1
|
Alrouji M, Al‐kuraishy HM, Al‐Gareeb AI, Alshammari MS, Alexiou A, Papadakis M, Bahaa MM, Batiha GE. Cyclin-dependent kinase 5 (CDK5) inhibitors in Parkinson disease. J Cell Mol Med 2024; 28:e18412. [PMID: 38842132 PMCID: PMC11154839 DOI: 10.1111/jcmm.18412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Haydar M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & Development, AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Zhang W, Zhang M, Wu Q, Shi JS. Dendrobium nobile Lindl. Alkaloids Ameliorate Aβ25-35-Induced Synaptic Deficits by Targeting Wnt/β-Catenin Pathway in Alzheimer’s Disease Models. J Alzheimers Dis 2022; 86:297-313. [DOI: 10.3233/jad-215433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Dendrobium nobile Lindl. alkaloids (DNLA) are effective in ameliorating cognitive deficit in SAMP8, AβPP/PS1, and LPS-induced AD animal models, and prevented Aβ-induced synaptic degeneration in cultured hippocampal neurons. However, the underlying mechanisms remain unexplored. Objective: This study investigated the protective effects of DNLA on synaptic damage in an Aβ 25-35-induced rat AD model, in primary cortical neuron cultures, and in PC12 cells transfected with human AβPP695, focusing on the Wnt/β-catenin pathway. Methods: Sprague-Dawley rats received a single Aβ 25-35 injection (10μg) into the bilateral hippocampi. DNLA (40 and 80 mg/kg/d) was intragastrically administrated 7d prior to Aβ injection and continued for 28 days. The spatial learning and memory, synaptic morphology, synapse-related proteins, and Wnt signaling components GSK3β and β-catenin phosphorylation were evaluated. Rat primary cortical neuron cultures and AβPP695-PC12 cells were used to evaluate axonal mitochondria distribution, reactive oxygen species production, amyloidogenesis, and Wnt pathway in the protection. Results: DNLA ameliorated Aβ-induced cognitive impairment, increased the number of synapses, elevated the postsynaptic density thickness and expression of synapsin and PSD95 in the hippocampus, and suppressed Aβ-mediated GSK3β activity and the β-catenin phosphorylation. In primary neurons and AβPP695-PC12 cells, DNLA restored Aβ 25-35 induced mitochondrial dysfunction and inhibited reactive oxygen species production and amyloidogenesis. Furthermore, the Wnt/β-catenin pathway inhibitor Dkk-1 blocked the effect of DNLA on the expression of Aβ 1-42 and PSD95. Conclusion: DNLA rescued Aβ-mediated synaptic and mitochondrial injury and inhibited amyloidogenesis in vivo and in vitro, probably through the activation of Wnt/β-catenin signaling pathway to protect synaptic integrity.
Collapse
Affiliation(s)
- Wei Zhang
- Medical College, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Minghui Zhang
- Tongren City People’s Hospital, Tongren, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Yang T, Tran KC, Zeng AY, Massa SM, Longo FM. Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Sci Rep 2020; 10:20322. [PMID: 33230162 PMCID: PMC7683564 DOI: 10.1038/s41598-020-77210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Longitudinal preclinical and clinical studies suggest that Aβ drives neurite and synapse degeneration through an array of tau-dependent and independent mechanisms. The intracellular signaling networks regulated by the p75 neurotrophin receptor (p75NTR) substantially overlap with those linked to Aβ and to tau. Here we examine the hypothesis that modulation of p75NTR will suppress the generation of multiple potentially pathogenic tau species and related signaling to protect dendritic spines and processes from Aβ-induced injury. In neurons exposed to oligomeric Aβ in vitro and APP mutant mouse models, modulation of p75NTR signaling using the small-molecule LM11A-31 was found to inhibit Aβ-associated degeneration of neurites and spines; and tau phosphorylation, cleavage, oligomerization and missorting. In line with these effects on tau, LM11A-31 inhibited excess activation of Fyn kinase and its targets, tau and NMDA-NR2B, and decreased Rho kinase signaling changes and downstream aberrant cofilin phosphorylation. In vitro studies with pseudohyperphosphorylated tau and constitutively active RhoA revealed that LM11A-31 likely acts principally upstream of tau phosphorylation, and has effects preventing spine loss both up and downstream of RhoA activation. These findings support the hypothesis that modulation of p75NTR signaling inhibits a broad spectrum of Aβ-triggered, tau-related molecular pathology thereby contributing to synaptic resilience.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Kevin C Tran
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Anne Y Zeng
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Stephen M Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Samant NP, Gupta GL. Novel therapeutic strategies for Alzheimer's disease targeting brain cholesterol homeostasis. Eur J Neurosci 2020; 53:673-686. [PMID: 32852876 DOI: 10.1111/ejn.14949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Aβ plaques and tauopathy are two major concerns associated with AD. Moreover, excessive Aβ accumulation can lead to other nonspecific metabolic brain abnormalities. There are various genetic, environmental, and other risk factors associated with AD. Identification of risk factors and its mechanisms by which these factors impart role in AD pathology would be helpful for the prevention of AD progression. Altered cholesterol homeostasis could be considered as a risk factor for AD progression. Brain cholesterol dysmetabolism is recognized as one of the crucial attributes for AD that affect major hallmarks of AD including neurodegeneration. To fill the gap between altered cholesterol levels in the brain and AD, the researchers started focusing on statins as re-purposing drugs for AD treatment. The various other hypothesis has been suggested due to a lack of beneficial results of statins in clinical trials, such as reduced brain cholesterol could underlie poor cognition. Unfortunately, it is still unclear, whether an increase or decrease in brain cholesterol levels responsible for Alzheimer's disease or not. Presently, scientists believed that managing the level of cholesterol in the brain may help as an alternative treatment strategy for AD. In this review, we focused on the therapeutic strategies for AD by targeting brain cholesterol levels.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
5
|
Qingxin Kaiqiao Fang Inhibits A β 25-35-Induced Apoptosis in Primary Cultured Rat Hippocampal Neuronal Cells via the p38 MAPK Pathway: An Experimental Validation and Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9058135. [PMID: 32831882 PMCID: PMC7424524 DOI: 10.1155/2020/9058135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Qingxin kaiqiao fang (QKF), a traditional Chinese medicine compound, has been applied to treat Alzheimer's disease (AD) for many years and has exhibited remarkable effects. However, the underlying mechanism is still not explicit. The current study aims to investigate whether QKF exerts an antiapoptotic role through the p38 MAPK pathway in the course of AD. Network pharmacology analysis was applied to study the effective components, possible therapeutic targets, and AD-related pathway of QKF. Further, the AD cell model was established using amyloid-beta (Aβ)25-35 peptide and primary hippocampal neuronal cells extracted from newborn Sprague-Dawley rats. Microtubule-associated protein-2 (MAP-2) imaging was used to detect the morphology of hippocampal neurons. Western blot (WB) analysis was applied to detect the protein expression levels of p38 MAPK, p-p38 MAPK, Bcl-2, Bax, caspase-3, and cleaved caspase-3. Cell viability and apoptosis were determined using cell counting kit-8 (CCK-8) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, respectively. SB203580 and U46619 were used to detect changes in cell morphology, cell viability, and apoptosis upon inhibiting or activating p38 MAPK. Our present work showed that QKF protects hippocampal neuronal morphology, enhances cell viability, and reduces the number of TUNEL-positive cells. In addition, our results showed that QKF increased the expression levels of antiapoptotic proteins and decreased the expression of proapoptotic proteins. QKF at 25 mg·mL−1 best inhibited neuronal apoptosis among the three doses of QKF by suppressing p38 MAPK activity. Collectively, QKF plays an antiapoptotic role via the p38 MAPK pathway.
Collapse
|
6
|
He Z, Yang Y, Xing Z, Zuo Z, Wang R, Gu H, Qi F, Yao Z. Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 2020; 11:440. [PMID: 32514180 PMCID: PMC7280212 DOI: 10.1038/s41419-020-2644-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a major self-degradative process that maintains cellular homeostasis and function in mammalian cells. Autophagic dysfunction occurs in the early pathogenesis of Alzheimer’s disease (AD) and directly regulates amyloid-β (Aβ) metabolism. Although it has been proven that the cytokine IFN-γ enhances autophagy in macrophage cell lines, whether the signaling cascade is implicated in Aβ degradation in AD mouse models remains to be elucidated. Here, we found that 9 days of the intraperitoneal administration of IFN-γ significantly increased the LC3II/I ratio and decreased the level of p62 in APP/PS1 mice, an AD mouse model. In vitro, IFN-γ protected BV2 cells from Aβ toxicity by upregulating the expressions of Atg7 and Atg5 and the LC3II/I ratio, whereas these protective effects were ablated by interference with Atg5 expression. Moreover, IFN-γ enhanced autophagic flux, probably through suppressing the AKT/mTOR pathway both in vivo and in vitro. Importantly, using intravital two-photon microscopy and fluorescence staining, we found that microglia interacted with exogenous IFN-γ and Aβ, and surrounded Aβ in APP/PS1;CX3CR1-GFP+/− mice. In addition, IFN-γ treatment decreased the Aβ plaque load in the cortex and hippocampus and rescued cognitive deficits in APP/PS1 mice. Our data suggest a possible mechanism by which the peripheral injection of IFN-γ restores microglial autophagy to induce the phagocytosis of cerebral Aβ, which represents a potential therapeutic approach for the use of exogenous IFN-γ in AD.
Collapse
Affiliation(s)
- Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Rui Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Teaching and Research Bureau of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| |
Collapse
|
7
|
Çelik H, Karahan H, Kelicen-Uğur P. Effect of atorvastatin on Aβ 1-42 -induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. ACTA ACUST UNITED AC 2019; 72:424-436. [PMID: 31846093 DOI: 10.1111/jphp.13208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Sestrins (SESNs) and sirtuins (SIRTs) are antioxidant and antiapoptotic genes and crucial mediators for lysosomal autophagy regulation that play a pivotal role in the Alzheimer's disease (AD). Recently, statins have been linked to the reduced prevalence of AD in statin-prescribed populations yet molecular basis for the neuroprotective action of statins is still under debate. METHODS This study was undertaken whether Aβ-induced changes of SESN2 and SIRT1 protein expression, autophagy marker LC3II and lysosomal enzyme TPP1 affected by atorvastatin (Western blot) and its possible role in Aβ neurotoxicity (ELISA). KEY FINDINGS/RESULTS We showed that SESN2 and LC3II expressions were elevated, whereas SIRT1 and TPP1 expressions were decreased in the Aβ1-42 -exposed human neuroblastoma cells (SH-SY5Y). Co-administration of atorvastatin with Aβ1-42 compensates SESN2 increase and recovers SIRT1 decline by reducing oxidative stress, decreasing SESN2 expression and increasing SIRT1 expression by its neuroprotective action. Atorvastatin induced LC3II but not TPP1 level in the Aβ1-42 -exposed cells suggested that atorvastatin is effective in the formation of autophagosome but not on the expression of the specific lysosomal enzyme TPP1. DISCUSSION AND CONCLUSION Together, these results indicate that atorvastatin induced SESN2, SIRT1 and LC3II levels play a protective role against Aβ1-42 neurotoxicity.
Collapse
Affiliation(s)
- Hande Çelik
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey.,Acıbadem Molecular Pathology Laboratory, İstanbul, Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Selenomethionine Mitigates Cognitive Decline by Targeting Both Tau Hyperphosphorylation and Autophagic Clearance in an Alzheimer's Disease Mouse Model. J Neurosci 2017; 37:2449-2462. [PMID: 28137967 DOI: 10.1523/jneurosci.3229-16.2017] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/21/2022] Open
Abstract
Tau pathology was recently identified as a key driver of disease progression and an attractive therapeutic target in Alzheimer's disease (AD). Selenomethionine (Se-Met), a major bioactive form of selenium (Se) in organisms with significant antioxidant capacity, reduced the levels of total tau and hyperphosphorylated tau and ameliorated cognitive deficits in younger triple transgenic AD (3xTg-AD) mice. Whether Se-Met has a similar effect on tau pathology and the specific mechanism of action in older 3xTg-AD mice remains unknown. Autophagy is a major self-degradative process to maintain cellular homeostasis and function. Autophagic dysfunction has been implicated in the pathogenesis of multiple age-dependent diseases, including AD. Modulation of autophagy has been shown to retard the accumulation of misfolded and aggregated proteins and to delay the progression of AD. Here, we found that 3xTg-AD mice showed significant improvement in cognitive ability after a 3-month treatment with Se-Met beginning at 8 months of age. In addition to attenuating the hyperphosphorylation of tau by modulating the activity of Akt/glycogen synthase kinase-3β and protein phosphatase 2A, Se-Met-induced reduction of tau was also mediated by an autophagy-based pathway. Specifically, Se-Met improved the initiation of autophagy via the AMP-activated protein kinase-mTOR (mammalian target of rapamycin) signaling pathway and enhanced autophagic flux to promote the clearance of tau in 3xTg-AD mice and primary 3xTg neurons. Thus, our results demonstrate for the first time that Se-Met mitigates cognitive decline by targeting both the hyperphosphorylation of tau and the autophagic clearance of tau in AD mice. These data strongly support Se-Met as a potent nutraceutical for AD therapy.SIGNIFICANCE STATEMENT Selenium has been widely recognized as a vital trace element abundant in the brain with effects of antioxidant, anticancer, and anti-inflammation. In this study, we report that selenomethionine rescues spatial learning and memory impairments in aged 3xTg-AD mice via decreasing the level of tau protein and tau hyperphosphorylation. We find that selenomethionine promotes the initiation of autophagy via the AMPK-mTOR pathway and enhances autophagic flux, thereby facilitating tau clearance in vivo and in vitro We have now identified an additional, novel mechanism by which selenomethionine improves the cognitive function of AD mice. Specifically, our data suggest the effect of selenium/selenomethionine on an autophagic pathway in Alzheimer's disease.
Collapse
|
9
|
Zhang SG, Wang XS, Zhang YD, Di Q, Shi JP, Qian M, Xu LG, Lin XJ, Lu J. Indirubin-3'-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen Res 2016; 11:988-93. [PMID: 27482230 PMCID: PMC4962599 DOI: 10.4103/1673-5374.184500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apoptosis in Alzheimer's disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that indirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Shu-Gang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Shan Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Di
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Qian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Gang Xu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xing-Jian Lin
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Li C, Wang J, Zhao J, Wang Y, Liu Z, Guo FL, Wang XF, Vreugdenhil M, Lu CB. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices. Eur J Neurosci 2016; 44:2236-46. [PMID: 27336700 DOI: 10.1111/ejn.13322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
Abstract
Atorvastatin has been shown to affect cognitive functions in rodents and humans. However, the underlying mechanism is not fully understood. Because hippocampal gamma oscillations (γ, 20-80 Hz) are associated with cognitive functions, we studied the effect of atorvastatin on persistent kainate-induced γ oscillation in the CA3 area of rat hippocampal slices. The involvement of NMDA receptors and multiple kinases was tested before and after administration of atorvastatin. Whole-cell current-clamp and voltage-clamp recordings were made from CA3 pyramidal neurons and interneurons before and after atorvastatin application. Atorvastatin increased γ power by ~ 50% in a concentration-dependent manner, without affecting dominant frequency. Whereas atorvastatin did not affect intrinsic properties of both pyramidal neurons and interneurons, it increased the firing frequency of interneurons but not that of pyramidal neurons. Furthermore, whereas atorvastatin did not affect synaptic current amplitude, it increased the frequency of spontaneous inhibitory post-synaptic currents, but did not affect the frequency of spontaneous excitatory post-synaptic currents. The atorvastatin-induced enhancement of γ oscillations was prevented by pretreatment with the PKA inhibitor H89, the ERK inhibitor U0126, or the PI3K inhibitor wortmanin, but not by the NMDA receptor antagonist D-AP5. Taken together, these results demonstrate that atorvastatin enhanced the kainate-induced γ oscillation by increasing interneuron excitability, with an involvement of multiple intracellular kinase pathways. Our study suggests that the classical cholesterol-lowering agent atorvastatin may improve cognitive functions compromised in disease, via the enhancement of hippocampal γ oscillations.
Collapse
Affiliation(s)
- Chengzhang Li
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jiangang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yali Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Zhihua Liu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Fang Li Guo
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Xiao Fang Wang
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical University, Xinxiang, China.,School of Health and Education, Birmingham City University, Birmingham, UK
| | - Cheng Biao Lu
- Key Lab of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| |
Collapse
|
11
|
Zhou D, Liu H, Li C, Wang F, Shi Y, Liu L, Zhao X, Liu A, Zhang J, Wang C, Chen Z. Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice. Metab Brain Dis 2016; 31:693-703. [PMID: 26883430 DOI: 10.1007/s11011-016-9803-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Amyloid-beta (Aβ) interacts with the serine/threonine protein kinase AKT (also known as protein kinase B)/glycogen synthase kinase 3β (GSK3β) pathway and deactivates GSK3β signaling, which result in microtubule protein tau phosphorylation. Atorvastatin, a HMG-CoA reductase inhibitor, has been proven to improve learning and memory performance, reduce Aβ and phosphorylated tau levels in mouse model of Alzheimer's disease (AD). However, it still remains unclear whether atorvastatin is responsible for regulation of AKT/GSK3β signaling and contributes to subsequent down-regulation of Aβ1-42 and phosphorylated tau in APP/PS1 transgenic (Tg APP/PS1) mice. Herein, we aimed to investigate the possible impacts of atorvastatin (10 mg/kg, p.o.) on the memory deficit by behavioral tests and changes of AKT/GSK3β signaling in hippocampus and prefrontal cortex by western blot test in Tg APP/PS1 mice. The results showed that treatment with atorvastatin significantly reversed the memory deficit in the Tg APP/PS1 mice in a novel object recognition and the Morris water maze tests. Moreover, atorvastatin significantly attenuated Aβ1-42 accumulation and phosphorylation of tau (Ser396) in the hippocampus and prefrontal cortex of Tg APP/PS1 mice. In addition, atorvastatin treatment also increased phosphorylation of AKT, inhibited GSK3β activity by increasing phosphorylation of GSK3β (Ser9) and decreasing the beta-site APP cleaving enzyme 1 (BACE1) expression. These results indicated that the memory ameliorating effect of atorvastatin may be, in part, by regulation the AKT/GSK3β signaling which may contribute to down-regulation of Aβ1-42 and tau hyperphosphorylation.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Huaxia Liu
- School of Nursing, Taishan Medical University, Taian, Shandong, 271016, People's of Republic China
| | - Chenli Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Fangyan Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Yaosheng Shi
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Lingjiang Liu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Xin Zhao
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Aiming Liu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China
| | - Junfang Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's of Republic China.
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's of Republic China.
| | - Zhongming Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315210, People's of Republic China.
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's of Republic China.
| |
Collapse
|
12
|
A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats. Acta Pharmacol Sin 2016; 37:444-52. [PMID: 26838073 DOI: 10.1038/aps.2015.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023] Open
Abstract
AIM A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer's disease (AD)-like symptoms. METHODS SD rats were administered IMM-H004 (8 mg·kg(-1)·d(-1), ig) or donepezil (positive control, 1 mg·kg(-1)·d(-1), ig) for 25 d. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis. RESULTS OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil. CONCLUSION Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD.
Collapse
|
13
|
Zhao L, Chen T, Wang C, Li G, Zhi W, Yin J, Wan Q, Chen L. Atorvastatin in improvement of cognitive impairments caused by amyloid β in mice: involvement of inflammatory reaction. BMC Neurol 2016; 16:18. [PMID: 26846170 PMCID: PMC4743318 DOI: 10.1186/s12883-016-0533-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/16/2016] [Indexed: 11/23/2022] Open
Abstract
Background The production of inflammatory cytokines resulting from amyloid β (Aβ) is associated with the initiation of Alzheimer’s disease (AD). Atorvastatin (ATV) has been reported to improve AD, however, it is unclear how the anti-inflammatory mechanism is linked with its protection against the impairment of spatial cognitive function in AD. The present study was designed to explore what mechanism was possibly involved in the anti-inflammatory pathway in regard to the ATV treatment of AD. Methods We used an AD model induced by the administration of Aβ25–35 in male C57BL/6 mice and an in vitro culture system to study the protective effects of ATV on the spatial cognitive deficits, hippocampal long-term potentiation (LTP) impairment and inflammatory reaction. Results The intragastric administration of ATV (5 mg/kg) in Aβ25–35-treated mice significantly ameliorated the spatial cognitive deficits and prevented the LTP impairment in hippocampal CA1. The increased Iba-1 positive cells and inflammatory components in the hippocampus were reduced after the ATV treatment. The anti-inflammatory and LTP protection of ATV were abolished using the replenishment of farnesyl pyrophosphate by the administration of farnesol (FOH). The hippocampal slices culture showed Aβ25–35-induced neurotoxicity in the absence of the presence of ATV. Treatment with ATV (0.5, 1, 2.5 μmol/L) dose-dependently prevented the cell damage in hippocampus induced by Aβ25–35. Conclusion The administration of ATV ameliorated the cognitive deficits, depressed the inflammatory responses, improved the LTP impairment, and prevents Aβ25-35-induced neurotoxicity in cultured hippocampal neurons. These protective functions of ATV involved the pathway of reducing farnesyl pyrophosphate (FPP).
Collapse
Affiliation(s)
- Liandong Zhao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.,Department of Neurology, The Second Hospital of Huaian, Huaian, Jiangsu, 223002, China
| | - Tingting Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Chonghui Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guoxi Li
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Wenhui Zhi
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jun Yin
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China. .,Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China.
| |
Collapse
|