1
|
Zhang Y, Li Y, Huang S, Zhang H, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Enhanced anti-metastatic therapy with down-regulation of heparinase expression by ROS-responsive micellar nanoparticles. NANOSCALE 2021; 13:15267-15277. [PMID: 34477185 DOI: 10.1039/d1nr02964a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metastasis is a major sign of malignant tumors which plays a vital role in cancer-related death. Suppressing metastasis is an important way to improve the survival rate of cancer patients. Herein, multifunctional PEG-LAM-PPS nanoparticles (nPLPs) are fabricated as both nanocarriers and anti-metastatic agents for tumor treatment. In this system, laminarin sulfate (LAM) suppresses metastasis by reducing heparinase and protecting the extracellular matrix; the ROS-sensitive polypropylene sulfide (PPS) improves the release of the loaded drug in the tumor microenvironment. This is the first time that laminarin sulfate has been used as a carrier to inhibit the expression of heparinase and treat melanoma lung metastasis. The blank nanoparticles are excellently safe and showed high anti-metastatic efficacy in melanoma lung metastatic mouse models, reducing metastatic nodules by 60%. They significantly improved the anti-tumor efficacy of the loaded drug doxorubicin, provided ∼33% further reduction of the tumor volume and 50% further reduction of the metastatic nodule number compared with free doxorubicin. Thus, these simple and versatile micellar nanoparticles composed of biocompatible materials offer a promising vehicle for treating invasive solid tumors and metastases.
Collapse
Affiliation(s)
- Yicong Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Yuai Li
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Shiqi Huang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Hanming Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Qing Lin
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Tao Gong
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xun Sun
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Zhirong Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Ling Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
2
|
Moga MA, Dima L, Balan A, Blidaru A, Dimienescu OG, Podasca C, Toma S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?-A Review. Int J Mol Sci 2021; 22:E629. [PMID: 33435168 PMCID: PMC7826946 DOI: 10.3390/ijms22020629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| | - Andreea Balan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, 020021 Bucharest, Romania
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Cezar Podasca
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| |
Collapse
|
3
|
Wang Y, Xiao F, Jin C, Wang W, Chen X, Liu Q, Ding K. The impact of structural modification of sulfated polysaccharides on bone morphogenic protein 2 and inhibition of endothelial cell angiogenesis. Carbohydr Res 2020; 496:108093. [PMID: 32738718 DOI: 10.1016/j.carres.2020.108093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Sulfated polysaccharides play important roles in angiogenesis. However, the impact of structural alteration of sulfated polysaccharide on the bioactivity is still vague. In this study, binding between different sulfated polysaccharides and bone morphogenic protein 2 (BMP2) was measured to understand the sense of this motif transformation. The results showed that binding between sulfated α-1,4-glucan and BMP2 was the most intensive. The branch of α-1,4-glucan was important for the binding. The affinity of sulfated polysaccharides to BMP2 increased as the molecular weight (MW) and degree of substitution (DS) increased. DS that exceeded 1.05 impaired binding and played more important role in polysaccharide BMP2 interaction than MW. The reservation of partial 6-OH would benefit its binding ability to BMP2. Further, we showed that sulfated polysaccharides with strong binding to BMP2 blocked phosphorylation of Smad 1/5/8 and expression of Id1 to a greater extent than those not strongly bind to BMP2. The binding strength of polysaccharides to BMP2 increased, so did the potency of the anti-angiogenesis effects.
Collapse
Affiliation(s)
- Ying Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Fei Xiao
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Wucheng Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Xia Chen
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Qin Liu
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym 2019; 229:115436. [PMID: 31826393 DOI: 10.1016/j.carbpol.2019.115436] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
With the rising trend of incidence of cancers, effective therapies are urgently needed to control human malignancies. However, the chemotherapy drugs currently on the market cause serious side effects. Polysaccharides belong to a class of biomacromolecules, which have drawn considerable research interest over the years as it possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs with fewer side effects. The antitumor activity of many polysaccharides was significantly increased after modification. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and modified derivatives for the development of effective therapeutics for various human cancers. This review highlights recent advances on the major chemical modification methods of polysaccharides, and discusses the effect of molecular modification on the physicochemical properties and anti-tumor activities of polysaccharides. Meanwhile, the underlying anti-tumor mechanisms of polysaccharide and its modified derivatives were also discussed.
Collapse
|
5
|
Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front Cardiovasc Med 2018; 5:153. [PMID: 30417001 PMCID: PMC6214344 DOI: 10.3389/fcvm.2018.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Seaweed-derived polysaccharides including agar and alginate, have found widespread applications in biomedical research and medical therapeutic applications including wound healing, drug delivery, and tissue engineering. Given the recent increases in the incidence of diabetes, obesity and hyperlipidemia, there is a pressing need for low cost therapeutics that can economically and effectively slow the progression of atherosclerosis. Marine polysaccharides have been consumed by humans for millennia and are available in large quantities at low cost. Polysaccharides such as fucoidan, laminarin sulfate and ulvan have shown promise in reducing atherosclerosis and its accompanying risk factors in animal models. However, others have been tested in very limited context in scientific studies. In this review, we explore the current state of knowledge for these promising therapeutics and discuss the potential and challenges of using seaweed derived polysaccharides as therapies for atherosclerosis.
Collapse
Affiliation(s)
- Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Emily Y Yang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.,Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Desamero MJ, Kakuta S, Chambers JK, Uchida K, Hachimura S, Takamoto M, Nakayama J, Nakayama H, Kyuwa S. Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma. Int Immunopharmacol 2018; 60:211-220. [PMID: 29763881 DOI: 10.1016/j.intimp.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity.
Collapse
Affiliation(s)
- Mark Joseph Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Abstract
At present, the polysaccharide antitumor research is focused on how to further improve the antitumor activity of polysaccharides. The structural modification of polysaccharides can enhance their antitumor activity to a certain extent. The antitumor mechanisms of polysaccharide derivatives mainly contain the inducing apoptosis of tumor cells, effecting on the cycle of tumor cells, enhancing the antioxidant activity of organism, activating the body's immune response and inhibiting the tumor angiogenesis. Herein, the common methods of polysaccharide modification, such as sulfation, carboxymethylation, phosphorylation and acetylation, were summarized. At the same time, the effects of chemical modification of polysaccharides on their antitumor mechanisms and activity were analyzed and discussed.
Collapse
|
8
|
Liu X, Liu H, Zhai Y, Li Y, Zhu X, Zhang W. Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cells possibly via regulating NRF2. PeerJ 2017; 5:e3642. [PMID: 28785522 PMCID: PMC5541921 DOI: 10.7717/peerj.3642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/12/2017] [Indexed: 01/23/2023] Open
Abstract
Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and mechanisms of laminarin in pulmonary oxidative damage are poorly understood. This study aimed at investigating the protective effect of laminarin against pulmonary oxidative damage and underlying mechanisms. Human lung fibroblasts MRC-5 cells were treated with hydrogen peroxide to induce oxidative damage. Laminarin treatment was performed before or after hydrogen peroxide treatment, and then major indexes of oxidative damage, including superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT), were quantified by biochemical assays. The expression of oxidation-related factor, nuclear factor erythroid 2 like 2 (NRF2) was analyzed by qPCR, Western blot and immunofluorescence assay. NRF2 knockdown and overexpression were performed by cell transfection to reveal possible mechanisms. Results showed that laminarin treatment of 0.020 mg/mL for 24 h, especially the pre-treatment, could significantly relieve changes in SOD, MDA, GSH and CAT that were altered by hydrogen peroxide, and promote NRF2 mRNA (P < 0.001). NRF2 protein was also elevated by laminarin, and nuclear translocation was observed. Factors in NRF2 signaling pathways, including KEAP1, NQO1, GCLC and HO1, were all regulated by laminarin. Roles of NRF2 were tested, suggesting that NRF2 regulated the concentration of SOD, MDA, GSH and CAT, suppressed KEAP1, and promoted NQO1, GCLC and HO1. These findings suggested the protective role of laminarin against pulmonary oxidative damage, which might involve the regulation of NRF2 signaling pathways. This study provided information for the clinical application of laminarin to pulmonary diseases like pulmonary fibrosis.
Collapse
Affiliation(s)
- Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Respiration, Shandong Provincial Chest Hospital, Jinan, China
| | - Huaman Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Zhai
- Medical Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Department of Nursing, Zibo Central Hospital, Zibo, China
| | - Xue Zhu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Benyettou F, Fahs H, Elkharrag R, Bilbeisi RA, Asma B, Rezgui R, Motte L, Magzoub M, Brandel J, Olsen JC, Piano F, Gunsalus KC, Platas-Iglesias C, Trabolsi A. Selective growth inhibition of cancer cells with doxorubicin-loaded CB[7]-modified iron-oxide nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra02693e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cucurbit[7]uril-modified iron-oxide nanoparticles (CB[7]NPs) were loaded with doxorubicin hydrochloride (Dox) and tested as a drug delivery system.
Collapse
|
10
|
Structural elucidation of a polysaccharide from Chrysanthemum morifolium flowers with anti-angiogenic activity. Int J Biol Macromol 2015; 79:674-80. [PMID: 26025076 DOI: 10.1016/j.ijbiomac.2015.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 02/05/2023]
Abstract
The flowers of Chrysanthemum morifolium were extracted with 5% sodium hydroxide, yielding a neutral polysaccharide (JHB0S2) with a molecular weight of 16 kDa by anion-exchange chromatography on a DEAE-cellulose column and gel permeation chromatography on a Sephacryl S-200 HR column. JHB0S2 was found to contain glucose, xylose, arabinose and galactose in molar ratio of 2.9:2.3:1.0:1.2. Through the linkage analysis, partial acid hydrolysis and NMR spectra and so forth, indicated that its backbone consisted of 1,4-linked β-Glcp, nearly 50% of which was substituted at O-6 by 1,2-linked α-Xylp terminated with Galp or Xylp. Furthermore, some of 1,2-linked α-Xylp was substituted at O-4 by α-Araf-(1→5)-α-Araf-(1→6)-β-Galp. The biological test showed that JHB0S2 could inhibit the tube formation of HMEC-1 cells.
Collapse
|
11
|
A heteropolysaccharide, l-fuco-d-manno-1,6-α-d-galactan extracted from Grifola frondosa and antiangiogenic activity of its sulfated derivative. Carbohydr Polym 2014; 101:631-41. [DOI: 10.1016/j.carbpol.2013.09.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022]
|
12
|
The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals (Basel) 2010; 3:482-513. [PMID: 27713265 PMCID: PMC4033966 DOI: 10.3390/ph3030482] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 12/15/2022] Open
Abstract
Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists.The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.
Collapse
|
13
|
Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 2005; 19:211-21. [PMID: 15677344 DOI: 10.1096/fj.04-1970com] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Orchestration of the rapid formation and reorganization of new tissue observed in wound healing involves not only cells and polypeptides but also the extracellular matrix (ECM) microenvironment. The ability of heparan sulfate (HS) to interact with major components of the ECM suggests a key role for HS in maintaining the structural integrity of the ECM. Heparanase, an endoglycosidase-degrading HS in the ECM and cell surface, is involved in the enzymatic machinery that enables cellular invasion and release of HS-bound polypeptides residing in the ECM. Bioavailabilty and activation of multitude mediators capable of promoting cell migration, proliferation, and neovascularization are of particular importance in the complex setting of wound healing. We provide evidence that heparanase is normally expressed in skin and in the wound granulation tissue. Heparanase stimulated keratinocyte cell migration and wound closure in vitro. Topical application of recombinant heparanase significantly accelerated wound healing in a flap/punch model and markedly improved flap survival. These heparanase effects were associated with enhanced wound epithelialization and blood vessel maturation. Similarly, a marked elevation in wound angiogenesis, evaluated by MRI analysis and histological analyses, was observed in heparanase-overexpressing transgenic mice. This effect was blocked by a novel, newly developed, heparanase-inhibiting glycol-split fragment of heparin. These results clearly indicate that elevation of heparanase levels in healing wounds markedly accelerates tissue repair and skin survival that are mediated primarily by an enhanced angiogenic response.-Zcharia, E., Zilka, R., Yaar, A., Yacoby-Zeevi, O., Zetser, A., Metzger, S., Sarid, R., Naggi, A., Casu, B., Ilan, N., Vlodavsky, I., Abramovitch, R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models.
Collapse
Affiliation(s)
- Eyal Zcharia
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zetser A, Levy-Adam F, Kaplan V, Gingis-Velitski S, Bashenko Y, Schubert S, Flugelman MY, Vlodavsky I, Ilan N. Processing and activation of latent heparanase occurs in lysosomes. J Cell Sci 2005; 117:2249-58. [PMID: 15126626 DOI: 10.1242/jcs.01068] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparanase is a heparan sulfate degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Heparanase is synthesized as a 65 kDa non-active precursor that subsequently undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa protein subunits that heterodimerize to form an active enzyme. The protease responsible for heparanase processing is currently unknown, as is the sub-cellular processing site. In this study, we characterize an antibody (733) that preferentially recognizes the active 50 kDa heparanase form as compared to the non-active 65 kDa heparanase precursor. We have utilized this and other anti-heparanase antibodies to study the cellular localization of the latent 65 kDa and active 50 kDa heparanase forms during uptake and processing of exogenously added heparanase. Interestingly, not only the processed 50 kDa, but also the 65 kDa heparanase precursor was localized to perinuclear vesicles, suggesting that heparanase processing occurs in lysosomes. Indeed, heparanase processing was completely inhibited by chloroquine and bafilomycin A1, inhibitors of lysosome proteases. Similarly, processing of membrane-targeted heparanase was also chloroquine-sensitive, further ruling out the plasma membrane as the heparanase processing site. Finally, we provide evidence that antibody 733 partially neutralizes the enzymatic activity of heparanase, suggesting that the N-terminal region of the molecule is involved in assuming an active conformation. Monoclonal antibodies directed to this region are likely to provide specific heparanase inhibitors and hence assist in resolving heparanase functions under normal and pathological conditions.
Collapse
Affiliation(s)
- Anna Zetser
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vetvicka V, Yvin JC. Effects of marine beta-1,3 glucan on immune reactions. Int Immunopharmacol 2004; 4:721-30. [PMID: 15135314 DOI: 10.1016/j.intimp.2004.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/04/2003] [Accepted: 02/11/2004] [Indexed: 01/27/2023]
Abstract
Glucans have a long history as nonspecific biological modulators. A novel glucan-Phycarine-was isolated from sporophytes of Laminaria digitata. Phycarine showed significant stimulation of phagocytic activity as well as potentiation of synthesis and release of IL-1, IL-6 and TNF-alpha. In addition, Phycarine increased NK cell-mediated killing of tumor cells both in vitro and in vivo while acting via complement receptor type 3 (CR3) receptors.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology and Laboratory Medicine, University of Louisville, 511 S. Floyd St., MDR Bldg., Rm. 224, Louisville, KY 40202, USA.
| | | |
Collapse
|
16
|
Apers S, Paper D, Bürgermeister J, Baronikova S, Van Dyck S, Lemière G, Vlietinck A, Pieters L. Antiangiogenic activity of synthetic dihydrobenzofuran lignans. JOURNAL OF NATURAL PRODUCTS 2002; 65:718-720. [PMID: 12027748 DOI: 10.1021/np0103968] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A series of synthetic dihydrobenzofuran lignans, obtained by biomimetic oxidative dimerization of caffeic or ferulic acid methyl ester followed by derivatization reactions, was tested for its antiangiogenic activity in the CAM (chorioallantoic membrane) assay. The dimerization product of caffeic acid methyl ester (2a) (methyl (E)-3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-3-methoxycarbonyl-2,3-dihydro-1-benzofuran-5-yl]prop-2-enoate) showed a pronounced antiangiogenic activity, especially the 2R,3R-enantiomer.
Collapse
Affiliation(s)
- Sandra Apers
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Asplin IR, Wu SM, Mathew S, Bhattacharjee G, Pizzo SV. Differential regulation of the fibroblast growth factor (FGF) family by alpha(2)-macroglobulin: evidence for selective modulation of FGF-2-induced angiogenesis. Blood 2001; 97:3450-7. [PMID: 11369636 DOI: 10.1182/blood.v97.11.3450] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fibroblast growth factor (FGF) family has an important role in processes such as angiogenesis, wound healing, and development in which precise control of proteinase activity is important. The human plasma proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M) regulates cellular growth by binding and modulating the activity of many cytokines and growth factors. These studies investigate the ability of native and activated alpha(2)M (alpha(2)M*) to bind to members of the FGF family. Both alpha(2)M and alpha(2)M* bind specifically and saturably to FGF-1, -2, -4, and -6, although the binding to alpha(2)M* is of significantly higher affinity. Neither alpha(2)M nor alpha(2)M* bind to FGF-5, -7, -9, or -10. FGF-2 was chosen for more extensive study in view of its important role in angiogenesis. It was demonstrated that FGF-2 binds to the previously identified TGF-beta binding site. The alpha(2)M* inhibits FGF-2-dependent fetal bovine heart endothelial cell proliferation in a dose-dependent manner. Unexpectedly, alpha(2)M* does not affect FGF-2-induced vascular tubule formation on Matrigel basement membrane matrix or collagen gels. Further studies demonstrate that FGF-2 partitions between fluid-phase alpha(2)M* and solid-phase Matrigel or collagen. These studies suggest that the ability of alpha(2)M* to modulate the activity of FGF-2 is dependent on an interplay with extracellular matrix components. (Blood. 2001;97:3450-3457)
Collapse
Affiliation(s)
- I R Asplin
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
18
|
Adnett JB, Hay JN, Niederst C, Hoffman R. Synthesis of sulphated acrylic polymers and their evaluation as inhibitors of basic fibroblast growth factor-dependent cell growth. Biomaterials 2001; 22:67-71. [PMID: 11085385 DOI: 10.1016/s0142-9612(00)00168-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulphated acrylic polymers have been synthesised and evaluated as potential inhibitors of basic fibroblast growth factor-dependent cell growth. The polymers were synthesised with a range of molar masses using both a thermal radical method and a room temperature reduction activation route. The polymers had bimodal molar mass distributions, but much of the low molar mass component could be removed by dialysis. Some of these polymers were effective inhibitors, their effectiveness being dependent on the molar mass. IC50 values as low as 5 microg/ml could be obtained with up to 73% inhibition by 100 microg/ml. These polymers are of interest as potentially readily accessible materials for cancer therapy.
Collapse
Affiliation(s)
- J B Adnett
- Department of Chemistry. School of Physics & Chemistry, University of Surrey, Guildford, UK
| | | | | | | |
Collapse
|
19
|
Rodrigues PC, Beyer U, Schumacher P, Roth T, Fiebig HH, Unger C, Messori L, Orioli P, Paper DH, Mülhaupt R, Kratz F. Acid-sensitive polyethylene glycol conjugates of doxorubicin: preparation, in vitro efficacy and intracellular distribution. Bioorg Med Chem 1999; 7:2517-24. [PMID: 10632061 DOI: 10.1016/s0968-0896(99)00209-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coupling anticancer drugs to synthetic polymers is a promising approach of enhancing the antitumor efficacy and reducing the side-effects of these agents. Doxorubicin maleimide derivatives containing an amide or acid-sensitive hydrazone linker were therefore coupled to alpha-methoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 20000 Da), alpha,omega-bis-thiopropionic acid amide poly(ethylene glycol) (MW 20000 Da) or alpha-tert-butoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 70000 Da) and the resulting polyethylene glycol (PEG) conjugates isolated through size-exclusion chromatography. The polymer drug derivatives were designed as to release doxorubicin inside the tumor cell by acid-cleavage of the hydrazone bond after uptake of the conjugate by endocytosis. The acid-sensitive PEG conjugates containing the carboxylic hydrazone bonds exhibited in vitro activity against human BXF T24 bladder carcinoma and LXFL 529L lung cancer cells with IC70 values in the range 0.02-1.5 microm (cell culture assay: propidium iodide fluorescence or colony forming assay). In contrast, PEG doxorubicin conjugates containing an amide bond between the drug and the polymer showed no in vitro activity. Fluorescence microscopy studies in LXFL 529 lung cancer cells revealed that free doxorubicin accumulates in the cell nucleus whereas doxorubicin of the acid-sensitive PEG doxorubicin conjugates is primarily localized in the cytoplasm. Nevertheless, the acid-sensitive PEG doxorubicin conjugates retain their ability to bind to calf thymus DNA as shown by fluorescence and visible spectroscopy studies. Results regarding the effect of an acid-sensitive PEG conjugate of molecular weight 20000 in the chorioallantoic membrane (CAM) assay indicate that this conjugate is significantly less embryotoxic than free doxorubicin although antiangiogenic effects were not observed.
Collapse
Affiliation(s)
- P C Rodrigues
- Tumor Biology Center, Department of Medical Oncology, Clinical Research, Freiburg, FRG
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83:424-31. [PMID: 10495437 DOI: 10.1002/(sici)1097-0215(19991029)83:3<424::aid-ijc20>3.0.co;2-l] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heparanase activity correlates with the metastatic potential of tumor cells. Moreover, the anti-metastatic effect of non-anti-coagulant species of heparin and certain sulfated polysaccharides was attributed to their heparanase-inhibiting activity. We investigated the effect of a chemically sulfated polysaccharide (laminarin), consisting primarily of beta-1,3 glucan (sodium laminarin), and of synthetic phosphorothioate oligodeoxynucleotides, primarily phosphorothioate homopolymer of cytidine (SdC28), on heparanase activity and tumor metastasis. Investigation of the ability of tumor cells to degrade heparan sulfate in intact extracellular matrix revealed that heparanase activity expressed by B16-BL6 mouse melanoma cells and 13762 MAT rat mammary adenocarcinoma cells was effectively inhibited by LS (50% inhibition at 0.2-1 microgram/ml), but there was no inhibition by sodium laminarin up to a concentration of 50 microgram/ml. Complete inhibition of the melanoma heparanase was obtained in the presence of 0.1 microM SdC28. A single i.p. injection of laminarin sulfate, but not of sodium laminarin, before i.v. inoculation of the melanoma or breast-carcinoma cells inhibited the extent of lung colonization by the tumor cells by 80 to 90%. Similar inhibition was exerted by 0.1 microM SdC28. At the effective concentrations, both compounds had a small effect on proliferation of the tumor cells and on growth of the primary tumors in vivo. These results further emphasize the involvement of heparanase in tumor metastasis and the potential clinical application of diverse heparanase-inhibiting molecules such as sulfated polysaccharides and synthetic polyanionic molecules.
Collapse
Affiliation(s)
- H Q Miao
- Department of Oncology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|