct size and serum levels of lactate dehydrogenase, creatine kinase, and cardiac troponin and ameliorated histological features in a dose-dependent manner. Similar protections were observed in cardiomyocytes subjected to oxygen-glucose deprivation (OGD). Meanwhile, LLC inhibited autophagy induced by myocardial ischemia injury, characterized by increased autophagic vacuoles, LC3-II/LC3-I ratio and the expression of Beclin 1, whereas decreased the expression of p62. Additionally, LLC combined with a lysosomal inhibitor chloroquine (CQ) reduced LC3-II/LC3-I ratio in cardiomyocytes compared with CQ alone. Furthermore, LLC-afforded cardioprotection was abolished by a specific PI3K inhibitor LY294002. Collectively, these findings demonstrated that cardioprotective effects of LLC were related to restoration of autophagic flux through the activation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Wang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Song
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Maomao Zhu
- Nanjing Institute of Product Quality Inspection, Nanjing, China
| | - Ying Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xuefeng Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Zhongcheng Ke
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Yuanli Zhou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Huihui Qiu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Fujing Wang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | - Xiaobin Jia
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Feng
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Zearalenone altered the cytoskeletal structure via ER stress- autophagy- oxidative stress pathway in mouse TM4 Sertoli cells. Sci Rep 2018; 8:3320. [PMID: 29463855 PMCID: PMC5820275 DOI: 10.1038/s41598-018-21567-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate the molecular mechanisms of the destruction of cytoskeletal structure by Zearalenone (ZEA) in mouse-derived TM4 cells. In order to investigate the role of autophagy, oxidative stress and endoplasmic reticulum(ER) stress in the process of destruction of cytoskeletal structure, the effects of ZEA on the cell viability, cytoskeletal structure, autophagy, oxidative stress, ER stress, MAPK and PI3K- AKT- mTOR signaling pathways were studied. The data demonstrated that ZEA damaged the cytoskeletal structure through the induction of autophagy that leads to the alteration of cytoskeletal structure via elevated oxidative stress. Our results further showed that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in TM4 cells. In addition, ZEA also induced the ER stress which was involved in the induction of the autophagy through inhibiting the ERK signal pathway to suppress the phosphorylation of mTOR. ER stress was involved in the damage of cytoskeletal structure through induction of autophagy by producing ROS. Taken together, this study revealed that ZEA altered the cytoskeletal structure via oxidative stress - autophagy- ER stress pathway in mouse TM4 Sertoli cells.
Collapse
|
26
|
Saeid F, Aniseh J, Reza B, Manouchehr VS. Signaling mediators modulated by cardioprotective interventions in healthy and diabetic myocardium with ischaemia-reperfusion injury. Eur J Prev Cardiol 2018; 25:1463-1481. [PMID: 29442529 DOI: 10.1177/2047487318756420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemic heart diseases are one of the major causes of death in the world. In most patients, ischaemic heart disease is coincident with other risk factors such as diabetes. Patients with diabetes are more prone to cardiac ischaemic dysfunctions including ischaemia-reperfusion injury. Ischaemic preconditioning, postconditioning and remote conditionings are reliable interventions to protect the myocardium against ischaemia-reperfusion injuries through activating various signaling pathways and intracellular mediators. Diabetes can disrupt the intracellular signaling cascades involved in these myocardial protections, and studies have revealed that cardioprotective effects of the conditioning interventions are diminished in the diabetic condition. The complex pathophysiology and poor prognosis of ischaemic heart disease among people with diabetes necessitate the investigation of the interaction of diabetes with ischaemia-reperfusion injury and cardioprotective mechanisms. Reducing the outcomes of ischaemia-reperfusion injury using targeted strategies would be particularly helpful in this population. In this study, we review the protective interventional signaling pathways and mediators which are activated by ischaemic conditioning strategies in healthy and diabetic myocardium with ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Feyzizadeh Saeid
- 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javadi Aniseh
- 4 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Badalzadeh Reza
- 1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vafaee S Manouchehr
- 6 Department of Nuclear Medicine, Odense University Hospital, Odense-Denmark.,7 Institute of Clinical Research, Department of Psychiatry, University of Southern Denmark, Odense-Denmark.,8 Neuroscience Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Zhao W, Li S, Ren C, Meng R, Ji X. Chronic Remote Ischemic Conditioning May Mimic Regular Exercise:Perspective from Clinical Studies. Aging Dis 2018; 9:165-171. [PMID: 29392091 PMCID: PMC5772854 DOI: 10.14336/ad.2017.1015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/15/2017] [Indexed: 11/01/2022] Open
Abstract
Chronic remote ischemic conditioning (RIC), particularly long-term repeated RIC, has been applied in clinical trials with the expectation that it could play its protective roles for protracted periods. In sports medicine, chronic RIC has also been demonstrated to improve exercise performance, akin to improvements seen with regular exercise training. Therefore, chronic RIC may mimic regular exercise, and they may have similar underlying mechanisms. In this study, we explored the common underlying mechanisms of chronic RIC and physical exercise in protecting multiple organs and benefiting various populations, the advantages of chronic RIC, and the challenges for its popularization. Intriguingly, several underlying mechanisms of RIC and exercise have been shown to overlap. These include the production of many autacoids, enhanced ability for antioxidant activity, modulating immune and inflammatory responses. Therefore, it appears that chronic RIC, just like regular exercise, has beneficial effects in unhealthy, sub-healthy and healthy individuals. Compared with regular exercise, chronic RIC has several advantages, which may provide novel insights into the area of exercise and health. Chronic RIC may enrich the modes of exercise, and benefit individuals with severe diseases. Also, the disabled, and sub-healthy individuals are likely to benefit from chronic RIC either as an alternative to exercise or an adjunct to pharmacological or non-pharmacological therapy.
Collapse
Affiliation(s)
- Wenbo Zhao
- ¹Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Changhong Ren
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ran Meng
- ¹Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 2Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,4National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
28
|
Li H, Zhang X, Tan J, Sun L, Xu L, Jiang Y, Lou J, Shi X, Mi W. Propofol postconditioning protects H9c2 cells from hypoxia/reoxygenation injury by inducing autophagy via the SAPK/JNK pathway. Mol Med Rep 2018; 17:4573-4580. [PMID: 29328382 DOI: 10.3892/mmr.2018.8424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hao Li
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xuan Zhang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian Tan
- Department of Thoracic Surgery, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Li Sun
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Long‑He Xu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu‑Ge Jiang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jing‑Sheng Lou
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xue‑Yin Shi
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Wei‑Dong Mi
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
29
|
Liang K, Qian WH, Zong J. 3,3'‑Diindolylmethane attenuates cardiomyocyte hypoxia by modulating autophagy in H9c2 cells. Mol Med Rep 2017; 16:9553-9560. [PMID: 29039568 DOI: 10.3892/mmr.2017.7788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
Autophagy is activated in the ischemic heart and is a process that is essential for survival, differentiation, development and homeostasis. 3,3'‑Diindolylmethane (DIM) is a natural product of the acid‑catalyzed condensation of indole‑3‑carbinol in cruciferous vegetables. Numerous studies have suggested that DIM has various pharmacological effects, including antioxidant, antitumor, anti‑angiogenic and anti‑apoptotic properties. However, the function of DIM on hypoxia‑induced cardiac injury remains to be elucidated. In the present study, H9c2 cells were pretreated with DIM (1, 5 and 10 µM) for 12 h and exposed to hypoxia for 12 h. It was demonstrated that DIM markedly attenuated the increased transcription of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α induced by hypoxia. In addition, the transcription of autophagy associated genes increased in the DIM pretreated group, compared with the hypoxia group. DIM additionally attenuated the increased apoptosis, as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and regulated the relative protein expression level of B cell lymphoma (Bcl) 2 associated X protein, Bcl‑xL and cleaved caspase 3. Furthermore, the phosphorylation of the 5' AMP‑activated protein kinase a (AMPKa) was activated and the phosphorylation of c‑Jun N‑terminal kinase (JNK) was inhibited. The effect of DIM on hypoxia‑induced apoptosis was abolished following pretreatment with JNK activator (anisomycin, 40 ng/ml). The effect of DIM on autophagy was reversed following pretreatment with AMPKa inhibitor (CpC, 20 µM) following stimulation with hypoxia. The results demonstrated that DIM prevented hypoxia‑induced inflammation and apoptosis and activated cardiomyocyte autophagy, which may be mediated by activation of AMPKa and inhibition of JNK pathways.
Collapse
Affiliation(s)
- Kai Liang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wen-Hao Qian
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jing Zong
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
30
|
Dong G, Yang S, Cao X, Yu N, Yu J, Qu X. Low shear stress‑induced autophagy alleviates cell apoptosis in HUVECs. Mol Med Rep 2017; 15:3076-3082. [PMID: 28350133 PMCID: PMC5428403 DOI: 10.3892/mmr.2017.6401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/09/2017] [Indexed: 01/07/2023] Open
Abstract
Low shear stress (LSS) is a well‑established risk factor resulting in endothelial apoptosis and atherosclerosis. Autophagy has been reported to be involved in the development of atherosclerosis. However, whether autophagy participates in LSS‑induced atherosclerosis remains unclear. The effect of autophagy and its association with apoptosis, in the development of atherosclerosis, remains controversial. Therefore, in the present study, the level and role of autophagy in human umbilical vein endothelial cells (HUVECs) exposed to LSS was examined. The results revealed that LSS increased the formation of autophagosomes and MAP1 light chain 3‑like protein (LC3) puncta (as demonstrated by transmission electron microscopy and immunofluorescence), and the protein levels of Beclin‑1 and LC3II decreased the expression of p62 [as revealed by western blot analysis (WB)]. Furthermore, the level of p62 decreased when autophagy was induced by rapamycin, and increased when autophagy was inhibited by chloroquine (CQ), which indicated that LSS may serve an important role in inducing autophagy flux. In addition, it was observed that HUVECs treated with LSS underwent apoptotic death, by monitoring the rate of apoptosis and the expression of apoptosis regulator BAX (Bax) and apoptosis regulator Bcl‑2 (Bcl‑2) (by flow cytometry and WB) and the LSS‑induced apoptosis in HUVECs, that was significantly alleviated by pretreatment with rapamycin, partially via a decrease in the level of Bax and an increase in the level of Bcl‑2. Pretreatment of HUVECs with CQ markedly increased LSS‑induced apoptosis, which was associated with an increased expression of Bax and a decreased expression of Bcl‑2. In conclusion, the results of the present study indicate that LSS increases the level of autophagy, which may be through a Bcl‑2/Beclin‑1‑dependent mechanism, which serves a protective role against LSS‑induced apoptosis.
Collapse
Affiliation(s)
- Guo Dong
- Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shusen Yang
- Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xuefei Cao
- Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nannan Yu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiangbo Yu
- Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiufen Qu
- Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China,Correspondence to: Mrs. Xiufen Qu, Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, P.R. China, E-mail:
| |
Collapse
|
31
|
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Marouane Kheloufi
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Service d'hépatologie, DHU unity, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Chantal M Boulanger
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France
| |
Collapse
|
32
|
Yin Y, Sun G, Li E, Kiselyov K, Sun D. ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res Rev 2017; 34:3-14. [PMID: 27594375 DOI: 10.1016/j.arr.2016.08.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly controlled lysosome-mediated function in eukaryotic cells to eliminate damaged or aged long-lived proteins and organelles. It is required for restoring cellular homeostasis in cell survival under multiple stresses. Autophagy is known to be a double-edged sword because too much activation or inhibition of autophagy can disrupt homeostatic degradation of protein and organelles within the brain and play a role in neuronal cell death. Many factors affect autophagy flux function in the brain, including endoplasmic reticulum (ER) stress, oxidative stress, and aging. Newly emerged research indicates that altered autophagy flux functionality is involved in neurodegeneration of the aged brain, chronic neurological diseases, and after traumatic and ischemic brain injuries. In search to identify neuroprotective agents that may reduce oxidative stress and stimulate autophagy, one particular neuroprotective agent docosahexaenoic acid (DHA) presents unique functions in reducing ER and oxidative stress and modulating autophagy. This review will summarize the recent findings on changes of autophagy in aging, neurodegenerative diseases, and brain injury after trauma or ischemic strokes. Discussion of DHA functions is focused on modulating ER stress and autophagy in regard to its neuroprotection and anti-tumor functions.
Collapse
Affiliation(s)
- Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, PR China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - George Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Eric Li
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
33
|
Huang XP, Ding H, Yang XQ, Li JX, Tang B, Liu XD, Tang YH, Deng CQ. Synergism and mechanism of Astragaloside IV combined with Ginsenoside Rg1 against autophagic injury of PC12 cells induced by oxygen glucose deprivation/reoxygenation. Biomed Pharmacother 2017; 89:124-134. [PMID: 28219050 DOI: 10.1016/j.biopha.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to explore the effect by which the combination of Astragaloside IV (AST IV) and Ginsenoside Rg1 (Rg1) resisted autophagic injury in PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). We studied the nature of the interaction between AST IV and Rg1 that inhibited autophagy through the Isobologram method, and investigated the synergistic mechanism via the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways. Our results showed that, based on the 50% inhibiting concentration (IC50), AST IV combined with Rg1 at a 1:1 ratio resulted in a synergistic effect, whereas the combination of the two had an antagonistic effect on autophagy at ratios of 1:2 and 2:1. Meanwhile, AST IV and Rg1 alone increased cell survival and decreased lactate dehydrogenase (LDH) leakage induced by OGD/R, reduced autophagosomes and the LC3 II positive patch, down-regulated the LC3 II/LC3 I ratio and up-regulated the p62 protein; the 1:1 combination enhanced these effects. Mechanistic study showed that Rg1 and the 1:1 combination increased the phosphorylation of PI3K I, Akt and mTOR; the effects of the combination were greater than those of the drugs alone. AST IV and the 1:1 combination suppressed the expression of PI3K III and Becline-1, and the combination elevated Bcl-2 protein expression; the effects of the combination were better than those of the drugs alone. These results suggest that after 2 h-OGD followed by reoxygenation for 24h, PC12 cells suffer excessive autophagy and damage, which are blocked by AST IV or Rg1; moreover, the combination of AST IV and Rg1 at a 1:1 ratio of their IC50 concentrations has a synergistic inhibition on autophagic injury. The synergistic mechanism may be associated with the PI3K I/Akt/mTOR and PI3K III/Becline-1/Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Xiao-Ping Huang
- Molecular Pathology Laboratory, Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Huang Ding
- Molecular Pathology Laboratory, Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Xiao-Qian Yang
- Molecular Pathology Laboratory, Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Jing-Xian Li
- Molecular Pathology Laboratory, Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Biao Tang
- Hunan Education Department's Key Laboratory of Cell Biology and Molecular Technology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Xiao-Dan Liu
- Hunan Education Department's Key Laboratory of Cell Biology and Molecular Technology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Ying-Hong Tang
- Hunan Education Department's Key Laboratory of Cell Biology and Molecular Technology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Chang-Qing Deng
- Molecular Pathology Laboratory, Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
34
|
Liu X, Cao H, Li J, Wang B, Zhang P, Dong Zhang X, Liu Z, Yuan H, Zhan Z. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ 2017; 24:683-693. [PMID: 28157209 PMCID: PMC5384028 DOI: 10.1038/cdd.2017.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Lung ischemia-reperfusion (I/R) injury remains one of the most common complications after various cardiopulmonary surgeries. The inflammation response triggered by the released damage-associated molecular patterns (DAMPs) aggravates lung tissue damage. However, little is known about the role of autophagy in the pathogenesis of lung I/R injury. Here, we report that a variety of inflammation-related and autophagy-associated genes are rapidly upregulated, which facilitate the inflammation response in a minipig lung I/R injury model. Left lung I/R injury triggered inflammatory cytokine production and activated the autophagy flux as evidenced in crude lung tissues and alveolar macrophages. This was associated with the release of DAMPs, such as high mobility group protein B1 (HMGB1) and heat shock protein 60 (HSP60). Indeed, treatment with recombinant HMGB1 or HSP60 induced autophagy in alveolar macrophages, whereas autophagy inhibition by knockdown of ATG7 or BECN1 markedly reduced DAMP-triggered production of inflammatory cytokines including IL-1β, TNF and IL12 in alveolar macrophages. This appeared to be because of decreased activation of MAPK and NF-κB signaling. Furthermore, knockdown of ATG7 or BECN1 inhibited Lys63 (K63)-linked ubiquitination of TNF receptor-associated factor 6 (TRAF6) in DAMP-treated alveolar macrophages. Consistently, treatment with 3-MA inhibited K63-linked ubiquitination of TRAF6 in I/R-injured lung tissues in vivo. Collectively, these results indicate that autophagy triggered by DAMPs during lung I/R injury amplifies the inflammatory response through enhancing K63-linked ubiquitination of TRAF6 and activation of the downstream MAPK and NF-κB signaling.
Collapse
Affiliation(s)
- Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Hao Cao
- Key Laboratory of Arrhythmias of the Ministry of Education of China & Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China & Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Peng Zhang
- Department of Hematology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China & Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China & Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
35
|
White CR, Datta G, Giordano S. High-Density Lipoprotein Regulation of Mitochondrial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:407-429. [PMID: 28551800 DOI: 10.1007/978-3-319-55330-6_22] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoproteins play a key role in regulating plasma and tissue levels of cholesterol. Apolipoprotein B (apoB)-containing lipoproteins, including chylomicrons, very-low density lipoprotein (VLDL) and low-density lipoprotein (LDL), serve as carriers of triglycerides and cholesterol and deliver these metabolites to peripheral tissues. In contrast, high-density lipoprotein (HDL) mediates Reverse Cholesterol Transport (RCT), a process by which excess cholesterol is removed from the periphery and taken up by hepatocytes where it is metabolized and excreted. Anti-atherogenic properties of HDL have been largely ascribed to apoA-I, the major protein component of the lipoprotein particle. The inflammatory response associated with atherosclerosis and ischemia-reperfusion (I-R) injury has been linked to the development of mitochondrial dysfunction. Under these conditions, an increase in reactive oxygen species (ROS) formation induces damage to mitochondrial structural elements, leading to a reduction in ATP synthesis and initiation of the apoptotic program. Recent studies suggest that HDL-associated apoA-I and lysosphingolipids attenuate mitochondrial injury by multiple mechanisms, including the suppression of ROS formation and induction of autophagy. Other apolipoproteins, however, present in lower abundance in HDL particles may exert opposing effects on mitochondrial function. This chapter examines the role of HDL-associated apolipoproteins and lipids in the regulation of mitochondrial function and bioenergetics.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Geeta Datta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Gidlöf O, Johnstone AL, Bader K, Khomtchouk BB, O'Reilly JJ, Celik S, Van Booven DJ, Wahlestedt C, Metzler B, Erlinge D. Ischemic Preconditioning Confers Epigenetic Repression of Mtor and Induction of Autophagy Through G9a-Dependent H3K9 Dimethylation. J Am Heart Assoc 2016; 5:JAHA.116.004076. [PMID: 28007739 PMCID: PMC5210409 DOI: 10.1161/jaha.116.004076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Ischemic preconditioning (IPC) protects the heart from prolonged ischemic insult and reperfusion injury through a poorly understood mechanism. Post‐translational modifications of histone residues can confer rapid and drastic switches in gene expression in response to various stimuli, including ischemia. The aim of this study was to investigate the effect of histone methylation in the response to cardiac ischemic preconditioning. Methods and Results We used cardiac biopsies from mice subjected to IPC to quantify global levels of 3 of the most well‐studied histone methylation marks (H3K9me2, H3K27me3, and H3K4me3) with Western blot and found that H3K9me2 levels were significantly increased in the area at risk compared to remote myocardium. In order to assess which genes were affected by the increase in H3K9me2 levels, we performed ChIP‐Seq and transcriptome profiling using microarray. Two hundred thirty‐seven genes were both transcriptionally repressed and enriched in H3K9me2 in the area at risk of IPC mice. Of these, Mtor (Mechanistic target of rapamycin) was chosen for mechanistic studies. Knockdown of the major H3K9 methyltransferase G9a resulted in a significant decrease in H3K9me2 levels across Mtor, increased Mtor expression, as well as decreased autophagic activity in response to rapamycin and serum starvation. Conclusions IPC confers an increase of H3K9me2 levels throughout the Mtor gene—a master regulator of cellular metabolism and a key player in the cardioprotective effect of IPC—leading to transcriptional repression via the methyltransferase G9a. The results of this study indicate that G9a has an important role in regulating cardiac autophagy and the cardioprotective effect of IPC.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Andrea L Johnstone
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Kerstin Bader
- Department of Internal Medicine III/Cardiology, Innsbruck Medical University, Innsbruck, Austria
| | - Bohdan B Khomtchouk
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Jiaqi J O'Reilly
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Selvi Celik
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Claes Wahlestedt
- The Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Bernhard Metzler
- Department of Internal Medicine III/Cardiology, Innsbruck Medical University, Innsbruck, Austria
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Abstract
Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.
Collapse
|
38
|
Filippi-Chiela EC, Viegas MS, Thomé MP, Buffon A, Wink MR, Lenz G. Modulation of Autophagy by Calcium Signalosome in Human Disease. Mol Pharmacol 2016; 90:371-84. [DOI: 10.1124/mol.116.105171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
|
39
|
Chen J, Gao J, Sun W, Li L, Wang Y, Bai S, Li X, Wang R, Wu L, Li H, Xu C. Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. Int J Cardiol 2016; 220:681-92. [PMID: 27393850 DOI: 10.1016/j.ijcard.2016.06.200] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 06/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S), which is a member of the gasotransmitter family, plays an important physiological and pathological role in cardiovascular system. Ischemic post-conditioning (PC) provides myocardial protective effect in the young hearts but not in the aged hearts. Exogenous H2S restores PC-induced cardioprotection by inhibition of mitochondrial permeability transition pore (mPTP) in the aged hearts. However, whether H2S contributes to the recovery of PC-induced cardioprotection via up-regulation of autophagy in the aged hearts is unclear. METHODS The isolated aged rat hearts (24-months-old, 450-500g) and aged cardiomyocytes-induced by d-galactose were exposed to an ischemia/reperfusion (I/R) and PC protocol. RESULTS We found PC lost cardioprotection in the aged hearts and cardiomyocytes. NaHS (a H2S donor) significantly restored cardioprotection of PC through decreasing myocardial damage, infarct size, and apoptosis, improving cardiac function, increasing cell viability and autophagy in the aged hearts and cardiomyocytes. 3-MA (an autophagy inhibitor) abolished beneficial effect of NaHS in the aged hearts. In addition, in the aged cardiomyocytes, NaHS up-regulated AMPK/mTOR pathway, and the effect of NaHS on PC was similar to the overexpression of Atg 5, treatment of AICAR (an AMPK activator) or Rapamycin (a mTOR inhibitor, an autophagy activator), respectively. CONCLUSIONS These results suggest that exogenous H2S restores cardioprotection from PC by up-regulation of autophagy via activation of AMPK/mTOR pathway in the aged hearts and cardiomyocytes.
Collapse
Affiliation(s)
- Junting Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Jun Gao
- Department of Osteology, The First Hospital of Harbin, Harbin, China
| | - Weiming Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Lina Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Shuzhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xiaoxue Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Rui Wang
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- The Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China; The Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.
| |
Collapse
|
40
|
White CR, Giordano S, Anantharamaiah GM. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms. Chem Phys Lipids 2016; 199:161-169. [PMID: 27150975 DOI: 10.1016/j.chemphyslip.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023]
Abstract
Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G M Anantharamaiah
- The Division of Gerontology, Geriatric Medicine and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, USA; Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
41
|
Liu L, Wu Y, Huang X. Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy. Eur J Pharmacol 2016; 776:90-8. [DOI: 10.1016/j.ejphar.2016.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
|
42
|
Huang HC, Chen L, Zhang HX, Li SF, Liu P, Zhao TY, Li CX. Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats. J Mol Neurosci 2016; 58:416-23. [PMID: 26738732 PMCID: PMC4829621 DOI: 10.1007/s12031-015-0672-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/27/2015] [Indexed: 01/08/2023]
Abstract
Autophagy maintains cellular homeostasis by stimulating the lysosomal degradation of cytoplasmic structures, including damaged organelles and dysfunctional proteins. The role of autophagy in the renewal and regeneration of injured peripheral nerves remains poorly understood. The current study investigated the role of autophagy in peripheral nerve regeneration and motor function recovery following sciatic nerve crush injury in rats by stimulating or suppressing autophagy and detecting the presence of autophagosomes and LC3-II expression by electron microscopy and Western blotting, respectively. Neurobehavioral function was tested by CatWalk gait analysis 1, 2, 3, and 6 weeks after injury, and the expression of neurofilament (NF)-200 and myelin basic protein (MBP) at the injury site was examined by immunocytochemistry. Apoptosis at the lesion site was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Treatment of injured rats with the autophagy inducer rapamycin increased the number of autophagosomes and LC3-II expression while reducing the number of apoptotic cells at the lesion; this was associated with an upregulation of MBP and NF-200 expression and increased motor function recovery as compared to sham-operated rats and those that were subjected to crush injury but untreated. The opposite effects were observed in rats treated with the autophagy inhibitor 3-methyladenine. These data indicate that the modulation of autophagy in peripheral nerve injury could be an effective pharmacological approach to promote nerve regeneration and reestablish motor function.
Collapse
Affiliation(s)
- Hai-Cheng Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Li Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Hai-Xing Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Sheng-Fa Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Tian-Yun Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China
| | - Chuan-Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 West Guangzhou, Avenue, Guangzhou, 510630, China.
| |
Collapse
|
43
|
Gupta SK, Thum T. Non-coding RNAs as orchestrators of autophagic processes. J Mol Cell Cardiol 2015; 95:26-30. [PMID: 26654780 DOI: 10.1016/j.yjmcc.2015.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Autophagy is an important quality control mechanism present in all cells to maintain their cellular homeostasis. An imbalance in the autophagic process had been reported in numerous diseases including cardiovascular disease and is associated with serious consequences. Thus, knowledge of key regulators of cardiac autophagy is helpful to regain a balanced autophagic activity and to maintain healthy myocardial function. In this review we summarize all microRNAs which had been reported to regulate cardiac autophagy to date. In addition, we discuss long noncoding RNAs and circular RNAs as potential modulators of autophagy. Altering non-coding RNAs in-vivo by novel therapeutics offers a promising approach to treat autophagy-related diseases.
Collapse
Affiliation(s)
- Shashi Kumar Gupta
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany; Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany; National Heart and Lung Institute, Imperial College London, United Kingdom.
| |
Collapse
|
44
|
Gao C, Cai Y, Zhang X, Huang H, Wang J, Wang Y, Tong X, Wang J, Wu J. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy. PLoS One 2015; 10:e0137146. [PMID: 26325184 PMCID: PMC4556686 DOI: 10.1371/journal.pone.0137146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.
Collapse
Affiliation(s)
- Chunlin Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Ying Cai
- Department of Neuroscience, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Huiling Huang
- Department of Neuroscience, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Yajing Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Xiaoguang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jinhuan Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin, China
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
- * E-mail:
| |
Collapse
|
45
|
Zhou J, Xi C, Wang W, Yang Y, Qiu Y, Huang Z. Autophagy plays an important role in triptolide-induced apoptosis in cardiomyocytes. Toxicol Lett 2015; 236:168-83. [PMID: 26007683 DOI: 10.1016/j.toxlet.2015.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/07/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
Triptolide (TP), a major bioactive component isolated from the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has been shown to exert various pharmacological effects. However, the severe toxicity of TP prevents wide clinical use. In a previous study, we reported that TP-induced mitochondria-dependent apoptosis in cardiomyocytes is mediated by reactive oxygen species (ROS). Autophagy is a cellular self-digestion process and is one of the first lines of defense against oxidative stress. Additionally, recent evidence suggests that autophagy can selectively eliminate damaged mitochondria. This study investigated the role of autophagy in TP-induced cardiotoxicity. We investigated the effects of autophagy in combination with TP on apoptosis, ROS and mitochondrial function. Rat cardiomyocytes were pre-treated with chloroquine or rapamycin followed by TP. The augmentation of autophagy with rapamycin in the presence of TP substantially ameliorated the detrimental effects induced by TP, while suppression of autophagy by chloroquine accelerates TP-induced cellular damage. In addition, pre-treated with rapamycin before TP administration also attenuated TP-induced damage in Balb/c mice heart tissues. Taken together, these results suggest that TP-induced cell death can be modified by autophagy. Furthermore, induction of autophagy by rapamycin may be a potential cardioprotective role against TP-induced cardiotoxicity by facilitating removal of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chen Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yanqin Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yuwen Qiu
- Center of Laboratory Animals, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Center of Laboratory Animals, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
46
|
Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 2014; 9:e111291. [PMID: 25347774 PMCID: PMC4210174 DOI: 10.1371/journal.pone.0111291] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022] Open
Abstract
Background Remote ischemic conditioning (RIC), induced by brief periods of limb ischemia has been shown to decrease acute myocardial injury and chronic responses after acute coronary syndromes. While several signaling pathways have been implicated, our understanding of the cardioprotection and its underlying mediators and mechanisms remains incomplete. In this study we examine the effect of RIC on pro-autophagy signaling as a possible mechanism of benefit. Methods and Results We examined the role of autophagy in the acute/first window (15 minutes after RIC), delayed/second window (24 hours after RIC) and chronic (24 hours after 9 days of repeated RIC) phases of cardioprotection. C57BL/6 mice (N = 69) were allocated to each treatment phase and further stratified to receive RIC, induced by four cycles of 5 minutes of limb ischemia followed by 5 minutes of reperfusion, or control treatment consisting solely of handling without transient ischemia. The groups included, group 1 (1W control), group 2 (1W RIC), group 3 (2W control), group 4 (2W RIC), group 5 (3W control) and group 6 (3W RIC). Hearts were isolated for assessment of cardiac function and infarct size after global ischemia using a Langendorff preparation. Infarct size was reduced in all three phases of cardioprotection, in association with improvements in post-ischemic left ventricular end diastolic pressure (LVEDP) and developed pressure (LVDP) (P<0.05). The pattern of autophagy signaling varied; 1W RIC increased AMPK levels and decreased the activation of mammalian target of rapamycin (mTOR), whereas chronic RIC was associated with persistent mTOR suppression and increased levels of autophagosome proteins, LC3II/I and Atg5. Conclusions Cardioprotection following transient ischemia exists in both the acute and delayed/chronic phases of conditioning. RIC induces pro-autophagy signaling but the pattern of responses varies depending on the phase, with the most complete portfolio of responses observed when RIC is administered chronically.
Collapse
|
47
|
Haar L, Ren X, Liu Y, Koch SE, Goines J, Tranter M, Engevik MA, Nieman M, Rubinstein J, Jones WK. Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways. Am J Physiol Heart Circ Physiol 2014; 307:H1705-13. [PMID: 25239807 DOI: 10.1152/ajpheart.00271.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated improvement of cardiac function occurs with acute consumption of a high-fat diet (HFD) after myocardial infarction (MI). However, no data exist addressing the effects of acute HFD upon the extent of injury after MI. This study investigates the hypothesis that short-term HFD, prior to infarction, protects the heart against ischemia-reperfusion (I/R) injury through NF-κB-dependent regulation of cell death pathways in the heart. Data show that an acute HFD initiates cardioprotection against MI (>50% reduction in infarct size normalized to risk region) after 24 h to 2 wk of HFD, but protection is completely absent after 6 wk of HFD, when mice are reported to develop pathophysiology related to the diet. Furthermore, cardioprotection after 24 h of HFD persists after an additional 24 h of normal chow feeding and was found to be dependent upon NF-κB activation in cardiomyocytes. This study also indicates that short-term HFD activates autophagic processes (beclin-1, LC-3) preischemia, as seen in other protective stimuli. Increases in beclin-1 and LC-3 were found to be NF-κB-dependent, and administration of chloroquine, an inhibitor of autophagy, abrogated cardioprotection. Our results support that acute high-fat feeding mediates cardioprotection against I/R injury associated with a NF-κB-dependent increase in autophagy and reduced apoptosis, as has been found for ischemic preconditioning.
Collapse
Affiliation(s)
- Lauren Haar
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Xiaoping Ren
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Yong Liu
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Jillian Goines
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Melinda A Engevik
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Michelle Nieman
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
48
|
Börlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics. Cell Commun Signal 2014; 12:56. [PMID: 25214434 PMCID: PMC4172826 DOI: 10.1186/s12964-014-0056-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/31/2014] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. Results We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Conclusion Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0056-8) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Sabe AA, Elmadhun NY, Sadek AA, Chu LM, Bianchi C, Sellke FW. Differential effects of atorvastatin on autophagy in ischemic and nonischemic myocardium in Ossabaw swine with metabolic syndrome. J Thorac Cardiovasc Surg 2014; 148:3172-8. [PMID: 25240527 DOI: 10.1016/j.jtcvs.2014.07.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The perioperative administration of pleomorphic statin drugs has been implicated in improving outcomes after cardiac surgery. Adaptive autophagy is a highly conserved cellular process that allows for the elimination of dysfunctional cell components in response to stress and survival under starving conditions. We sought to investigate the effects of the statin drug atorvastatin on autophagy in ischemic and nonischemic myocardia using a clinically relevant porcine model of metabolic syndrome. METHODS Male Ossabaw swine were fed a regular diet (n = 8), a high-cholesterol diet (n = 8), or a high-cholesterol diet with supplemental atorvastatin (1.5 mg/kg/d) (n = 8). After 14 weeks, all animals underwent surgical placement of an ameroid constrictor to the circumflex coronary artery to induce chronic ischemia. Nonischemic and ischemic myocardia were harvested 6 months after initiation of the diet and processed for Western blotting. RESULTS In the nonischemic myocardium, Western blot results demonstrate that a high cholesterol diet resulted in a statistically significant decrease in autophagy as indicated by an increase in mammalian target of rapamycin and the accumulation of several essential autophagy markers, including Beclin-1, light chain 3B-I, and light chain 3B-II. Atorvastatin supplementation prevented these changes and resulted in an increase in autophagy as indicated by a decrease in autophagy flux marker P62. In the ischemic myocardium, atorvastatin had the opposite effect, with a decrease in autophagy flux as indicated by an increase in p62 and an accumulation of light chain 3B-I, light chain B-II, and lysosome-associated membrane protein 2. CONCLUSIONS Atorvastatin administration has differential effects on autophagy in ischemic and nonischemic myocardia. In the setting of metabolic syndrome, atorvastatin stimulates autophagy in nonischemic myocardium while partly inhibiting autophagy in ischemic myocardium. The differential regulation on autophagy may, in part, explain the cardioprotective effect of statins in both ischemic and nonischemic myocardia, and these findings may have implications in the setting of cardiac surgery.
Collapse
Affiliation(s)
- Ashraf A Sabe
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI
| | - Nassrene Y Elmadhun
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI
| | - Ahmed A Sadek
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI
| | - Louis M Chu
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI
| | - Cesario Bianchi
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, RI.
| |
Collapse
|
50
|
Ding Z, Tong WC, Lu XX, Peng HP. Hyperbaric oxygen therapy in acute ischemic stroke: a review. INTERVENTIONAL NEUROLOGY 2014; 2:201-11. [PMID: 25337089 PMCID: PMC4188156 DOI: 10.1159/000362677] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stroke, also known as cerebrovascular disease, is a common and serious neurological disease, which is also the fourth leading cause of death in the United States so far. Hyperbaric medicine, as an emerging interdisciplinary subject, has been applied in the treatment of cerebral vascular diseases since the 1960s. Now it is widely used to treat a variety of clinical disorders, especially hypoxia-induced disorders. However, owing to the complex mechanisms of hyperbaric oxygen (HBO) treatment, the therapeutic time window and the undefined dose as well as some common clinical side effects (such as middle ear barotrauma), the widespread promotion and application of HBO was hindered, slowing down the hyperbaric medicine development. In August 2013, the US Food and Drug Administration declared artery occlusion as one of the 13 specific indications for HBO therapy. This provides opportunities, to some extent, for the further development of hyperbaric medicine. Currently, the mechanisms of HBO therapy for ischemic stroke are still not very clear. This review focuses on the potential mechanisms of HBO therapy in acute ischemic stroke as well as the time window.
Collapse
Affiliation(s)
- Zheng Ding
- Department of Hyperbaric Oxygen, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, China
| | - Wesley C. Tong
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Xin Lu
- Department of Hyperbaric Oxygen, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, China
| | - Hui-Ping Peng
- Department of Hyperbaric Oxygen, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, China
| |
Collapse
|