1
|
Spagnuolo C, Moccia S, Tedesco I, Crescente G, Volpe MG, Russo M, Russo GL. Phenolic Extract from Extra Virgin Olive Oil Induces Different Anti-Proliferative Pathways in Human Bladder Cancer Cell Lines. Nutrients 2022; 15:nu15010182. [PMID: 36615840 PMCID: PMC9823665 DOI: 10.3390/nu15010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Regular consumption of olive oil is associated with protection against chronic-degenerative diseases, such as cancer. Epidemiological evidence indicates an inverse association between olive oil intake and bladder cancer risk. Bladder cancer is among the most common forms of cancer; in particular, the transitional cell carcinoma histotype shows aggressive behavior. We investigated the anti-proliferative effects of a phenolic extract prepared from an extra virgin olive oil (EVOOE) on two human bladder cancer cell lines, namely RT112 and J82, representing the progression from low-grade to high-grade tumors, respectively. In RT112, the EVOOE reduced cell viability (IC50 = 240 μg/mL at 24 h), triggering a non-protective form of autophagy, evidenced by the autophagosome formation and the increase in LC-3 lipidation. In J82, EVOOE induced a strong decrease in cell viability after 24 h of treatment (IC50 = 65.8 μg/mL) through rapid and massive apoptosis, assessed by Annexin V positivity and caspase-3 and -9 activation. Moreover, in both bladder cancer cell lines, EVOOE reduced intracellular reactive oxygen species, but this antioxidant effect was not correlated with its anti-proliferative outcomes. Data obtained suggest that the mixture of phenolic compounds in extra virgin olive oil activates different anti-proliferative pathways.
Collapse
|
2
|
Shozu K, Kaneko S, Shinkai N, Dozen A, Kosuge H, Nakakido M, Machino H, Takasawa K, Asada K, Komatsu M, Tsumoto K, Ohnuma SI, Hamamoto R. Repression of the PRELP gene is relieved by histone deacetylase inhibitors through acetylation of histone H2B lysine 5 in bladder cancer. Clin Epigenetics 2022; 14:147. [PMID: 36371227 PMCID: PMC9656081 DOI: 10.1186/s13148-022-01370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich proteoglycan family of extracellular matrix proteins, which is markedly suppressed in the majority of early-stage epithelial cancers and plays a role in regulating the epithelial-mesenchymal transition by altering cell-cell adhesion. Although PRELP is an important factor in the development and progression of bladder cancer, the mechanism of PRELP gene repression remains unclear. RESULTS Here, we show that repression of PRELP mRNA expression in bladder cancer cells is alleviated by HDAC inhibitors (HDACi) through histone acetylation. Using ChIP-qPCR analysis, we found that acetylation of lysine residue 5 of histone H2B in the PRELP gene promoter region is a marker for the de-repression of PRELP expression. CONCLUSIONS These results suggest a mechanism through which HDACi may partially regulate the function of PRELP to suppress the development and progression of bladder cancer. Some HDACi are already in clinical use, and the findings of this study provide a mechanistic basis for further investigation of HDACi-based therapeutic strategies.
Collapse
Affiliation(s)
- Kanto Shozu
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Syuzo Kaneko
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| | - Norio Shinkai
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan ,grid.265073.50000 0001 1014 9130Department of NCC Cancer Science, Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ai Dozen
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hirofumi Kosuge
- grid.26999.3d0000 0001 2151 536XSchool of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- grid.26999.3d0000 0001 2151 536XSchool of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hidenori Machino
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| | - Ken Takasawa
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| | - Ken Asada
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| | - Masaaki Komatsu
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XSchool of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Ohnuma
- grid.83440.3b0000000121901201UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL UK ,grid.5335.00000000121885934Department of Oncology, The Hutchison/MRC Research Center, University of Cambridge, Hills Road, Cambridge, CB2 2XZ UK
| | - Ryuji Hamamoto
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan ,grid.509456.bRIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Tokyo, Japan
| |
Collapse
|
3
|
Moshnikova A, Golijanin B, Amin A, Doyle J, Kott O, Gershman B, DuPont M, Li Y, Lu X, Engelman DM, Andreev OA, Reshetnyak YK, Golijanin D. Targeting Bladder Urothelial Carcinoma with pHLIP-ICG and Inhibition of Urothelial Cancer Cell Proliferation by pHLIP-amanitin. FRONTIERS IN UROLOGY 2022; 2:868919. [PMID: 36439552 PMCID: PMC9691284 DOI: 10.3389/fruro.2022.868919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acidity is a useful biomarker for the targeting of metabolically active-cells in tumors. pH Low Insertion Peptides (pHLIPs) sense the pH at the surfaces of tumor cells and can facilitate intracellular delivery of cell-permeable and cell-impermeable cargo molecules. In this study we have shown the targeting of malignant lesions in human bladders by fluorescent pHLIP agents, intracellular delivery of amanitin toxin by pHLIP for the inhibition of urothelial cancer cell proliferation, and enhanced potency of pHLIP-amanitin for cancer cells with 17p loss, a mutation frequently present in urothelial cancers. Twenty-eight ex-vivo bladder specimens, from patients undergoing robotic assisted laparoscopic radical cystectomy for bladder cancer, were treated via intravesical incubation for 15-60 minutes with pHLIP conjugated to indocyanine green (ICG) or IR-800 near infrared fluorescent (NIRF) dyes at concentrations of 4-8 μM. White light cystoscopy identified 47/58 (81%) and NIRF pHLIP cystoscopy identified 57/58 (98.3%) of malignant lesions of different subtypes and stages selected for histopathological processing. pHLIP NIRF imaging improved diagnosis by 17.3% (p < 0.05). All carcinoma-in-situ cases missed by white light cystoscopy were targeted by pHLIP agents and were diagnosed by NIRF imaging. We also investigated the interactions of pHLIP-amanitin with urothelial cancer cells of different grades. pHLIP-amanitin produced concentration- and pH-dependent inhibition of the proliferation of urothelial cancer cells treated for 2 hrs at concentrations up to 4 μM. A 3-4x enhanced cytotoxicity of pHLIP-amanitin was observed for cells with a 17p loss after 2 hrs of treatment at pH6. Potentially, pHLIP technology may improve the management of urothelial cancers, including imaging of malignant lesions using pHLIP-ICG for diagnosis and surgery, and the use of pHLIP-amanitin for treatment of superficial bladder cancers via intravesical instillation.
Collapse
Affiliation(s)
- Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Borivoj Golijanin
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA
- Division of Urology, Department of Surgery, Brown University, The Miriam Hospital, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, The Miriam Hospital, Providence, RI, USA
| | - Joshua Doyle
- Physics Department, University of Rhode Island, Kingston, RI, USA
- Current address: Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ohad Kott
- Division of Urology, Department of Surgery, Brown University, The Miriam Hospital, Providence, RI, USA
| | - Boris Gershman
- Division of Urology, Department of Surgery, Brown University, The Miriam Hospital, Providence, RI, USA
- Current address: Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin & Bren Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donald M. Engelman
- Department of Molecular Biophysics and Biochemistry, Yale, New Haven, CT, USA
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | | | - Dragan Golijanin
- Division of Urology, Department of Surgery, Brown University, The Miriam Hospital, Providence, RI, USA
| |
Collapse
|
4
|
Nguyen S, Chevalier MF, Benmerzoug S, Cesson V, Schneider AK, Rodrigues-Dias SC, Dartiguenave F, Lucca I, Jichlinski P, Roth B, Nardelli-Haefliger D, Derré L. Vδ2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. J Immunother Cancer 2022; 10:jitc-2022-004880. [PMID: 36002184 PMCID: PMC9413168 DOI: 10.1136/jitc-2022-004880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bladder cancer is an important public health concern due to its prevalence, high risk of recurrence and associated cost of management. Although BCG instillation for urothelial cancer treatment is the gold-standard treatment for this indication, repeated BCG treatments are associated with significant toxicity and failure, underlining the necessity for alternative or complementary immunotherapy and overall for better understanding of T-cell responses generated within bladder mucosa. Tumor-infiltrating lymphocytes (TIL) have long been recognized as a crucial component of the tumor microenvironment for the control of tumor. Among TIL, unconventional γδ T cells sparked interest due to their potent antitumor functions. Although preclinical mouse xenograft models demonstrated the relevance of using γδ T cells as a novel therapy for bladder cancer (BCa), the contribution of γδ T cells in BCa patients’ pathology remains unaddressed. Methods Therefore, we first determined the proportion of intratumor γδ T cells in muscle-invasive patients with BCa by deconvoluting data from The Cancer Genome Atlas (TCGA) and the frequency of blood Vδ1, Vδ2, and total γδ T cells, by flow cytometry, from 80 patients with BCa (40 non-muscle and 40 muscle-invasive patients with BCa), as well as from 20 age-matched non-tumor patients. Then we investigated in vitro which treatment may promote BCa tumor cell recognition by γδ T cells. Results We observed a decrease of γδ T-cell abundance in the tumor compared with corresponding normal adjacent tissue, suggesting that the tumor microenvironment may alter γδ T cells. Yet, high intratumor γδ T-cell proportions were significantly associated with better patient survival outcomes, potentially due to Vδ2 T cells. In the blood of patients with BCa, we observed a lower frequency of total γδ, Vδ1, and Vδ2 T cells compared with non-tumor patients, similarly to the TCGA analysis. In addition, a favorable clinical outcome is associated with a high frequency of circulating γδ T cells, which might be mainly attributed to the Vδ2 T-cell subset. Furthermore, in vitro assays revealed that either BCG, Zoledronate, or anti-BTN3 agonistic antibody treatment of bladder tumor cells induced Vδ2 T-cell cytolytic (CD107a+) and cytokine-production (IFN-γ and TNF-α). Strikingly, combining BCG and Zoledronate treatments significantly elicited the most quantitative and qualitative response by increasing the frequency and the polyfunctionality of bladder tumor-reactive Vδ2 T cells. Conclusions Overall, our results suggest that (1) Vδ2 T cells might play a prominent role in bladder tumor control and (2) non-muscle invasive patients with BCa undergoing BCG therapy may benefit from Zoledronate administration by boosting Vδ2 T cells’ antitumor activity.
Collapse
Affiliation(s)
- Sylvain Nguyen
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mathieu F Chevalier
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,INSERM U976, HIPI Unit (Human Immunology, Pathophysiology and Immunotherapy), Hôpital Saint-Louis, Paris, France
| | - Sulayman Benmerzoug
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Valérie Cesson
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anna K Schneider
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sonia-Cristina Rodrigues-Dias
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Florence Dartiguenave
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ilaria Lucca
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Patrice Jichlinski
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Beat Roth
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Derré
- Urology Research Unit and Urology Biobank, Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
5
|
Green JL, Osterhout RE, Klova AL, Merkwirth C, McDonnell SRP, Zavareh RB, Fuchs BC, Kamal A, Jakobsen JS. Molecular characterization of type I IFN-induced cytotoxicity in bladder cancer cells reveals biomarkers of resistance. Mol Ther Oncolytics 2021; 23:547-559. [PMID: 34938855 PMCID: PMC8645427 DOI: 10.1016/j.omto.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Although anti-tumor activities of type I interferons (IFNs) have been recognized for decades, the molecular mechanisms contributing to clinical response remain poorly understood. The complex functions of these pleiotropic cytokines include stimulation of innate and adaptive immune responses against tumors as well as direct inhibition of tumor cells. In high-grade, Bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer, nadofaragene firadenovec, a non-replicating adenovirus administered locally to express the IFNα2b transgene, embodies a novel approach to deploy the therapeutic activity of type I IFNs while minimizing systemic toxicities. Deciphering which functions of type I IFN are required for clinical activity will bolster efforts to maximize the efficacy of nadofaragene firadenovec and other type I IFN-based therapies, and inform strategies to address resistance. As such, we characterized the phenotypic and molecular response of human bladder cancer cell lines to IFNα delivered in multiple contexts, including adenoviral delivery. We found that constitutive activation of the type I IFN signaling pathway is a biomarker for resistance to both transcriptional response and direct cytotoxic effects of IFNα. We present several genes that discriminate between sensitive and resistant tumor cells, suggesting they should be explored for utility as biomarkers in future clinical trials of type I IFN-based anti-tumor therapies.
Collapse
Affiliation(s)
| | | | - Amy L Klova
- Ferring Research Institute, San Diego, CA, USA
| | | | | | | | | | | | - Jørn S Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| |
Collapse
|
6
|
Zuo Y, Xu X, Chen M, Qi L. The oncogenic role of the cerebral endothelial cell adhesion molecule (CERCAM) in bladder cancer cells in vitro and in vivo. Cancer Med 2021; 10:4437-4450. [PMID: 34105305 PMCID: PMC8267158 DOI: 10.1002/cam4.3955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer is a menace to global health worldwide due to its high recurrence rate and its progression to invasive muscular complications. Cell adhesion molecules play an intricate role in cancer migration, growth, and invasion. Therefore, through bioinformatics analysis, it was found that the higher cerebral endothelial cell adhesion molecule (CERCAM) predicted lower chance in bladder cancer patient survival; subsequently, in vitro and in vivo investigations were performed to evaluate the specific effects of CERCAM on bladder cancer cell phenotypes and tumor growth in mice model. The PCR‐based analysis revealed an aberrant upregulation of CERCAM in bladder carcinoma tissues and cells when compared with normal controls. In vitro, functional experiments such as MTT, EdU, and Transwell assays showed that CERCAM overexpression markedly enhanced bladder cancer cell viability, DNA synthesis, and cell invasion. In contrast, CERCAM silencing suppressed bladder cancer cell viability, DNA synthesis, and cell invasion. CERCAM overexpression significantly increased PCNA, Vimentin, Twist, and N‐cadherin proteins but decreased E‐cadherin and cleaved‐caspase3, whereas CERCAM silencing exerted opposite effects on these markers. In vivo, subcutaneous implant model experiments in nude mice showed that CERCAM silencing suppressed the growth of subcutaneously implanted tumors. CERCAM altered the phosphorylation process of AKT. The PI3K inhibitor LY294002 treatment manifested similar effects as CERCAM silencing on bladder cancer cell behaviors and partially impaired the promotive functions of CERCAM overexpression upon the capacity of bladder cancer cells to proliferate and invade. When taken together, the cell adhesion molecule CERCAM is overexpressed in bladder cancer tissues. In vitro, CERCAM overexpression significantly promoted bladder cancer cell viability, DNA synthesis, and cell invasion and alters the cleaved‐caspase3, E‐cadherin, and N‐cadherin expression pattern; in vivo, CERCAM silencing suppressed tumor growth in nude mice. The PI3K/AKT signaling is suspected of interfering participate in the functions of CERCAM in bladder carcinoma.
Collapse
Affiliation(s)
- Yali Zuo
- Deportment of urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliang Xu
- Department of Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Minfeng Chen
- Deportment of urology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Deportment of urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Dynamic Regulation of Caveolin-1 Phosphorylation and Caveolae Formation by Mammalian Target of Rapamycin Complex 2 in Bladder Cancer Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1846-1862. [PMID: 31199921 DOI: 10.1016/j.ajpath.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin (mTOR) and associated phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway is commonly up-regulated in cancer, including bladder cancer. mTOR complex 2 (mTORC2) is a major regulator of bladder cancer cell migration and invasion, but the mechanisms by which mTORC2 regulates these processes are unclear. A discovery mass spectrometry and reverse-phase protein array-based proteomics dual approach was used to identify novel mTORC2 phosphoprotein targets in actively invading cancer cells. mTORC2 targets included focal adhesion kinase, proto-oncogene tyrosine-protein kinase Src, and caveolin-1 (Cav-1), among others. Functional testing shows that mTORC2 regulates Cav-1 localization and dynamic phosphorylation of Cav-1 on Y14. Regulation of Cav-1 activity by mTORC2 also alters the abundance of caveolae, which are specialized lipid raft invaginations of the plasma membrane associated with cell signaling and membrane compartmentalization. Our results demonstrate a unique role for mTORC2-mediated regulation of caveolae formation in actively migrating cancer cells.
Collapse
|
8
|
Kim S, Kim Y, Kong J, Kim E, Choi JH, Yuk HD, Lee H, Kim HR, Lee KH, Kang M, Roe JS, Moon KC, Kim S, Ku JH, Shin K. Epigenetic regulation of mammalian Hedgehog signaling to the stroma determines the molecular subtype of bladder cancer. eLife 2019; 8:e43024. [PMID: 31036156 PMCID: PMC6597241 DOI: 10.7554/elife.43024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
In bladder, loss of mammalian Sonic Hedgehog (Shh) accompanies progression to invasive urothelial carcinoma, but the molecular mechanisms underlying this cancer-initiating event are poorly defined. Here, we show that loss of Shh results from hypermethylation of the CpG shore of the Shh gene, and that inhibition of DNA methylation increases Shh expression to halt the initiation of murine urothelial carcinoma at the early stage of progression. In full-fledged tumors, pharmacologic augmentation of Hedgehog (Hh) pathway activity impedes tumor growth, and this cancer-restraining effect of Hh signaling is mediated by the stromal response to Shh signals, which stimulates subtype conversion of basal to luminal-like urothelial carcinoma. Our findings thus provide a basis to develop subtype-specific strategies for the management of human bladder cancer.
Collapse
Affiliation(s)
- SungEun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Yubin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - JungHo Kong
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Eunjee Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Jae Hyeok Choi
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Hyeong Dong Yuk
- Department of UrologySeoul National University HospitalSeoulRepublic of Korea
| | - HyeSun Lee
- Department of UrologySeoul National University HospitalSeoulRepublic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Kyoung-Hwa Lee
- Department of UrologySeoul National University HospitalSeoulRepublic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, School of MedicineSungkyunkwan UniversitySeoulRepublic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Kyung Chul Moon
- Department of PathologySeoul National University HospitalSeoulRepublic of Korea
| | - Sanguk Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Ja Hyeon Ku
- Department of UrologySeoul National University HospitalSeoulRepublic of Korea
| | - Kunyoo Shin
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
9
|
Saling M, Duckett JK, Ackers I, Coschigano K, Jenkinson S, Malgor R. Wnt5a / planar cell polarity signaling pathway in urothelial carcinoma, a potential prognostic biomarker. Oncotarget 2018; 8:31655-31665. [PMID: 28427201 PMCID: PMC5458237 DOI: 10.18632/oncotarget.15877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
Bladder cancer is the fourth most common cancer in men and the most common malignancy of the urinary tract. Bladder cancers detected at an early stage have a very high five-year survival rate, but when detected after local metastasis the rate is only about 50%. Our group recently reported a positive correlation between the expression of Wnt5a, a member of the Wnt proteins family, and histopathological grade and stage of urothelial carcinoma (UC). The objective of this study was to analyze UC cases reported in Athens, Ohio and investigate the major components of Wnt5a / planar cell polarity (PCP) signaling pathway in UC human tissue samples and UC cell lines. Formalin fixed and paraffin embedded transurethral resection tissues were immunostained for Wnt5a, Ror-2, CTHRC1 and E-cadherin. In addition, in vitro studies using UC cell lines were investigated for Wnt5a/PCP signaling and epithelial mesenchymal transition (EMT) gene expression. The IHC results showed a correlation between the expression of Wnt5a, Ror2 and CTHRC1 with high histological grade of the tumor, while E-cadherin showed an opposite trend of expression. Real time RT-PCR results showed that RNA expression of the Wnt5a/ PCP pathway genes vary in low and high grade UC cell lines and that the high grade cell lines exhibited signs of EMT. These findings support that Wnt5a-Ror2 signaling plays a role in UC, support the potential use of Wnt5a as a prognostic marker and provide evidence that Wnt5a signaling may be used as an effective molecular target for novel therapeutic tools.
Collapse
Affiliation(s)
- Mark Saling
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Jordan K Duckett
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Karen Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,The Diabetes Institute of Ohio University, Athens, Ohio, USA
| | - Scott Jenkinson
- University Medical Associates, Inc., Pathology, Athens, Ohio, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,The Diabetes Institute of Ohio University, Athens, Ohio, USA
| |
Collapse
|
10
|
Viktorsson K, Shah CH, Juntti T, Hååg P, Zielinska-Chomej K, Sierakowiak A, Holmsten K, Tu J, Spira J, Kanter L, Lewensohn R, Ullén A. Melphalan-flufenamide is cytotoxic and potentiates treatment with chemotherapy and the Src inhibitor dasatinib in urothelial carcinoma. Mol Oncol 2016; 10:719-34. [PMID: 26827254 PMCID: PMC5423156 DOI: 10.1016/j.molonc.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chemotherapy options in advanced urothelial carcinoma (UC) remain limited. Here we evaluated the peptide-based alkylating agent melphalan-flufenamide (mel-flufen) for UC. METHODS UC cell lines J82, RT4, TCCsup and 5637 were treated with mel-flufen, alone or combined with cisplatin, gemcitabine, dasatinib or bestatin. Cell viability (MTT assay), intracellular drug accumulation (liquid chromatography) apoptosis induction (apoptotic cell nuclei morphology, western blot analysis of PARP-1/caspase-9 cleavage and Bak/Bax activation) were evaluated. Kinome alterations were characterized by PathScan array and phospho-Src validated by western blotting. Aminopeptidase N (ANPEP) expression was evaluated in UC clinical specimens in relation to patient outcome. RESULTS In J82, RT4, TCCsup and 5637 UC cells, mel-flufen amplified the intracellular loading of melphalan in part via aminopeptidase N (ANPEP), resulting in increased cytotoxicity compared to melphalan alone. Mel-flufen induced apoptosis seen as activation of Bak/Bax, cleavage of caspase-9/PARP-1 and induction of apoptotic cell nuclei morphology. Combining mel-flufen with cisplatin or gemcitabine in J82 cells resulted in additive cytotoxic effects and for gemcitabine also increased apoptosis induction. Profiling of mel-flufen-induced kinome alterations in J82 cells revealed that mel-flufen alone did not inhibit Src phosphorylation. Accordingly, the Src inhibitor dasatinib sensitized for mel-flufen cytotoxicity. Immunohistochemical analysis of the putative mel-flufen biomarker ANPEP demonstrated prominent expression levels in tumours from 82 of 83 cystectomy patients. Significantly longer median overall survival was found in patients with high ANPEP expression (P = 0.02). CONCLUSION Mel-flufen alone or in combination with cisplatin, gemcitabine or Src inhibition holds promise as a novel treatment for UC.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden.
| | - Carl-Henrik Shah
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Petra Hååg
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Katarzyna Zielinska-Chomej
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Adam Sierakowiak
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Karin Holmsten
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jessica Tu
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Jack Spira
- InSpira Medical AB, SE-135 53 Tyresö, Sweden
| | - Lena Kanter
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anders Ullén
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
11
|
The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget 2016; 6:9220-39. [PMID: 25940704 PMCID: PMC4496213 DOI: 10.18632/oncotarget.3312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/08/2015] [Indexed: 12/22/2022] Open
Abstract
In this study, we report that EMP2 plays a tumor suppressor role by inducing G2/M cell cycle arrest, suppressing cell viability, proliferation, colony formation/anchorage-independent cell growth via regulation of G2/M checkpoints in distinct urinary bladder urothelial carcinoma (UBUC)-derived cell lines. Genistein treatment or exogenous expression of the cAMP responsive element binding protein 1 (CREB1) gene in different UBUC-derived cell lines induced EMP2 transcription and subsequent translation. Mutagenesis on either or both cAMP-responsive element(s) dramatically decreased the EMP2 promoter activity with, without genistein treatment or exogenous CREB1 expression, respectively. Significantly correlation between the EMP2 immunointensity and primary tumor, nodal status, histological grade, vascular invasion and mitotic activity was identified. Multivariate analysis further demonstrated that low EMP2 immunoexpression is an independent prognostic factor for poor disease-specific survival. Genistein treatments, knockdown of EMP2 gene and double knockdown of CREB1 and EMP2 genes significantly inhibited tumor growth and notably downregulated CREB1 and EMP2 protein levels in the mice xenograft models. Therefore, genistein induced CREB1 transcription, translation and upregulated pCREB1(S133) protein level. Afterward, pCREB1(S133) transactivated the tumor suppressor gene, EMP2, in vitro and in vivo. Our study identified a novel transcriptional target, which plays a tumor suppressor role, of CREB1.
Collapse
|
12
|
García-Cuesta EM, López-Cobo S, Álvarez-Maestro M, Esteso G, Romera-Cárdenas G, Rey M, Cassady-Cain RL, Linares A, Valés-Gómez A, Reyburn HT, Martínez-Piñeiro L, Valés-Gómez M. NKG2D is a Key Receptor for Recognition of Bladder Cancer Cells by IL-2-Activated NK Cells and BCG Promotes NK Cell Activation. Front Immunol 2015; 6:284. [PMID: 26106390 PMCID: PMC4459093 DOI: 10.3389/fimmu.2015.00284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/18/2015] [Indexed: 12/05/2022] Open
Abstract
Intravesical instillation of bacillus Calmette–Guérin (BCG) is used to treat superficial bladder cancer, either papillary tumors (after transurethral resection) or high-grade flat carcinomas (carcinoma in situ), reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, natural killer (NK), and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient.
Collapse
Affiliation(s)
- Eva María García-Cuesta
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Sheila López-Cobo
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Gema Romera-Cárdenas
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | - Mercedes Rey
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Ana Linares
- Urology Unit, Infanta Sofía Hospital , Madrid , Spain
| | | | - Hugh Thomson Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
13
|
Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Spiekerkoetter E, Liao JC, Beachy PA. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 2014; 26:521-33. [PMID: 25314078 PMCID: PMC4326077 DOI: 10.1016/j.ccell.2014.09.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022]
Abstract
Hedgehog (Hh) pathway inhibitors are clinically effective in treatment of basal cell carcinoma and medulloblastoma, but fail therapeutically or accelerate progression in treatment of endodermally derived colon and pancreatic cancers. In bladder, another organ of endodermal origin, we find that despite its initial presence in the cancer cell of origin Sonic hedgehog (Shh) expression is invariably lost during progression to invasive urothelial carcinoma. Genetic blockade of stromal response to Shh furthermore dramatically accelerates progression and decreases survival time. This cancer-restraining effect of Hh pathway activity is associated with stromal expression of BMP signals, which stimulate urothelial differentiation. Progression is dramatically reduced by pharmacological activation of BMP pathway activity with low-dose FK506, suggesting an approach to management of human bladder cancer.
Collapse
Affiliation(s)
- Kunyoo Shin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Agnes Lim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chen Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Debashis Sahoo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying Pan
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Dozmorov MG, Yang Q, Wu W, Wren J, Suhail MM, Woolley CL, Young DG, Fung KM, Lin HK. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study. Chin Med 2014; 9:18. [PMID: 25006348 PMCID: PMC4086286 DOI: 10.1186/1749-8546-9-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/26/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. METHODS The effects of frankincense (1,400-600 dilutions) (v/v) and sandalwood (16,000-7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. RESULTS Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. CONCLUSION The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Qing Yang
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Weijuan Wu
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan Wren
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Mahmoud M Suhail
- Dhofar Frankincense Research Plant, Salalah AYUBS42, Sultanate of Oman
| | | | - D Gary Young
- Young Living Essential Oils, Lehi, UT 84043, USA
| | - Kar-Ming Fung
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA ; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA ; Oklahoma City Veterans Medical Center, Oklahoma City, OK 73104, USA
| | - Hsueh-Kung Lin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA ; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA ; Department of Urology, University of Oklahoma Medical Center, 920 Stanton L. Young Blvd., WP 3150, Oklahoma City, OK 73034, USA
| |
Collapse
|
15
|
Niedworok C, Kretschmer I, Röck K, vom Dorp F, Szarvas T, Heß J, Freudenberger T, Melchior-Becker A, Rübben H, Fischer JW. The impact of the receptor of hyaluronan-mediated motility (RHAMM) on human urothelial transitional cell cancer of the bladder. PLoS One 2013; 8:e75681. [PMID: 24069434 PMCID: PMC3775893 DOI: 10.1371/journal.pone.0075681] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 08/21/2013] [Indexed: 12/28/2022] Open
Abstract
Hyaluronan (HA) is a carbohydrate of the extracellular matrix with tumor promoting effects in a variety of cancers. The present study addressed the role of HA matrix for progression and prognosis of human bladder cancer by studying the expression and function of HA-related genes.
Collapse
Affiliation(s)
- Christian Niedworok
- Department of Urology, Essen Medical School, University Duisburg-Essen, Essen, Germany
| | - Inga Kretschmer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frank vom Dorp
- Department of Urology, Essen Medical School, University Duisburg-Essen, Essen, Germany
| | - Tibor Szarvas
- Department of Urology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Jochen Heß
- Department of Urology, Essen Medical School, University Duisburg-Essen, Essen, Germany
| | - Till Freudenberger
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ariane Melchior-Becker
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Herbert Rübben
- Department of Urology, Essen Medical School, University Duisburg-Essen, Essen, Germany
| | - Jens W. Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
16
|
Chen Y, Zhou C, Ge Z, Liu Y, Liu Y, Feng W, Li S, Chen G, Wei T. Composition and potential anticancer activities of essential oils obtained from myrrh and frankincense. Oncol Lett 2013; 6:1140-1146. [PMID: 24137478 PMCID: PMC3796379 DOI: 10.3892/ol.2013.1520] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the composition and potential anticancer activities of essential oils obtained from two species, myrrh and frankincense, by hydrodistillation. Using gas chromatography-mass spectrometry (GC-MS), 76 and 99 components were identified in the myrrh and frankincense essential oils, respectively, with the most abundant components, 2-Cyclohexen-1-one, 4-ethynyl-4-hydroxy-3,5,5-trimethyl- and n-Octylacetate, accounting for 12.01 and 34.66%, respectively. The effects of the two essential oils, independently and as a mixture, on five tumor cell lines, MCF-7, HS-1, HepG2, HeLa and A549, were investigated using the MTT assay. The results indicated that the MCF-7 and HS-1 cell lines showed increased sensitivity to the myrrh and frankincense essential oils compared with the remaining cell lines. In addition, the anticancer effects of myrrh were markedly increased compared with those of frankincense, however, no significant synergistic effects were identified. The flow cytometry results indicated that apoptosis may be a major contributor to the biological efficacy of MCF-7 cells.
Collapse
Affiliation(s)
- Yingli Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China ; Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 158000, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
DeGraff DJ, Robinson VL, Shah JB, Brandt WD, Sonpavde G, Kang Y, Liebert M, Wu XR, Taylor JA. Current preclinical models for the advancement of translational bladder cancer research. Mol Cancer Ther 2012; 12:121-30. [PMID: 23269072 DOI: 10.1158/1535-7163.mct-12-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care.
Collapse
Affiliation(s)
- David J DeGraff
- 1Vanderbilt University Medical Center, Nashville,Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fei DL, Sanchez-Mejias A, Wang Z, Flaveny C, Long J, Singh S, Rodriguez-Blanco J, Tokhunts R, Giambelli C, Briegel KJ, Schulz WA, Gandolfi AJ, Karagas M, Zimmers TA, Jorda M, Bejarano P, Capobianco AJ, Robbins DJ. Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 2012; 72:4449-58. [PMID: 22815529 PMCID: PMC3809830 DOI: 10.1158/0008-5472.can-11-4123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of Hedgehog (HH) signaling in bladder cancer remains controversial. The gene encoding the HH receptor and negative regulator PATCHED1 (PTCH1) resides on a region of chromosome 9q, one copy of which is frequently lost in bladder cancer. Inconsistent with PTCH1 functioning as a classic tumor suppressor gene, loss-of-function mutations in the remaining copy of PTCH1 are not commonly found. Here, we provide direct evidence for a critical role of HH signaling in bladder carcinogenesis. We show that transformed human urothelial cells and many urothelial carcinoma cell lines exhibit constitutive HH signaling, which is required for their growth and tumorigenic properties. Surprisingly, rather than originating from loss of PTCH1, the constitutive HH activity observed in urothelial carcinoma cell lines was HH ligand dependent. Consistent with this finding, increased levels of HH and the HH target gene product GLI1 were found in resected human primary bladder tumors. Furthermore, on the basis of the difference in intrinsic HH dependence of urothelial carcinoma cell lines, a gene expression signature was identified that correlated with bladder cancer progression. Our findings therefore indicate that therapeutic targeting of the HH signaling pathway may be beneficial in the clinical management of bladder cancer.
Collapse
Affiliation(s)
- Dennis Liang Fei
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, NH
| | - Avencia Sanchez-Mejias
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Zhiqiang Wang
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Colin Flaveny
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Jun Long
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Samer Singh
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Jezabel Rodriguez-Blanco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Robert Tokhunts
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, NH
| | - Camilla Giambelli
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Karoline J. Briegel
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | | | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Margaret Karagas
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, NH
| | - Teresa A. Zimmers
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
| | - Merce Jorda
- Department of Pathology, University of Miami, Miami, FL
| | | | - Anthony J. Capobianco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David J. Robbins
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami, Miami, FL
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
19
|
Tomlinson DC, Baxter EW, Loadman PM, Hull MA, Knowles MA. FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms. PLoS One 2012; 7:e38972. [PMID: 22701738 PMCID: PMC3373505 DOI: 10.1371/journal.pone.0038972] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/14/2012] [Indexed: 12/17/2022] Open
Abstract
Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγ and MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E(2) levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis.
Collapse
Affiliation(s)
- Darren C. Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Euan W. Baxter
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Paul M. Loadman
- Instititue of Cancer Therapeutics, University of Bradford, Richmond Road, Bradford, United Kingdom
| | - Mark A. Hull
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Margaret A. Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, Smolkin ME, Chang SS, Cookson MS, Herrick MK, Shariat SF, Steinberg GD, Frierson HF, Wu XR, Theodorescu D, Matusik RJ. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One 2012; 7:e36669. [PMID: 22590586 PMCID: PMC3349679 DOI: 10.1371/journal.pone.0036669] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.
Collapse
Affiliation(s)
- David J DeGraff
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roelants M, Huygens A, Crnolatac I, Van Cleynenbreugel B, Lerut E, Van Poppel H, de Witte PAM. Evans blue as a selective dye marker for white-light diagnosis of non-muscle-invasive bladder cancer: an in vitro study. BJU Int 2011; 109:300-5. [PMID: 21854534 DOI: 10.1111/j.1464-410x.2011.10465.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To develop a diagnostic method relying on the preferential accumulation of a dye in non-muscle-invasive bladder cancer (NMIBC) that is visible in conjunction with white-light cystoscopy (WLC). MATERIALS AND METHODS We investigated in detail the permeation of Evans blue in urothelial cell carcinoma (UCC) spheroids prepared from T24, J82 and RT-112 human cell lines and spheroids composed of normal human urothelial (NHU) cells. To gain more insight into the differential accumulation, all spheroids were investigated ultrastructurally using transmission electron microscopy (TEM). RESULTS We found that, after exposure to Evans blue for 2 h, UCC spheroids accumulated dramatically more dye than spheroids composed of NHU cells. Using TEM it was found that the malignant spheroids contain similar ultrastructural characteristics, i.e. a wide intercellular space and a decreased number of desmosome-like cell attachments, to those from clinical samples of non-papillary carcinoma in situ of the bladder. CONCLUSION We believe the present findings could be important for future developments in clinical diagnostics for early bladder cancer detection, staging and grading involving WLC.
Collapse
Affiliation(s)
- Mieke Roelants
- Laboratorium voor Farmaceutische Biologie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Roelants M, Van Cleynenbreugel B, Van Poppel H, Lerut E, de Witte PAM. Use of fluorescein isothiocyanate-human serum albumin for the intravesical photodiagnosis of non-muscle-invasive bladder cancer: an in vitro study using multicellular spheroids composed of normal human urothelial and urothelial cell carcinoma cell lines. BJU Int 2010; 108:455-9. [PMID: 21156021 DOI: 10.1111/j.1464-410x.2010.09951.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE • To evaluate human serum albumin (HSA), fluorescently labelled with fluorescein isothiocyanate (FITC), as a potential intravesical photodiagnostic method for the early detection of non-muscle-invasive bladder cancer. PATIENTS AND METHODS • By using multicellular spheroids prepared from normal human urothelial (NHU) cells and from different urothelial cell carcinoma (UCC) cell lines (T24, J82), we simulated three-dimensionally the normal urothelium and non-muscle-invasive UCCs present in the bladder of patients. • The distribution of FITC-HSA in these spheroids was investigated. RESULTS • Our data showed that fluorescently labelled albumin is quite evenly dispersed throughout the spheroids. However, in the case of the 10 mg/mL incubations, the fluorescence intensity seems to increase slightly towards the spheroid core. • Using 1 mg/mL, the penetration of FITC-HSA in T24 differed significantly from the penetration in NHU spheroids, but this was not the case for J82 spheroids. • When the concentration of FITC-HSA was increased 10-fold, all UCC spheroids exhibited a significantly different accumulation of FITC-HSA. CONCLUSIONS • As spheroids represent a suitable in vitro model for predicting the in vivo behaviour of compounds, our data suggest that FITC-HSA could be used for the early detection of non-muscle-invasive bladder cancer. • Human serum albumin conjugates of new or already available intravesical drugs could be generated to create alternative bladder cancer therapies with increased selectivity.
Collapse
Affiliation(s)
- Mieke Roelants
- Pharmaceutical Biology Laboratory, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
23
|
Jen CP, Huang CT, Tsai CH. Supraphysiological thermal injury in different human bladder carcinoma cell lines. Ann Biomed Eng 2009; 37:2407-15. [PMID: 19657740 DOI: 10.1007/s10439-009-9773-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/30/2009] [Indexed: 01/01/2023]
Abstract
Depending on the duration of exposure to supraphysiological temperatures, cellular proteins and organelles can suffer from structural alternations and irreversible denaturation, which may induce cell death. The thermotolerance of three human urinary bladder carcinoma cell lines, TSGH-8301, J82 and TCC-SUP (cytological grade 2, 3 and 4, respectively), was investigated in the present study. A home-made heating stage was used to provide a constant temperature for different cell lines of bladder carcinoma. The experimental data showed that the TCC-SUP and TSGH-8301 cells exhibited the lowest and highest thermotolerances, respectively, while J82 cells were intermediate. Moreover, the differences in the thermotolerances for the TSGH-8301 and J82 cells are significant when the supraphysiological temperature is higher than 43 degrees C. As for TSGH-8301 and TCC-SUP cells, the thermotolerances are significantly different for all of the thermal treatments tested. Furthermore, the thermotolerances of J82 and TCC-SUP are significantly different when the cells are exposed to a temperature less than 50 degrees C for longer than 2 min. Overall, the results suggest that the high cytological grade of the cell line of bladder cancer exhibits a low thermotolerance. The kinematic parameters of the activation energy and frequency factor for bladder cancer cell lines with different cytological grades were also quantitatively evaluated in this work.
Collapse
Affiliation(s)
- Chun-Ping Jen
- Department of Mechanical Engineering, National Chung Cheng University, No. 168 University Rd., Min-Hsiung, Chia Yi, Taiwan, ROC.
| | | | | |
Collapse
|
24
|
Frank MB, Yang Q, Osban J, Azzarello JT, Saban MR, Saban R, Ashley RA, Welter JC, Fung KM, Lin HK. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2009; 9:6. [PMID: 19296830 PMCID: PMC2664784 DOI: 10.1186/1472-6882-9-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
Background Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells. Methods Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis. Results Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis. Conclusion Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.
Collapse
|
25
|
Neveling K, Kalb R, Florl AR, Herterich S, Friedl R, Hoehn H, Hader C, Hartmann FH, Nanda I, Steinlein C, Schmid M, Tonnies H, Hurst CD, Knowles MA, Hanenberg H, Schulz WA, Schindler D. Disruption of the FA/BRCA pathway in bladder cancer. Cytogenet Genome Res 2007; 118:166-76. [PMID: 18000367 DOI: 10.1159/000108297] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/23/2007] [Indexed: 12/18/2022] Open
Abstract
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression.
Collapse
Affiliation(s)
- K Neveling
- Department of Human Genetics, University of WürzburgBiozentrum, B107, Am Hubland, DE-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Krieg RC, Herr A, Raupach K, Ren Q, Schwamborn K, Knuechel R. Analyzing effects of photodynamic therapy with 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) in urothelial cells using reverse phase protein arrays. Photochem Photobiol Sci 2007; 6:1296-305. [PMID: 18046485 DOI: 10.1039/b704464j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PPIX) is clinically established approach for a number of defined applications. However, in order to optimize the therapeutic benefits of PDT, the specific mode of cell destruction should be better defined. Apoptosis is favored over necrosis for clinical practice as the latter causes more side-effects. In the present study, we analyse PDT-induced cell death and its correlation to various PDT parameters (different doses applied, time after PDT treatment) in vitro using reverse phase protein arrays. Human urothelial cell lines with varying degrees of differentiation (UROtsa, RT4, RT112, J82) were subjected to in vitro-PDT using increasing doses of irradiation. In addition, positive controls for apoptosis, necrosis and un-/specific cellular damage were included. Cells were harvested over a specified time course, lysed and arrayed onto nitrocellulose-covered glass slides. The arrays were analyzed for expression of apoptosis-related proteins by immunohistochemistry. Analysis of caspase-3 and -9 expression, the activation of HIF-1alpha, Bcl2, Cox2 and the phosphorylation of AKT reveals signal activation due to a PDT-stimulus in correlation with the positive controls. Data were analyzed by unsupervised hierarchical clustering and depicted as a heat map revealing cell-specific patterns of pathway stimulation. Higher differentiated phenotypes showed a more distinct signal response in general and a higher apoptotic response in detail. Lower differentiated cell lines lost pathway regulation capabilities according to their state of dedifferentiation. Reverse phase protein arrays are a promising technique for signal pathway profiling: they exceed the range of traditional western blots by sensitivity, high-throughput capability, minimal sample consumption and easy quantification of results obtained.
Collapse
Affiliation(s)
- R C Krieg
- Institute of Pathology, Pauwelsstr. 30, RWTH Aachen University, Aachen, D-52074, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Liu J, Smith E, Zhou K, Liao J, Yang GY, Tan M, Zhan X. Downregulation of missing in metastasis gene (MIM) is associated with the progression of bladder transitional carcinomas. Cancer Invest 2007; 25:79-86. [PMID: 17453818 DOI: 10.1080/07357900701205457] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Missing in metastasis (MIM) gene encodes a putative metastasis suppressor. However, the role of MIM in tumorigenesis and metastasis has not yet been established. Western blot analysis using a MIM specific antibody demonstrated that MIM protein is present at varying levels in a variety of normal cells as well as tumor cell lines. Immunohistochemical staining of adult mouse tissues revealed abundant MIM immunoreactivity in uroepithelial cells in the bladder, neuron Purkinje cells in the cerebellum, and megakaryocytes in the bone marrow and spleen in addition. MIM immunoreactivity also was found in human normal bladder transitional epithelial cells. However, the reactivity was not seen in 69 percent of human primary transitional cell carcinoma specimens. Over 51 percent of the tumors at low grade display MIM staining similarly to the normal cells, whereas only 16.7 percent of the tumors at high-grade with poor differentiation show faint or mild staining. Furthermore, full-length MIM protein is highly expressed in SV-HUC-L an immortalized normal transitional epithelial cell line, moderately expressed in T24 and poorly expressed in J82 and TCCSUP transitional cell carcinoma cells. This finding indicates that downegulation of MIM expression may correlate with the transition of tumor cells from distinct epithelium-like morphology to less differentiated carcinomas.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, University of Maryland, Marlene Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Holterman DA, Diaz JI, Blackmore PF, Davis JW, Schellhammer PF, Corica A, Semmes OJ, Vlahou A. Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol 2006; 24:97-108. [PMID: 16520271 DOI: 10.1016/j.urolonc.2005.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/25/2005] [Accepted: 07/26/2005] [Indexed: 11/16/2022]
Abstract
Alpha-defensin (alpha-defensin) has been identified as a potential marker for bladder cancer in urine by surface enhanced laser desorption ionization studies, and confirmed using both immunoabsorption and immunodepletion studies. The objective of this study was to investigate the role of alpha-defensin in bladder cancer. Immunohistochemical analysis of tissue sections showed that alpha-defensin peptides are frequently expressed in bladder cancer cells. It is noteworthy that expression of alpha-defensins increased with tumor invasiveness. Surface enhanced laser desorption ionization analysis showed the presence of alpha-defensin in the T24 and A498 cancer cell lines. These cell lines show higher classically aggressive in vitro characteristics compared with the J82 cells that did not express alpha-defensin. Exogenously added alpha-defensin increased the proliferation and motility/invasiveness of these cell lines using respective assays. It is interesting that alpha-defensin peptides increased intracellular calcium ions (Ca2+). These data are consistent with a role for alpha-defensin in bladder cancer via modulation of cell motility and invasiveness using common intracellular signals, such as Ca2+. We propose that autocrine tumor expression of alpha-defensins may play an important role in facilitating the invasive phenotype of bladder cancer in patients.
Collapse
Affiliation(s)
- Daniel A Holterman
- Departments of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005; 24:5218-25. [PMID: 15897885 DOI: 10.1038/sj.onc.1208705] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequent in superficial urothelial cell carcinoma (UCC). Ras gene mutations are also found in UCC. As oncogenic activation of both FGFR3 and Ras is predicted to result in stimulation of the mitogen-activated protein kinase (MAPK) pathway, we hypothesized that these might be mutually exclusive events. HRAS mutation has been widely studied in UCC, but all three Ras gene family members have not been screened for mutation in the same sample series. We screened 98 bladder tumours and 31 bladder cell lines for mutations in FGFR3, HRAS, NRAS and KRAS2. FGFR3 mutations were present in 54 tumours (55%) and three cell lines (10%), and Ras gene mutations in 13 tumours (13%) and four cell lines (13%). These included mutations in all three Ras genes; ten in HRAS, four in KRAS2 and four in NRAS and these were not associated with either tumour grade or stage. In no cases were Ras and FGFR3 mutation found together. This mutual exclusion suggests that FGFR3 and Ras gene mutation may represent alternative means to confer the same phenotype on UCC cells. If these events have biological equivalence, Ras mutant invasive UCC may represent a novel subgroup.
Collapse
Affiliation(s)
- Adel H Jebar
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
30
|
Williams SV, Adams J, Coulter J, Summersgill BM, Shipley J, Knowles MA. Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro. Genes Chromosomes Cancer 2005; 43:315-28. [PMID: 15846775 DOI: 10.1002/gcc.20166] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We carried out multiplex fluorescence in situ hybridization (M-FISH) and follow-up FISH studies on a large series of transitional cell carcinoma (TCC) cell lines and 2 normal urothelium-derived cell lines, several of which have not had karyotypes reported previously. M-FISH analysis, with appropriate follow-up, complements conventional cytogenetic analysis and array CGH studies, allowing a more accurate definition of karyotype. The detailed karyotypic data obtained will assist in choosing suitable cell lines for functional studies and identifies common losses, gains, breakpoints and potential fusion gene sites in TCC. We have shown changes in cell lines RT112 and DSH1 following prolonged culture, and differences in karyotype, between RT112 cultures obtained from different sources. We propose a model for the evolutionary changes leading to these differences. A comparison with the literature found other examples of differences in cell-line karyotypes between different sources. Nevertheless, several karyotypic changes were preserved between different sources of the same cell line and were also seen in more than one cell line. These may be the most important changes and include -8p, +20, 4q-, 10p-, 16p- and breaks in 8p21. We carried out a more detailed follow-up of some regions, which showed involvement of 8p breaks and losses in 15 of 16 TCC cell lines but in neither of the normal urothelium-derived cell lines. Some changes represented distal loss, whereas others were small deletions. Further study of this region is warranted.
Collapse
Affiliation(s)
- Sarah V Williams
- Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | |
Collapse
|
31
|
Adams J, Cuthbert-Heavens D, Bass S, Knowles MA. Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Lett 2005; 220:137-44. [PMID: 15766588 DOI: 10.1016/j.canlet.2004.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/28/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Loss of heterozygosity (LOH) on 8p is a frequent event in many cancers and is often associated with more aggressive disease. Tumour necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 2 (TRAIL-R2) also known as TNFRSF10B (tumour necrosis factor receptor (TNFR) super family 10b) or KILLER/DR5, a member of the TNFR family, is a promising candidate tumour suppressor gene at 8p21-22. Mutations in this gene have been identified in non-small cell lung cancer, head and neck cancer, breast cancer and non-Hodgkin's lymphoma. We carried out mutation analysis of TRAIL-R2 in bladder cancer cell lines and in primary bladder tumours. One novel protein truncating mutation was identified in a bladder cancer cell line. Our results suggest that if TRAIL-R2 is the target of LOH events in these cancers, inactivation of the remaining allele is by a mechanism other than mutation.
Collapse
Affiliation(s)
- Jacqui Adams
- Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | | |
Collapse
|
32
|
Li C, Teng RH, Tsai YC, Ke HS, Huang JY, Chen CC, Kao YL, Kuo CC, Bell WR, Shieh B. H-Ras oncogene counteracts the growth-inhibitory effect of genistein in T24 bladder carcinoma cells. Br J Cancer 2005; 92:80-8. [PMID: 15611796 PMCID: PMC3215993 DOI: 10.1038/sj.bjc.6602272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among eight human bladder cancer cell lines we examined, only T24 cells were resistant to the growth inhibition effect of genistein, an isoflavone and potent anticancer drug. Since the T24 cell line was the only cell line known to overexpress oncogenic H-Ras(val 12), we investigated the role of H-Ras(val 12) in mediating drug resistance. Herein, we demonstrate that the phenotype of T24 cells could be dramatically reversed and became relatively susceptible to growth inhibition by genistein if the synthesis of H-Ras(val 12) or its downstream effector c-Fos had been suppressed. The inhibition of Ras-mediated signalling with protein kinase inhibitors, such as PD58059 and U0126 which inhibited MEK and ERK, in T24 cells also rendered the identical phenotypic reversion. However, this reversion was not observed when an inhibitor was used to suppress the protein phosphorylation function of PI3 K or PKC. These results suggest that the signal mediated by H-Ras(val 12) is predominantly responsible for the resistance of the cells to the anticancer drug genistein.
Collapse
Affiliation(s)
- C Li
- Department of Microbiology and Immunology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - R-H Teng
- Department of Microbiology and Immunology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - Y-C Tsai
- Department of Biochemistry, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - H-S Ke
- Institute of Biomedical Sciences, National Chung Hsing University, No. 250, Kuo Kwang Rd., Taichung 402, Taiwan, ROC
| | - J-Y Huang
- Department of Biochemistry, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - C-C Chen
- Institute of Molecular Medicine, National Cheng Kung University Medical College, No. 1, Ta Hsueh Rd., Tainan 601, Taiwan, ROC
| | - Y-L Kao
- Department of Urology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - C-C Kuo
- Department of Urology, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - W R Bell
- Internal Medicine, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
| | - B Shieh
- Department of Biochemistry, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC
- Department of Biochemistry, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung 402, Taiwan, ROC. E-mail:
| |
Collapse
|
33
|
Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ, Pienta KJ, Jackson P. Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 2004; 215:209-20. [PMID: 15488640 DOI: 10.1016/j.canlet.2004.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/04/2004] [Accepted: 05/05/2004] [Indexed: 11/23/2022]
Abstract
It has been proposed that a 356 amino acid protein encoded by the MIM (Missing In Metastasis) gene on Chromosome 8q24.1, is a bladder cancer metastasis suppressor. Recently, Machesky and colleagues [Biochem. J. 371 (2003) 463] identified MIM-B, a 759 amino acid protein, of which the C-terminal 356 amino acids are almost identical to MIM. Importantly, PCR primers and Northern Blotting probes used in the studies of MIM in bladder cancer did not distinguish between sequences specific for MIM or MIM-B, thus the importance of either protein to bladder cancer remains unclear. We have used primer sequences specific for either MIM or MIM-B to explore the possible functional significance of MIM and MIM-B to bladder cancer cell behaviour. We have compared MIM and MIM-B mRNA levels in a non-tumourigenic, non-invasive, transformed uro-epithelial cell line versus 15 bladder cancer cell lines of differing in vitro invasive abilities, as well as in five cell lines clonally isolated from the BL17/2 bladder tumour cell line, whose in vitro and in vivo invasive abilities have been determined. MIM and MIM-B mRNA levels varied widely between cell lines. Down-regulation of MIM and MIM-B occurred in 6/15 (40%) lines but lines showing down-regulation differed between MIM and MIM-B. Reduced levels of MIM and MIM-B in BL17/2 were further reduced in 2/5 (40%) sublines (MIM and MIM-B). Importantly, there was no association between MIM or MIM-B expression and invasive behaviour in vivo or in vitro. Treatment of representative cell lines with 5-aza-2-deoxycytidine failed to induce MIM or MIM-B expression. Furthermore, there was no association between MIM or MIM-B mRNA levels and p53 functional status. Our data indicate that down-regulation of MIM and/or MIM-B expression can occur in bladder cancer cell lines but is not associated with increased invasive behaviour. Our data also suggest that in those cell lines with reduced levels of MIM and MIM-B mRNA, down-regulation is unlikely to be due to promoter hypermethylation or loss of p53 function.
Collapse
Affiliation(s)
- Sheri Nixdorf
- Oncology Research Centre, Prince of Wales Hospital, Level 2 Clinical Sciences Building, Barker Street, Randwick, NSW 2031, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Russell PJ, Ow KT, Tam PN, Juarez J, Kingsley EA, Qu CF, Li Y, Cozzi PJ, Martiniello-Wilks R. Immunohistochemical characterisation of the monoclonal antibody BLCA-38 for the detection of prostate cancer. Cancer Immunol Immunother 2004; 53:995-1004. [PMID: 15449043 PMCID: PMC11032839 DOI: 10.1007/s00262-004-0527-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 02/29/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Monoclonal antibodies (MAbs) can be used to detect, image and treat cancers. This study aimed to characterise the binding of BLCA-38 MAbs to human prostate cancer cell lines, human prostate cancer biopsy samples and normal tissues to enable future targeted studies. METHODS BLCA-38 antigen expression on cancer lines was determined by flow cytometry; that on patient specimens from normal tissues and cancers was tested by immunohistochemistry using fresh frozen tissues or paraffin-embedded tissues that had undergone antigen retrieval. RESULTS Cell surface BLCA-38 antigen expression was seen on DU-145, PC-3, PC-3 M and PC-3 M-MM2 prostate cancer lines, but LNCaP, MDA PCa 2a or MDA PCa 2b lines were negative. Other human lines, including 8/12 bladder cancer and A431 vulval epidermoid cells, but not breast cancer lines, expressed BLCA-38 antigen. Staining occurred in glandular epithelial cells in the majority of frozen, and paraffin-embedded prostate cancer tissues and was occasionally seen in prostatic intraepithelial neoplasia (PIN). No staining was observed in normal cadaver tissues or in benign areas from various other cancer tissues. CONCLUSIONS The BLCA-38 antibody binds to the majority of human prostate cancers but not to normal cells, and has potential for targeting novel therapies in patients with this disease.
Collapse
Affiliation(s)
- P J Russell
- Oncology Research Centre, Prince of Wales Hospital, Clinical Sciences Building, Level 2, Barker Street, Randwick, 2031, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Diermeier S, Schmidt-Bruecken E, Kubbies M, Kunz-Schughart LA, Brockhoff G. Exposure to continuous bromodeoxyuridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif 2004; 37:195-206. [PMID: 15030553 PMCID: PMC6495776 DOI: 10.1111/j.1365-2184.2004.00296.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Incorporation of bromodeoxyuridine (BrdU) during DNA replication is frequently used for cell cycle analysis. The flow cytometric BrdU/Hoechst quenching technique is conducive to high-resolution assessment of cell cycle kinetics, but requires continuous BrdU treatment, which may have cytostatic or cytotoxic effects. Here, we have examined the impact of BrdU on the proliferation of BT474 and SK-BR-3 breast cancer cell lines and compared the observed effects with cell proliferation of RT4 and J82 bladder carcinoma cells, previously described to be sensitive and insensitive to BrdU, respectively. Both uni- and bi-parametric DNA measurements were performed to identify BrdU-induced alterations in the S-phase fraction and in cell cycle progression. An annexinV/propidium iodide (PI) assay was used to identify potential induction of apoptosis by BrdU. Proliferative activity in BT474, SK-BR-3, and RT4 cultures was reduced in different cell cycle phases due to continuous treatment with 60, 5.0, and 3.5 micro m BrdU. This effect, which was not found in J82 cultures, was dependent on exposure time (96 versus 48 h) and was also dose-dependent for RT4 and SK-BR-3. BrdU application does not induce apoptosis or necrosis as revealed with the annexin V/PI assay. We concluded that continuous BrdU treatment did not affect cell viability, but essentially alters cell cycle progression in three out of four cell lines tested. Cell-type specific validation of the feasibility of the powerful BrdU/Hoechst quenching technique is required and recommended.
Collapse
Affiliation(s)
- S Diermeier
- Institute of Pathology, University of Regensburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Stoehr R, Wissmann C, Suzuki H, Knuechel R, Krieg RC, Klopocki E, Dahl E, Wild P, Blaszyk H, Sauter G, Simon R, Schmitt R, Zaak D, Hofstaedter F, Rosenthal A, Baylin SB, Pilarsky C, Hartmann A. Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. J Transl Med 2004; 84:465-78. [PMID: 14968126 DOI: 10.1038/labinvest.3700068] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many molecular alterations are known to occur in urothelial carcinoma of the bladder, but their significance for tumor progression is poorly understood. Deletions of chromosome 8p are frequently found in several tumor types and are often associated with progressive disease. In all, 99 bladder tumors were screened for deletions at 8p using loss of heterozygosity (LOH) and multicolor fluorescence in situ hybridization FISH analyses. Allelic loss on chromosome 8p in at least one marker was found in 25/99 (25%) tumors. There was a significant correlation of 8p deletions with invasive tumor growth and a highly significant association with papillary growth pattern in patients with invasive disease. cDNA array analyses revealed that secreted Frizzled-related protein 1 (sFRP1), an antagonist of Frizzled receptors and Wnt pathway activation on chromosome 8p12-11.1, is frequently downregulated in bladder cancer. To investigate sFRP1 as a candidate for a putative progression-related gene on 8p, urothelial cell lines and primary urothelial carcinomas were screened for sFRP1 expression using quantitative real-time PCR, Northern blot, immunofluorescence and immunohistochemistry (IHC). Of the investigated bladder cancers, 38% showed loss of sFRP1 expression by quantitative RT-PCR. Evaluation of the protein expression by IHC using tissue microarrays containing 776 bladder cancers revealed loss or strong reduction of sFRP1 expression in 66% of cases. SFRP1 loss was associated with higher tumor stage and grade and shorter overall survival. In addition, loss of sFRP1 was an independent indicator of poor survival in patients with papillary but not with muscle invasive bladder cancer. There were neither mutations in the coding region of sFRP1 nor homozygous deletions at 8p12-11.21. However, promoter methylation was detected using methylation-specific PCR in 29% of cases. In conclusion, we could show a close correlation of chromosome 8p deletions and progression of papillary bladder tumors. The sFRP1 gene on chromosome 8p12-11.1 could be a candidate gene for the predicted, progression-related tumor suppressor gene in bladder cancer and could contribute to urothelial carcinogenesis.
Collapse
Affiliation(s)
- Robert Stoehr
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Strefford JC, Lillington DM, Steggall M, Lane TM, Nouri AME, Young BD, Oliver RTD. Novel chromosome findings in bladder cancer cell lines detected with multiplex fluorescence in situ hybridization. CANCER GENETICS AND CYTOGENETICS 2002; 135:139-46. [PMID: 12127398 DOI: 10.1016/s0165-4608(01)00648-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bladder cancer is a common neoplasm worldwide, consisting mainly of transitional cell carcinomas, while squamous, adenocarcinoma, and sarcomatoid bladder cancers account for the remaining cases. In the present study, multiplex fluorescence in situ hybridization (M-FISH) has been used to characterize chromosome rearrangements in eight transitional and one squamous cell carcinoma cell line, RT112, of UMUC-3, 5637, CAT(wil), FGEN, EJ28, J82, 253J, and SCaBER. Alterations of chromosome 9 are the most frequent cytogenetic and molecular findings in transitional cell carcinomas of all grades and stages, while changes of chromosomes 3, 4, 8, 9, 11, 14, and 17 are also frequently observed. In the present study, alterations previously described, including del(8)(p10), del(9)(p10), del(17)(p10), and overrepresentation of chromosome 20, as well as several novel findings, were observed. These novel findings were a del(15)(q15) and isochromosome 14q, both occurring in three of nine cell lines examined. These abnormalities may reflect changes in bladder tumor biology. M-FISH represents an effective preliminary screening tool for the characterization of complex tumor karyotypes.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human/ultrastructure
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 20/ultrastructure
- Chromosomes, Human, Pair 9/ultrastructure
- Female
- Humans
- Image Processing, Computer-Assisted
- In Situ Hybridization, Fluorescence
- Male
- Metaphase
- Sequence Deletion
- Tumor Cells, Cultured/ultrastructure
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Jon C Strefford
- Imperial Cancer Research Fund (ICRF) Medical Oncology Unit, Queen Mary and Westfield College, Charterhouse Square, Smithfield, London, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Williams SV, Sibley KD, Davies AM, Nishiyama H, Hornigold N, Coulter J, Kennedy WJ, Skilleter A, Habuchi T, Knowles MA. Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines. Genes Chromosomes Cancer 2002; 34:86-96. [PMID: 11921286 DOI: 10.1002/gcc.10050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Underrepresentation of chromosome 9 is a common finding in bladder cancer. Frequent loss of the whole chromosome suggests the presence of at least one relevant tumor suppressor gene on each arm. Candidate regions identified by loss of heterozygosity (LOH) analysis include a region at 9p21 containing CDKN2A, which encodes p16 and p14(ARF), a large region at 9q12-31 including PTCH and many other genes, a small region at 9q32-33, which includes the DBCCR1 gene, and a region at 9q34 including the TSC1 gene. Experimental replacement of genes or chromosomes into tumor cells with appropriate deletions or mutations represents an important approach to test the functional significance of candidate tumor suppressor genes. Loss of an entire copy of chromosome 9 in many bladder tumor cell lines provides no indication of which gene or genes are affected, and selection of appropriate recipient cells for gene replacement is difficult. We have investigated three candidate tumor suppressor genes on chromosome 9 (CDKN2A, DBCCR1, and TSC1), at the DNA level and by expression analysis in a panel of bladder tumor cell lines, many of which have probable LOH along the length of the chromosome, as indicated by homozygosity for multiple polymorphic markers. Cytogenetically, we found no reduction in the numbers of chromosomes 9 relative to total chromosome count. Homozygous deletion of the CDKN2A locus was frequent but homozygous deletion of TSC1 was not found. A new cell line, DSH1, derived from a pT1G2 transitional cell carcinoma with known homozygous deletion of DBCCR1, is described. This study identifies suitable cell lines for future functional analysis of both CDKN2A and DBCCR1.
Collapse
Affiliation(s)
- Sarah V Williams
- Imperial Cancer Research Fund Clinical Centre, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thykjaer T, Christensen M, Clark AB, Hansen LR, Kunkel TA, Ørntoft TF. Functional analysis of the mismatch repair system in bladder cancer. Br J Cancer 2001; 85:568-75. [PMID: 11506498 PMCID: PMC2364098 DOI: 10.1054/bjoc.2001.1949] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bladder cancer the observed microsatellite instability indicates that mismatch repair deficiency could be a frequently involved factor in bladder cancer progression. To investigate this hypothesis we analysed extracts of seven bladder cancer cell lines and, as a novel approach, five clinical cancer samples for mismatch repair activity. We found that one cell line (T24) and three of the clinical samples had a reduced repair capacity, measured to approximately 20% or less. The T24 cell extract was unable to repair a G-G mismatch and showed reduced repair of a 2-base loop, consistent with diminished function of the MSH2-MSH6 heterodimer. The functional assay was combined with measurement for mutation frequency, microsatellite analysis, sequencing, MTT assay, immunohistochemical analysis and RT-PCR analysis of the mismatch repair genes MSH2, MSH3, MSH6, PMS1, PMS2 and MLH1. A >7-fold relative increase in mutation frequency was observed for T24 compared to a bladder cancer cell line with a fully functional mismatch repair system. Neither microsatellite instability, loss of repair nor mismatch repair gene mutations were detected. However, RT-PCR analysis of mRNA levels did detect changes in the ratio of expression of the Mut S and Mut L homologues. The T24 cell line had the lowest MSH6 expression level of the cell lines tested. Identical RT-PCR analysis of seventeen clinical samples (normal urothelium, 7; pTa low stage, 5; and pT1-4 high stage, 5) indicated a significant change in the expression ratio between MSH3/MSH6 (P< 0.004), MSH2/MSH3 (P< 0.012) and PMS2/MLH1 P< 0.005, in high stage bladder tumours compared to normal urothelium and low stage tumours. Collectively, the data suggest that imbalanced expression of mismatch repair genes could lead to partial loss of mismatch repair activity that is associated with invasive bladder cancer.
Collapse
Affiliation(s)
- T Thykjaer
- Department of Clinical Biochemistry, Skejby University Hospital, 8200 Aarhus N, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Cozzi PJ, Malhotra S, McAuliffe P, Kooby DA, Federoff HJ, Huryk B, Johnson P, Scardino PT, Heston WD, Fong Y. Intravesical oncolytic viral therapy using attenuated, replication-competent herpes simplex viruses G207 and Nv1020 is effective in the treatment of bladder cancer in an orthotopic syngeneic model. FASEB J 2001; 15:1306-8. [PMID: 11344122 DOI: 10.1096/fj.00-0533fje] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P J Cozzi
- The George M O'Brien Urology Research Center, Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sibley K, Cuthbert-Heavens D, Knowles MA. Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene 2001; 20:686-91. [PMID: 11314002 DOI: 10.1038/sj.onc.1204110] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2000] [Revised: 10/31/2000] [Accepted: 11/13/2000] [Indexed: 01/06/2023]
Abstract
4p16.3 has previously been identified as a region of non-random LOH in transitional cell carcinoma, suggesting the presence of a tumour suppressor gene. One candidate within this region is fibroblast growth factor receptor 3 (FGFR3). Germline mutations in FGFR3 are known to cause several autosomal dominant skeletal dysplasias, the severity of which depends on the position and nature of the mutation in the protein. We investigated the frequency and nature of FGFR3 mutations in a panel of transitional cell carcinomas and cell lines and studied the possible link between mutation and loss of heterozygosity (LOH) on 4p16.3. FGFR3 coding sequence from 63 transitional cell carcinomas (TCC) of various stages and grades, and 18 cell lines was analysed by fluorescent SSCP. Samples with abnormal migration patterns were sequenced to identify the mutation or polymorphism. Thirty-one of the 63 tumours had previously been assessed to have LOH at 4p16.3. Twenty-six of the 63 tumours (41%) and 4/18 (22%) of the cell lines had missense mutations in FGFR3. All mutations detected in our panel have been reported in the germline where all apart from one cause lethal conditions. One tumour contained K652Q which has recently been identified in less severe cases of skeletal dysplasia. Tumours with and without LOH at 4p16.3 had mutations in FGFR3 suggesting that these two events are not causally linked. The frequency of FGFR3 mutation indicates that this protein plays an important role in TCC.
Collapse
MESH Headings
- Carcinoma, Transitional Cell/classification
- Carcinoma, Transitional Cell/genetics
- Chromosomes, Human, Pair 4/genetics
- DNA, Neoplasm
- Humans
- Loss of Heterozygosity
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/genetics
- Sequence Analysis, DNA
- Urinary Bladder Neoplasms/classification
- Urinary Bladder Neoplasms/genetics
Collapse
Affiliation(s)
- K Sibley
- ICRF Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
42
|
Blomquist A, Schwörer G, Schablowski H, Psoma A, Lehnen M, Jakobs KH, Rümenapp U. Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem J 2000; 352 Pt 2:319-25. [PMID: 11085924 PMCID: PMC1221462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Rho GTPases are implicated in a multitude of cellular processes regulated by membrane receptors, such as cytoskeletal rearrangements, gene transcription and cell growth and motility. Activation of these GTPases is under the direct control of guanine nucleotide exchange factors (GEFs), the Dbl family proteins. By searching protein databases we have identified a novel Rho-GEF, termed p114-Rho-GEF, which similarly to other Rho-GEFs contains a Dbl homology domain followed by a pleckstrin homology domain. p114-Rho-GEF interacted specifically with RhoA, in its nucleotide-free and guanosine 5'-[gamma-thio]triphosphate-bound states, but not with Rac1 and Cdc42, and efficiently catalysed guanine nucleotide exchange of RhoA. Consistent with these results in vitro was our finding that the overexpression of p114-Rho-GEF in J82 and HEK-293 cells induced the formation of actin stress fibres and stimulated serum-response-factor-mediated gene transcription in a Rho-dependent manner. Rho-mediated transcriptional activation induced by M(3) muscarinic acetylcholine and lysophosphatidic acid receptors was enhanced by p114-Rho-GEF, suggesting that the activity of this novel Rho-GEF, which is widely expressed in human tissues, can be controlled by G-protein-coupled receptors.
Collapse
Affiliation(s)
- A Blomquist
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Shin KY, Moon HS, Park HY, Lee TY, Woo YN, Kim HJ, Lee SJ, Kong G. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells. Cancer Lett 2000; 159:127-34. [PMID: 10996723 DOI: 10.1016/s0304-3835(00)00522-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.
Collapse
Affiliation(s)
- K Y Shin
- Department of Urology, College of Medicine, Hanyang University, #17 Haengdang-Dong, Sungdong-Ku, Seoul, 133-792, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
PERALTA ELIZABETHA, LIU XIPING, MCCARTY TODDM, WILSON TIMOTHYG, DIAMOND DONJ, ELLENHORN JOSHUAD. IMMUNOTHERAPY OF BLADDER CANCER TARGETING P53. J Urol 1999. [DOI: 10.1016/s0022-5347(05)68242-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- ELIZABETH A. PERALTA
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - XIPING LIU
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - TODD M. MCCARTY
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - TIMOTHY G. WILSON
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - DON J. DIAMOND
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - JOSHUA D.I. ELLENHORN
- From the Department of General and Oncologic Surgery, Department of Urology and Urologic Oncology and Department of Hematology Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| |
Collapse
|
45
|
|
46
|
Rümenapp U, Blomquist A, Schwörer G, Schablowski H, Psoma A, Jakobs KH. Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member. FEBS Lett 1999; 459:313-8. [PMID: 10526156 DOI: 10.1016/s0014-5793(99)01270-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.
Collapse
Affiliation(s)
- U Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U, Busch M, Schaffer PM, Dühmke E, Baumgartner R. Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med 1999; 25:263-71. [PMID: 10495304 DOI: 10.1002/(sici)1096-9101(1999)25:3<263::aid-lsm11>3.0.co;2-t] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Although the background of laser therapy by means of low level energy and power is still only partially understood, there are nevertheless promising reports from clinical studies concerning pain treatment, the acceleration of wound healing, and the modulation of cell functions. In order to contribute to the understanding of such a phototherapeutic procedure cell experiments were performed. MATERIALS AND METHODS The influence of light (lambda = 410, 488, 630, 635, 640, 805, and 1,064 nm and broad band white light) on the proliferation of cells was investigated on skeletal myotubes (C2), normal urothelial cells (HCV29), human squamous carcinoma cells of the gingival mucosa (ZMK1), urothelial carcinoma cells (J82), glioblastoma cells (U373MG), and mamma adenocarcinoma cells (MCF7) in a computer-controlled light treatment chamber. The cellular response was tested by way of the following methods: The rate of mitosis was determined by counting the single cells after Orcein-staining. The proliferation index measurements were based on the BrdU incorporation during the DNA synthesis. Statistics were performed using unpaired Student's t-test procedures, stating P < 0. 05 to be significant and P>0.05 not to be significant. RESULTS Twenty-four hours after light treatment, a significant increase in the mitotic rate of J82 and HCV29 cells was determined when illuminated with lambda = 410 nm, lambda = 635 nm and lambda = 805 nm, respectively. C2 cells showed an increase only after lambda = 635 nm illumination. In all three cell lines, a maximum mitotic rate was determined after an irradiation between 4 and 8 J/cm(2), while a reduced mitotic rate was measured at 20 J/cm(2). MCF7, U373MG, and ZMK1 cells showed a slight decrease in the mitotic rate with increasing irradiation independent of the wavelength used. When an irradiation of 20 J/cm(2) was applied, all cell lines showed a slight decrease compared to the controls independent to the wavelength used. White light as well as lambda = 1,064 nm does not affect the mitotic rate in this irradiation range. No significant differences in the effects could be determined when the irradiance changed between 10 and 150 mW/cm(2) at certain irradiation values. The BrdU test did not show any significant alterations with respect to possible light induced processes compared to the controls. CONCLUSIONS Dependent upon the irradiation parameter, light of a defined wavelength does affect the mitotic rate of both normal as well as tumor cells. It could be hypothesized that the action spectra of the cellular response indicate the participation of endogenous porphyrins and cytochromes as primary photoreceptors. Taking into account all light induced processes, the term biomodulation should preferably be used.
Collapse
Affiliation(s)
- R Sroka
- Laser-Research Laboratory, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roberson KM, Yancey DR, Padilla-Nash H, Edwards DW, Nash W, Jacobs S, Padilla GM, Larchian WA, Robertson CN. Isolation and characterization of a novel human bladder cancer cell line: BK10. In Vitro Cell Dev Biol Anim 1998; 34:537-44. [PMID: 9719413 DOI: 10.1007/s11626-998-0113-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular studies of bladder carcinomas have aided in determining causative genetic events and the prognosis of cancers endowed with certain abnormalities. In vitro bladder cancer characterization of key cytogenetic alterations is useful for study of molecular changes that may promote oncogenic events. In our laboratory, a novel human bladder cancer cell line, BK10, has been established in vitro and passaged for more than 20 mo. This new bladder cancer cell line (BK10) was derived from bladder tissue containing grade III-IV/IV transitional cell carcinoma. Bladder cancer tissue was obtained at the time of radical cystoprostatectomy extirpation. Cell cultures derived from this surgical sample exhibited an epithelial morphology and expressed epithelial cytokeratins. Immunostains of BK10 were negative for prostate specific antigen (PSA), fibronectin, smooth muscle actin alpha, and desmin. Karyotypic analysis revealed an aneuploid chromosomal content <4n> with many numerical and structural abnormalities previously linked to bladder oncogenesis. Translocations occurred in chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, X and Y. G-banding analysis revealed rearrangements involving chromosomes 9q and 17p, and the location of the ab11 oncogene and the p53 gene, respectively. The availability of this bladder cancer cell line will provide a useful tool for the further study of bladder carcinoma oncogenesis and gene therapy.
Collapse
Affiliation(s)
- K M Roberson
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schaffer M, Sroka R, Fuchs C, Schrader-Reichardt U, Schaffer PM, Busch M, Dühmke E. Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 40:253-7. [PMID: 9372613 DOI: 10.1016/s1011-1344(97)00065-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The influence of light emitted from a diode laser centred at lambda = 805 nm was investigated on murine skeletal myotubes (C2), normal urothelial cells (HCV29), human squamous carcinoma cells of the gingival mucosa (ZMK) and urothelial carcinoma cells (J82) in a computer-controlled irradiation chamber. Cells were treated with varying fluences between 0 and 20 J cm-2. The response was tested by analysis of the mitotic index using single cell counting after Orcein staining and proliferation index based on BrdU incorporation during DNA synthesis. While the mitotic index of C2, HCV29 and J82 cells increased at a fluence of 4 J cm-2, irradiation with fluences of 20 J cm-2 resulted in a slight decrease. ZMK tumor cells showed a decrease of the mitotic index with both fluences. No significant differences could be determined when using irradiances between 10 mW cm-2 and 150 mW cm-2. The BrdU test after irradiation showed no significant effects compared to the controls in each cell line.
Collapse
Affiliation(s)
- M Schaffer
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Kinoshita H, Ogawa O, Kakehi Y, Mishina M, Mitsumori K, Itoh N, Yamada H, Terachi T, Yoshida O. Detection of telomerase activity in exfoliated cells in urine from patients with bladder cancer. J Natl Cancer Inst 1997; 89:724-30. [PMID: 9168188 DOI: 10.1093/jnci/89.10.724] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Telomeres are specific structures located at the ends of chromosomes that help maintain chromosome stability. In most tissues, telomeres become shorter as cells divide, a phenomenon thought to be associated with limitations on normal cell proliferation. Almost all types of cancer cells, including bladder cancer cells, express the enzyme telomerase, which can maintain or extend telomere length. PURPOSE We examined telomerase activity in tumor specimens from a cohort of patients with bladder cancer and determined whether telomerase could be detected in exfoliated cancer cells present in urine from these patients. METHODS Spontaneously voided urine specimens and bladder-washing fluids (obtained by propelling normal saline into the bladder through a catheter and then withdrawing the liquid contents) were taken from 45 patients before they underwent surgery. Telomerase activity was examined by means of the TRAP (telomeric repeat amplification protocol) assay on extracts of tumor samples from 42 patients and extracts of exfoliated cells in urine and bladder-washing fluid from 42 and 43 patients, respectively. Standard cytologic examination (Pap staining) of urine specimens was also used to detect exfoliated cancer cells. RESULTS Telomerase activity was found in 41 (98%; 95% confidence interval [CI] = 87%-100%) of the 42 tumor samples examined. In contrast, it was not detected in normal bladder tissue from two autopsied individuals who were free of bladder cancer and five of six individuals who had bladder cancer. Telomerase was detected in exfoliated cells in 23 (55%; 95% CI = 39%-70%) of the 42 spontaneously voided urine specimens and in 36 (84%; 95% CI = 69%-93%) of the 43 bladder-washing fluids examined. Considering voided urine specimens and bladder-washing fluids together, telomerase was detected in exfoliated cells from 40 (89%; 95% CI = 76%-96%) of the 45 patients. Telomerase activity was not detected in bladder-washing fluids from 12 cancer-free individuals. Cancer cells were detected by means of standard cytologic examination in the urine of 19 (42%; 95% CI = 28%-58%) of the 45 patients. Urine cytologic examination detected cancer cells in one (8%; 95% CI = 0%-38%) of 12 patients with grade 1 tumors and in 13 (46%; 95% CI = 28%-66%) of 28 patients with grade 2 tumors. In contrast, telomerase activity was detected in exfoliated cells (in voided urine or bladder-washing fluids) from nine (75%; 95% CI = 43%-95%) of 12 patients with grade 1 tumors and from 27 (96%; 95% CI = 82%-100%) of 28 patients with grade 2 tumors. CONCLUSION AND IMPLICATION Telomerase activity can be detected in exfoliated cells in urine from patients with bladder cancer, and measurement of this activity appears to be more sensitive in detecting the presence of cancer than standard urine cytologic examination. These findings suggest that measuring telomerase activity in exfoliated cells would be useful in the diagnosis and follow-up of patients with bladder cancer, a possibility that warrants further study.
Collapse
Affiliation(s)
- H Kinoshita
- Department of Urology, Faculty of Medicine, Kyoto University, Sakyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|