1
|
Hamabe‐Horiike T, Harada S, Yoshida K, Kinoshita J, Yamaguchi T, Fushida S. Adipocytes contribute to tumor progression and invasion of peritoneal metastasis by interacting with gastric cancer cells as cancer associated fibroblasts. Cancer Rep (Hoboken) 2022; 6:e1647. [PMID: 35691615 PMCID: PMC9875653 DOI: 10.1002/cnr2.1647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peritoneal metastasis (PM) is one of the most common causes of noncurative surgery and the most frequent recurrence pattern in gastric cancer (GC). During the process of PM, GC cells detached from primary tumor interact with human peritoneal mesothelial cells (HPMC) overlapped with adipose tissues such as the omentum or mesentery. Although the interaction with HPMC promotes the malignancy of GC, the role of adipose tissues remains unclear. AIMS We aimed to clarify how adipose tissue are affected by adjacent primary tumors during the expression of adipokines and to elucidate whether GC cells transform adipocytes into CAFs in vitro. In addition, we investigated whether GC cells are affected by adipocytes in their ability to infiltrate. METHODS We investigated the phenotypic conversion of adipocytes during the malignant process of GC cells in vivo and in vitro. We evaluated the expression levels of adiponectin in the omental adipose tissue of gastric cancer patients by western blotting. Following adipocytes/gastric cancer cells coculture, adipocyte markers, adiponectin receptors, and inflammatory cytokine markers were detected by real-time PCR and/or western blotting in the single-cultured and co-cultured adipocytes; cancer-associated fibroblast (CAF) markers were detected by immunofluorescence and western blotting in the single-cultured and co-cultured adipocytes; invasion assays were performed in single cultured and co-cultured MKN45 and OCUM. RESULTS In omental adipose tissues that are situated close to the primary tumors, the expression of adiponectin tended to decrease in patients with subserosal or serosal invasion. By co-culturing with GC cells, adipocytes were dedifferentiated and the expression levels of CAF marker FSP1 and inflammatory cytokines, PAI-1 and IL-6, significantly increased (p < 0.05). Furthermore, GC cells co-cultured with adipocytes showed enhanced invasion ability. CONCLUSION Our findings suggest that the phenotypic conversion of adipocytes may promote the malignancy of GC in the construction of the cancer microenvironment of PM.
Collapse
Affiliation(s)
- Toshihide Hamabe‐Horiike
- Center for Biomedical Research and Education, School of MedicineKanazawa UniversityKanazawaJapan
| | - Shin‐ichi Harada
- Center for Biomedical Research and Education, School of MedicineKanazawa UniversityKanazawaJapan
| | - Kyoko Yoshida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| |
Collapse
|
2
|
Nishimura S, Yashiro M, Sera T, Yamamoto Y, Kushitani Y, Sugimoto A, Kushiyama S, Togano S, Kuroda K, Okuno T, Murakami Y, Ohira M. Serine threonine kinase 11/liver kinase B1 mutation in sporadic scirrhous-type gastric cancer cells. Carcinogenesis 2021; 41:1616-1623. [PMID: 32236518 DOI: 10.1093/carcin/bgaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
Scirrhous-type gastric carcinoma (SGC), which is characterized by the rapid proliferation of cancer cells accompanied by extensive fibrosis, shows extremely poor survival. A reason for the poor prognosis of SGC is that the driver gene responsible for SGC has not been identified. To identify the characteristic driver gene of SGC, we examined the genomic landscape of six human SGC cell lines of OCUM-1, OCUM-2M, OCUM-8, OCUM-9, OCUM-12 and OCUM-14, using multiplex gene panel testing by next-generation sequencing. In this study, the non-synonymous mutations of serine threonine kinase 11/liver kinase B1 (STK11/LKB1) gene were detected in OCUM-12, OCUM-2M and OCUM-14 among the six SGC cell lines. Capillary sequencing analysis confirmed the non-sense or missense mutation of STK11/LKB1 in the three cell lines. Western blot analysis showed that LKB1 expression was decreased in OCUM-12 cells and OCUM-14 cells harboring STK11/LKB1 mutation. The mammalian target of rapamycin (mTOR) inhibitor significantly inhibited the proliferation of OCUM-12 and OCUM-14 cells. The correlations between STK11/LKB1 expression and clinicopathologic features of gastric cancer were examined using 708 primary gastric carcinomas by immunochemical study. The low STK11/LKB1 expression group was significantly associated with SGC, high invasion depth and frequent nodal involvement, in compared with the high STK11/LKB1 expression group. Collectively, our study demonstrated that STK11/LKB1 mutation might be responsible for the progression of SGC, and suggested that mTOR signaling by STK11/LKB1 mutation might be one of therapeutic targets for patients with SGC.
Collapse
Affiliation(s)
- Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukako Kushitani
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Miki Y, Yashiro M, Moyano-Galceran L, Sugimoto A, Ohira M, Lehti K. Crosstalk Between Cancer Associated Fibroblasts and Cancer Cells in Scirrhous Type Gastric Cancer. Front Oncol 2020; 10:568557. [PMID: 33178597 PMCID: PMC7596590 DOI: 10.3389/fonc.2020.568557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause among all cancer deaths globally. Although the treatment outcome of GC has improved, the survival of patients with GC at stages III and IV remains unsatisfactory. Among several types of GC, scirrhous type GC (SGC) shows highly aggressive growth and invasive activity, leading to frequent peritoneal metastasis. SGC is well known to accompany abundant stromal cells that compose the tumor microenvironment (TME) along with the produced extracellular matrix (ECM) and secreted factors. One of the main stromal components is cancer associated fibroblast (CAF). In the SGC microenvironment, CAFs are a source of various secreted factors, including fibroblast growth factors (FGFs), which mediate prominent tumor-stimulating activity. In turn, cancer cells also secrete numerous factors, which can activate and educate CAFs. Current findings suggest that cancer cells and stromal cells communicate interactively via the soluble factors, the ECM, and likely also by exosomes. In this review, we focus on the soluble factors mediating communication between cancer cells and CAFs in SGC, and consider how they are related to the modulation of TME and the high rate of peritoneal metastasis. At last, we discuss the perspectives on targeting these communication pathways for improved future treatment.
Collapse
Affiliation(s)
- Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Togano S, Yashiro M, Miki Y, Yamamato Y, Sera T, Kushitani Y, Sugimoto A, Kushiyama S, Nishimura S, Kuroda K, Okuno T, Yoshii M, Tamura T, Toyokawa T, Tanaka H, Muguruma K, Tanaka S, Ohira M. Microscopic distance from tumor invasion front to serosa might be a useful predictive factor for peritoneal recurrence after curative resection of T3-gastric cancer. PLoS One 2020; 15:e0225958. [PMID: 31940352 PMCID: PMC6961828 DOI: 10.1371/journal.pone.0225958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Background Peritoneal recurrence is one of the most frequent recurrent diseases in gastric cancer. Although the exposure of cancer cells to the serosal surface is considered a common risk factor for peritoneal recurrence, there are some cases of peritoneal recurrence without infiltration to the serosal surface even after curative surgery. This study sought to clarify the risk factors of peritoneal recurrence in the absence of invasion to the serosal surface. Materials and methods Ninety-six patients with gastric cancer who underwent curative surgery were enrolled. In all 96 cases, the depth of tumor invasion was subserosal (T3). The microscopic distance from the tumor invasion front to the serosa (DIFS) was measured using tissue slides by H&E staining and pan-cytokeratin staining. E-cadherin expression was evaluated by immunohistochemical staining. Results Among the 96 patients, 16 developed peritoneal recurrence after curative surgery. The DIFS of the tumors with peritoneal recurrence (156±220 μm) was significantly shorter (p = 0.011) than that without peritoneal recurrence (360±478 μm). Peritoneal recurrence was significantly correlated with DIFS ≤234 μm (p = 0.023), but not with E-cadherin expression. The prognosis of DIFS ≤234 μm was significantly poorer than that of DIFS >234 μm (log rank, p = 0.007). A multivariate analysis of the patients' five-year overall survival revealed that DIFS ≤234 μm and lymph node metastasis were significantly correlated with survival (p = 0.005, p = 0.032, respectively). Conclusion The measurement of the DIFS might be useful for the prediction of peritoneal recurrence in T3-gastric cancer patients after curative surgery.
Collapse
Affiliation(s)
- Shingo Togano
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamato
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukako Kushitani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sayaka Tanaka
- Department of Diagnostic Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Wei F, Lyu H, Wang S, Chu Y, Chen F. Postoperative Radiotherapy Improves Survival in Gastric Signet-Ring Cell Carcinoma: a SEER Database Analysis. J Gastric Cancer 2019; 19:393-407. [PMID: 31897342 PMCID: PMC6928086 DOI: 10.5230/jgc.2019.19.e36] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To identify the potential therapeutic role of postoperative radiotherapy (RT) in patients with locally advanced (stage II and stage III) gastric signet ring cell carcinoma (SRC). MATERIALS AND METHODS Patients with locally advanced gastric SRC from the Surveillance, Epidemiology, and End Results program database between 2004 and 2012 were included in our study. Univariate and multivariate Cox proportional models were performed, and survival curves were generated to evaluate the prognostic effect of postoperative RT and surgery alone on SRC patients. Propensity score matching (PSM) was used to avoid selection bias among the study cohorts. RESULTS We found that patients with postoperative RT had better probability of survival compared with those who did not receive RT (overall survival [OS], P<0.001; cancer-specific survival [CSS], P<0.001). After PSM, analysis of both overall and CSS showed that patients who underwent postoperative RT had better prognosis than those receiving surgery alone in the matched cohort (OS, P=0.00079; CSS, P=0.0036). Multivariate Cox proportional model indicated that postoperative RT had better effect on prognosis compared with surgery alone with respect to both overall (hazard ratio [HR], 0.716; 95% confidence interval [95% CI], 0.590-0.87; P=0.001) and CSS (HR, 0.713; 95% CI, 0.570-0.890; P=0.003). CONCLUSIONS Postoperative RT had better prognosis compared with surgery alone for both overall and CSS for patients with locally advanced gastric SRC.
Collapse
Affiliation(s)
- Feng Wei
- Department of Gastroenterology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Hongwei Lyu
- Department of Gastroenterology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Shuoer Wang
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yan Chu
- Department of Gastroenterology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Fengyuan Chen
- Department of Gastroenterology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| |
Collapse
|
6
|
Kasurinen A, Gramolelli S, Hagström J, Laitinen A, Kokkola A, Miki Y, Lehti K, Yashiro M, Ojala PM, Böckelman C, Haglund C. High tissue MMP14 expression predicts worse survival in gastric cancer, particularly with a low PROX1. Cancer Med 2019; 8:6995-7005. [PMID: 31560170 PMCID: PMC6853825 DOI: 10.1002/cam4.2576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP14), a membrane-associated matrix metalloproteinase, has been shown to influence the invasion and metastasis of several solid tumors. Prospero homeobox protein 1 (PROX1), involved in the development and cell fate determination, is also expressed in malignant diseases functioning either as a tumor-suppressing or oncogenic factor. In certain cancers PROX1 appears to transcriptionally suppress MMP14 expression. This study, therefore, aimed to explore the association between MMP14 and PROX1 and understand their potential as prognostic biomarkers in gastric cancer. The cohort consisted of 313 individuals operated for gastric adenocarcinoma between 2000 and 2009 in the Department of Surgery, Helsinki University Hospital. MMP14 and PROX1 expressions were studied using immunohistochemistry in the patient sample and using immunoblotting and immunofluorescence in gastric cancer cell lines. We generated survival curves using the Kaplan-Meier method, determining significance via the log-rank test. A high MMP14 expression associated with being ≥67 years (P = .041), while a positive nuclear PROX1 expression associated with tumors of a diffuse histological type (P = .041) and a high cytoplasmic PROX1 expression (P < .001). Five-year disease-specific survival among patients with a high MMP14 expression was 35.9% (95% confidence interval [CI] 24.9-46.9), compared to 45.3% (95% CI 38.0-52.6) for patients with a low MMP14 (P = .030). Survival was worse specifically among those with a high MMP14 and absent nuclear PROX1 expression (hazard ratio [HR] 1.65; 95% CI 1.09-2.51; P = .019). Thus, this study confirms that a high MMP14 expression predicts a worse survival in gastric cancer, revealing for the first time that survival is particularly worse when PROX1 is low.
Collapse
Affiliation(s)
- Aaro Kasurinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alli Laitinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuichiro Miki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Camilla Böckelman
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Kurata T, Fushida S, Kinoshita J, Oyama K, Yamaguchi T, Okazaki M, Miyashita T, Tajima H, Ninomiya I, Ohta T. Low-dose eribulin mesylate exerts antitumor effects in gastric cancer by inhibiting fibrosis via the suppression of epithelial-mesenchymal transition and acts synergistically with 5-fluorouracil. Cancer Manag Res 2018; 10:2729-2742. [PMID: 30147370 PMCID: PMC6101023 DOI: 10.2147/cmar.s167846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Characterized by aggressive proliferation, extensive stromal fibrosis, and resulting drug resistance, peritoneal dissemination in gastric cancer remains associated with poor prognosis. Interaction between cancer and stromal cells accelerates tumor progression via epithelial–mesenchymal transition (EMT), which is one of the major causes of tissue fibrosis, and human peritoneal mesothelial cells (HPMCs) play important roles as cancer stroma in peritoneal dissemination. Transforming growth factor-β (TGF-β) has a pivotal function in the progression of EMT, and Smad proteins play an important role in the TGF-β signaling pathway. Eribulin mesylate (eribulin), a nontaxane microtubule dynamics inhibitor used for the treatment of advanced breast cancer, inhibits EMT changes in triple-negative breast cancer cells. We examined its ability to inhibit tumor progression and EMT changes resulting from the interaction between gastric cancer cells and HPMCs and to act synergistically with 5-fluorouracil (5-FU), a key drug for gastric cancer. Materials and methods Proliferation of gastric cancer cells and HPMCs isolated from healthy omentum was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following gastric cancer cell/HPMC coculture, EMT markers were detected by immunofluorescence, immunohistochemistry, and Western blotting; invasion assays were performed; and TGF-β and Smad phosphorylation were assessed by Western blotting and enzyme-linked immunosorbent assay. A mouse fibrotic tumor xenograft model was established using gastric cancer cell/HPMC cocultures. The effect of eribulin and/or 5-FU was tested in each case. Results Eribulin significantly suppressed gastric cancer cell proliferation and EMT changes in MKN-45 gastric cancer cells and HPMCs induced by their interaction in vitro. Eribulin inhibited EMT at much lower concentrations (≥0.5 nM for MKN-45 and ≥0.1 nM for HPMCs) than its half maximal inhibitory concentrations (2.2 nM for MKN-45 and 8.1 nM for HPMCs), and this resulted, at least partly, from the downregulation of TGF-β/Smad signaling. Eribulin administration of ≥0.1 mg/kg suppressed tumor progression (0.1 mg/kg, p=0.02), and fibrosis was inhibited by lower dose (0.05 mg/kg, p=0.008) in the xenograft model. Furthermore, 0.05 mg/kg administration with 5-FU brought about synergistic antitumor effects (p=0.006). Conclusion Low-dose eribulin combined with 5-FU might be a promising therapy for peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Toru Kurata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| |
Collapse
|
8
|
The significance of scirrhous gastric cancer cell lines: the molecular characterization using cell lines and mouse models. Hum Cell 2018; 31:271-281. [PMID: 29876827 DOI: 10.1007/s13577-018-0211-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Scirrhous gastric cancer (SGC) exhibits aggressiveness of the rapid infiltrating tumor cells with abundant fibroblasts. Experimental studies using SGC cell lines have obtained useful information about this cancer. Our literature search divulged a total of 18 SGC cell lines; two cell lines were established from primary SGC and the other lines were established from a metastatic lesion of SGC. Fibroblast growth factor receptor 2 (FGFR2) and transforming growth factor-beta receptor (TβR) are linked to the rapid development of SGC. Cross-talk between the cancer cells and cancer-associated fibroblasts (CAFs) has been shown to contribute to the progression of SGC. Chemokine (C-X-C motif) receptor 1 (CXCR1) from SGC cells might be associated with the abundant CAFs in cancer microenvironments. The in vivo models established using SGC cell lines are expected to serve as a useful tool for the development of drugs such as FGFR2 inhibitors, TβR inhibitors, and CXCR1 inhibitors, which might be promising as SGC treatments. However, the number of available SGC cell lines is insufficient for the clarification of the entire biologic behavior of SGC. Since the mechanisms responsible for the characteristic aggressiveness of SGC are not fully elucidated, the establishment of new SGC cell lines could help clarify the biological behavior of SGC and contribute to its treatment.
Collapse
|
9
|
Saito H, Fushida S, Harada S, Miyashita T, Oyama K, Yamaguchi T, Tsukada T, Kinoshita J, Tajima H, Ninomiya I, Ohta T. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast. Gastric Cancer 2018; 21:55-67. [PMID: 28540637 PMCID: PMC5741788 DOI: 10.1007/s10120-017-0726-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Scirrhous gastric cancer is an intractable disease with a high incidence of peritoneal dissemination and obstructive symptoms (e.g., ileus, jaundice, and hydronephrosis) arising from accompanying marked fibrosis. Microenvironmental interactions between cancer cells and cancer-associated fibroblasts are the suggested cause of the disease. We elucidated the mechanisms of tumor growth and fibrosis using human peritoneal mesothelial cells (HPMCs) and investigated the effects of tranilast treatment on cells and a xenograft mouse model of fibrosis. METHODS HPMCs were isolated from surgically excised omentum and their interaction with MKN-45 gastric cancer cells was investigated using co-culture. Furthermore, a fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells into the dorsal side of nude mice to form large fibrotic tumors. Mice were subsequently treated with or without tranilast. RESULTS The morphology of HPMCs treated with transforming growth factor (TGF)-β1 changed from cobblestone to spindle-type. Moreover, E-cadherin was weakly expressed whereas high levels of α-smooth muscle actin expression were observed. TGF-β-mediated epithelial-mesenchymal transition-like changes in HPMCs were inhibited in a dose-dependent manner following tranilast treatment through inhibition of Smad2 phosphorylation. In the mouse model, tumor size decreased significantly and fibrosis was inhibited in the tranilast treatment group compared with that in the control group. CONCLUSIONS Tranilast acts on the TGF-β/Smad pathway to inhibit interactions between cancer cells and cancer-associated fibroblasts, thereby inhibiting tumor growth and fibrosis. This study supports the hypothesis that tranilast represents a novel strategy to prevent fibrous tumor establishment represented by peritoneal dissemination.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
10
|
Kasashima H, Yashiro M, Nakamae H, Masuda G, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. Clinicopathologic significance of the CXCL1-CXCR2 axis in the tumor microenvironment of gastric carcinoma. PLoS One 2017; 12:e0178635. [PMID: 28575019 PMCID: PMC5456266 DOI: 10.1371/journal.pone.0178635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose It was reported that the chemokine (C-X-C motif) ligand 1 (CXCL1) from cancer cells stimulated the recruitment of bone marrow-derived mesenchymal cells (BM-MCs) into tumor stroma via chemokine (C-X-C motif) receptor 2 (CXCR2) signaling. We conducted this retrospective study to determine the clinicopathologic significance of the CXCL1-CXCR2 axis in human gastric cancer. Methods The correlations between the clinicopathological features of 270 primary gastric carcinomas and CXCL1 in cancer cells and CXCR2 in stromal cells were analyzed in immunohistochemical studies. The effect of gastric cancer cells on the expression of CXCR2 in BM-MCs was examined using diffuse-type gastric cancer cell lines in vitro. Results The expression of CXCL1 in cancer cells was correlated with T invasion (T2–T4), lymph node metastasis, lymphatic invasion, venous invasion, peritoneal cytology, peritoneal metastasis and CXCR2 expression in stromal cells. The expression of CXCR2 in stromal cells was correlated with macroscopic type-4 cancers, histological type, T invasion (T2–T4), lymph node metastasis, lymphatic invasion, infiltration, peritoneal cytology, peritoneal metastasis and CD271 expression in stromal cells. The overall survival of patients with CXCL1 and CXCR2-positive cancer was poorer than that of the patients with negative cancer. Both CXCL1 expression in cancer cells and CXCR2 expression in stromal cells were independent prognostic factors for gastric cancer patients. Conclusion The expressions of CXCL1 in cancer cells and CXCR2 in stromal cells are useful prognostic factors for gastric cancer patients.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
Establishment and Characterization of a Nude Mouse Model of Subcutaneously Implanted Tumors and Abdominal Metastasis in Gastric Cancer. Gastroenterol Res Pract 2017; 2017:6856107. [PMID: 28487732 PMCID: PMC5405592 DOI: 10.1155/2017/6856107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
A mouse gastric cancer model is an important tool for studying the mechanisms of gastric cancer. To establish subcutaneously implanted tumors, MKN-45 cell suspensions and tumor tissues were implanted into the middle of the right armpit of nude mice. To generate an abdominal metastasis model, MKN-45 cell suspensions and tumor tissue homogenates were implanted into the middle of the lower abdomen. We measured the weights of the nude mice and the longest dimension, shortest dimension, thickness, and volume of the tumor. We also analyzed the rate of tumor formation, the time required for tumor formation, and the number and size of abdominal tumors in the mice. The rates of formation of the subcutaneously implanted tumors were 100%, 0%, and 100% in the nude mice inoculated with 2 × 107 cells/mL or 1 × 107 cells/mL of the MKN-45 cell suspension or the tumor tissue homogenate (2 × 107 cells/mL), respectively. The rates of metastatic abdominal tumor formation were 100%, 50%, and 75% in mice inoculated with 5 × 107 cells/mL or 1 × 107 cells/mL of the tumor tissue homogenate or the MKN-45 cell suspension (5 × 107 cells/mL), respectively. We derived tumor tissues and tumor tissue homogenates from nude mice prior to establishing the subcutaneous model of implanted tumors and the abdominal metastasis model of gastric cancer, respectively.
Collapse
|
12
|
Oze I, Shimada S, Nagasaki H, Akiyama Y, Watanabe M, Yatabe Y, Matsuo K, Yuasa Y. Plasma microRNA-103, microRNA-107, and microRNA-194 levels are not biomarkers for human diffuse gastric cancer. J Cancer Res Clin Oncol 2016; 143:551-554. [PMID: 27909811 DOI: 10.1007/s00432-016-2316-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/28/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE Diffuse-type gastric cancer (DGC) carries a poor prognosis. Effective screening is one measure that might improve the prognosis of this disease. An E-cadherin/p53 double-conditional knockout (DCKO) mouse line recapitulates human DGC morphologically and molecularly. Three circulating microRNAs (miRNA) (miR-103, miR-107, miR-194) in DCKO mice have been identified as biomarkers for DGC. We sought to evaluate whether these circulating miRNAs could be used for the detection of human DGC. METHODS Subjects were 50 patients with DGC. Controls were first-time outpatients at Aichi Cancer Center Hospital, age- and sex-matched, without a cancer diagnosis. Total RNA containing miRNA was extracted from the plasma samples and then reverse-transcribed. The levels of miRNAs in plasma samples were quantitatively determined by real-time RT-PCR. Spiked-in cel-miR-39 was analyzed as a normalization control. RESULTS Levels of the three plasma microRNA levels in DGC cases with or without an intestinal component were not significantly different from those in control subjects. The areas under the receiver operating characteristic curve of miR-103, miR-107, and miR-194 were 0.548, 0.563, and 0.512, respectively. CONCLUSIONS In contrast to the DCKO mouse model, plasma miR-103, miR-107, and miR-194 levels are not altered in DGC and are not suitable for human DGC screening.
Collapse
Affiliation(s)
- Isao Oze
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan.
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Nagasaki
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miki Watanabe
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Kasashima H, Yashiro M, Nakamae H, Kitayama K, Masuda G, Kinoshita H, Fukuoka T, Hasegawa T, Nakane T, Hino M, Hirakawa K, Ohira M. CXCL1-Chemokine (C-X-C Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow-Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3028-3039. [PMID: 27742059 DOI: 10.1016/j.ajpath.2016.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/29/2022]
Abstract
Tumor stromal cells play a critical role in the progression of diffuse-type gastric cancer (DGC). The aim of this study was to clarify where tumor stromal cells originate from and which factor(s) recruits them into the tumor stroma. Immunodeficient mice with bone marrow transplantation from the cytomegalovirus enhancer/chicken β-actin promoter-enhanced green fluorescent protein mice were used for the in vivo experiments. An in vitro study analyzed the chemotaxis-stimulating factor from DGC cells using bone marrow-derived mesenchymal cells (BM-MCs). The influences of chemokine (C-X-C motif) receptor 2 (CXCR2) inhibitor on the migration of BM-MCs were examined both in vitro and in vivo. BM-MCs frequently migrated into stroma of DGC in vivo. The number of migrating BM-MCs was increased by conditioned medium from DGC cells. CXCL1 from DGC cells stimulated the chemoattractant ability of BM-MCs. Both anti-CXCL1 antibody and CXCR2 inhibitor decreased the migration of BM-MCs, stimulated by DGC cells. A CXCR2 inhibitor, SB225002, reduced the recruitment of BM-MCs into the tumor microenvironment in vivo, decreasing tumor size and lymph node metastasis, and prolonging the survival of gastric tumor-bearing mice. These findings suggested that most tumor stromal cells in DGC might originate from BM-MCs. CXCL1 from DGC cells stimulates the recruitment of BM-MCs into tumor stroma via CXCR2 signaling of BM-MCs. Inhibition of BM-MC recruitment via the CXCL1-CXCR2 axis appears a promising therapy for DGC.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan; Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hirohisa Nakamae
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kisyu Kitayama
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Hirakawa T, Yashiro M, Doi Y, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T, Kimura K, Amano R, Hirakawa K. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia. PLoS One 2016; 11:e0159912. [PMID: 27487118 PMCID: PMC4972430 DOI: 10.1371/journal.pone.0159912] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.
Collapse
Affiliation(s)
- Toshiki Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Yosuke Doi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Kimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Amano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, Sakurai K, Kubo N, Ohira M, Hirakawa K. Lysyl oxidase is associated with the epithelial-mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer 2016; 19:431-442. [PMID: 26100130 DOI: 10.1007/s10120-015-0510-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE It has been reported that lysyl oxidase (LOX) is a hypoxia-responsive factor and is associated with the malignant progression of carcinoma. The aim of this study was to clarify the relationship between the epithelial-mesenchymal transition (EMT) and LOX in gastric cancer cells under hypoxia. METHODS Two gastric cancer cell lines, OCUM-2MD3 and OCUM-12, were used in an in vitro study. The effect of LOX small interfering RNA (siRNA) on the EMT and motility of gastric cancer cells under hypoxic condition was analyzed by reverse transcription PCR, Western blot, a wound-healing assay, and an invasion assay. Correlations between LOX expression and the clinicopathological features of 544 patients with gastric carcinoma were examined immunohistochemically. RESULTS Hypoxic conditions increased the number of polygonal or spindle-shaped cells resulting from EMT in gastric cancer cells. The EMT of cancer cells induced by hypoxia was inhibited by treatment with LOX siRNA. The number of migrating and invading gastric cancer cells in hypoxia was significantly decreased by LOX knockdown. LOX siRNA significantly increased the E-cadherin level and decreased the vimentin level of gastric cancer cells. LOX expression was significantly associated with invasion depth, tumor differentiation, lymph node metastasis, lymphatic invasion, venous invasion, and peritoneal metastasis. Multivariable analysis revealed that LOX was an independent parameter for overall survival. CONCLUSION LOX affects the EMT of gastric cancer cells in hypoxic conditions. LOX expression is a useful prognostic factor for patients with gastric cancer.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. .,Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
16
|
Yamaguchi H, Kawazu M, Yasuda T, Soda M, Ueno T, Kojima S, Yashiro M, Yoshino I, Ishikawa Y, Sai E, Mano H. Transforming somatic mutations of mammalian target of rapamycin kinase in human cancer. Cancer Sci 2015; 106:1687-92. [PMID: 26432419 PMCID: PMC4714661 DOI: 10.1111/cas.12828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine–threonine kinase that acts downstream of the phosphatidylinositol 3‐kinase signaling pathway and regulates a wide range of cellular functions including transcription, translation, proliferation, apoptosis, and autophagy. Whereas genetic alterations that result in mTOR activation are frequently present in human cancers, whether the mTOR gene itself becomes an oncogene through somatic mutation has remained unclear. We have now identified a somatic non‐synonymous mutation of mTOR that results in a leucine‐to‐valine substitution at amino acid position 2209 in a specimen of large cell neuroendocrine carcinoma. The mTOR(L2209V) mutant manifested marked transforming potential in a focus formation assay with mouse 3T3 fibroblasts, and it induced the phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eukaryotic translation initiation factor 4E–binding protein 1 in these cells. Examination of additional tumor specimens as well as public and in‐house databases of cancer genome mutations identified another 28 independent non‐synonymous mutations of mTOR in various cancer types, with 12 of these mutations also showing transforming ability. Most of these oncogenic mutations cluster at the interface between the kinase domain and the FAT (FRAP, ATM, TRRAP) domain in the 3‐D structure of mTOR. Transforming mTOR mutants were also found to promote 3T3 cell survival, and their oncogenic activity was sensitive to rapamycin. Our data thus show that mTOR acquires transforming activity through genetic changes in cancer, and they suggest that such tumors may be candidates for molecularly targeted therapy with mTOR inhibitors.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masahito Kawazu
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiko Yasuda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Ishikawa
- Department of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eirin Sai
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Bone marrow-derived stromal cells are associated with gastric cancer progression. Br J Cancer 2015; 113:443-52. [PMID: 26125445 PMCID: PMC4522640 DOI: 10.1038/bjc.2015.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study was to clarify the role of bone marrow-derived stromal cells (BM-SCs) expressing CD271 in the development of gastric cancer. Methods: The effect of human BM-SCs on the proliferation and motility of six gastric cancer cell lines, OCUM-2M, OCUM-2MD3, OCUM-12, KATO-III, NUGC-3, and MKN-74, was examined. CD271 expression levels in BM-SCs were analysed by flow cytometry. We also generated a gastric tumour model by orthotopic inoculation of OCUM-2MLN cells in mice that had received transplantation of bone marrow from the CAG-EGFP mice. The correlation between the clinicopathological features of 279 primary gastric carcinomas and CD271 expression in tumour stroma was examined by immunohistochemistry. Results: Numerous BM-SCs infiltrated the gastric tumour microenvironment; CD271 expression was found in ∼25% of BM-SCs. Conditioned medium from BM-SCs significantly increased the proliferation of gastric cancer cell lines. Furthermore, conditioned medium from gastric cancer cells significantly increased the number of BM-SCs, whereas migration of OCUM-12 and NUGC-3 cells was significantly increased by conditioned medium from BM-SCs. CD271 expression in stromal cells was significantly associated with macroscopic type-4 cancers, diffuse-type tumours, and tumour invasion depth. The overall survival of patients (n=279) with CD271-positive stromal cells was significantly worse compared with that of patients with CD271-negative stromal cells. This is the first report of the significance of BM-SCs in gastric cancer progression. Conclusions: Bone marrow-derived stromal cells might have an important role in gastric cancer progression, and CD271-positive BM-SCs might be a useful prognostic factor for gastric cancer patients.
Collapse
|
18
|
Sedef AM, Köse F, Sümbül AT, Doğan Ö, Beşen AA, Tatlı AM, Mertsoylu H, Sezer A, Muallaoğlu S, Özyılkan Ö, Abalı H. Patients with distal intestinal gastric cancer have superior outcome with addition of taxanes to combination chemotherapy, while proximal intestinal and diffuse gastric cancers do not: does biology and location predict chemotherapy benefit? Med Oncol 2015; 32:476. [DOI: 10.1007/s12032-014-0476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/26/2023]
|
19
|
Sgroi MD, Smith BR. Weight Loss and Early Satiety. Surgery 2015. [DOI: 10.1007/978-1-4939-1726-6_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Kurashige J, Mima K, Sawada G, Takahashi Y, Eguchi H, Sugimachi K, Mori M, Yanagihara K, Yashiro M, Hirakawa K, Baba H, Mimori K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis 2014; 36:133-41. [PMID: 25411357 DOI: 10.1093/carcin/bgu232] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have recently been linked to the invasion and metastasis of gastric cancer. In addition, the microRNA (miR)-200 family plays a central role in the regulation of the epithelial-mesenchymal transition process during cancer metastasis, and aberrant DNA methylation is one of the key mechanisms underlying regulation of the miR-200 family. In this study, we clarified whether epigenetic changes of miR-200b by CAFs stimulate cancer invasion and peritoneal dissemination in gastric cancer. We evaluated the relationship between miR-200b and CAFs using a coculture model. In addition, we established a peritoneal metastasis mouse model and investigated the expression and methylation status of miR-200b. We also investigated the expression and methylation status of miR-200b and CAFs expression in primary gastric cancer samples. CAFs (CAF-37 and CAF-50) contributed to epigenetic changes of miR-200b, reduced miR-200b expression and promoted tumor invasion and migration in NUGC3 and OCUM-2M cells in coculture. In the model mice, epigenetic changes of miR-200b were observed in the inoculated high-frequency peritoneal dissemination cells. In the 173 gastric cancer samples, the low miR-200b expression group demonstrated a significantly poorer prognosis compared with the high miR-200b expression group and was associated with peritoneal metastasis. In addition, downregulation of miR-200b in cancer cells was significantly correlated with alpha-smooth muscle actin expression. Our data provide evidence that CAFs reduce miR-200b expression and promote tumor invasion through epigenetic changes of miR-200b in gastric cancer. Thus, CAFs might be a therapeutic target for inhibition of gastric cancer.
Collapse
Affiliation(s)
- Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Kosuke Mima
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Genta Sawada
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yusuke Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan, Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Yanagihara
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, Kumamoto 860-8556, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan,
| |
Collapse
|
21
|
Lysyl oxidase-like 2 (LOXL2) from stromal fibroblasts stimulates the progression of gastric cancer. Cancer Lett 2014; 354:438-46. [DOI: 10.1016/j.canlet.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 02/04/2023]
|
22
|
A c-Met inhibitor increases the chemosensitivity of cancer stem cells to the irinotecan in gastric carcinoma. Br J Cancer 2013; 109:2619-28. [PMID: 24129235 PMCID: PMC3833223 DOI: 10.1038/bjc.2013.638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer stem cells (CSCs) may be postulated mediators of the chemoresistance. This study aimed to determine an effective signal inhibitor with effects on the proliferation of CSCs in combination with anticancer drugs. Methods: We used three gastric cancer cell lines and three side population (SP)-enriched CSC cell lines. We examined the combined effects of inhibitors against stemness signals, including c-Met inhibitor SU11274, and five anticancer drugs on the CSC proliferation and mRNA expression of chemoresistance-associated genes. Results: The IC50 of irinotecan in SP-enriched CSC was 10.5 times higher than parent OCUM-2M cells, whereas that of oxaliplatin, taxol, gemcitabine, and 5-fluorouracil was 2.0, 2.8, 2.0, and 1.2, respectively. The SP cell lines had higher expression levels of UGT1A1, ABCG2, and ABCB1 than their parent cell lines. There was a synergistic antiproliferative effect with a combination of SU11274 and SN38 in SP cells, but not other inhibitors. The SU11274 significantly decreased the expression of UGT1A1, but not ABCG2 and ABCB1. The SN38 plus SU11274 group more effectively suppressed in vivo tumour growth by OCUM-2M/SP cells than either group alone. Conclusion: Cancer stem cells have chemoresistance to irinotecan. The c-Met inhibitor may be a promising target molecule for irinotecan-based chemotherapy of gastric cancer.
Collapse
|
23
|
Okita Y, Tanaka H, Ohira M, Muguruma K, Kubo N, Watanabe M, Fukushima W, Hirakawa K. Role of tumor-infiltrating CD11b+ antigen-presenting cells in the progression of gastric cancer. J Surg Res 2013; 186:192-200. [PMID: 24120241 DOI: 10.1016/j.jss.2013.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tumor-infiltrating antigen-presenting cells (APCs), involving tumor-associated macrophages and tumor-infiltrating dendritic cells, play an important role in tumor immunity and immune escape. The aim of this study was to determine whether tumor infiltrating CD11b(+) APCs may affect tumor progression and clinical outcome. METHODS The immunohistochemical analysis was used to evaluate the expression of CD11b, FOXP3, and CD8 in 214 gastric cancer tissues. Concentrations of immunosuppressive cytokines in medium conditioned by gastric cancer cells were measured by enzyme-linked immunosorbent assay. Effects of addition of tumor-conditioned media on CD11c(+) cells were examined by flow cytometry. RESULTS Almost all tumor-infiltrating CD11b(+) cell expressed CD11c and was considered to be APCs. High CD11b(+) cell infiltration was significantly correlated with huge tumor, positive venous invasion, lymph node metastasis, and tumor, node, metastasis stage. Patients with high CD11b(+) cell infiltration had a poorer surgical outcome than those with low CD11b infiltration. Multivariate analysis revealed that CD11b(+) cell infiltration was one of the independent prognostic factors. Tumor-conditioned medium obtained from several gastric cancer cell lines contained immunosuppressive cytokines, transforming growth factor-beta, interleukin-10, and vascular endothelial growth factor. The addition of tumor-conditioned medium decreased the expression of major histocompatibility complex-II and increased the expression of CD11b and programmed death ligand 2 on CD11c(+) APCs. Infiltration of CD11b(+) cells significantly correlate with the degree of FOXP3(+) cell infiltration but not with CD8(+) cell infiltration. CONCLUSIONS Tumor-infiltrating CD11b(+) APCs affected local tumor cell-immune cell interactions and correlated to the poor prognosis of the patients with gastric cancer.
Collapse
Affiliation(s)
- Yoshihiro Okita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsuoka J, Yashiro M, Doi Y, Fuyuhiro Y, Kato Y, Shinto O, Noda S, Kashiwagi S, Aomatsu N, Hirakawa T, Hasegawa T, Shimizu K, Shimizu T, Miwa A, Yamada N, Sawada T, Hirakawa K. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling. PLoS One 2013; 8:e62310. [PMID: 23690936 PMCID: PMC3656884 DOI: 10.1371/journal.pone.0062310] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/19/2013] [Indexed: 12/11/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) is considered to be correlated with malignancy of cancer cells and responsible for cancer invasion and metastasis. We previously reported that distant metastasis was associated with hypoxia in gastric cancer. We therefore investigated the effect of hypoxic condition on EMT of gastric cancer cells. Gastric cancer cells were cultured in normoxia (21% O2) or hypoxia (1% O2) for 24 h. EMT was evaluated as the percentage of spindle-shaped cells in total cells. Effect of transforming growth factor β1 (TGFβ1) or tyrosine kinase inhibitors on the EMT was evaluated. The expression level of TGFβ1 and TGFβR was evaluated by real time RT-PCR. The TGFβ1 production from cancer cells was measured by ELISA. Hypoxia stimulated EMT of OCUM-2MD3 and OCUM-12 cells, but not that of OCUM-2M cells. The expression level of TGFβ1 mRNA under hypoxia was significantly higher than that under normoxia in all of three cell lines. The expression level of TGFβR mRNA was significantly increased by hypoxia in OCUM-2MD3 cells, but not in OCUM-2M cells. TGFβR inhibitor, SB431542 or Ki26894, significantly suppressed EMT of OCUM-2MD3 and OCUM-12. TGFβ1 production from OCUM-2MD3 and OCUM-12 cells was significantly increased under hypoxia in comparison with that under normoxia. These findings might suggest that hypoxia stimulates the EMT of gastric cancer cells via autocrine TGFβ/TGFβR signaling.
Collapse
Affiliation(s)
- Junko Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- * E-mail:
| | - Yosuke Doi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yuhiko Fuyuhiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yukihiro Kato
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Osamu Shinto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Satoru Noda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Shinichiro Kashiwagi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Naoki Aomatsu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Toshiki Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tsuyoshi Hasegawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Kiyoshi Shimizu
- Pharmacological Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Chiyodaku, Tokyo, Japan
| | - Toshiyuki Shimizu
- Research Planning Department, Kyowa Hakko Kirin Co., Ltd., Chiyodaku, Tokyo, Japan
| | - Atsushi Miwa
- Biologics Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Chiyodaku, Tokyo, Japan
| | - Nobuya Yamada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tetsuji Sawada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| |
Collapse
|
25
|
Moubax K, Wuyts W, Vandecaveye V, Prenen H. Pulmonary lymphangitic carcinomatosis as a primary manifestation of gastric carcinoma in a young adult: a case report and review of the literature. BMC Res Notes 2012; 5:638. [PMID: 23158653 PMCID: PMC3519516 DOI: 10.1186/1756-0500-5-638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lymphangitic carcinomatosis as a manifestation of gastric carcinoma is rare. The presenting symptoms are misleading and nonspecific, often resulting in delayed diagnosis. CASE PRESENTATION We present a case of a 24 year old male with progressive dyspnea. Initial radiologic assessment suggested interstitial lung disease, which was subsequently treated with antibiotics and corticosteroids. However, endoscopy and whole body diffusion-weighted magnetic resonance imaging revealed a metastatic gastric cancer with the presence of lymphangitic carcinomatosis. CONCLUSIONS Pulmonary lymphangitic carcinomatosis is a rare manifestation of metastatic gastric cancer. Patients present with severe but non-specific respiratory complaints. Definitive diagnosis can be achieved by transbronchial biopsy. Prognosis is poor and optimal treatment is not defined. Whole body diffusion-weighted magnetic resonance imaging is a promising imaging tool for the diagnosis of metastatic gastric cancer.
Collapse
Affiliation(s)
- Kim Moubax
- Department of Gastroenterology, University Hospitals Leuven, Digestive Oncology Unit, Herestraat 49, 3000, Leuven, Belgium
| | - Wim Wuyts
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | | | - Hans Prenen
- Department of Gastroenterology, University Hospitals Leuven, Digestive Oncology Unit, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
26
|
Katsuno Y, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-β. J Pathol 2012; 228:391-404. [PMID: 22430847 DOI: 10.1002/path.4020] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) has been shown to serve as a marker for cancer-initiating cells (CICs), but little is known about the regulation of the CIC functions of ALDH1+ cancer cells. We isolated ALDH1+ cells from human diffuse-type gastric carcinoma cells and characterized these cells using an Aldefluor assay. ALDH1+ cells constituted 5-8% of the human diffuse-type gastric carcinoma cells, OCUM-2MLN and HSC-39; were more tumourigenic than ALDH1- cells; and were able to self-renew and generate heterogeneous cell populations. Using gene expression microarray analyses, we identified REG4 (regenerating islet-derived family, member 4) as one of the genes up-regulated in ALDH1+ cells, and thus as a novel marker for ALDH1+ tumour cells. Induced expression of REG4 enhanced the colony-forming ability of OCUM-2MLN cells, while knockdown of REG4 inhibited the tumourigenic potential of ALDH1+ cells. We further found that TGF-β signalling reduces the expression of ALDH1 and REG4, and the size of the ALDH1+ cell population. In human diffuse-type gastric carcinoma tissues, the expression of ALDH1 and REG4 correlated with each other, as assessed by immunohistochemistry, and ALDH1 expression correlated inversely with Smad3 phosphorylation as a measure of TGF-β signalling. These findings illustrate that, in diffuse-type gastric carcinoma, REG4 is up-regulated in ALDH1+ CICs, and that the increased tumourigenic ability of ALDH1+ cells depends on REG4. Moreover, TGF-β down-regulates ALDH1 and REG4 expression, which correlates with a reduction in CIC population size and tumourigenicity. Targeting REG4 in ALDH1+ CICs may provide a novel strategy in the treatment of diffuse-type gastric carcinoma.
Collapse
Affiliation(s)
- Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Nishioka N, Matsuoka T, Yashiro M, Hirakawa K, Olden K, Roberts JD. Plasminogen activator inhibitor 1 RNAi suppresses gastric cancer metastasis in vivo. Cancer Sci 2012; 103:228-32. [PMID: 22098548 DOI: 10.1111/j.1349-7006.2011.02155.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cancer metastasis remains the primary cause of pain, suffering, and death in cancer patients, and even the most current therapeutic strategies have not been highly successful in preventing or inhibiting metastasis. In most patients with scirrhous gastric cancer (one of the most aggressive of diffuse-type gastric cancer), recurrence occurs even after potentially curative resection, most frequently in the form of peritoneal metastasis. Given that the occurrence of diffuse-type gastric cancers has been increasing, the development of new strategies to combat metastasis of this disease is critically important. Plasminogen activator inhibitor-1 (PAI-1) is a critical factor in cancer progression; thus, PAI-1 RNAi may be an effective therapy against cancer metastasis. In the present study, we used an RNAi technique to reduce PAI-1 expression in an in vivo model system for gastric cancer metastasis. Ex vivo plasmid transfection and adenovirus infection were tested as mechanisms to incorporate specific PAI-1 RNAi vectors into human gastric carcinoma cells. Both approaches significantly decreased peritoneal tumor growth and the formation of bloody ascites in the mouse model, suggesting that this approach may provide a new, effective strategy for inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Nobuaki Nishioka
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
28
|
Okugawa Y, Toiyama Y, Tanaka K, Matsusita K, Fujikawa H, Saigusa S, Ohi M, Inoue Y, Mohri Y, Uchida K, Kusunoki M. Clinical significance of Zinc finger E-box Binding homeobox 1 (ZEB1) in human gastric cancer. J Surg Oncol 2011; 106:280-5. [PMID: 22095522 DOI: 10.1002/jso.22142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 10/19/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Zinc finger E-box Binding homeobox 1 (ZEB1) encodes a transcription factor and is one of the epithelial-mesenchymal transition (EMT)-inducible genes that play a key role in tumor progression in various cancers. The aim of this study is to clarify the clinical significance of ZEB1 expression in gastric cancer patients. METHODS One hundred thirty-four patients who underwent surgery for gastric cancer were evaluated. We analyzed ZEB1 mRNA levels by real-time reverse transcription PCR in gastric cancer tissue and adjacent normal mucosa. ZEB1 protein expression in primary cancer and in peritoneal dissemination samples was measured using immunohistochemical analysis. RESULTS Expression of the ZEB1 gene was significantly higher in cancerous tissue than in adjacent normal mucosa. Increased ZEB1 expression was significantly associated with peritoneal dissemination, and was an independent prognostic factor. Logistic regression analysis revealed that increased ZEB1 expression was an independent risk factor for peritoneal dissemination. Immunohistochemical analysis indicated that ZEB1 was intensely expressed in both primary cancer and peritoneal dissemination samples. CONCLUSIONS ZEB1 is an independent factor for peritoneal dissemination in patients with gastric cancer, and may therefore play a key role in the progression to peritoneal dissemination in gastric cancer patients.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Linoleic acid enhances angiogenesis through suppression of angiostatin induced by plasminogen activator inhibitor 1. Br J Cancer 2011; 105:1750-8. [PMID: 22015554 PMCID: PMC3242595 DOI: 10.1038/bjc.2011.434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: The intake of dietary fatty acids is highly correlated with the risk of various cancers. Linoleic acid (LA) is the most abundant polyunsaturated fat in the western diet, but the mechanism(s) by fatty acids such as LA modulate cancer cells is unclear. In this study, we examined the role of LA in various steps in gastric cancer progression. Methods: The difference in gene expression between LA-treated and untreated OCUM-2MD3 gastric carcinoma cells was examined by mRNA differential display. The involvement of candidate genes was examined by oligo- and plasmid-mediated RNA interference. Biological functions of several of these genes were examined using in vitro assays for invasion, angiogenesis, apoptosis, cell viability, and matrix digestion. Angiogenesis in vivo was measured by CD-31 immunohistochemistry and microvessel density scoring. Results: LA enhanced the plasminogen activator inhibitor 1 (PAI-1) mRNA and protein expression, which are controlled by PAI-1 mRNA-binding protein. LA-stimulated invasion depended on PAI-1. LA also enhanced angiogenesis by suppression of angiostatin, also through PAI-1. LA did not alter cell growth in culture, but increased dietary LA-enhanced tumour growth in an animal model. Conclusion: Our findings suggest that dietary LA impacts multiple steps in cancer invasion and angiogenesis, and that reducing LA in the diet may help slow cancer progression.
Collapse
|
30
|
Yashiro M, Qiu H, Hasegawa T, Zhang X, Matsuzaki T, Hirakawa K. An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells. Br J Cancer 2011; 105:1522-32. [PMID: 21997136 PMCID: PMC3242520 DOI: 10.1038/bjc.2011.397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Acquired drug resistance to irinotecan is one of the significant obstacles in the treatment of advanced gastric cancer. This study was performed to clarify the effect of epidermal growth factor receptor (EGFR) inhibitors in combination with SN38, an active metabolite of irinotecan, on the proliferation of irinotecan-refractory gastric cancer. METHODS Two irinotecan-resistant gastric cancer cell lines, OCUM-2M/SN38 and OCUM-8/SN38 were, respectively, established by stepwise exposure to SN38 from the parent gastric cancer cell lines OCUM-2M and OCUM-8. The combination effects of two EGFR inhibitors, gefitinib and lapatinib, with SN38 on proliferation, apoptosis, and cell cycle on gastric cancer cells were examined. RESULTS Gefitinib or lapatinib showed synergistic anti-tumour effects against OCUM-2M/SN38 and OCUM-8/SN38 cells when used in combination with SN38, but not against OCUM-2M or OCUM-8 cells. SN38 increased the expression of EGFR and HER2 in OCUM-2M/SN38 and OCUM-8/SN38 cells. The combination of an EGFR inhibitor and SN38 significantly increased the levels of apoptosis-related molecules, caspase-6, p53, and DAPK-2, and resulted in the induction of apoptosis of irinotecan-resistant cells. The EGFR inhibitors increased the S-phase and decreased the UGT1A1 and ABCG expression in irinotecan-resistant cells. The SN38 plus Lapatinib group more effectively suppressed in vivo tumour growth by OCUM-2M/SN38 cells than either alone group. CONCLUSION The combination treatment with an EGFR inhibitor and irinotecan might produce synergistic anti-tumour effects for irinotecan-refractory gastric cancer cells. The regulation of SN38 metabolism-related genes and cell cycle by EGFR inhibitors might be responsible for the synergism.
Collapse
Affiliation(s)
- M Yashiro
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol 2011; 24:1390-403. [PMID: 21701537 DOI: 10.1038/modpathol.2011.99] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric adenocarcinomas can be divided into two major histological types, the diffuse and intestinal type (Laurén classification). Since they diverge in many clinical and molecular characteristics, it is widely accepted that they represent distinct disease entities that may benefit from different therapeutic approaches. Gene expression profiling studies have identified numerous genes that are differentially expressed between them. However, none of these studies covered the whole transcriptome and the published gene lists reveal little overlap, raising the need for further, more comprehensive analyses. Here, we present the first transcriptome-wide expression profiling study comparing the two types (diffuse n=19, intestinal n=24), which identified >1000 genes that are differentially expressed. Among them, thrombospondin 4 (THBS4) showed the strongest correlation to histological type, with vast overexpression in the diffuse type. Quantitative real-time PCR validated this strong overexpression and revealed that intestinal tumors generally lack THBS4 expression. Immunohistochemistry demonstrated THBS4 overexpression on the protein level (n=10) and localized THBS4 to the stromal aspect. Its expression was primarily observed within the extracellular matrix surrounding the tumor cells, with the highest intensities found in regions of high tumor cell density and invasion. Intestinal tumors and matched non-neoplastic gastric epithelium and stroma did not feature any relevant THBS4 expression in a preliminary selection of analyzed cases (n=5). Immunohistochemical colocalization and in vitro studies revealed that THBS4 is expressed and secreted by cancer-associated fibroblasts. Furthermore, we show that THBS4 transcription in fibroblasts is stimulated by tumor cells. This study is the first to identify THBS4 as a powerful marker for diffuse-type gastric adenocarcinomas and to provide an initial characterization of its expression in the course of this disease.
Collapse
|
32
|
Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, Kato Y, Hasegawa T, Sawada T, Hirakawa K. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br J Cancer 2011; 105:996-1001. [PMID: 21863023 PMCID: PMC3185946 DOI: 10.1038/bjc.2011.330] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myofibroblasts in the cancer microenvironment have recently been implicated in tumour growth and metastasis of gastric cancer. However, the mechanisms responsible for the regulation of myofibroblasts in cancer-associated fibroblasts (CAFs) remain unclear. This study was performed to clarify the mechanisms for regulation of myofibroblasts in gastric cancer microenvironment. METHODS Two CAFs (CaF-29 and CaF-33) from the tumoural gastric wall and a normal fibroblast (NF-29) from the nontumoural gastric wall, 4 human gastric cancer cell lines from scirrhous gastric cancer (OCUM-2MD3 and OCUM-12), and non-scirrhous gastric cancer (MKN-45 and MKN-74) were used. Immunofluorescence microscopy by triple-immunofluorescence labelling (α-SMA, vimentin, and DAPI) was performed to determine the presence of α-SMA-positive myofibroblasts. Real-time RT-PCR was performed to examine α-SMA mRNA expression. RESULTS Immunofluorescence microscopy showed that the frequency of myofibroblasts in CaF-29 was greater than that in NF-29. The number of myofibroblasts in gastric fibroblasts gradually decreased with serial passages. Transforming growth factor-β (TGF-β) significantly increased the α-SMA expression level of CAFs. Conditioned medium from OCUM-2MD3 or OCUM-12 cells upregulated the α-SMA expression level of CAFs, but that from MKN-45 or MKN-74 cells did not. The α-SMA upregulation effect of conditioned medium from OCUM-2MD3 or OCUM-12 cells was significantly decreased by an anti-TGF-β antibody or Smad2 siRNA. CONCLUSION Transforming growth factor-β from scirrhous gastric carcinoma cells upregulates the number of myofibroblasts in CAFs.
Collapse
Affiliation(s)
- Y Fuyuhiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Noda S, Yashiro M, Toyokawa T, Morimoto J, Shinto O, Muguruma K, Sawada T, Hirakawa K. Borrmann's macroscopic criteria and p-Smad2 expression are useful predictive prognostic markers for cytology-positive gastric cancer patients without overt peritoneal metastasis. Ann Surg Oncol 2011; 18:3718-25. [PMID: 21573834 DOI: 10.1245/s10434-011-1768-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND All patients with peritoneal-free cancer cells (CY1) do not always develop a peritoneal recurrence (P1). The goal of this study was to identify characteristic features of peritoneal-free cancer cells that could develop into peritoneal recurrence. METHODS Of 1,474 patients, 91 were identified with CY1P0, and the remaining 1,383 with CY0P0. Immunohistochemical staining with anti-phosphorylated Smad 2 (p-Smad2) was performed on paraffin-embedded specimens from the 91 CY1P0 patients. RESULTS CY1 was significantly correlated with Borrmann's type-4 cancer, clinical T stage, and lymph node metastasis. CY1P0 patients with Borrmann's type-4 cancer more frequently develop peritoneal recurrence than do those with other types of tumors. The 5-year survival rate of patients with Borrmann's type-4 tumors was significantly (p = 0.023) low (6.3%) compared with that of patients with other types of tumors (27.7%). The prognosis for p-Smad2-positive patients was significantly poorer than that of p-Smad2-negative patients. In CY1 and/or P1 patients with Borrmann's type-4 tumors, no significant difference in prognosis was identified between those who had surgery and those who did not. CONCLUSIONS Activated Smad signaling might be associated with a high potential for peritoneal recurrence in CY1P0 patients. Borrmann's macroscopic criteria and p-Smad2 expression are useful markers for surgeons selecting advanced gastric cancer patients with CY1P0 for gastrectomy.
Collapse
Affiliation(s)
- Satoru Noda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Qiu H, Yashiro M, Zhang X, Miwa A, Hirakawa K. A FGFR2 inhibitor, Ki23057, enhances the chemosensitivity of drug-resistant gastric cancer cells. Cancer Lett 2011; 307:47-52. [PMID: 21482024 DOI: 10.1016/j.canlet.2011.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/08/2011] [Accepted: 03/18/2011] [Indexed: 12/11/2022]
Abstract
AIM The aim of this study was to clarify the ability of a FGFR2 inhibitor, Ki23057, to enhance the chemosensitivity of drug-resistant gastric cancer cell lines when used in combination with chemotherapeutic drugs. MATERIALS AND METHODS Five cancer cell lines resistant to irinotecan (SN38), paclitaxel (PTX), etoposide (VP16), oxaliplatin (OXA), and gemcitabine (GEM) were respectively established from a parent gastric cancer cell line, OCUM-2M, and were named OCUM-2M/SN38, OCUM-2M/PTX, OCUM-2M/VP16, OCUM-2M/OXA, and OCUM-2M/GEM. The effects of the combination of Ki23057 with anticancer drugs on proliferation, apoptosis, and mRNA expression were examined. RESULTS Ki23057 significantly decreased the IC(50) values of OCUM-2M/SN38, OCUM-2M/PTX, and OCUM-2M/VP16, but not those of OCUM-2M/OXA and OCUM-2M/GEM. Ki23057 significantly enhanced the apoptosis rates induced by chemotherapeutic drugs in both the drug-resistant cell lines and the parental cell line. Ki23057 decreased the ERCC1 expression level in OCUM-2M/SN38, OCUM-2M/PTX, and OCUM-2M/VP16. Ki23057 increased the p53 expression level in OCUM-2M/SN38 and OCUM-2M/PTX, but not in OCUM-2M/VP16. CONCLUSION The FGFR2 inhibitor Ki23057 might be therapeutically promising for treating drug-resistant gastric cancer cells, especially when used in combination with SN38, PTX, or VP16. The apoptosis process might be the main mechanism underlying the synergistic effect of these combinations. The ERCC1 and p53 genes may play an integral role in the synergism between Ki23057 and chemotherapeutic agents in drug-resistant cell lines.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; Oncology Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan.
| | - Xiaotian Zhang
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; Department of Medical Oncology, Beijing Cancer Hospital, School of Oncology, Peking University, Beijing, PR China
| | - Atsushi Miwa
- Drug Discovery Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
35
|
Iwauchi T, Tanaka H, Yamazoe S, Yashiro M, Yoshii M, Kubo N, Muguruma K, Sawada T, Ohira M, Hirakawa K. Identification of HLA-A*2402-restricted epitope peptide derived from ERas oncogene expressed in human scirrhous gastric cancer. Cancer Sci 2011; 102:683-9. [PMID: 21205089 DOI: 10.1111/j.1349-7006.2010.01843.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ERas is a recently identified oncogene involved in the tumorgenic growth of embryonic stem cells. We examined the significance of ERas expression in scirrhous gastric carcinoma, and the possibility of ERas as a tumor-associated antigen of gastric cancer for developing a cancer vaccine. ERas expression was determined in scirrhous gastric carcinoma specimens by immunohistochemical staining. To assess the possibility of the ERas protein as an anticancer vaccine target, we examined whether ERas for HLA-A-restricted epitope peptides were capable of eliciting cytotoxic T lymphocyte activity. Immunohistochemical analysis identified ERas protein in the nucleus and cytoplasm of cancer cells, yet ERas was not expressed in normal gastric epithelium. By western blotting, lysates of the scirrhous gastric cancer cell lines, OCUM-8, OCUM-2MD3 and OCUM-2M were shown to contain a 25-kDa band of ERas protein. ERas mRNA was detected in these cell lines by RT-PCR. To investigate cytotoxicity, we successfully established cytotoxic T lymphocyte clones stimulated by HLA-A*2402-restricted ERas peptides (FALDDPSSL). These peptides have specific cytotoxicity against corresponding HLA-A*2402-positive target cells pulsed with the candidate peptide. We found that the cytotoxic T lymphocyte clones demonstrated cytotoxic activity against OCUM-8 cells that endogenously express ERas. Our results suggest that ERas is a novel tumor-associated antigen with the potential application to be a vaccine against scirrhous gastric cancer.
Collapse
Affiliation(s)
- Takehiko Iwauchi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Johansson E, Komuro A, Iwata C, Hagiwara A, Fuse Y, Watanabe A, Morishita Y, Aburatani H, Funa K, Kano MR, Miyazono K. Exogenous introduction of tissue inhibitor of metalloproteinase 2 reduces accelerated growth of TGF-β-disrupted diffuse-type gastric carcinoma. Cancer Sci 2010; 101:2398-403. [PMID: 20718757 PMCID: PMC11159670 DOI: 10.1111/j.1349-7006.2010.01688.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diffuse-type gastric carcinoma is characterized by rapid progression and poor prognosis. High expression of transforming growth factor (TGF)-β and thick stromal fibrosis are observed in this type of gastric carcinoma. We have previously shown that disruption of TGF-β signaling via introduction of a dominant negative form of the TGF-β type II receptor (dnTβRII) into diffuse-type gastric cancer cell lines, including OCUM-2MLN, caused accelerated tumor growth through induction of tumor angiogenesis in vivo. In the present study, we show that TGF-β induces upregulation of expression of tissue inhibitor of metalloproteinase 2 (TIMP2) in the OCUM-2MLN cell line in vitro, and that expression of TIMP2 is repressed by dnTβRII expression in vivo. Transplantation of the OCUM-2MLN cells to nude mice exhibited accelerated tumor growth in response to dnTβRII expression, which was completely abolished when TIMP2 was coexpressed with dnTβRII. Although the blood vessel density of TIMP2-expressing tumors was only slightly decreased, the degree of hypoxia in tumor tissues was significantly increased and pericytes covering tumor vasculature were decreased by TIMP2 expression in OCUM-2MLN cells, suggesting that the function of tumor vasculatures was repressed by TIMP2 and consequently tumor growth was reduced. These findings provide evidence that one of the mechanisms of the increase in angiogenesis in diffuse-type gastric carcinoma is the downregulation of the anti-angiogenic protein TIMP2.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia
- Immunoblotting
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Erik Johansson
- Department of Molecular Pathology and the Global Center of Excellence Program for Integrative Life Science Based on the Study of Biosignaling Mechanisms, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhao WM, Wang L, Park H, Chhim S, Tanphanich M, Yashiro M, Kim KJ. Monoclonal antibodies to fibroblast growth factor receptor 2 effectively inhibit growth of gastric tumor xenografts. Clin Cancer Res 2010; 16:5750-8. [PMID: 20670946 DOI: 10.1158/1078-0432.ccr-10-0531] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Overexpression of fibroblast growth factor receptor 2 (FGFR2) may be a causative factor of a number of human tumors, especially gastric tumors of the poorly differentiated type. We investigated whether monoclonal antibodies (mAbs) directed against FGFR2 can inhibit the growth of tumors in xenograft models. EXPERIMENTAL DESIGN We generated and characterized 3 mAbs that recognize different epitopes on FGFR2: GAL-FR21, GAL-FR22, and GAL-FR23. The ability of the mAbs to recognize the FGFR2IIIb and FGFR2IIIc isoforms of FGFR2 was determined, as was their ability to block binding of FGF ligands to FGFR2. The capability of the mAbs to inhibit FGF-induced FGFR2 phosphorylation and to downmodulate FGFR2 expression was also investigated. Finally, the ability of the anti-FGFR2 mAbs to inhibit tumor growth was determined by establishing xenografts of SNU-16 and OCUM-2M human gastric tumor cell lines in nude mice, treating with each mAb (0.5-5 mg/kg intraperitoneally twice weekly) and monitoring tumor size. RESULTS Of the 3 mAbs, GAL-FR21 binds only the FGFR2IIIb isoform, whereas GAL-FR22 and GAL-FR23 bind to both the FGFR2IIIb and FGFR2IIIc forms, with binding regions respectively in the D3, D2-D3, and D1 domains of FGFR2. GAL-FR21 and GAL-FR22 blocked the binding of FGF2, FGF7 and FGF10 to FGFR2IIIb. GAL-FR21 inhibited FGF2 and FGF7 induced phosphorylation of FGFR2, and both mAbs downmodulated FGFR2 expression on SNU-16 cells. These mAbs effectively inhibited growth of established SNU-16 and OCUM-2M xenografts in mice. CONCLUSIONS Anti-FGFR2 mAbs GAL-FR21 and GAL-FR22 have potential for the treatment of gastric and other tumors.
Collapse
Affiliation(s)
- Wei-meng Zhao
- Galaxy Biotech, LLC, Sunnyvale, California 94089, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Noda S, Yashiro M, Nshii T, Hirakawa K. Hypoxia upregulates adhesion ability to peritoneum through a transforming growth factor-β-dependent mechanism in diffuse-type gastric cancer cells. Eur J Cancer 2010; 46:995-1005. [DOI: 10.1016/j.ejca.2010.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 11/29/2022]
|
39
|
Establishment and characterization of a new hypoxia-resistant cancer cell line, OCUM-12/Hypo, derived from a scirrhous gastric carcinoma. Br J Cancer 2010; 102:898-907. [PMID: 20145613 PMCID: PMC2833244 DOI: 10.1038/sj.bjc.6605543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Many kinds of solid tumour have heterogeneously a hypoxic environment. Tumour hypoxia reported to be associated with more aggressive tumour phenotypes such as high metastatic ability and resistance to various anti-cancer therapies which may lead to a poorer prognosis. However, the mechanisms by which hypoxia affects the aggressive phenotypes remain unclear. Methods: We established a scirrhous gastric carcinoma cell line (OCUM-12) from ascites associated with scirrhous gastric carcinoma, and a hypoxia-resistant cancer cell line (OCUM-12/Hypo) was cloned from OCUM-12 cells by continuous exposure to 1% oxygen. Results: Histologic findings from orthotopic tumours derived from parent OCUM-12 cells and daughter OCUM-12/Hypo cells revealed poorly differentiated adenocarcinoma with extensive fibrosis that resembled human scirrhous gastric cancer. Necrotic lesions were frequently detected in the OCUM-12 tumours but were rarely found in the OCUM-12/Hypo tumours, although both types had multiple hypoxic loci. Apoptosis rate of OCUM-12 cells was increased to 24.7% at 1% O2, whereas that of OCUM-12/Hypo was 5.6%. The OCUM-12/Hypo orthotopic models developed multiple metastases to the peritoneum and lymph nodes, but the OCUM-12 models did not. OCUM-12/Hypo cells showed epithelial-to-mesenchymal transition and high migratory and invasive activities in comparison with OCUM-12 cells. The mRNA expression levels of both E-cadherin and zonula occludens ZO-1 and ZO-2 decreased in OCUM-12/Hypo cells, and that of vimentin, Snail-1, Slug/Snail-2, Twist, ZEB-1, ZEB-2, matrix metalloproteinase-1 (MMP-1), and MMP-2 were increased in OCUM-12/Hypo cells. Conclusion: OCUM-12 and OCUM-12/Hypo may be useful for the elucidation of disease progression associated with scirrhous gastric cancer in the setting of chronic hypoxia.
Collapse
|
40
|
Matsuzaki T, Yashiro M, Kaizaki R, Yasuda K, Doi Y, Sawada T, Ohira M, Hirakawa K. Synergistic antiproliferative effect of mTOR inhibitors in combination with 5-fluorouracil in scirrhous gastric cancer. Cancer Sci 2009; 100:2402-10. [PMID: 19764996 PMCID: PMC11159178 DOI: 10.1111/j.1349-7006.2009.01315.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to clarify the benefit of combination chemotherapy in gastric cancer based on a cell-signal inhibitor and an anticancer drug. Two scirrhous gastric cancer cell lines and two non-scirrhous gastric cancer cell lines were used. Five anticancer drugs (5-fluorouracil [5FU], paclitaxel, oxaliplatin, irinotecan, and gemcitabine) and four cell-signal inhibitors, mammalian target of rapamycin (mTOR) inhibitor, glycogen synthase kinase 3beta, p38alphabetaMAPK, and cyclin-dependent kinase, were used. The proliferation of cancer cells was examined by MTT assay and in vivo study. The apoptosis of cancer cells and the expression of apoptosis-related molecules were examined by flow cytometry, real-time PCR, and immunostaining. mTOR inhibitors with 5FU showed a synergistic antiproliferative effect in scirrhous gastric cancer, whereas the other signal inhibitors showed no synergistic effect with any anticancer drugs. mTOR inhibitor decreased the IC(50) of 5FU and increased the apoptosis rate in scirrhous gastric cancer cells, but not in non-scirrhous gastric cancer cells. The pan-caspase inhibitor, zVAD-fmk, inhibits apoptosis induced in combination with 5FU and mTOR inhibitor. mTOR inhibitor decreased dihydropyrimidine dehydrogenase, thymidylatesynthase, and bcl-2 expression, and increased caspase-3 and p21 expression of scirrhous gastric cancer cells, but did not affect those of non-scirrhous gastric cancer cells. In an in vivo study, mTOR inhibitor significantly enhanced the therapeutic efficacy of S1, an analog of 5FU. These findings suggest that mTOR inhibitor interacts with 5FU in a synergistic manner in scirrhous gastric cancer cells by the activation of the apoptosis signal. Therefore, mTOR inhibitor is a promising therapeutic agent in combination with 5FU in scirrhous gastric cancer.
Collapse
Affiliation(s)
- Taro Matsuzaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kiyono K, Suzuki HI, Morishita Y, Komuro A, Iwata C, Yashiro M, Hirakawa K, Kano MR, Miyazono K. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci 2009; 100:1809-16. [PMID: 19594546 PMCID: PMC11158587 DOI: 10.1111/j.1349-7006.2009.01248.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.
Collapse
Affiliation(s)
- Kunihiko Kiyono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nishii T, Yashiro M, Shinto O, Sawada T, Ohira M, Hirakawa K. Cancer stem cell-like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Sci 2009; 100:1397-402. [PMID: 19493275 PMCID: PMC11159778 DOI: 10.1111/j.1349-7006.2009.01211.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for cancer metastasis, but the evidence to conclusively prove this hypothesis remains uncertain. The side population (SP), as evaluated by a flow cytometric analysis using Hoechst 33342, has been known as CSC-rich population. The aim of this study was to clarify the characterization of the SP cells in peritoneal metastasis of gastric carcinoma. Gastric cancer cell lines OCUM-2M, OCUM-2D, and OCUM-2MD3 (a daughter cell line with high potential for peritoneal metastasis) were used. We isolated SP cells from OCUM-2M and OCUM-2D using flow cytometry. Serial sorting was performed three times to enrich SP cells, and they were designated as OCUM-2M/SP and OCUM-2D/SP cells. Flow cytometric analysis showed 0.46%, 0.29%, 5.24%, 6.49%, and 11.3% of the SP cells to be found in OCUM-2M, OCUM-2D, OCUM-2MD3, OCUM-2M/SP, and OCUM-2D/SP cells, respectively. The intraperitoneal inoculation of SP cells and OCUM-2MD3 cells produced peritoneal metastasis, but parent cells did not. The adhesion ability of SP and OCUM-2MD3 cells was significantly high in comparison to that of parent cells. The expression level of adhesion molecules alpha2-, alpha5-, beta3-, and beta5-integrin, and CD44, was high in SP cells compared to parent cells. The expression of stemness markers, Oct3/4 and Sox2, increased in the SP-cell-injected tumors. These findings suggested that CSC-like SP cells expressing alpha2-, alpha5-, beta3-, and beta5-integrin, and CD44, may play an important role for peritoneal metastasis in gastric carcinoma. Oct3/4 and Sox2 may be associated with CSC in gastric cancer.
Collapse
Affiliation(s)
- Takafumi Nishii
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H, Kiyono K, Shirai YT, Suzuki HI, Hirakawa K, Kano MR, Miyazono K. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst 2009; 101:592-604. [PMID: 19351925 PMCID: PMC2669102 DOI: 10.1093/jnci/djp058] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Diffuse-type gastric carcinoma is a cancer with poor prognosis that has high levels of transforming growth factor β (TGF-β) expression and thick stromal fibrosis. However, the association of TGF-β signaling with diffuse-type gastric carcinoma has not been investigated in detail. Methods We used a lentiviral infection system to express a dominant-negative TGF-β type II receptor (dnTβRII) or green fluorescent protein (GFP) as a control in the diffuse-type gastric carcinoma cell lines, OCUM-2MLN and OCUM-12. These infected cells and the corresponding parental control cells were subcutaneously or orthotopically injected into nude mice. Angiogenesis was inhibited by infecting cells with a lentivirus carrying the gene for angiogenic inhibitor thrombospondin-1 or by injecting mice intraperitoneally with the small-molecule angiogenic inhibitor sorafenib or with anti-vascular endothelial growth factor (VEGF) neutralizing antibody (six or eight mice per group). Expression of phospho-Smad2 and thrombospondin-1 was investigated immunologically in human gastric carcinoma tissues from 102 patients. All statistical tests were two-sided. Results Expression of dnTβRII into OCUM-2MLN cells did not affect their proliferation in vitro, but it accelerated the growth of subcutaneously or orthotopically transplanted tumors in vivo (eg, for mean volume of subcutaneous tumors on day 10 relative to that on day 0: dnTβRII tumors = 3.49 and GFP tumors = 2.46, difference = 1.02, 95% confidence interval [CI] = 0.21 to 1.84; P = .003). The tumors expressing dnTβRII had higher levels of angiogenesis than those expressing GFP because of decreased thrombospondin-1 production. Similar results were obtained with OCUM-12 cells. Expression of thrombospondin-1 in the dnTβRII tumor or treatment with sorafenib or anti-VEGF antibody reduced tumor growth, whereas knockdown of thrombospondin-1 expression resulted in more accelerated growth of OCUM-2MLN tumors than of GFP tumors (eg, mean tumor volumes on day 14 relative to those on day 0: thrombospondin-1–knockdown tumors = 4.91 and GFP tumors = 3.79, difference = 1.12, 95% CI = 0.80 to 1.44; P < .001). Positive association between phosphorylated Smad2 and thrombospondin-1 immunostaining was observed in human gastric carcinoma tissues. Conclusions Disruption of TGF-β signaling in diffuse-type gastric carcinoma models appeared to accelerate tumor growth, apparently through increased tumor angiogenesis that was induced by decreased expression of thrombospondin-1.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Qiu H, Yashiro M, Shinto O, Matsuzaki T, Hirakawa K. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci 2009; 100:181-8. [PMID: 19037991 PMCID: PMC11158955 DOI: 10.1111/j.1349-7006.2008.01004.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/11/2008] [Accepted: 09/14/2008] [Indexed: 12/13/2022] Open
Abstract
The National Comprehensive Cancer Network guidelines recommend radiotherapy as a standard treatment for patients with a high risk of recurrence in gastric cancer. Because radiation is harmful to the surrounding organs, a radiation sensitizer might therefore be useful to decrease the side effects of patients with advanced gastric carcinoma. The aim of the current study was to clarify the effect of a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (CdR), on radiation sensitivity in gastric cancer cells. Five gastric cancer cell lines, OCUM-2M, OCUM-12, KATO-III, MKN-45, and MKN-74, were used. The effects of 5-aza-CdR with irradiation on the growth activity, cell-cycle distribution, apoptosis, and apoptosis-associated gene expression were examined. 5-aza-CdR sensitized three of five gastric cancer cell lines to radiation. A combination of irradiation and 5-aza-CdR significantly (P<0.05) decreased the growth activity compared with irradiation alone in OCUM-2M, OCUM-12, and MKN-45 cells, but not in KATO-III and MKN-74 cells. The percentage of cells in G2-M phase and the apoptotic rate with irradiation in combination with 5-aza-CdR were increased in OCUM-2M, OCUM-12, and MKN-45 cells compared with irradiation alone, but not in KATO-III and MKN-74 cells. 5-aza-CdR increased the expression of p53, RASSF1, and death-associated protein kinases (DAPK) genes compared with the control or irradiation alone. These findings suggest that 5-aza-CdR might therefore be useful as a radiation sensitizer to treat some types of gastric carcinoma. The arrest at G2-M phase and increased apoptotic rate might be partly mediated by enhanced expression of the p53, RASSF1, or DAPK gene families by 5-aza-CdR.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | |
Collapse
|
45
|
Kawajiri H, Yashiro M, Shinto O, Nakamura K, Tendo M, Takemura S, Node M, Hamashima Y, Kajimoto T, Sawada T, Ohira M, Hirakawa K. A novel transforming growth factor beta receptor kinase inhibitor, A-77, prevents the peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res 2008; 14:2850-60. [PMID: 18451253 DOI: 10.1158/1078-0432.ccr-07-1634] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Transforming growth factor beta receptor (TGFbeta-R) is reported to correlate with the malignant potential of scirrhous gastric carcinoma. The aim of the current study is to clarify the possibility of molecular target therapy with a TGFbeta-R inhibitor, A-77, for the treatment of peritoneal dissemination of scirrhous gastric cancer. EXPERIMENTAL DESIGN Three scirrhous gastric cancer cell lines and two fibroblasts were used. For in vivo experiments, the A-77 was administered i.p. to mouse models of peritoneal dissemination. The influences of A-77 on the adhesion ability, invasion ability, and the expression of adhesion molecules were examined in vitro. RESULTS The A-77 administration resulted in a significantly (P < 0.01) better prognosis for the mice with peritoneal dissemination (median survival time, 51 days), compared with the control (median survival time, 25 days). A-77 therefore significantly (P < 0.01) decreased the weight and number of metastatic nodes. The adhesive ability and invasion ability of cancer cells were significantly decreased by A-77. A-77 decreased the expression of alpha(2), alpha(3), and alpha(5) integrins in gastric cancer cells. The histologic findings showed the degree of fibrosis to be less in the tumors treated by A-77. A-77 decreased the growth of fibroblast and invasion-stimulating activity of fibroblasts on cancer cells. CONCLUSION The TGFbeta-R inhibitor, A-77, decreased the expression of integrins in cancer cells and the proliferation of fibroblasts, which resulted in the decreased adhesive and invasive abilities of scirrhous gastric cancer cells to peritoneum. A-77 is thus considered to be useful for the inhibition of peritoneal dissemination of scirrhous gastric carcinoma.
Collapse
Affiliation(s)
- Hidemi Kawajiri
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kosaka K, Yashiro M, Sakate Y, Hirakawa K. A synergistic antitumor effect of interleukin-2 addition with CD80 immunogene therapy for peritoneal metastasis of gastric carcinoma. Dig Dis Sci 2007; 52:1946-53. [PMID: 17404853 DOI: 10.1007/s10620-006-9637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 10/01/2006] [Indexed: 12/21/2022]
Abstract
The co-stimulatory molecule CD80 is a ligand of CD28, which plays a key role in the induction of cell-mediated immune responses. Many tumors, including gastric cancer, decrease the expression of CD80, which results in the failure of immune recognition. We evaluated the effect of interleukin-2 addition combined with CD80 infection on the peritoneal metastasis in gastric cancer. CD80 infection combined with interleukin-2 addition significantly increased the activated cytotoxicity of mononuclear cells compared to CD80 gene infection and compared to the lacZ control group. In vivo, the survival of animals with intraperitoneal tumor was longest in those given CD80 infection with interleukin-2 addition (median survival, 46 days), followed by those given interleukin-2 (39 days), those given CD80 infection (37 days), and those given lacZ (29 days). These results suggest that interleukin-2 addition might contribute to improving the observed outcome of CD80 immunogene therapy in peritoneal metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Kinshi Kosaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | |
Collapse
|
47
|
Katsuragi K, Yashiro M, Sawada T, Osaka H, Ohira M, Hirakawa K. Prognostic impact of PCR-based identification of isolated tumour cells in the peritoneal lavage fluid of gastric cancer patients who underwent a curative R0 resection. Br J Cancer 2007; 97:550-6. [PMID: 17667927 PMCID: PMC2360343 DOI: 10.1038/sj.bjc.6603909] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identification of cancer cells in the peritoneal cavity could influence therapy and outcome of gastric carcinoma patients. The objective of this study was to evaluate the clinical impact of the real-time quantitative polymerase chain reaction-(PCR) based identification of isolated tumour cells in the peritoneal lavage fluid of gastric carcinoma. The peritoneal lavage fluid of 116 patients with gastric cancer was sampled at laparotomy. After RNA extraction and reverse transcription, real-time quantitative PCR was performed using the primers and probes for carcinoembryonic antigen (CEA) and cytokeratin-20 (CK20). When either the CEA mRNA or CK20 mRNA level of the sample was over the cutoff value, the sample was determined to be PCR-positive. Forty-six (40%) of the 116 patients were PCR-positive and 30 (65%) of the 46 PCR-positive patients died as a result of recurrent peritoneal dissemination. The prognosis of the 46 PCR-positive patients was significantly (P<0.001) worse than that of 70 PCR-negative patients. Furthermore, in 80 of the cases with a curative R0 resection, 15 of the patients with PCR-positive findings had a significantly (P<0.001) poorer prognosis than the 65 PCR-negative patients. The prognosis of the PCR-positive patients was significantly poorer than that of the PCR-negative patients in the T3 (P<0.0001) and T4 (P=0.048) subgroups. In a multivariate analysis of the 80 cases with a curative R0 resection, the real-time quantitative RT–PCR (CEA and/or CK20) levels indicated that they were independent prognostic factors. The real-time quantitative RT–PCR analysis of the CEA and/or CK20 transcripts in the peritoneal lavage fluid is useful for predicting the peritoneal recurrence in patients who are undergoing a curative resection for gastric cancer.
Collapse
Affiliation(s)
- K Katsuragi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - M Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
- E-mail:
| | - T Sawada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - H Osaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - M Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - K Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
48
|
Zhang X, Yashiro M, Ohira M, Ren J, Hirakawa K. Synergic antiproliferative effect of DNA methyltransferase inhibitor in combination with anticancer drugs in gastric carcinoma. Cancer Sci 2006; 97:938-44. [PMID: 16805821 PMCID: PMC11158058 DOI: 10.1111/j.1349-7006.2006.00253.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations of DNA methylation play an important role in the regulation of gene expression associated with chemosensitivity of gastric carcinomas. With the aim of improving the chemotherapeutic efficacy of gastric carcinoma, the effect of DNA methyltransferase inhibitor, 5-aza-CdR, on the chemosensitivity of five anticancer drugs was investigated. Human gastric cancer cell lines, OCUM-2M and MKN-74, and five anticancer drugs, 5-FU, PTX, OXA, SN38, and GEM, were used. In both gastric cancer cell lines, a synergistic antiproliferative effect by a combination of 5-aza-CdR at 5 microM was found in SN38 and GEM. 5-Aza-CdR at 5 microM increased apoptosis induced by SN38 and GEM in both cell lines. 5-Aza-CdR increases the expression of DAPK-2 and DAPK-3, RASSF1, and THBS1 genes in both OCUM-2M and MKN-74 cells, but not that of hMLH1, p16, MGMT, E-cadherin, and p53 genes. These findings suggest that 5-aza-CdR is a promising chemotherapeutical agent for gastric carcinomas, in combination with the anticancer drugs SN38 and GEM, in apoptosis signaling. The upregulation of DAPK-2 and DAPK-3, RASSF1, and THBS1 genes by 5-aza-CdR might be associated with the synergistic effect.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Medical Oncology, Beijing Cancer Hospital, School of Oncology, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Tanaka H, Yashiro M, Sunami T, Sakate Y, Kosaka K, Hirakawa K. ICAM-2 gene therapy for peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res 2005; 10:4885-92. [PMID: 15269165 DOI: 10.1158/1078-0432.ccr-0393-03] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human scirrhous gastric carcinoma develops peritoneal dissemination with high frequency, and the prognosis of patients with peritoneal metastasis is poor. There have been few reports of an immunogene therapy for peritoneal dissemination. Intercellular adhesion molecule (ICAM)-2 is a second ligand of leukocyte function-associated antigen-1, which functions as a costimulatory molecule for effector cells. In the present study, we examined whether ICAM-2 transfection using adenovirus vector is effective gene therapy for peritoneal metastasis of gastric cancer. EXPERIMENTAL DESIGN We constructed an adenovirus vector, AdICAM-2, that encodes the full-length human ICAM-2 gene under control of the cytomegalovirus promoter. This vector expresses high levels of ICAM-2 on the human gastric cancer cell line OCUM-2MD3, which has high peritoneal metastatic ability in nude mice. We investigated the antitumor effects of gene transfer of ICAM-2 using the adenovirus vector AdICAM-2 in vitro and in vivo. RESULTS ICAM-2 expressed on OCUM-2MD3 cells by AdICAM-2 demonstrated significantly high adhesiveness to and cytotoxicity against peripheral blood mononuclear cells in vitro compared with the control adenovirus vector AdlacZ. Intratumoral injection of AdICAM-2 significantly inhibited the growth of s.c. tumor. Mice with peritoneal metastasis survived for a significantly longer time after AdICAM-2 injection, compared with injection of AdlacZ. Histopathological findings revealed that many natural killer cells infiltrated the peritoneal metastatic lesions after AdICAM-2 injection. CONCLUSIONS These findings suggest that transduction of ICAM-2 into cancer cells enhances the adhesion and activation of natural killer cells, resulting in a reduction of peritoneal metastasis. ICAM-2 transfection using adenovirus vector might be an effective form of gene therapy for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Takemura S, Yashiro M, Sunami T, Tendo M, Hirakawa K. Novel models for human scirrhous gastric carcinoma in vivo. Cancer Sci 2004; 95:893-900. [PMID: 15546507 PMCID: PMC11159367 DOI: 10.1111/j.1349-7006.2004.tb02199.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 09/24/2004] [Accepted: 09/27/2004] [Indexed: 11/27/2022] Open
Abstract
Human scirrhous gastric carcinoma, a diffusely infiltrating type of poorly differentiated gastric carcinoma also known as linitis plastica type carcinoma, is characterized by cancer cell infiltration and proliferation accompanied with extensive stromal fibrosis. We established two new gastric cancer cell lines, designated OUCM-8 and OCUM-11, which developed the characteristic biology of scirrhous gastric carcinoma upon orthotopic implantation in mice. Involvement of lymph nodes and liver metastasis was also found in both orthotopic models. Histologically, these orthotopic models showed proliferation with extensive fibrosis, resembling human scirrhous gastric cancer. Both cell lines were derived from ascites of patients with scirrhous gastric cancer. The growth of OCUM-8 and OCUM-11 cells following the addition of KGF, FGF, and EGF was increased significantly relative to untreated cells. An increase in the number of attached and spreading cells occurred following the addition of TGF-beta 1 in both cell lines. OCUM-11 cells showed microsatellite instability. Although subcutaneous scirrhous gastric cancer cells show medullary growth, most in vivo studies of scirrhous gastric cancer have used xenografted tumors implanted subcutaneously. Only in a few cases was it confirmed that these scirrhous gastric cancer cell lines retained the original histologic characteristics. Our orthotopic models should contribute to the elucidation of disease progression in situ and to the development of therapy for scirrhous gastric cancer.
Collapse
Affiliation(s)
- Satoru Takemura
- The Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585
| | | | | | | | | |
Collapse
|