1
|
Okarvi SM. Preparation, Radiolabeling with 68Ga/ 177Lu and Preclinical Evaluation of Novel Angiotensin Peptide Analog: A New Class of Peptides for Breast Cancer Targeting. Pharmaceuticals (Basel) 2023; 16:1550. [PMID: 38004416 PMCID: PMC10675340 DOI: 10.3390/ph16111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 11/26/2023] Open
Abstract
AIM Angiotensin II (AngII) is known to play a significant part in the development of breast cancer by triggering cell propagation of breast cancer, tumor angiogenesis, and regulating tumor invasion and cell migration. AngII arbitrates its action via two G-protein-coupled receptors, AngII type 1 receptor (AT1) and AngII type 2 receptor (AT2). Overexpression of the AT1 receptor in breast cancer cells seems to promote tumor growth and angiogenesis, thus targeting the AT1 receptor using AngII peptide would facilitate the detection of breast carcinoma. We developed an AngII peptide intending to assess whether the peptide of the renin-angiotensin system holds the ability to target AT1 receptor-overexpressing breast cancer in vivo. METHODS DOTA-coupled AngII peptide was synthesized by conventional solid-phase peptide synthesis according to Fmoc/HATU chemistry. 68Ga/177Lu labeled AngII peptide was evaluated for its binding with TNBC MDA-MB-231 and ER+ MCF7 cell lines. Pharmacokinetics was studied in healthy balb/c mice and in vivo tumor targeting in nude mice with MDA-MB-231 tumors xenografts. RESULTS DOTA-AngII peptide was labeled efficiently with 68Ga/177Lu with high labeling efficiency (≥90%). The stability of the radiopeptide in human plasma was found to be high. The AngII peptide analog showed nanomolar (<40 nM) AT1 receptor-specific binding affinity. The radioactivity internalized into MDA-MBA-231 and MCF7 cells were 14.97% and 11.75%, respectively. In vivo, biodistribution in balb/c mice exhibited efficient clearance of 68Ga/177Lu-DOTA-AngII peptide from the blood and elimination predominantly by the renal system due to its hydrophilic nature. A low amount of radioactivity was seen in the major organs including lungs, liver, stomach, spleen, and intestines (<3% ID/g) except the kidneys. A high renal-urinary excretion was observed for the radiotracer. In the TNBC MDA-MB-231 xenografts model, radiolabeled AngII peptide exhibited specific and effective AT1-based targeting in vivo. A rapid and efficient tumor targeting (2.18% ID/g at 45 min p.i.) together with fast renal excretion (~67% ID) highlights the tumor-targeting potential of the radiotracer. The AT1 receptor specificity of the radiotracer was validated by blocking assays. Furthermore, PET imaging provided sufficient visualization of MDA-MB-231 tumors in nude mice. CONCLUSION Our findings suggest that 68Ga/177Lu-DOTA-AngII peptide can be useful for the theranostic application of breast carcinomas. This study suggests the potential of this innovative class of peptides for rapid and efficient targeting of tumors and warrants further evaluation.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, MBC-03, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Angarola BL, Sharma S, Katiyar N, Gu Kang H, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukow O. Comprehensive single cell aging atlas of mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563147. [PMID: 37961129 PMCID: PMC10634680 DOI: 10.1101/2023.10.20.563147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Muscella A, Resta L, Cossa LG, Marsigliante S. Immunolocalization of the AT-1R Ang II Receptor in Human Kidney Cancer. Biomolecules 2023; 13:1181. [PMID: 37627246 PMCID: PMC10452411 DOI: 10.3390/biom13081181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to evaluate AT1-R expression in normal and cancerous human kidneys, how these expressions are modified, and AT1-R functionality. AT-1R mRNA expression, determined by real-time PCR, was detected in all samples. AT-1R mRNA increased in well-differentiated cancer (G1, p < 0.01) and decreased 2.9-fold in undifferentiated cancer (G4, p < 0.001) compared with normal kidney tissues. Immunocytochemistry analysis showed that the AT-1R was expressed in the normal tubular epithelium. The glomerulus was also immunoreactive, and as expected, the smooth muscle cells of the vessel walls also expressed the receptor. A total of 35 out of 42 tumors were AT-1R positive, with the cell tumors showing varying numbers of immunoreactive cells, which were stained in a diffuse cytoplasmic and membranous pattern. Computer-assisted counting of the stained tumor cells showed that the number of AT-1R-positive cells increased in the well-differentiated cancers. The functionality of AT-1R was assessed in primary cultures of kidney epithelial cells obtained from three G3 kidney cancer tissues and corresponding histologically proven non-malignant tissue adjacent to the tumor. Indeed, Ang II stimulated, in a dose-dependent manner, the 24 h proliferation of normal kidney cells and cancer cells in the primary culture and phosphorylated extracellular regulated kinases 1 and 2. In conclusion, Ang II may be involved in the growth or function of neoplastic kidney tissue.
Collapse
Affiliation(s)
- Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Provinciale per Monteroni, 73100 Lecce, Italy (S.M.)
| | - Leonardo Resta
- Anatomia Patologica, Università di Bari, Piazza Umberto I, 70121 Bari, Italy;
| | - Luca Giulio Cossa
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Provinciale per Monteroni, 73100 Lecce, Italy (S.M.)
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Provinciale per Monteroni, 73100 Lecce, Italy (S.M.)
| |
Collapse
|
5
|
Mescoli A, Maffei G, Pillo G, Bortone G, Marchesi S, Morandi E, Ranzi A, Rotondo F, Serra S, Vaccari M, Zauli Sajani S, Mascolo MG, Jacobs MN, Colacci A. The Secretive Liaison of Particulate Matter and SARS-CoV-2. A Hypothesis and Theory Investigation. Front Genet 2020; 11:579964. [PMID: 33240326 PMCID: PMC7680895 DOI: 10.3389/fgene.2020.579964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG's pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ada Mescoli
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy
| | - Giangabriele Maffei
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy
| | - Gelsomina Pillo
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Giuseppe Bortone
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Stefano Marchesi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Elena Morandi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Andrea Ranzi
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Francesca Rotondo
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Stefania Serra
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | - Monica Vaccari
- Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| | | | | | - Miriam Naomi Jacobs
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards Public Health England, Chilton, United Kingdom
| | - Annamaria Colacci
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, University of Bologna, Bologna, Italy.,Agency for Prevention, Environment and Energy (Arpae), Emilia-Romagna, Italy
| |
Collapse
|
6
|
ÖztÜrk N, Kara A, Vural İ. Formulation and In Vitro Evaluation of Telmisartan Nanoparticles Prepared by Emulsion-Solvent Evaporation Technique. Turk J Pharm Sci 2020; 17:492-499. [PMID: 33177929 DOI: 10.4274/tjps.galenos.2019.76402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/01/2022]
Abstract
Objectives Telmisartan (TLM) is an antihypertensive drug that has been shown to have antiproliferative effects on cancer cells. It has low solubility and suboptimal oral bioavailability. To investigate the potential anticancer effect of TLM on breast cancer cells, poly (D, L-lactide) (PLA) nanoparticles were formulated with the benefit of improving its solubility. Materials and Methods TLM-loaded PLA nanoparticles were prepared by emulsion solvent evaporation. The effects of sonication time and polymer:drug ratio on nanoparticle size and drug encapsulation were investigated. TLM-loaded nanoparticles were tested against MCF-7 and MD-AMB-231 breast cancer cell lines for antiproliferative effects. Results Nanoparticles with mean particle size 272 nm and 79% encapsulation efficiency were obtained. Sustained release TLM nanoparticles (40% in 24 h) decreased cell viability to 45% for MCF-7 cells at 72 h, even at the lowest TLM concentration, indicating better anticancer efficiency than TLM solution. Conclusion TLM nanoparticles could be potential anticancer agents for breast cancer and deserve further studies.
Collapse
Affiliation(s)
- Naile ÖztÜrk
- İnönü University Faculty of Pharmacy, Department of Pharmaceutical Technology, Malatya, Turkey
| | - Aslı Kara
- Hitit University Sungurlu Vocational High School, Department of Medical Services and Techniques, Çorum, Turkey
| | - İmran Vural
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
7
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
8
|
Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y, Wong AST, Lee LTO. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:116. [PMID: 30845964 PMCID: PMC6407256 DOI: 10.1186/s13046-019-1127-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Background Angiotensin II (ANGII) and its receptor (AGTR1) have been proposed as significant contributors to metastasis in multiple cancers. Further, high AGTR1 levels are associated with poor epithelial ovarian cancer (EOC) outcomes. However, the mechanistic basis for these effects is unknown. Recent studies have suggested that ovarian cancer metastasis is highly dependent on the formation of multicellular spheroids (MCS). To understand the associations between the ANGII/AGTR1 pathway and cancer outcomes, we evaluated the effects of ANGII on MCS formation by ovarian cancer cells and used a proteomic approach to analyze the mechanistic basis. Methods We used the data from the GENT database and immunohistochemistry staining to assess the AGTR1 expression in epithelial ovarian cancer (EOC) patients and to assess its role in cancer progression. Colony formation assay, 3D culture assay, and transwell assays were used to analyze the effect of ANGII on the MCS formation and cell migration. The signaling pathways of AGTR1 and transactivation of epidermal growth factor receptor (EGFR) transactivation were investigated by the western blotting analysis. Xenograft models were used to determine the role of AGTR1 in ovarian cancer metastasis. ANGII release from ovarian cancer cells and ANGII levels in the EOC ascites fluid were measured by immunoassay. A shotgun proteomic approach was used to explore the detail molecular mechanism. Modulation of lipid desaturation and endoplasmic reticulum stress were verified by the in vitro and in vivo functional assays. Results AGTR1 expression was negatively correlated with EOC prognosis. AGTR1activation significantly enhanced the MCS formation and cell migration. ANGII triggered both of the classical AGTR1 pathway and the EGFR transactivation. ANGII administration increased peritoneal metastasis. In addition, ovarian cancer cells secreted ANGII and enhanced cancer metastasis in a positive feedback manner. Based on the proteomic data, lipid desaturation was activated by induction of stearoyl-CoA desaturase-1 (SCD1), which suggests that inhibition of SCD1 may significantly reduce MCS formation by increasing endoplasmic reticulum stress. Conclusions ANGII promotes MCS formation and peritoneal metastasis of EOC cells. AGTR1 activation increases the lipid desaturation via SCD1 upregulation, which ultimately reduces endoplasmic reticulum stress in MCS. This mechanism explained the association between high levels of AGTR1 and poor clinical outcomes in EOC patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1127-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingyu Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shan Yu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Melody Man Ting Lam
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Terence Chuen Wai Poon
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Litao Sun
- Department of Ultrasound, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufei Jiao
- Department of Pathology, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Leo Tsz On Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
9
|
Coulson R, Liew SH, Connelly AA, Yee NS, Deb S, Kumar B, Vargas AC, O'Toole SA, Parslow AC, Poh A, Putoczki T, Morrow RJ, Alorro M, Lazarus KA, Yeap EFW, Walton KL, Harrison CA, Hannan NJ, George AJ, Clyne CD, Ernst M, Allen AM, Chand AL. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017; 8:18640-18656. [PMID: 28416734 PMCID: PMC5386636 DOI: 10.18632/oncotarget.15553] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour-associated macrophages in Losartan or vehicle-treated mammary tumors. Analysis of AT1R expression with radiolabelled ligand binding assays in human breast cancer biopsies showed high AT1R levels in 30% of invasive ductal carcinomas analysed. Furthermore, analysis of the TCGA database identified that high AT1R expression to be associated with luminal breast cancer subtype. Our in vivo data and analysis of human invasive ductal carcinoma samples identify the AT1R is a potential therapeutic target in breast cancer, with the availability of a range of well-tolerated inhibitors currently used in clinics. We describe a novel signalling pathway critical in breast tumorigenesis, that may provide new therapeutic avenues to complement current treatments.
Collapse
Affiliation(s)
- Rhiannon Coulson
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Translational Breast Cancer Research, Garvan Institute, Darlinghurst, Sydney, NSW, Australia
| | - Seng H Liew
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | | | - Nicholas S Yee
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Siddhartha Deb
- Anatomical Pathology, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Beena Kumar
- Anatomical Pathology, Monash Health, Clayton, VIC, Australia
| | - Ana C Vargas
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia
| | - Sandra A O'Toole
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW, Australia.,Translational Breast Cancer Research, Garvan Institute, Darlinghurst, Sydney, NSW, Australia.,Sydney Medical School, Sydney University, NSW, Australia
| | - Adam C Parslow
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Ashleigh Poh
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC, Australia
| | - Tracy Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, VIC, Australia
| | - Riley J Morrow
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Mariah Alorro
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
| | - Kyren A Lazarus
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Evie F W Yeap
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia
| | - Kelly L Walton
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Craig A Harrison
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital, Heidelberg, VIC, Australia
| | - Amee J George
- The ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Colin D Clyne
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, VIC, Australia
| | - Ashwini L Chand
- Cancer Drug Discovery, Hudson's Institute of Medical Research, Clayton, VIC, Australia.,Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| |
Collapse
|
10
|
Cambados N, Walther T, Nahmod K, Tocci JM, Rubinstein N, Böhme I, Simian M, Sampayo R, Del Valle Suberbordes M, Kordon EC, Schere-Levy C. Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget 2017; 8:88475-88487. [PMID: 29179450 PMCID: PMC5687620 DOI: 10.18632/oncotarget.19290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
Angiotensin (Ang) II, the main effector peptide of the renin-angiotensin system, has been implicated in multiple aspects of cancer progression such as proliferation, migration, invasion, angiogenesis and metastasis. Ang-(1-7), is a biologically active heptapeptide, generated predominantly from AngII by the enzymatic activity of angiotensin converting enzyme 2. Previous studies have shown that Ang-(1-7) counterbalances AngII actions in different pathophysiological settings. In this study, we have analysed the impact of Ang-(1-7) on AngII-induced pro-tumorigenic features on normal murine mammary epithelial cells NMuMG and breast cancer cells MDA-MB-231. AngII stimulated the activation of the survival factor AKT in NMuMG cells mainly through the AT1 receptor. This PI3K/AKT pathway activation also promoted epithelial–mesenchymal transition (EMT). Concomitant treatment of NMuMG cells with AngII and Ang-(1-7) completely abolished EMT features induced by AngII. Furthermore, Ang-(1-7) abrogated AngII induced migration and invasion of the MDA-MB-231 cells as well as pro-angiogenic events such as the stimulation of MMP-9 activity and VEGF expression. Together, these results demonstrate for the first time that Ang-(1-7) counteracts tumor aggressive signals stimulated by AngII in breast cancer cells emerging the peptide as a potential therapy to prevent breast cancer progression.
Collapse
Affiliation(s)
- Nadia Cambados
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Thomas Walther
- Department of Obstetrics, University of Leipzig, Leipzig, Germany.,Department Pharmacology and Therapeutics, School of Medicine and School of Pharmacy, University College Cork, Cork, Ireland.,Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Karen Nahmod
- Department of Pediatrics, Immunology, Allergy and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA
| | - Johanna M Tocci
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Rubinstein
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ilka Böhme
- Department of Obstetrics, University of Leipzig, Leipzig, Germany.,Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Marina Simian
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Rocío Sampayo
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Melisa Del Valle Suberbordes
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Schere-Levy
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Murata K, Baasanjav A, Kwon C, Hashimoto M, Ishida J, Fukamizu A. Angiotensin II accelerates mammary gland development independently of high blood pressure in pregnancy-associated hypertensive mice. Physiol Rep 2015; 3:3/9/e12542. [PMID: 26341998 PMCID: PMC4600386 DOI: 10.14814/phy2.12542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II (AngII) is a vasopressor hormone that has critical roles in maintenance of normal blood pressure and pathogenesis of cardiovascular diseases. We previously generated pregnancy-associated hypertensive (PAH) mice by mating female human angiotensinogen transgenic mice with male human renin transgenic mice. PAH mice exhibit hypertension in late pregnancy by overproducing AngII. A recent study demonstrated that angiotensin II type I (AT1) receptor is expressed in mammary epithelial cells and its signaling is critical for mammary gland involution after weaning. However, the role of AngII-AT1 receptor signaling in the development of mammary gland during pregnancy remains unclear. In this study, to investigate the role of AngII-AT1 receptor signaling in mammary gland development during pregnancy, we analyzed the mammary gland of PAH mice. Histological and gene expression analyses revealed that lobuloalveolar development was accelerated with increased milk protein production and lipid accumulation in the mammary gland of PAH mice. Furthermore, AT1 receptor blocker treatment suppressed acceleration of mammary gland development in PAH mice, while the treatment of hydralazine, another antihypertensive drug, did not. These data suggest that AngII-AT1 receptor-induced signaling accelerates mammary gland development during pregnancy through hypertension-independent mechanism.
Collapse
Affiliation(s)
- Kazuya Murata
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Altansarnai Baasanjav
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chulwon Kwon
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Misuzu Hashimoto
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Miyajima A, Kosaka T, Kikuchi E, Oya M. Renin-angiotensin system blockade: Its contribution and controversy. Int J Urol 2015; 22:721-30. [PMID: 26032599 DOI: 10.1111/iju.12827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 01/05/2023]
Abstract
Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.
Collapse
Affiliation(s)
- Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Rodrigues-Ferreira S, Nahmias C. G-protein coupled receptors of the renin-angiotensin system: new targets against breast cancer? Front Pharmacol 2015; 6:24. [PMID: 25741281 PMCID: PMC4330676 DOI: 10.3389/fphar.2015.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/30/2015] [Indexed: 01/02/2023] Open
Abstract
G-protein coupled receptors (GPCRs) constitute the largest family of membrane receptors, with high potential for drug discovery. These receptors can be activated by a panel of different ligands including ions, hormones, small molecules, and vasoactive peptides. Among those, angiotensins [angiotensin II (AngII) and angiotensin 1–7] are the major biologically active products of the classical and alternative renin-angiotensin system (RAS). These peptides bind and activate three different subtypes of GPCRs, namely AT1, AT2, and Mas receptors, to regulate cardiovascular functions. Over the past decade, the contribution of several RAS components in tumorigenesis has emerged as a novel important concept, AngII being considered as harmful and Ang1–7 as protective against cancer. Development of selective ligands targeting each RAS receptor may provide novel and efficient targeted therapeutic strategies against cancer. In this review, we focus on breast cancer to summarize current knowledge on angiotensin receptors (AT1, AT2, and Mas), and discuss the potential use of angiotensin receptor agonists and antagonists in clinics.
Collapse
Affiliation(s)
| | - Clara Nahmias
- Inserm U981, Institut Gustave Roussy Villejuif, France
| |
Collapse
|
14
|
Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SH, Moustafa YM. Olmesartan potentiates the anti-angiogenic effect of sorafenib in mice bearing Ehrlich's ascites carcinoma: role of angiotensin (1-7). PLoS One 2014; 9:e85891. [PMID: 24465768 PMCID: PMC3899087 DOI: 10.1371/journal.pone.0085891] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/08/2013] [Indexed: 01/10/2023] Open
Abstract
Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin (1–7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer.
Collapse
Affiliation(s)
- Mohammad M. Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Arish, Egypt
- * E-mail:
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Soad H. Abou-El-Ela
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Arish, Egypt
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Kaur M, Bhatia RK, Pissurlenkar RR, Coutinho EC, Jain UK, Katare OP, Chandra R, Madan J. Telmisartan complex augments solubility, dissolution and drug delivery in prostate cancer cells. Carbohydr Polym 2014; 101:614-22. [DOI: 10.1016/j.carbpol.2013.09.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
|
16
|
The impact of renin–angiotensin system, angiotensin І converting enzyme (insertion/deletion), and angiotensin ІІ type 1 receptor (A1166C) polymorphisms on breast cancer survival in Iran. Gene 2013; 532:125-31. [DOI: 10.1016/j.gene.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/28/2013] [Accepted: 09/05/2013] [Indexed: 01/13/2023]
|
17
|
Duan YF, Li XD, Zhu F, Zhang F. Expression and clinical significance of angiotensin II type 1 receptor in human hepatocellular carcinoma. Exp Ther Med 2013; 7:323-328. [PMID: 24396398 PMCID: PMC3881037 DOI: 10.3892/etm.2013.1411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the expression of angiotensin II type 1 receptor (AT-1R) mRNA and the AT-1R protein in human primary hepatocellular carcinoma (PHC), and to attempt to elucidate their association with pathological and clinical characteristics. Fresh tumor and normal liver tissues were obtained from 44 patients with PHC following hepatectomies. AT-1R mRNA levels were quantitatively analyzed by quantitative polymerase chain reaction (qPCR) while the protein levels were assessed by immunohistochemistry. The expression levels of AT-1R were observed in hepatocellular carcinoma tissues and normal liver tissues. The level of AT-1R protein expression in normal liver tissues was higher compared with that in PHC tissues (P=0.0033). The AT-1R mRNA levels were higher in patients with negative hepatitis B virus surface antigen (HBsAg), normal α-fetoprotein (AFP) levels and high tumor differentiation, compared with those in patients with positive HBsAg (P=0.0005), upregulated AFP levels (P=0.0008) and poor tumor differentiation (P=0.0290). No significant correlation was identified between the expression levels of AT-1R mRNA and general characteristics such as gender, age, cirrhotic nodules, tumor size, tumor encapsulation, tumor number, carcinoma embolus, tumor metastasis or tumor recurrence. Downregulated levels of AT-1R mRNA and AT-1R protein may indicate a poor prognosis for patients with PHC.
Collapse
Affiliation(s)
- Yun-Fei Duan
- Department of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Dong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Feng Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Feng Zhang
- Department of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
18
|
Piastowska-Ciesielska AW, Domińska K, Nowakowska M, Gajewska M, Gajos-Michniewicz A, Ochędalski T. Angiotensin modulates human mammary epithelial cell motility. J Renin Angiotensin Aldosterone Syst 2013; 15:419-29. [PMID: 23390187 DOI: 10.1177/1470320313475904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Angiotensin II is an effector peptide showing multiple physiological effects, such as regulation of vascular tone, tissue growth and remodelling. Postlactational involution of mammary gland involves changes such as high matrix metalloproteinase activity and release of bioactive fragments of fibronectin and laminin, which may be directly regulated by angiotensin II. The aim of the present study was to evaluate the influence of angiotensin II on proliferation, viability and motility of normal human mammary epithelial cells (184A1 cell line) and to determine the role of angiotensin II receptors in these processes. MATERIALS AND METHODS Real-time reverse transcription-PCR, western blot and gelatin zymography were used to study the effect of angiotensin II on the expression of angiotensin receptors and matrix metalloproteinases in 184A1 cells. WST-1, AlamarBlue and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II stimulation. Boyden chamber assays and monolayer wound migration assay were used to evaluate in vitro the changes in cell adhesion, migration and invasion. RESULTS Angiotensin II increased motility of the 184A1 cells and the ability of wound closure. Modifications in cell-substrate adhesion systems and increased secretion and activity of matrix metalloproteinases were also observed. The effect of angiotensin II was abolished by blocking angiotensin type 1 receptor with specific inhibitors candesartan and losartan. CONCLUSIONS The results indicate that angiotensin II modulates cell behaviour via AT1-R and stimulates secretion of MMP-2 by human mammary epithelial cells.
Collapse
Affiliation(s)
| | - Kamila Domińska
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Poland
| | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Poland
| | - Anna Gajos-Michniewicz
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Poland
| |
Collapse
|
19
|
Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes. ARTHRITIS 2012; 2012:648537. [PMID: 23346400 PMCID: PMC3546464 DOI: 10.1155/2012/648537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly.
Collapse
|
20
|
Jethon A, Pula B, Piotrowska A, Wojnar A, Rys J, Dziegiel P, Podhorska-Okolow M. Angiotensin II type 1 receptor (AT-1R) expression correlates with VEGF-A and VEGF-D expression in invasive ductal breast cancer. Pathol Oncol Res 2012; 18:867-73. [PMID: 22581182 PMCID: PMC3448048 DOI: 10.1007/s12253-012-9516-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/05/2012] [Indexed: 01/25/2023]
Abstract
Recent studies point to the involvement of angiotensin II (Ang II) receptor type 1 (AT-1R) on processes of metastasing, stimulation of invasiveness and angiogenesis in tumours. In this study, the correlation between intensity of AT-1R expression and expression of lymph- and angiogenesis markers in invasive ductal breast cancers (IDC) was examined. Immunohistochemical studies (IHC) were performed on archival material of 102 IDC cases. Only 28 (27.5%) cases manifested low AT-1R expression while 74 (72.5%) cases demonstrated a moderate or pronounced AT-1R expression. Expression intensity of AT-1R was found to correlate with expressions of VEGF-A (r = 0.26; p = 0.008) and VEGF-D (r = 0.24; p = 0.015). Out of the examined markers of angiogenesis and lymphangiogenesis only the pronounced expression of VEGF-C was found to correlate with patient poor clinical outcome (p = 0.009). The positive correlation between AT-1R and VEGF-A and VEGF-D could point to stimulatory action of Ang II on their expression what might result in augmented lymph- and angiogenesis in IDC.
Collapse
Affiliation(s)
- Aleksandra Jethon
- Department of Histology and Embryology, Medical University, Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | | | | | | | | | | | | |
Collapse
|
21
|
Nakamura S, Tsuruma K, Shimazawa M, Hara H. Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression. Eur J Pharmacol 2012; 685:8-14. [PMID: 22543084 DOI: 10.1016/j.ejphar.2012.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 01/23/2023]
Abstract
Several studies have examined the anti-angiogenic effects of angiotensin II type 1 (AT(1)) receptor antagonists; however, the mechanisms underlying these effects are currently unclear. In the present study, we examined the efficacy and the mechanism of candesartan, an AT(1) receptor antagonist, in suppressing pathological retinal neovascularization. We used an in vivo murine oxygen-induced retinopathy (OIR) model and also studied the in vitro proliferation and migration of human retinal microvascular endothelial cells (HRMECs) induced by vascular endothelial growth factor (VEGF)-A. The regulation of angiogenesis-associated genes such as hypoxia-inducible factor (HIF-1α), VEGF-A, VEGF receptor-1, and VEGF receptor-2 was evaluated with real-time RT-PCR in the OIR model. In the OIR model, candesartan suppressed the pathological neovascularization in a dose-dependent manner, but did not prevent the physiological angiogenesis. However, candesartan did not inhibit VEGF-A-induced proliferation or migration in HRMECs in the in vitro study. When administered interperitoneally in the OIR model, candesartan reduced the upregulation of VEGF receptor-2 in the retina, but had no effects in the other angiogenesis-related genes, such as HIF-1α, VEGF-A, and VEGF receptor-1. These findings indicate that candesartan inhibited the retinal pathological neovascularization, at least in part, by suppressing the expression of VEGF receptor-2, independent of VEGF signaling cascade. Therefore, candesartan may be a useful therapeutic target for the inhibition of retinal neovascularization that has a low risk of serious side effects.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | |
Collapse
|
22
|
Effect of AT1R knockdown on ishikawa cell proliferation induced by estrogen. Arch Gynecol Obstet 2012; 286:481-7. [PMID: 22484478 DOI: 10.1007/s00404-012-2305-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study aimed to study the effects of angiotensin receptor (AT1R) on proliferation, cell cycle progression, and apoptosis of estrogen-induced ishikawa cell by the transfection of AT1R-siRNA. METHODS Immunofluorescence method was used to detect AT1R in ishikawa cell. Western blot was used to detect the expression of AT1R protein in ishikawa cell before and after the transfection of AT1R-siRNA. MTT method was used to test the cell proliferation of estrogen-induced ishikawa cell before and after the transfection. Western blot was used to detect the expression of extracellular regulated protein kinase1/2(ERK1/2). RESULTS The result of immunofluorescence shows that AT1R was expressed in ishikawa cell. The expression of AT1R protein was inhibited obviously by 72 h after the transfection of AT1R-siRNA. The results of MTT show that estrogen could induce the cell proliferation of ishikawa cell. The expression of ERK1/2 was down-regulated after the transfection of AT1R-siRNA. CONCLUSION AT1R can promote the cell proliferation of estrogen-induced ishikawa cell. The possible mechanism may be down-regulating the expression of ERK1/2 protein.
Collapse
|
23
|
Abstract
Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present particularly in the secretory epithelium. Additionally, all the elements of a tissue renin-angiotensin system, angiotensinogen, prorenin and angiotensin-converting enzyme (ACE), are also present and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours and may be up-regulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1-mediated intracellular signalling pathways, for example by AT1-directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | |
Collapse
|
24
|
Nahmod KA, Walther T, Cambados N, Fernandez N, Meiss R, Tappenbeck N, Wang Y, Raffo D, Simian M, Schwiebs A, Pozner RG, Fuxman Bass JI, Pozzi AG, Geffner JR, Kordon EC, Schere-Levy C. AT1 receptor blockade delays postlactational mammary gland involution: a novel role for the renin angiotensin system. FASEB J 2012; 26:1982-94. [PMID: 22286690 DOI: 10.1096/fj.11-191932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II (AngII), the main effector peptide of the renin-angiotensin system (RAS), participates in multiple biological processes, including cell growth, apoptosis, and tissue remodeling. Since AngII activates, in different cell types, signal transducing pathways that are critical for mammary gland postlactational regression, we investigated the role of the RAS during this process. We found that exogenous administration of AngII in mammary glands of lactating Balb/c mice induced epithelium apoptosis [2.9±0.5% (control) vs. 9.6±1.1% (AngII); P < 0.001] and activation of the proapoptotic factor STAT3, an effect inhibited by irbesartan, an AT(1) receptor blocker. Subsequently, we studied the expression kinetics of RAS components during involution. We found that angiotensin-converting enzyme (ACE) mRNA expression peaked 6 h after weaning (5.7-fold; P<0.01), while induction of angiotensinogen and AT(1) and AT(2) receptors expression was detected 96 h after weaning (6.2-, 10-, and 6.2-fold increase, respectively; P<0.01). To assess the role of endogenously generated AngII, mice were treated with losartan, an AT(1) receptor blocker, during mammary involution. Mammary glands from losartan-treated mice showed activation of the survival factors AKT and BCL-(XL), significantly lower LIF and TNF-α mRNA expression (P<0.05), reduced apoptosis [12.1±2.1% (control) vs. 4.8±0.7% (losartan); P<0.001] and shedding of epithelial cells, inhibition of MMP-9 activity in a dose-dependent manner (80%; P<0.05; with losartan IC(50) value of 6.9 mg/kg/d] and lower collagen deposition and adipocyte invasion causing a delayed involution compared to vehicle-treated mice. Furthermore, mammary glands of forced weaned AT(1A)- and/or AT(1B)-deficient mice exhibited retarded apoptosis of epithelial cells [6.3±0.95% (WT) vs. 3.3±0.56% (AT(1A)/AT(1B) DKO); P<0.05] with remarkable delayed postlactational regression compared to wild-type animals. Taken together, these results strongly suggest that AngII, via the AT(1) receptor, plays a major role in mouse mammary gland involution identifying a novel role for the RAS. angiotensin system.
Collapse
Affiliation(s)
- Karen A Nahmod
- IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Napoleone E, Cutrone A, Cugino D, Amore C, Di Santo A, Iacoviello L, de Gaetano G, Donati MB, Lorenzet R. Inhibition of the renin-angiotensin system downregulates tissue factor and vascular endothelial growth factor in human breast carcinoma cells. Thromb Res 2011; 129:736-42. [PMID: 22188725 DOI: 10.1016/j.thromres.2011.11.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) promotes angiogenesis and growth of neoplastic cells. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor AT1 blockers may protect against cancer. Tissue factor (TF), for its involvement in tumor growth, angiogenesis, and metastasis is considered a hallmark of cancer progression. In this study we evaluated whether RAS blockade modulates TF constitutive expression by the metastatic breast carcinoma MDA-MB-231 cell line. MATERIALS AND METHODS Cell TF activity was assessed by one stage clotting time, TF and VEGF antigens and mRNA levels by ELISA and RT-PCR, respectively. AT(1) was detected by flow-cytometry and angiotensin-II levels by EIA. RESULTS Captopril reduced in a concentration-dependent way both the strong constitutive TF activity (983.2±55.2 vs. 686.7±135.1U/5×10(5) cells with 10μg/ml captopril) and antigen (32.3±5.9 vs. 13.2±6.6ng/ml) in MDA-MB-231. Similar results were observed with enalapril. AT1 was present on cell membrane and losartan, a competitive inhibitor of AT1, reduced TF expression to a degree similar as that exerted by ACE inhibitors. Moreover, captopril and losartan downregulated the constitutive mRNA TF expression by ~35%. Similar results were observed with anti-AT1 and angiotensin II antibodies. In addition, the constitutive VEGF antigen and mRNA levels were reduced in the presence of captopril or losartan, and an anti-VEGF antibody downregulated cell TF activity by ~40%. CONCLUSIONS These results could, at least in part, contribute to the discussion about the possible effects of ACE inhibitors and AT1 receptor antagonists in malignancy, and offer new clues to support their use for tumor control.
Collapse
|
26
|
Abstract
For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
27
|
Namazi S, Monabati A, Ardeshir-Rouhani-Fard S, Azarpira N. Association of angiotensin I converting enzyme (insertion/deletion) and angiotensin II type 1 receptor (A1166C) polymorphisms with breast cancer prognostic factors in iranian population. Mol Carcinog 2010; 49:1022-30. [DOI: 10.1002/mc.20685] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Mammary renin–angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer. Tumour Biol 2010; 31:583-8. [DOI: 10.1007/s13277-010-0072-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022] Open
|
29
|
Matsuyama M, Funao K, Kuratsukuri K, Tanaka T, Kawahito Y, Sano H, Chargui J, Touraine JL, Yoshimura N, Yoshimura R. Telmisartan inhibits human urological cancer cell growth through early apoptosis. Exp Ther Med 2010; 1:301-306. [PMID: 22993542 DOI: 10.3892/etm_00000046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer.
Collapse
Affiliation(s)
- Masahide Matsuyama
- Department of Transplantation and Clinical Immunology, Claude Bernard University of Lyon and Lyon Hospitals, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bose SK, Gibson W, Giri S, Nath N, Donald CD. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor. Prostate 2009; 69:1334-42. [PMID: 19517575 DOI: 10.1002/pros.20980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). METHODS Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. RESULTS Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. CONCLUSIONS Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.
Collapse
Affiliation(s)
- Sudeep K Bose
- Department of Pathology & Lab Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
31
|
Alves Corrêa SA, Ribeiro de Noronha SM, Nogueira-de-Souza NC, Valleta de Carvalho C, Massad Costa AM, Juvenal Linhares J, Vieira Gomes MT, Guerreiro da Silva IDC. Association between the angiotensin-converting enzyme (insertion/deletion) and angiotensin II type 1 receptor (A1166C) polymorphisms and breast cancer among Brazilian women. J Renin Angiotensin Aldosterone Syst 2009; 10:51-8. [DOI: 10.1177/1470320309102317] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction.We evaluated the association between components of the renin-angiotensin system and the development of breast cancer in a case-control study by means of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) and angiotensin II type 1 (AT 1)-receptor A1166C polymorphisms. Methods. Genotyping was performed by PCR-RFLP (restriction fragment length polymorphism) or PCR (polymerase chain reaction) using genomic DNA extracted from buccal cells of subjects with (101 cases) or without (307 controls) breast cancer. Results.The frequencies of genotypes for ACE were: DD, ID and II (in %: cases: 60; 20; 20; controls: 46; 37; 17; p=0.019, χ2); and for AT1receptor were:AA,AC and CC (in %: cases: 65; 30; 5; controls: 51; 44; 5; p=0.114, χ 2).The results suggested that the A1166C polymorphism was not associated with breast cancer risk. On the other hand, for the ACE (I/D), there seemed to be different risks for cancer between cases and controls. Conclusions.The ID genotype was less frequently associated with the disease than were the DD or II; that is, women with the ID genotype were 3.1 times less likely to develop breast cancer than those with the other genotypes.The ID genotype might be protective against breast cancer and the ACE (I/D) polymorphism a possible target for developing genetic markers for breast cancer.
Collapse
Affiliation(s)
- Silvana Aparecida Alves Corrêa
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil,
| | - Samuel Marcos Ribeiro de Noronha
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - Naiara Correa Nogueira-de-Souza
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - Cristina Valleta de Carvalho
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - Ana Maria Massad Costa
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - José Juvenal Linhares
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - Mariano Tamura Vieira Gomes
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| | - Ismael Dale Cotrim Guerreiro da Silva
- Molecular Gynaecology Laboratory, Department of Gynaecology, Federal University of São Paulo, Rua Pedro de Toledo, 781 — 4th Floor, São Paulo, 04039-032 SP, Brazil
| |
Collapse
|
32
|
Prasad NB, Somervell H, Tufano RP, Dackiw APB, Marohn MR, Califano JA, Wang Y, Westra WH, Clark DP, Umbricht CB, Libutti SK, Zeiger MA. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin Cancer Res 2008; 14:3327-37. [PMID: 18519760 DOI: 10.1158/1078-0432.ccr-07-4495] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although fine-needle aspiration biopsy is the most useful diagnostic tool in evaluating a thyroid nodule, preoperative diagnosis of thyroid nodules is frequently imprecise, with up to 30% of fine-needle aspiration biopsy cytology samples reported as "suspicious" or "indeterminate." Therefore, other adjuncts, such as molecular-based diagnostic approaches are needed in the preoperative distinction of these lesions. EXPERIMENTAL DESIGN In an attempt to identify diagnostic markers for the preoperative distinction of these lesions, we chose to study by microarray analysis the eight different thyroid tumor subtypes that can present a diagnostic challenge to the clinician. RESULTS Our microarray-based analysis of 94 thyroid tumors identified 75 genes that are differentially expressed between benign and malignant tumor subtypes. Of these, 33 were overexpressed and 42 were underexpressed in malignant compared with benign thyroid tumors. Statistical analysis of these genes, using nearest-neighbor classification, showed a 73% sensitivity and 82% specificity in predicting malignancy. Real-time reverse transcription-PCR validation for 12 of these genes was confirmatory. Western blot and immunohistochemical analyses of one of the genes, high mobility group AT-hook 2, further validated the microarray and real-time reverse transcription-PCR data. CONCLUSIONS Our results suggest that these 12 genes could be useful in the development of a panel of markers to differentiate benign from malignant tumors and thus serve as an important first step in solving the clinical problem associated with suspicious thyroid lesions.
Collapse
Affiliation(s)
- Nijaguna B Prasad
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao Y, Chen X, Cai L, Yang Y, Sui G, Wu J. Angiotensin II suppresses adriamycin-induced apoptosis through activation of phosphatidylinositol 3-kinase/Akt signaling in human breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40:304-10. [PMID: 18401528 DOI: 10.1111/j.1745-7270.2008.00402.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Angiotensin II (Ang II) stimulates tumor growth and angiogenesis in some solid cancer cells, but its anti-apoptosis role in breast cancer remains unclear. To address this issue, we investigated the effect of Ang II on adriamycin-induced apoptosis in breast cancer MCF-7 cells. Treatment of human breast cancer MCF-7 cells with adriamycin, a DNA topoisomerase II alpha inhibitor, caused apoptosis. However, cells pretreated with Ang II were resistant to this apoptosis. Ang II significantly reduced the ratio of apoptotic cells and stimulation of phospho-Akt-Thr308 and phospho-Akt-Ser473 in a dose-dependent and time-dependent manner. In addition, Ang II significantly prevented apoptosis through inhibiting the cleavage of procaspase-9, a major downstream effector of Akt. The Ang II type 1 receptor (AT1R) was responsible for these effects. Among the signaling molecules downstream of AT1R, we revealed that the phosphatidylinositol 3-kinase/Akt pathway plays a predominant role in the anti-apoptotic effect of Ang II. Our data indicated that Ang II plays a critical anti-apoptotic role in breast cancer cells by a mechanism involving AT1R/phosphatidylinositol 3-kinase/Akt activation and the subsequent suppression of caspase-9 activation.
Collapse
Affiliation(s)
- Yanbin Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin 150040, China
| | | | | | | | | | | |
Collapse
|
34
|
Röcken C, Röhl FW, Diebler E, Lendeckel U, Pross M, Carl-McGrath S, Ebert MPA. The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:1206-12. [PMID: 17548686 DOI: 10.1158/1055-9965.epi-05-0934] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We aimed to substantiate the putative significance of angiotensin II receptor type 1 (AT1R) and type 2 (AT2R) for gastric cancer biology by investigating the correlation of their expression with various clinicopathologic variables and patient survival. Local expression of AT1R, AT2R, and angiotensin-converting enzyme (ACE) was investigated by immunohistochemistry in tumor and corresponding nontumor specimens obtained from 100 patients with gastric cancer, and compared with the ACE insertion/deletion gene polymorphism. AT1R and AT2R were found in the tumor epithelial cells of 26 (26%) and 95 (95%) patients, respectively. AT1R was significantly more prevalent (P < 0.001) in intestinal type gastric cancer than in diffuse type gastric cancer. In intestinal type gastric cancer, its expression correlated with the N category (P = 0.009) and the International Union Against Cancer tumor stage (P = 0.024). AT1R+ intestinal type gastric cancers had a larger number of lymph node metastases (P = 0.026), a higher International Union Against Cancer tumor stage (P = 0.032), and a shorter survival time (P = 0.009) than AT1R- tumors. Multivariate analysis with lymph nodes as a dependent variable showed that AT1R status and ACE-I/D gene polymorphism are independent risk factors. Irrespective of the genotype, AT1R+ gastric cancers had a relative risk of lymph node metastases of 4.40 (95% confidence interval, 1.30-14.86). When the ACE genotype was included, the relative risk of having lymph node metastases increased considerably in AT1R+ tumors being heterozygous or homozygous for the ACE D allele (odds ratio, 19.00; 95% confidence interval, 1.45-248.24). Our study shows that AT1R and AT2R are expressed locally in gastric cancer and that the combination of AT1R expression and ACE I/D gene polymorphism correlates with nodal spread in intestinal type gastric cancer.
Collapse
Affiliation(s)
- Christoph Röcken
- Department of Pathology, Charité University Hospital, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kosaka T, Miyajima A, Takayama E, Kikuchi E, Nakashima J, Ohigashi T, Asano T, Sakamoto M, Okita H, Murai M, Hayakawa M. Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate 2007; 67:41-9. [PMID: 17044086 DOI: 10.1002/pros.20486] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Angiotensin II (AII) type 1 receptor (AT1R) antagonists are used widely as antihypertensive agents, and long-term AT1R blockade may have a protective effect against cancer. We previously demonstrated that specific AT1R blockade with candesartan, an AT1R antagonist, inhibited vascular endothelial growth factor (VEGF) production and dramatically decreased lung metastasis of renal cancer by inhibiting tumor angiogenesis. This study was then undertaken to investigate the effects of AT1R blockade using candesartan in prostate cancer (PCa). METHODS We first determined whether hormone-independence is associated with tumor angiogenesis and AT1R expression. Accordingly, we postulated that AT1R blockade may affect angiogenesis in androgen-independent PCa rather than in androgen-dependent PCa, and investigated the effects of AII and candesartan on PCa cell lines and a tumor xenograft model. RESULTS A human hormone-refractory PCa (HRPC) and C4-2 androgen-independent PCa cell line showed significantly higher expression of VEGF, MVD, and AT1R than did human androgen-dependent PCa and an LNCaP androgen-dependent PCa cell line. In vitro, AII and candesartan did not directly affect the proliferation of LNCaP and C4-2 cells, but candesartan significantly suppressed VEGF production in C4-2 cells. In vivo, candesartan significantly suppressed VEGF expression, serum PSA concentration and tumor growth (1.1 +/- 0.2, 45.0 +/- 17.6 ng/ml, 235.8 +/- 37.4 mm(3)) in C4-2 xenografts in castrated mice, compared with the controls (2.4 +/- 0.6, 376.7 +/- 74.2 ng/ml, 830.8 +/- 147.6 mm(3)). CONCLUSIONS Candesartan exerted preventive effects on HRPC, rather than on androgen-sensitive PCa, through the inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Takeo Kosaka
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lim KT, Cosgrave N, Hill AD, Young LS. Nongenomic oestrogen signalling in oestrogen receptor negative breast cancer cells: a role for the angiotensin II receptor AT1. Breast Cancer Res 2006; 8:R33. [PMID: 16805920 PMCID: PMC1557727 DOI: 10.1186/bcr1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/24/2006] [Accepted: 05/31/2006] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Oestrogens can mediate some of their cell survival properties through a nongenomic mechanism that involves the mitogen-activated protein kinase (MAPK) pathway. The mechanism of this rapid signalling and its dependence on a membrane bound oestrogen receptor (ER), however, remains controversial. The role of G-protein-coupled receptor and epidermal growth factor (EGF) receptor in an ER-independent signalling pathway modulated by oestrogen was investigated. METHODS ER-positive and ER-negative breast cancer cell lines (MCF-7 and SKBR3) and primary breast cancer cell cultures were used in this study. Cell proliferation was assessed using standard MTT assays. Protein and cAMP levels were detected by Western blotting and ELISA, respectively. Antigen localization was performed by immunocytochemistry, immunohistochemistry and immunofluorescence. Protein knockdown was achieved using small interfering RNA technologies. RESULTS EGF and oestrogen, alone and in combination, induced cell proliferation and phosphorylation of MAPK proteins Raf and ERK (extracellular signal regulated kinase)1/2 in both ER-negative SKBR3 and ER-positive MCF-7 human breast cancer cell lines. Increased Raf phosphorylation was also observed in primary human breast cultures derived from ER-positive and ER-negative breast tumours. Oestrogen induced an increase in intracellular cAMP in ER-negative SKBR3 human breast cancer cells. Oestrogen-mediated cell growth and phosphorylation of MAPK was modified by the EGF receptor antagonist AG1478, the G-protein antagonist pertussis toxin, and the angiotensin II receptor antagonist saralasin. Knockdown of angiotensin II type 1 receptor (AT1) protein expression with small interfering RNA attenuated oestrogen-induced Raf phosphorylation in ER-negative cells. AT1 receptor was found to be expressed in the cell membrane of breast tumour epithelial cells. CONCLUSION These findings provide evidence that, in breast cancer cells, oestrogen can signal through AT1 to activate early cell survival mechanisms in an ER-independent manner.
Collapse
Affiliation(s)
- Kheng Tian Lim
- School of Medicine and Medical Science, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Niamh Cosgrave
- School of Medicine and Medical Science, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Arnold David Hill
- School of Medicine and Medical Science, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Leonie S Young
- School of Medicine and Medical Science, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Ino K, Shibata K, Kajiyama H, Nawa A, Nomura S, Kikkawa F. Manipulating the angiotensin system--new approaches to the treatment of solid tumours. Expert Opin Biol Ther 2006; 6:243-55. [PMID: 16503734 DOI: 10.1517/14712598.6.3.243] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiotensin II (Ang II), a main effector peptide in the renin-angiotensin system (RAS), plays a fundamental role as a vasoconstrictor in controlling cardiovascular function and renal homeostasis. Ang II also acts as a growth promoter or angiogenic factor via type 1 angiotensin II receptors (AT1Rs) in certain tumour cell lines. Recent studies have shown the activation of the local RAS in various tumour tissues, including the abundant generation of Ang II by angiotensin-converting enzyme (ACE) and the upregulation of AT1R expression. Thus, considerable attention has been paid to the role of the RAS in cancer and its blockade as a new approach to the treatment of cancer. There is increasing evidence that the Ang II-AT1R system is involved in tumour growth, angiogenesis and metastasis in experimental models, suggesting the therapeutic potential of an ACE inhibitor and AT1R blocker, both of which have been used as antihypertensive drugs. In addition, specific Ang II-degrading enzymes are expressed in tumours and play a regulatory role in cell proliferation and invasion. This review focuses on the role of the Ang II-AT1R system in solid tumours, particularly in the progression of gynaecological cancer, and presents the clinical potential of manipulating the angiotensin system as a novel and promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Kazuhiko Ino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Tahmasebi M, Barker S, Puddefoot JR, Vinson GP. Localisation of renin-angiotensin system (RAS) components in breast. Br J Cancer 2006; 95:67-74. [PMID: 16755291 PMCID: PMC2360491 DOI: 10.1038/sj.bjc.6603213] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin II has mitogenic and angiogenic effects and its receptors are widespread, particularly in epithelial tissue. Tissue renin angiotensin systems (tRASs) may be a local source of angiotensin II that has specific paracrine functions. To investigate the presence of a tRAS in normal human breast and tumours. Immunocytochemistry, and quantitative RT–PCR was used to establish: (i) the presence and localisation of RAS components, (ii) the possibility of their involvement in cancer. (1) mRNA coding for angiotensinogen, prorenin, angiotensin converting enzyme (ACE), and both AT1 and AT2 receptors was demonstrated in normal and diseased breast tissues. (2) (pro)renin was identified in epithelial cells in both normal and diseased tissue, but in invasive carcinoma, its distribution was mostly confined to fibroblasts or could not be detected at all. (3) Angiotensin converting enzyme was shown in epithelial cells in both normal and malignant tissue. The results are consistent with the hypothesis that a tRAS is present in the breast, and is disrupted in invasive cancer.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensinogen/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Female
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Neoplasm Invasiveness
- Peptidyl-Dipeptidase A/genetics
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- Renin/genetics
- Renin-Angiotensin System/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- M Tahmasebi
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - S Barker
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - J R Puddefoot
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
- E-mail:
| | - G P Vinson
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
39
|
Ino K, Shibata K, Kajiyama H, Yamamoto E, Nagasaka T, Nawa A, Nomura S, Kikkawa F. Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. Br J Cancer 2006; 94:552-60. [PMID: 16434990 PMCID: PMC2361172 DOI: 10.1038/sj.bjc.6602961] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II, a main effector peptide in the renin–angiotensin system, acts as a growth-promoting and angiogenic factor via type 1 angiotensin II receptors (AT1R). We have recently demonstrated that angiotensin II enhanced tumour cell invasion and vascular endothelial growth factor (VEGF) secretion via AT1R in ovarian cancer cell lines in vitro. The aim of the present study was to determine whether AT1R expression in ovarian cancer is correlated with clinicopathological parameters, angiogenic factors and patient survival. Immunohistochemical staining for AT1R, VEGF, CD34 and proliferating cell nuclear antigen (PCNA) were analysed in ovarian cancer tissues (n=67). Intratumour microvessel density (MVD) was analysed by counting the CD34-positive endothelial cells. Type 1 angiotensin II receptors were expressed in 85% of the cases examined, of which 55% were strongly positive. Type 1 angiotensin II receptors expression was positively correlated with VEGF expression intensity and MVD, but not with histological subtype, grade, FIGO stage or PCNA labelling index. In patients who had positive staining for AT1R, the overall survival and progression-free survival were significantly poor (P=0.041 and 0.017, respectively) as compared to those in patients who had negative staining for AT1R, although VEGF, but not AT1R, was an independent prognostic factor on multivariate analysis. These results demonstrated that AT1R correlated with tumour angiogenesis and poor patient outcome in ovarian cancer, suggesting its clinical potential for a novel molecular target in strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- K Ino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Uemura H, Ishiguro H, Nagashima Y, Sasaki T, Nakaigawa N, Hasumi H, Kato S, Kubota Y. Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther 2006; 4:1699-709. [PMID: 16275991 DOI: 10.1158/1535-7163.mct-04-0295] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed previously that angiotensin II activated the proliferation of prostate cancer cells and that angiotensin II receptor blockers (ARB) could inhibit it. Here, we investigated whether angiotensin II exerts mitogenic effects on the cross-talk between stromal and cancer cells and whether an ARB can inhibit tumor growth through actions on stromal cells. Cell proliferation and interleukin-6 secretion of prostate stromal PrSC cells stimulated with angiotensin II, tumor necrosis factor-alpha, or epidermal growth factor were examined in the absence and presence of ARB. We examined the effect of ARB on mitogen-activated protein kinase (MAPK) phosphorylation of PrSC and PC-3 cells treated with conditioned medium of PrSC cells and determined the effect of ARB on tumor growth induced by paracrine factors from PrSC cells. Angiotensin II activated the cell proliferation and interleukin-6 secretion of PrSC cells, and ARB inhibited it. Angiotensin II, tumor necrosis factor-alpha, or epidermal growth factor induced MAPK phosphorylation in PrSC cells, and this phosphorylation was inhibited by ARB. Conditioned medium of PrSC cells with angiotensin II activated MAPK phosphorylation in PC-3 cells, and ARB-treated conditioned medium of PrSC cells inhibited it. The tumor growth and angiogenesis of a mixture of PC-3 with PrSC were inhibited by ARB administration, whereas those of PC-3 xenografts were not inhibited. ARB exerted an antiproliferative effect on prostate cancer through paracrine factors from stromal cells. Because prostate stromal cells are thought to be involved in the initiation and development of prostate cancer, the present data suggest the possibility that ARBs are a novel therapeutic class of agents for prostate cancer.
Collapse
Affiliation(s)
- Hiroji Uemura
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2005; 20:953-70. [PMID: 16141358 DOI: 10.1210/me.2004-0536] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (Ang II) activates a wide spectrum of signaling responses via the AT1 receptor (AT1R) that mediate its physiological control of blood pressure, thirst, and sodium balance and its diverse pathological actions in cardiovascular, renal, and other cell types. Ang II-induced AT1R activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol trisphosphate/Ca2+ signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kappaB pathway. The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling pathways, such as beta-arrestin-mediated MAPK activation and the Jak/STAT. Alterations in homo- or heterodimerization of the AT1R may also contribute to its pathophysiological roles. Many of the deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular system. AT1R-mediated overproduction of reactive oxygen species has potent growth-promoting, proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its signaling in cardiovascular cells, leukocytes, and monocytes. In addition to its roles in cardiovascular and renal disease, agonist-induced activation of the AT1R also participates in the development of metabolic diseases and promotes tumor progression and metastasis through its growth-promoting and proangiogenic activities. The recognition of Ang II's pathogenic actions is leading to novel clinical applications of angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their established therapeutic actions in essential hypertension.
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
42
|
Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S, Kikkawa F. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 2005; 11:2686-94. [PMID: 15814650 DOI: 10.1158/1078-0432.ccr-04-1946] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Angiotensin II is a bioactive peptide of the renin-angiotensin system, acting not only as a vasoconstrictor but also as a growth promoter via angiotensin II type 1 receptors (AT1R). The present study examined AT1R expression in human ovarian carcinoma and attempted to determine whether AT1R blocker could suppress the tumor progression. EXPERIMENTAL DESIGN Expression of AT1R, vascular endothelial growth factor (VEGF), and CD34 was immunohistochemically analyzed in ovarian tumor tissues (n=99). Effects of AT1R blocker on invasive potential and VEGF secretion in ovarian cancer cells were examined in vitro. Effects of AT1R blocker in vivo were evaluated in a mouse model of peritoneal carcinomatosis. RESULTS AT1R was expressed in 57 of 67 (85%) invasive ovarian adenocarcinomas and 12 of 18 (66%) borderline malignant tumors but in only 2 of 14 (14%) benign cystadenomas. In invasive carcinomas, VEGF expression intensity and intratumor microvessel density were significantly higher in cases that were strongly positive for AT1R (n = 37) compared with those in cases weakly positive (n = 20) or negative (n = 10) for AT1R. Angiotensin II significantly enhanced the invasive potential and VEGF secretion in AT1R-positive SKOV-3 ovarian cancer cells, both of which were completely inhibited by the AT1R blocker candesartan. Administration of candesartan into SKOV-3-transplanted athymic mice resulted in the reduction of peritoneal dissemination, decreased ascitic VEGF concentration, and suppression of tumor angiogenesis. CONCLUSIONS AT1R is functionally expressed in ovarian carcinoma and involved in tumor progression and angiogenesis. AT1R blockade therapy may become a novel and promising strategy for ovarian cancer treatment.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/prevention & control
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Antigens, CD34/analysis
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Biphenyl Compounds
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/prevention & control
- Neovascularization, Pathologic/prevention & control
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/prevention & control
- Peritoneum/drug effects
- Peritoneum/pathology
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Tetrazoles/pharmacology
- Tetrazoles/therapeutic use
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Takayasu Suganuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Arrieta O, Guevara P, Escobar E, García-Navarrete R, Pineda B, Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer 2005; 92:1247-52. [PMID: 15785746 PMCID: PMC2361987 DOI: 10.1038/sj.bjc.6602483] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis.
Collapse
Affiliation(s)
- O Arrieta
- Neuroimmunology Unit of the National Institute of Neurology and Neurosurgery of Mexico, Insurgentes Sur 3877, 14269 Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
44
|
O'Mahony OA, Barker S, Puddefoot JR, Vinson GP. Synthesis and secretion of angiotensin II by the prostate gland in vitro. Endocrinology 2005; 146:392-8. [PMID: 15448113 DOI: 10.1210/en.2004-0565] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The renin angiotensin system has been shown to have tissue-related functions that are distinct from its systemic roles. We showed that angiotensin II type 1 (AT1) receptors are present in mammalian sperm, and angiotensin II stimulates sperm motility and capacitation. In addition, angiotensin II is present in human seminal plasma at concentrations higher than found in blood. In testing the possibility that the prostate may be the source of seminal plasma angiotensin II, mRNA coding for angiotensinogen, (pro)renin, and angiotensin-converting enzyme were identified by RT-PCR in rat and human prostate and in prostate LNCaP cells, as well as the angiotensin receptors types 1 and 2 (AT1 and AT2) in human tissues and AT1 in rat. In human tissue, immunocytochemistry showed cellular colocalization of renin with the AT1 receptor in secretory epithelial cells. Confirmation of the capacity of the prostate to secrete angiotensin II was shown by the detection of immunoreactive angiotensin in media removed from rat prostate organ cultures and LNCaP cells. Rat prostate angiotensin secretion was enhanced by dihydrotestosterone, but LNCaP angiotensin was stimulated by estradiol. This stimulation was blocked by tamoxifen. Rat prostate AT1 receptor expression was much greater in prepuberal than in postpuberal rats but was not affected by a low-sodium diet. It was, however, significantly enhanced by captopril pretreatment. These findings all suggest the independence of prostate and systemic renin angiotensin system regulation. The data presented here suggest that the prostate may be a source of the secreted angiotensin II found in seminal plasma.
Collapse
Affiliation(s)
- Orla A O'Mahony
- School of Biological Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
45
|
Juillerat-Jeanneret L, Celerier J, Chapuis Bernasconi C, Nguyen G, Wostl W, Maerki HP, Janzer RC, Corvol P, Gasc JM. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br J Cancer 2004; 90:1059-68. [PMID: 14997208 PMCID: PMC2409624 DOI: 10.1038/sj.bjc.6601646] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expression and function in growth and apoptosis of the renin-angiotensin system (RAS) was evaluated in human glioblastoma. Renin and angiotensinogen (AGT) mRNAs and proteins were found by in situ hybridisation and immunohistochemistry in glioblastoma cells. Angiotensinogen was present in glioblastoma cystic fluids. Thus, human glioblastoma cells produce renin and AGT and secrete AGT. Human glioblastoma and glioblastoma cells expressed renin, AGT, renin receptor, AT(2) and/or AT(1) mRNAs and proteins determined by RT-PCR and/or Western blotting, respectively. The function of the RAS in glioblastoma was studied using human glioblastoma cells in culture. Angiotensinogen, des(Ang I)AGT, tetradecapaptide renin substrate (AGT1-14), Ang I, Ang II or Ang III, added to glioblastoma cells in culture, did not modulate their proliferation, survival or death. Angiotensin-converting enzyme inhibitors did not diminish glioblastoma cell proliferation. However, the addition of selective synthetic renin inhibitors to glioblastoma cells decreased DNA synthesis and viable tumour cell number, and induced apoptosis. This effect was not counterbalanced by concomitant addition of Ang II. In conclusion, the complete RAS is expressed by human glioblastomas and glioblastoma cells in culture. Inhibition of renin in glioblastoma cells may be a potential approach to control glioblastoma cell proliferation and survival, and glioblastoma progression in combination therapy.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Apoptosis
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Brain Neoplasms/surgery
- CHO Cells
- Cell Division/drug effects
- Cricetinae
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Glioblastoma/surgery
- Humans
- Immunoenzyme Techniques
- In Situ Hybridization
- Protease Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin/genetics
- Renin/metabolism
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Proteinase Inhibitors/genetics
- Serine Proteinase Inhibitors/metabolism
- Tumor Cells, Cultured
Collapse
|
46
|
Greco S, Elia MG, Muscella A, Storelli C, Marsigliante S. AT1 angiotensin II receptor mediates intracellular calcium mobilization in normal and cancerous breast cells in primary culture. Cell Calcium 2002; 32:1-10. [PMID: 12127057 DOI: 10.1016/s0143-4160(02)00077-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.
Collapse
Affiliation(s)
- S Greco
- Laboratorio di Fisiologia Generale, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università di Lecce, Via Provinciale per Monteroni, 73100 Lecce, Italy
| | | | | | | | | |
Collapse
|
47
|
Achard J, Fournier A, Mazouz H, Caride VJ, Penar PL, Fernandez LA. Protection against ischemia: a physiological function of the renin-angiotensin system. Biochem Pharmacol 2001; 62:261-71. [PMID: 11434899 DOI: 10.1016/s0006-2952(01)00687-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin system (RAS) is involved in a complex mechanism that serves to preserve the blood supply to organs so that they can maintain cellular function. Angiotensin II exerts this effect, independently of the blood pressure generated, through two time-related events: a fast opening of the reserve collateral circulation and a much slower response of new vessel formation or angiogenesis. This effect is observed in rats with ligation of the abdominal aorta and in gerbils with abrupt or progressive unilateral carotid artery ligation. Inhibition of the angiotensin-converting enzyme (ACE) or the angiotensin II receptor represses this effect, and it appears that it is mediated through a non-AT1 receptor site of angiotensin II. Many tumors, both benign and malignant, express renin and angiotensin. It seems that the stimulating action of angiotensin II on angiogenesis could also be involved in preserving the blood supply to tumor cells. Administration of converting enzyme inhibitors increases survival and decreases tumor size in tumor-bearing rats. These observations support the hypothesis that the RAS, directly or indirectly, is involved in situations in which the restoration of blood supply is critical for the viability of cells and that it is present not only in normal but also in pathological conditions such as tumors. In view of the ubiquitous presence of renins and angiotensins, it is also likely to be involved in other conditions, such as inflammation, arthritis, diabetic retinopathy, and retrolental fibroplasia, among others in which angiogenesis is prominent. In addition, angiotensin II could be involved, through the counterbalance of the AT1 and AT2 receptors, in the rarefaction of blood vessels as an etiologic component of essential hypertension.
Collapse
Affiliation(s)
- J Achard
- Department of Physiology, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | | | | | | | | | | |
Collapse
|
48
|
Fujimoto Y, Sasaki T, Tsuchida A, Chayama K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 2001; 495:197-200. [PMID: 11334891 DOI: 10.1016/s0014-5793(01)02377-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the expression of angiotensin II type 1 receptor (AT1) in pancreatic cancer. Both AT1 mRNA and protein were expressed in human pancreatic cancer tissues and cell lines. Binding assays showed that pancreatic cancer cells have specific binding sites for angiotensin II and that binding could be eliminated by treatment with a selective AT1 antagonist in a dose-dependent fashion. Surprisingly, the growth of cancer cells was significantly suppressed by treatment with antagonist, also in a dose-dependent manner. These observations suggest AT1 plays an important role in pancreatic cancer growth. Furthermore, ligand-induced inhibition of AT1 may be a useful therapeutic strategy.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin Receptor Antagonists
- Cell Division/drug effects
- Dose-Response Relationship, Drug
- Humans
- Imidazoles/pharmacology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/genetics
- Tetrazoles/pharmacology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Fujimoto
- First Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | | | | | | |
Collapse
|
49
|
Berry MG, Goode AW, Puddefoot JR, Vinson GP, Carpenter R. Integrin beta1 upregulation in MCF-7 breast cancer cells by angiotensin II. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2000; 26:25-9. [PMID: 10718175 DOI: 10.1053/ejso.1999.0735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Integrins are a major family of cell adhesion molecules whose function is perturbed in tumour invasion and metastasis. Angiotensin II (A II) is well-known in the systemic control of water and electrolyte homeostasis and haemodynamics, but recent evidence points to an additional local renin-angiotensin system (RAS) with possible long-term trophic effects including carcinogenesis. METHODS The effect of angiotensin II on MCF-7 human breast cancer cell line integrin expression was evaluated with immunocytochemistry (ICC) and immunoprecipitation (IP). RESULTS The experiments demonstrated a 1.40 +/- 0.14-fold increase in beta, integrin expression on MCF-7 cells following treatment with A II. CONCLUSIONS These findings report the first evidence of an association between integrins and the RAS in human breast cancer cells and suggest a novel research avenue for future anti-metastatic strategies, through the manipulation of cell adhesion mechanics, in the management of invasive human breast cancer.
Collapse
Affiliation(s)
- M G Berry
- Department of Surgery, St Bartholomew's and the Royal London School of Medicine and Dentistry, St Bartholomew's Hospital, UK
| | | | | | | | | |
Collapse
|
50
|
Martínez JM, Prieto I, Ramírez MJ, Cueva C, Alba F, Ramírez M. Aminopeptidase Activities in Breast Cancer Tissue. Clin Chem 1999. [DOI: 10.1093/clinchem/45.10.1797] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Background: Endopeptidases such as cathepsins help determine the prognosis of breast cancer (BC). However, little information is available about the role in BC of aminopeptidases (APs), which have been implicated in the metabolism of several local hormonal factors.
Methods: Using aminoacyl-β-naphthylamides as substrates, we measured fluorometrically alanyl-AP, arginyl-AP, cystinyl-AP, glutamyl-AP, aspartyl-AP, and pyroglutamyl-AP activities in their soluble and membrane-bound forms in surgically removed BC tissue from which we separated samples of neoplastic, adjacent tumoral, and unaffected surrounding tissue.
Results: Compared with unaffected tissue, neoplastic tissue had significantly higher activities of soluble alanyl-AP (553.9 ± 82.8 vs 1615.2 ± 183.0 pmol/mg protein; P <0.001), arginyl-AP (372.4 ± 56.6 vs 1027.2 ± 143.5 pmol/mg protein; P <0.001), and cystinyl-AP (74.8 ± 10.0 vs 282.9 ± 37.2 pmol/mg protein; P <0.001), and of membrane-bound arginyl-AP (457.7 ± 97.9 vs 886.6 ± 140.0 pmol/mg protein; P <0.01). However, membrane-bound aspartyl-AP activity was significantly lower in neoplastic tissue (17.3 ± 1.4 vs 9.2 ± 1.2 pmol/mg protein; P <0.05) and pyroglutamyl-AP activity was significantly lower in neoplastic and adjacent tissues (12.8 ± 0.9 vs 7.0 ± 1.2 and 8.0 ± 1.3 pmol/mg protein; P <0.001 for both comparisons).
Conclusions: The present results document changes in AP activities in BC tissue. These changes may reflect the functional status of the AP substrates, which can be selectively activated or inhibited locally in the affected tissue as a result of specific conditions brought about by the tumor.
Collapse
Affiliation(s)
- José M Martínez
- Área de Fisiología, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain
| | - Isabel Prieto
- Área de Fisiología, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain
| | - María J Ramírez
- Área de Fisiología, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain
| | - Cristobal Cueva
- Hospital General de Especialidades Ciudad de Jaén, 23005 Jaén, Spain
| | - Francisco Alba
- Departamento de Bioquímica y Biología Molecular, Universidad de Granada, 18071 Granada, Spain
| | - Manuel Ramírez
- Área de Fisiología, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain
| |
Collapse
|