1
|
Whitlock BD, Ma Y, Conseil G, O'Brien AR, Banerjee M, Swanlund DP, Lin ZP, Wang Y, Le XC, Schuetz JD, Cole SPC, Leslie EM. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. Drug Metab Dispos 2024; 52:1417-1428. [PMID: 39313329 PMCID: PMC11585317 DOI: 10.1124/dmd.124.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumor induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette subfamily C (ABCC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the glutathione (GSH) conjugate of the highly toxic monomethylarsonous acid (MMAIII), monomethylarsenic diglutathione [MMA(GS)2], and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in human embryonic kidney (HEK)293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid, or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17β-estradiol-17-(β-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ∼3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated that this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to arsenic toxicokinetic differences between human and mouse. SIGNIFICANCE STATEMENT: Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. Human ATP-binding cassette subfamily C member 4 (hABCC4) is a high-affinity transporter of toxicologically important arsenic metabolites. Here we used multiple approaches to demonstrate that mouse Abcc4 does not protect cells against or transport any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.
Collapse
Affiliation(s)
- Brayden D Whitlock
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yingze Ma
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Gwenaëlle Conseil
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Alicia R O'Brien
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Mayukh Banerjee
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Diane P Swanlund
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Z Ping Lin
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yao Wang
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - X Chris Le
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - John D Schuetz
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Susan P C Cole
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Elaine M Leslie
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| |
Collapse
|
2
|
Hanssen KM, Wheatley MS, Yu DMT, Conseil G, Norris MD, Haber M, Cole SPC, Fletcher JI. GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS J 2022; 289:3854-3875. [PMID: 35080351 DOI: 10.1111/febs.16374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17βG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17βG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Madeleine S Wheatley
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia
| | - Denise M T Yu
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Gwenaëlle Conseil
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Murray D Norris
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Canada
| | - Jamie I Fletcher
- Lowy Cancer Research Centre, Children's Cancer Institute Australia, UNSW Sydney, Kensington, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
3
|
Conserved amino acids in the region connecting membrane spanning domain 1 to nucleotide binding domain 1 are essential for expression of the MRP1 (ABCC1) transporter. PLoS One 2021; 16:e0246727. [PMID: 33571281 PMCID: PMC7877750 DOI: 10.1371/journal.pone.0246727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) (gene symbol ABCC1) is an ATP-binding cassette (ABC) transporter which effluxes xeno- and endobiotic organic anions including estradiol glucuronide and the pro-inflammatory leukotriene C4. MRP1 also confers multidrug resistance by reducing intracellular drug accumulation through active efflux. MRP1 has three membrane spanning domains (MSD), and two nucleotide binding domains (NBD). MSD1 and MSD2 are linked to NBD1 and NBD2 by connecting regions (CR) 1 and CR2, respectively. Here we targeted four residues in CR1 (Ser612, Arg615, His622, Glu624) for alanine substitution and unexpectedly, found that cellular levels of three mutants (S612A, R615A, E624A) in transfected HEK cells were substantially lower than wild-type MRP1. Whereas CR1-H622A properly trafficked to the plasma membrane and exhibited organic anion transport activity comparable to wild-type MRP1, the poorly expressing R615A and E624A (and to a lesser extent S612A) mutant proteins were retained intracellularly. Analyses of cryogenic electron microscopic and atomic homology models of MRP1 indicated that Arg615 and Glu624 might participate in bonding interactions with nearby residues to stabilize expression of the transporter. However, this was not supported by double exchange mutations E624K/K406E, R615D/D430R and R615F/F619R which failed to improve MRP1 levels. Nevertheless, these experiments revealed that the highly conserved CR1-Phe619 and distal Lys406 in the first cytoplasmic loop of MSD1 are also essential for expression of MRP1 protein. This study is the first to demonstrate that CR1 contains several highly conserved residues critical for plasma membrane expression of MRP1 but thus far, currently available structures and models do not provide any insights into the underlying mechanism(s). Additional structures with rigorous biochemical validation data are needed to fully understand the bonding interactions critical to stable expression of this clinically important ABC transporter.
Collapse
|
4
|
Krohn M, Zoufal V, Mairinger S, Wanek T, Paarmann K, Brüning T, Eiriz I, Brackhan M, Langer O, Pahnke J. Generation and Characterization of an Abcc1 Humanized Mouse Model ( hABCC1flx/flx ) with Knockout Capability. Mol Pharmacol 2019; 96:138-147. [PMID: 31189668 DOI: 10.1124/mol.119.115824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 01/18/2023] Open
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) are well known for their role in rendering cancer cells resistant to chemotherapy. Additionally, recent research provided evidence that, along with other ABC transporters (ABCA1 and ABCA7), they might be cornerstones to tackle neurodegenerative diseases. Overcoming chemoresistance in cancer, understanding drug-drug interactions, and developing efficient and specific drugs that alter ABC transporter function are hindered by a lack of in vivo research models, which are fully predictive for humans. Hence, the humanization of ABC transporters in mice has become a major focus in pharmaceutical and neurodegenerative research. Here, we present a characterization of the first Abcc1 humanized mouse line. To preserve endogenous expression profiles, we chose to generate a knockin mouse model that leads to the expression of a chimeric protein that is fully human except for one amino acid. We found robust mRNA and protein expression within all major organs analyzed (brain, lung, spleen, and kidney). Furthermore, we demonstrate the functionality of the expressed human ABCC1 protein in brain and lungs using functional positron emission tomography imaging in vivo. Through the introduction of loxP sites, we additionally enabled this humanized mouse model for highly sophisticated studies involving cell type-specific transporter ablation. Based on our data, the presented mouse model appears to be a promising tool for the investigation of cell-specific ABCC1 function. It can provide a new basis for better translation of preclinical research.
Collapse
Affiliation(s)
- Markus Krohn
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Viktoria Zoufal
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Severin Mairinger
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Wanek
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Kristin Paarmann
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Brüning
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Ivan Eiriz
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Mirjam Brackhan
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Oliver Langer
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Jens Pahnke
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| |
Collapse
|
5
|
Shukalek CB, Swanlund DP, Rousseau RK, Weigl KE, Marensi V, Cole SPC, Leslie EM. Arsenic Triglutathione [As(GS)3] Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) Is Selectively Modified by Phosphorylation of Tyr920/Ser921 and Glycosylation of Asn19/Asn23. Mol Pharmacol 2016; 90:127-39. [PMID: 27297967 DOI: 10.1124/mol.116.103648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) is responsible for the cellular export of a chemically diverse array of xenobiotics and endogenous compounds. Arsenic, a human carcinogen, is a high-affinity MRP1 substrate as arsenic triglutathione [As(GS)3]. In this study, marked differences in As(GS)3 transport kinetics were observed between MRP1-enriched membrane vesicles prepared from human embryonic kidney 293 (HEK) (Km 3.8 µM and Vmax 307 pmol/mg per minute) and HeLa (Km 0.32 µM and Vmax 42 pmol/mg per minute) cells. Mutant MRP1 lacking N-linked glycosylation [Asn19/23/1006Gln; sugar-free (SF)-MRP1] expressed in either HEK293 or HeLa cells had low Km and Vmax values for As(GS)3, similar to HeLa wild-type (WT) MRP1. When prepared in the presence of phosphatase inhibitors, both WT- and SF-MRP1-enriched membrane vesicles had a high Km value for As(GS)3 (3-6 µM), regardless of the cell line. Kinetic parameters of As(GS)3 for HEK-Asn19/23Gln-MRP1 were similar to those of HeLa/HEK-SF-MRP1 and HeLa-WT-MRP1, whereas those of single glycosylation mutants were like those of HEK-WT-MRP1. Mutation of 19 potential MRP1 phosphorylation sites revealed that HEK-Tyr920Phe/Ser921Ala-MRP1 transported As(GS)3 like HeLa-WT-MRP1, whereas individual HEK-Tyr920Phe- and -Ser921Ala-MRP1 mutants were similar to HEK-WT-MRP1. Together, these results suggest that Asn19/Asn23 glycosylation and Tyr920/Ser921 phosphorylation are responsible for altering the kinetics of MRP1-mediated As(GS)3 transport. The kinetics of As(GS)3 transport by HEK-Asn19/23Gln/Tyr920Glu/Ser921Glu were similar to HEK-WT-MRP1, indicating that the phosphorylation-mimicking substitutions abrogated the influence of Asn19/23Gln glycosylation. Overall, these data suggest that cross-talk between MRP1 glycosylation and phosphorylation occurs and that phosphorylation of Tyr920 and Ser921 can switch MRP1 to a lower-affinity, higher-capacity As(GS)3 transporter, allowing arsenic detoxification over a broad concentration range.
Collapse
Affiliation(s)
- Caley B Shukalek
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Diane P Swanlund
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Rodney K Rousseau
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Kevin E Weigl
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Vanessa Marensi
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Susan P C Cole
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| | - Elaine M Leslie
- Department of Physiology (C.B.S., D.P.S., R.K.R., V.M., E.M.L.) and Membrane Protein Disease Research Group (C.B.S., D.P.S., R.K.R., V.M., E.M.L.), University of Alberta, Edmonton, Alberta, Canada. Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics (K.E.W., S.P.C.C.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells. Anal Chim Acta 2016; 920:86-93. [DOI: 10.1016/j.aca.2016.03.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
|
7
|
Iram SH, Cole SPC. Differential functional rescue of Lys(513) and Lys(516) processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain-domain interactions of the transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:756-65. [PMID: 24231430 DOI: 10.1016/j.bbamem.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/15/2022]
Abstract
Multidrug resistance protein 1 (MRP1) extrudes drugs as well as pharmacologically and physiologically important organic anions across the plasma membrane in an ATP-dependent manner. We previously showed that Ala substitutions of Lys(513) and Lys(516) in the cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 cause misfolding of MRP1, abrogating its expression at the plasma membrane in transfected human embryonic kidney (HEK) cells. Exposure of HEK cells to the chemical chaperones glycerol, DMSO, polyethylene glycol (PEG) and 4-aminobutyric acid (4-PBA) improved levels of K513A to wild-type MRP1 levels but transport activity was only fully restored by 4-PBA or DMSO treatments. Tryptic fragmentation patterns and conformation-dependent antibody immunoreactivity of the transport-deficient PEG- and glycerol-rescued K513A proteins indicated that the second nucleotide binding domain (NBD2) had adopted a more open conformation than in wild-type MRP1. This structural change was accompanied by differences in ATP binding and hydrolysis but no changes in substrate Km. In contrast to K513A, K516A levels in HEK cells were not significantly enhanced by chemical chaperones. In more permissive insect cells, however, K516A levels were comparable to wild-type MRP1. Nevertheless, organic anion transport by K516A in insect cell membranes was reduced by >80% due to reduced substrate Km. Tryptic fragmentation patterns indicated a more open conformation of the third membrane spanning domain of MRP1. Thus, despite their close proximity to one another in CL5, Lys(513) and Lys(516) participate in different interdomain interactions crucial for the proper folding and assembly of MRP1.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
8
|
Conseil G, Cole SP. Two Polymorphic Variants of ABCC1 Selectively Alter Drug Resistance and Inhibitor Sensitivity of the Multidrug and Organic Anion Transporter Multidrug Resistance Protein 1. Drug Metab Dispos 2013; 41:2187-96. [DOI: 10.1124/dmd.113.054213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment. J Neuroinflammation 2013; 10:58. [PMID: 23642074 PMCID: PMC3651327 DOI: 10.1186/1742-2094-10-58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site.
Collapse
|
10
|
Inhibition of the MRP1-mediated transport of the menadione-glutathione conjugate (thiodione) in HeLa cells as studied by SECM. Proc Natl Acad Sci U S A 2012; 109:11522-7. [PMID: 22679290 DOI: 10.1073/pnas.1201555109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress induced in live HeLa cells by menadione (2-methyl-1,4-napthaquinone) was studied in real time by scanning electrochemical microscopy (SECM). The hydrophobic molecule menadione diffuses through a living cell membrane where it is toxic to the cell. However, in the cell it is conjugated with glutathione to form thiodione. Thiodione is then recognized and transported across the cell membrane via the ATP-driven MRP1 pump. In the extracellular environment, thiodione was detected by the SECM tip at levels of 140, 70, and 35 µM upon exposure of the cells to menadione concentrations of 500, 250, and 125 µM, respectively. With the aid of finite element modeling, the kinetics of thiodione transport was determined to be 1.6 10(-7) m/s, about 10 times faster than menadione uptake. Selective inhibition of these MRP1 pumps inside live HeLa cells by MK571 produced a lower thiodione concentration of 50 µM in presence of 500 µM menadione and 50 µM MK571. A similar reduced (50% drop) thiodione efflux was observed in the presence of monoclonal antibody QCRL-4, a selective blocking agent of the MRP1 pumps. The reduced thiodione flux confirmed that thiodione was transported by MRP1, and that glutathione is an essential substrate for MRP1-mediated transport. This finding demonstrates the usefulness of SECM in quantitative studies of MRP1 inhibitors and suggests that monoclonal antibodies can be a useful tool in inhibiting the transport of these MDR pumps, and thereby aiding in overcoming multidrug resistance.
Collapse
|
11
|
Iram SH, Cole SPC. Mutation of Glu521 or Glu535 in cytoplasmic loop 5 causes differential misfolding in multiple domains of multidrug and organic anion transporter MRP1 (ABCC1). J Biol Chem 2012; 287:7543-55. [PMID: 22232552 DOI: 10.1074/jbc.m111.310409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polytopic 5-domain multidrug resistance protein 1 (MRP1/ABCC1) extrudes a variety of drugs and organic anions across the plasma membrane. Four charged residues in the fifth cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 are critical for stable expression of MRP1 at the plasma membrane. Thus Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) all cause misfolding of MRP1 and target the protein for proteasome-mediated degradation. Of four chemical chaperones tested, 4-phenylbutyric acid (4-PBA) was the most effective at restoring expression of MRP1 mutants K513A, K516A, E521A, and E535A. However, although 4-PBA treatment of K513A resulted in wild-type protein levels (and activity), the same treatment had little or no effect on the expression of K516A. On the other hand, 4-PBA treatment allowed both E521A and E535A to exit the endoplasmic reticulum and be stably expressed at the plasma membrane. However, the 4-PBA-rescued E535A mutant exhibited decreased transport activity associated with reduced substrate affinity and conformational changes in both halves of the transporter. By contrast, E521A exhibited reduced transport activity associated with alterations in the mutant interactions with ATP as well as a distinct conformational change in the COOH-proximal half of MRP1. These findings illustrate the critical and complex role of CL5 for stable expression of MRP1 at the plasma membrane and more specifically show the differential importance of Glu(521) and Glu(535) in interdomain interactions required for proper folding and assembly of MRP1 into a fully transport competent native structure.
Collapse
Affiliation(s)
- Surtaj H Iram
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
12
|
Saggiorato E, Angusti T, Rosas R, Martinese M, Finessi M, Arecco F, Trevisiol E, Bergero N, Puligheddu B, Volante M, Podio V, Papotti M, Orlandi F. 99mTc-MIBI Imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med 2009; 50:1785-93. [PMID: 19837765 DOI: 10.2967/jnumed.109.064980] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Recently, thyroid (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) scintiscanning has been proposed in an attempt to preoperatively identify thyroid malignancies, but discrepant results have been reported for oncocytic lesions. The aim of this study was to investigate the usefulness of visual and semiquantitative analyses of (99m)Tc-MIBI scintigraphy for preoperatively characterizing thyroid nodules with indeterminate cytologic diagnoses, segregating in advance nononcocytic variants from those that are oncocytic. This study also aimed to analyze the relationship between (99m)Tc-MIBI images and P-glycoprotein (P-gp)/multidrug resistance-associated protein-1 (MRP1) immunohistochemical expression. METHODS Fifty-one consecutive patients with cold thyroid nodules cytologically diagnosed as nononcocytic or oncocytic follicular neoplasm were prospectively studied. Visual and semiquantitative (99m)Tc-MIBI scanning was performed and the diagnoses of the lesions were histologically proven by subsequent thyroidectomy. Immunohistochemical evaluation of P-gp and MRP1 was also performed on surgical samples. RESULTS Visual and semiquantitative (99m)Tc-MIBI scintiscans showed a low specificity in preoperatively discriminating malignant oncocytic lesions. In nononcocytic nodules, the semiquantitative method was more accurate than the visual (94.44% and 77.78%, respectively). P-gp protein expression was negative in all thyroid lesions, whereas apical plasma membrane MRP1 expression was found in 78% of the lesions with a negative (99m)Tc-MIBI retention index, compared with 11% of lesions with a positive retention index, correlating most strongly with a negative (99m)Tc-MIBI RI in those cases with strong MRP1 apical expression. CONCLUSION Semiquantitative (99m)Tc-MIBI scintigraphy is an adjunctive method to predict preoperatively the malignant behavior of nononcocytic follicular thyroid nodules indeterminate at fine-needle aspiration biopsy, with a potential impact on the definition of their clinical management. Moreover, the good correlation found between immunohistochemical apical expression of MRP1 and the scintigraphic findings supports the (99m)Tc-MIBI results and provides tissue information on the molecular mechanisms responsible for (99m)Tc-MIBI images in thyroid lesions.
Collapse
Affiliation(s)
- Enrico Saggiorato
- Section of Endocrinology, Division of Internal Medicine, Department of Clinical and Biological Sciences, Gradenigo Hospital, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ascione A, Cianfriglia M, Dupuis ML, Mallano A, Sau A, Pellizzari Tregno F, Pezzola S, Caccuri AM. The glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol overcomes the MDR1-P-glycoprotein and MRP1-mediated multidrug resistance in acute myeloid leukemia cells. Cancer Chemother Pharmacol 2009; 64:419-24. [DOI: 10.1007/s00280-009-0960-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/13/2009] [Indexed: 11/28/2022]
|
14
|
Jungsuwadee P, Nithipongvanitch R, Chen Y, Oberley TD, Butterfield DA, St Clair DK, Vore M. Mrp1 localization and function in cardiac mitochondria after doxorubicin. Mol Pharmacol 2009; 75:1117-26. [PMID: 19233900 DOI: 10.1124/mol.108.052209] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multidrug resistance-associated protein 1 (Mrp1; Abcc1) is expressed in sarcolemma of murine heart, where it probably protects the cardiomyocyte by mediating efflux of endo- and xenobiotics. We used doxorubicin (DOX), a chemotherapeutic drug known to induce oxidative stress and thereby cardiac injury, as a model cardiotoxic compound and observed changes in the Mrp1 expression pattern in cardiac tissue of DOX-versus saline-treated mice. Confocal immunofluorescent and immunogold electron microscopy, together with subcellular fractionation followed by immunoblot analyses and transport measurements, localized functional Mrp1 to mitochondria after DOX. Expressions of Mrp1 in heart homogenate, sarcolemma, and submitochondrial particles (SMP) were increased 1.6-, 2-, and 3-fold, respectively, at 24 h after DOX. Mitochondrial Mrp1 expression was markedly increased 72 h after DOX, whereas transport of Mrp1 substrates in SMP was maximal at 24 h. ATP-dependent transport in SMP occurred into an osmotically sensitive space and was inhibited by the anti-MRP1 antibody QCRL3. Adduction of a 190-kDa protein with the reactive lipid peroxidation product 4-hydroxy-2-nonenal (HNE) was detected in SMP and was maximal at 72 h after DOX; immunoprecipitation confirmed Mrp1-HNE adduction. In vitro, HNE (10 muM) inhibited mitochondrial respiration and transport activity in SMP, suggesting that Mrp1 is adversely affected by oxidative stress. These data demonstrate that after DOX, functional Mrp1 is detected in mitochondria in addition to that in sarcolemma; however, adduction with HNE inhibits Mrp1 activity. Mrp1 may serve to protect the heart by mediating the efflux of toxic products of oxidative stress from mitochondria and cardiomyocytes.
Collapse
Affiliation(s)
- Paiboon Jungsuwadee
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Qin L, Zheng J, Grant CE, Jia Z, Cole SPC, Deeley RG. Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 2009; 47:13952-65. [PMID: 19063607 DOI: 10.1021/bi801532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The two nucleotide binding domains (NBDs) of ATP binding cassette (ABC) transporters dimerize to form composite nucleotide binding sites (NBSs) each containing Walker A and B motifs from one domain and the ABC "C" signature from the other. In many ABC proteins, the NBSs are thought to be functionally equivalent. However, this is not the case for ABCC proteins, such as MRP1, in which NBS1 containing the Walker A and B motifs from the N-proximal NBD1 typically binds ATP with high affinity but has low hydrolytic activity, while the reverse is true of NBS2. A notable feature of NBD1 of the ABCC proteins is the lack of a catalytic Glu residue following the core Walker B motif. In multidrug resistance protein (MRP) 1, this residue is Asp (D793). Previously, we demonstrated that mutation of D793 to Glu was sufficient to increase ATP hydrolysis at NBS1, but paradoxically, transport activity decreased by 50-70% as a result of tight binding of ADP at the mutated NBS1. Here, we identify two atypical amino acids in NBD1 that contribute to the retention of ADP. We found that conversion of Trp653 to Tyr and/or Pro794 to Ala enhanced transport activity of the D793E mutant and the release of ADP from NBS1. Moreover, introduction of the P794A mutation into wild-type MRP1 increased transport of leukotriene C(4) approximately 2-fold. Molecular dynamic simulations revealed that, while the D793E mutation increased hydrolysis of ATP, the presence of the adjacent Pro794, rather than the more typical Ala, decreased flexibility of the region linking Walker B and the D-loop, markedly diminishing the rate of release of Mg(2+) and ADP. Overall, these results suggest that the rate of release of ADP by NBD1 in the D793E background may be the rate-limiting step in the transport cycle of MRP1.
Collapse
Affiliation(s)
- Lei Qin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Departments of Biochemistry, Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Rothnie A, Conseil G, Lau AYT, Deeley RG, Cole SPC. Mechanistic differences between GSH transport by multidrug resistance protein 1 (MRP1/ABCC1) and GSH modulation of MRP1-mediated transport. Mol Pharmacol 2008; 74:1630-40. [PMID: 18768387 DOI: 10.1124/mol.108.049080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.
Collapse
Affiliation(s)
- Alice Rothnie
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
17
|
Bandler PE, Westlake CJ, Grant CE, Cole SPC, Deeley RG. Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol Pharmacol 2008; 74:9-19. [PMID: 18381564 DOI: 10.1124/mol.108.045674] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Multidrug resistance proteins MRP1 and MRP2 transport a wide range of endo- and xenobiotics. However, with the exception of certain parts of the brain, MRP1 traffics to basolateral membranes of polarized cells, whereas MRP2 is apical in location and thus it is particularly important for systemic elimination of such compounds. Different regions of MRP1 and MRP2 seem to target them to their respective membrane locations. In addition to two "core" membrane spanning domains (MSDs) characteristic of ATP-binding cassette transporters, MRP1 and MRP2 have a third NH2-terminal MSD (MSD0), which is not required for basolateral targeting of MRP1, or for transport of at least some substrates. Here, we demonstrate that all elements necessary for apical targeting of MRP2 reside in MSD0 and the adjacent cytoplasmic loop (CL) 3. Furthermore, we show that this region of MRP2 can target the core of MRP1 to an exclusively apical location. Within MRP2 CL3, we identified a lysine-rich element that is essential for apical targeting. When introduced into MRP1, this element alone is sufficient to result in partial apical localization. However, exclusive targeting to the apical membrane seems to require the integrity of the entire region encompassing MSD0 and CL3 of MRP2. Because CL3 of MRP1 is critical for binding, transport, or both of several compounds, we also examined the function of hybrids containing all, or portions of MRP2 MSD0 and CL3. Our results indicate that CL3 is important for interaction with both the glutathione and glucuronide conjugates tested, but that different regions may be involved.
Collapse
Affiliation(s)
- Paul E Bandler
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
18
|
Filomeni G, Turella P, Dupuis ML, Forini O, Ciriolo MR, Cianfriglia M, Pezzola S, Federici G, Caccuri AM. 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1-mediated MDR in small cell lung cancer. Mol Cancer Ther 2008; 7:371-9. [PMID: 18281520 DOI: 10.1158/1535-7163.mct-07-0487] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, we have investigated the antitumor activity of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on aggressive small cell lung cancer. NBDHEX not only is cytotoxic toward the parental small cell lung cancer H69 cell line (LC(50) of 2.3 +/- 0.6 micromol/L) but also overcomes the multidrug resistance of its variant, H69AR, which overexpresses the ATP-binding cassette transporter multidrug resistance-associated protein 1 (MRP1; LC(50) of 4.5 +/- 0.9 micromol/L). Drug efflux experiments, done in the presence of a specific inhibitor of MRP1, confirmed that NBDHEX is not a substrate for this export pump. Interestingly, NBDHEX triggers two different types of cell death: a caspase-dependent apoptosis in the H69AR cells and a necrotic phenotype in the parental H69 cells. The apoptotic pathway triggered by NBDHEX in H69AR cells is associated with c-Jun NH(2)-terminal kinase and c-Jun activation, whereas glutathione oxidation and activation of p38(MAPK) is observed in the NBDHEX-treated H69 cells. In contrast to the parental cells, the higher propensity to die through apoptosis of the H69AR cell line may be related to the lower expression of the antiapoptotic protein Bcl-2. Therefore, down-regulation of a factor crucial for cell survival makes H69AR cells more sensitive to the cytotoxic action of NBDHEX, which is not a MRP1 substrate. We have previously shown that NBDHEX is cytotoxic toward P-glycoprotein-overexpressing tumor cell lines. Therefore, NBDHEX seems a very promising compound in the search for new molecules able to overcome the ATP-binding cassette family of proteins, one of the major mechanisms of multidrug resistance in cancer cells.
Collapse
|
19
|
Létourneau IJ, Nakajima A, Deeley RG, Cole SPC. Role of proline 1150 in functional interactions between the membrane spanning domains and nucleotide binding domains of the MRP1 (ABCC1) transporter. Biochem Pharmacol 2008; 75:1659-69. [PMID: 18336795 DOI: 10.1016/j.bcp.2008.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
The ATP-binding cassette multidrug resistance protein 1 (MRP1) mediates ATP-dependent cellular efflux of drugs and organic anions. We previously described a mutant, MRP1-Pro1150Ala, which exhibits selectively increased estradiol glucuronide (E217betaG) and methotrexate transport as well as altered interactions with ATP. We have now further explored the functional importance of MRP1-Pro1150 at the interface of transmembrane helix 15 and cytoplasmic loop 7 (CL7) by replacing it with Gly, Ile, Leu and Val. All four mutants exhibited a phenotype similar to MRP1-Pro1150Ala with respect to organic anion transport and [gamma32P]8N3ATP photolabeling. They also displayed very low levels of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP. To better understand the relationship between the altered nucleotide interactions and transport activity of these mutants, [alpha32P]8N3ADP trapping experiments were performed under different conditions. Unlike leukotriene C4, E217betaG decreased [alpha32P]8N3ADP trapping by both wild-type and mutant MRP1. [alpha32P]8N3ADP trapping by MRP1-Pro1150Ala could be increased by using Ni2+ instead of Mg2+, and by decreasing temperature; however, the transport properties of the mutant remained unchanged. We conclude that the reduced [alpha32P]8N3ADP trapping associated with loss of Pro1150, or the presence of E217betaG, is due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself. We hypothesize that loss of Pro1150 alters the role of CL7 as a coupling helix that mediates signaling between the nucleotide binding domains and some substrate binding sites in the membrane spanning domains of MRP1.
Collapse
Affiliation(s)
- Isabelle J Létourneau
- Department of Pharmacology & Toxicology, Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
20
|
de Wolf CJF, Yamaguchi H, van der Heijden I, Wielinga PR, Hundscheid SL, Ono N, Scheffer GL, de Haas M, Schuetz JD, Wijnholds J, Borst P. cGMP transport by vesicles from human and mouse erythrocytes. FEBS J 2006; 274:439-50. [PMID: 17229149 DOI: 10.1111/j.1742-4658.2006.05591.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
cGMP secretion from cells can be mediated by ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCC11. Indirect evidence suggests that ABCC4 and ABCC5 contribute to cGMP transport by erythrocytes. We have re-investigated the issue using erythrocytes from wild-type and transporter knockout mice. Murine wild-type erythrocyte vesicles transported cGMP with an apparent Km that was 100-fold higher than their human counterparts, the apparent Vmax being similar. Whereas cGMP transport into human vesicles was efficiently inhibited by the ABCC4-specific substrate prostaglandin E1, cGMP transport into mouse vesicles was inhibited equally by Abcg2 and Abcc4 inhibitors/substrates. Similarly, cGMP transport into vesicles from Abcc4-/- and Abcg2-/- mice was 42% and 51% of that into wild-type mouse vesicles, respectively, whereas cGMP transport into vesicles from Abcc4(-/-)/Abcg2(-/-) mice was near background. The knockout mice were used to show that Abcg2-mediated cGMP transport occurred with lower affinity but higher Vmax than Abcc4-mediated transport. Involvement of Abcg2 in cGMP transport by Abcc4-/- erythrocyte vesicles was supported by higher transport at pH 5.5 than at pH 7.4, a characteristic of Abcg2-mediated transport. The relative contribution of ABCC4/Abcc4 and ABCG2/Abcg2 in cGMP transport was confirmed with a new inhibitor of ABCC4 transport, the protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride.
Collapse
Affiliation(s)
- Cornelia J F de Wolf
- Department of Molecular Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
22
|
Rothnie A, Callaghan R, Deeley RG, Cole SPC. Role of GSH in estrone sulfate binding and translocation by the multidrug resistance protein 1 (MRP1/ABCC1). J Biol Chem 2006; 281:13906-14. [PMID: 16565074 DOI: 10.1074/jbc.m600869200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.
Collapse
Affiliation(s)
- Alice Rothnie
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
23
|
Lacueva J, Perez-Ramos M, Soto JL, Oliver I, Andrada E, Medrano J, Perez-Vazquez T, Arroyo A, Carrato A, Ferragut JA, Calpena R. Multidrug resistance-associated protein (MRP1) gene is strongly expressed in gastric carcinomas. Analysis by immunohistochemistry and real-time quantitative RT-PCR. Histopathology 2005; 46:389-95. [PMID: 15810950 DOI: 10.1111/j.1365-2559.2005.02100.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS To assess MRP1 protein and MRP1 mRNA levels in gastric carcinomas and in non-neoplastic mucosa remote from the tumours. MRP1 gene expression may play a role in the complex pattern of chemoresistance present in gastric carcinomas. METHODS AND RESULTS A total of 57 carcinomas and respective gastric tissues were included for immunohistochemical assessment with the anti-MRP1 monoclonal antibodies MRPr1 and QCRL-1. Of these, 35 tumour and gastric mucosa tissues were also assessed by real-time quantitative reverse transcriptase-polymerase chain reaction. Medium or high MRP1 protein expression was detected in 89% and 77% of carcinomas and in 96% and 93% of non-neoplastic gastric mucosa by MRPr1and QCRL-1, respectively. No difference in MRP1 mRNA levels was detected between carcinomas and non-neoplastic gastric mucosa tissues in 77% of the patients. A significant correlation was found between MRP1 mRNA level and protein expression detected in carcinomas related to non-neoplastic gastric mucosa, although they were non-concordant in 29% of the patients. CONCLUSIONS MRP1 gene is usually expressed in most gastric carcinomas and does not differ substantially from that observed in non-neoplastic gastric mucosa remote from the tumour. However, a decrease in MRP1 gene expression is found in some carcinomas. For accurate assessment of changes in MRP1 expression between tumour and normal tissues both protein and mRNA detection are necessary.
Collapse
Affiliation(s)
- J Lacueva
- Department of Pathology and Surgery, School of Medicine, Miguel Hernandez University, Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Payen L, Gao M, Westlake C, Theis A, Cole SPC, Deeley RG. Functional Interactions Between Nucleotide Binding Domains and Leukotriene C4Binding Sites of Multidrug Resistance Protein 1 (ABCC1). Mol Pharmacol 2005; 67:1944-53. [PMID: 15755910 DOI: 10.1124/mol.104.007708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is a member of the "C" branch of the ATP-binding cassette transporter superfamily. The NH(2)-proximal nucleotide-binding domain (NBD1) of MRP1 differs functionally from its COOH-proximal domain (NBD2). NBD1 displays intrinsic high-affinity ATP binding and little ATPase activity. In contrast, ATP binding to NBD2 is strongly dependent on nucleotide binding by NBD1, and NBD2 is more hydrolytically active. We have demonstrated that occupancy of NBD2 by ATP or ADP markedly decreased substrate binding by MRP1. We have further explored the relationship between nucleotide and substrate binding by examining the effects of various ATP analogs and ADP trapping, as well as mutations in conserved functional elements in the NBDs, on the ability of MRP1 to bind the photoactivatable, high-affinity substrate cysteinyl leukotriene C(4) (LTC(4))(.) Overall, the results support a model in which occupancy of both NBD1 and NBD2 by ATP results in the formation of a low-affinity conformation of the protein. However, nonhydrolyzable ATP analogs (beta,gamma-imidoadenosine 5'-triphosphate and adenylylmethylene diphosphonate) failed to substitute for ATP or adenosine 5'-O-(thiotriphosphate) (ATPgammaS) in decreasing LTC(4) photolabeling. Furthermore, mutations of the signature sequence in either NBD that had no apparent effect on azido-ATP binding abrogated the formation of a low-affinity substrate binding state in the presence of ATP or ATPgammaS. We suggest that the effect of these mutations, and possibly the failure of some ATP analogs to decrease LTC(4) binding, may be attributable to an inability to elicit a conformational change in the NBDs that involves interactions between the signature sequence and the gamma-phosphate of the bound nucleotide.
Collapse
Affiliation(s)
- Lea Payen
- Division of Camcer Biology and Genetics, Cancer Research Institute, Queen's University, 10 Stuart Street, Kingston, Ontario, K7L 3N6 Canada
| | | | | | | | | | | |
Collapse
|
25
|
Doubre H, Césari D, Mairovitz A, Bénac C, Chantot-Bastaraud S, Dagnon K, Antoine M, Danel C, Bernaudin JF, Fleury-Feith J. Multidrug resistance-associated protein (MRP1) is overexpressed in DNA aneuploid carcinomatous cells in non-small cell lung cancer (NSCLC). Int J Cancer 2005; 113:568-74. [PMID: 15472893 DOI: 10.1002/ijc.20617] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resistance to chemotherapy is intrinsically present in most nonsmall-cell lung carcinomas (NSCLC). No parameter has yet been determined to predict the response to chemotherapy. However, MRP1 (multidrug resistance-associated protein) is suspected to play an important role in resistance to treatment. The genetic basis for this resistance is not clearly understood, but it could result from chromosome reassortments catalyzed by aneuploidy. The aim of this study was to investigate MRP1 expression concurrently to DNA ploidy analysis in order to evaluate the link between MRP1 expression and chromosome 16 (MRP1 gene location) aberrations in NSCLC before treatment. Eighty-four surgical tumor specimens, 18 selected samples containing more than 80% of carcinomatous cells and 11 samples from normal bronchial epithelium were studied. Samples were stained by MRP1 FITC indirect staining and propidium iodide and analyzed by Flow Cytometry. Fifty tumors contained at least 1 DNA-aneuploid clone and the percentage of MRP1-positive cells was higher in DNA-aneuploid cells (p = 0.0003). All tumors expressed MRP1, but the level of expression was 3-fold higher in DNA-aneuploid cells than in DNA-diploid cells (normal bronchial cells as well as carcinomatous cells) (p < 0.0001). FISH analysis of 24 tumor imprints using a chromosome 16 alpha-satellite centromere probe demonstrated significantly more frequent gain of chromosome 16 in DNA-aneuploid tumors. These results suggest that MRP1 overexpression in NSCLC could be a consequence of chromosome 16 reassortments catalyzed by aneuploidy and that DNA-aneuploid tumors could require different treatment modalities from those applied to DNA-diploid tumors.
Collapse
Affiliation(s)
- Hélène Doubre
- Service d'Histologie et Biologie Tumorale, Hôpital Tenon (AP-HP), and UPRES 3499, Université Paris VI, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Westlake CJ, Payen L, Gao M, Cole SPC, Deeley RG. Identification and characterization of functionally important elements in the multidrug resistance protein 1 COOH-terminal region. J Biol Chem 2004; 279:53571-83. [PMID: 15459206 DOI: 10.1074/jbc.m402528200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), transports a broad spectrum of conjugated and unconjugated compounds, including natural product chemotherapeutic agents. In this study, we have investigated the importance of the COOH-terminal region of MRP1 for transport activity and basolateral plasma membrane trafficking. The COOH-terminal regions of some ABCC proteins have been implicated in protein trafficking, but the function of this region of MRP1 has not been defined. In contrast to results obtained with other ABCC proteins, we found that the COOH-proximal 30 amino acids of MRP1 can be removed without affecting trafficking to basolateral membranes. However, the truncated protein is inactive. Furthermore, removal of as few as 4 COOH-terminal amino acids profoundly decreases transport activity. Although amino acid sequence conservation of the COOH-terminal regions of ABC proteins is low, secondary structure predictions indicate that they consist of a broadly conserved helix-sheet-sheet-helix-helix structure. Consistent with a conservation of secondary and tertiary structure, MRP1 hybrids containing the COOH-terminal regions of either the homologous MRP2 or the distantly related P-glycoprotein were fully active and trafficked normally. Using mutated proteins, we have identified structural elements containing five conserved hydrophobic amino acids that are required for activity. We show that these are important for binding and hydrolysis of ATP by nucleotide binding domain 2. Based on crystal structures of several ABC proteins, we suggest that the conserved amino acids may stabilize a helical bundle formed by the COOH-terminal three helices and may contribute to interactions between the COOH-terminal region and the protein's two nucleotide binding domains.
Collapse
|
27
|
Schmitt M, Horbach A, Kubitz R, Frilling A, Häussinger D. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol 2004; 41:274-83. [PMID: 15288477 DOI: 10.1016/j.jhep.2004.04.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 04/10/2004] [Accepted: 04/26/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Vascular endothelial growth factor (VEGF) is expressed by many tumors, including hepatocellular carcinoma (HCC) and is involved in tumor angiogenesis. Little is known about its role for HCC infiltration into normal liver parenchyma. METHODS The effects of VEGF on the integrity of tight junctions were studied in HepG2 cells and human HCC by means of confocal laser scanning microscopy. RESULTS VEGF induced within 45 min a marked loss of pseudocanaliculi and disruption of occludin-delineated tight junctions. This effect of VEGF was mimicked by phorbol-12-myristate-13-acetate (PMA) and was sensitive to protein kinase C (PKC) inhibition by Gö6850. VEGF induced within 15 min the translocation of the PKC alpha-isoform to the plasma-membrane, but had no effect on the activity of Erks and p38(MAPK). Sections from surgically removed HCC showed expression of VEGF in the tumor and occludin disassembly in normal liver parenchyma next to the tumor. CONCLUSIONS VEGF induces disruption of tight junctions in a PKC-alpha dependent manner. In addition to its known angioneogenic properties, VEGF may promote HCC spreading into normal liver parenchyma. The data may provide another rationale for the use of VEGF antagonists for tumor therapy.
Collapse
Affiliation(s)
- Marcus Schmitt
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
28
|
Dallas S, Ronaldson PT, Bendayan M, Bendayan R. Multidrug resistance protein 1-mediated transport of saquinavir by microglia. Neuroreport 2004; 15:1183-6. [PMID: 15129170 DOI: 10.1097/00001756-200405190-00020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of CNS distribution of the human immunodeficiency virus (HIV) protease inhibitor saquinavir may involve ATP-dependent membrane-bound efflux transport proteins that are expressed in several brain cellular compartments. We recently characterized molecular and functional expression of one such transporter, multidrug resistance protein-1 (MRP1) in microglia, the primary brain cellular target of HIV. In the present study, we further examine subcellular localization of MRP1 in a microglia cell line (MLS-9) using immunogold cytochemistry and directly demonstrate MRP1-mediated export of saquinavir. MRP1 localized primarily to the plasma membrane of the MLS-9 cells. [14C]Saquinavir efflux by MLS-9 monolayers was inhibited by well-established MRP1 inhibitors. These results indicate that MRP1 contributes, in part, to the overall low permeation of protease inhibitors in the brain.
Collapse
Affiliation(s)
- Shannon Dallas
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | | | |
Collapse
|
29
|
Benyahia B, Huguet S, Declèves X, Mokhtari K, Crinière E, Bernaudin JF, Scherrmann JM, Delattre JY. Multidrug resistance-associated protein MRP1 expression in human gliomas: chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neurooncol 2004; 66:65-70. [PMID: 15015771 DOI: 10.1023/b:neon.0000013484.73208.a4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 190 kDa multidrug resistance protein MRP1 is likely to be involved in the multidrug resistance phenotype of human gliomas. MRP1 expression was evaluated in surgical tumor samples from 17 patients with gliomas. In addition, the impact of the MRP's inhibitor, indomethacin, on the chemosensitivity to etoposide (VP16) and vincristine (VCR) of two glioblastoma cell lines expressing MRP1 (GL15 and 8MG) was investigated. When evaluated in tumor samples, MRP1 expression was observed in all of them with more than 90% of stained tumor cells in 14/15 high-grade gliomas. MRP1 was also strongly expressed at the membrane of the vascular endothelial cells in the same 14 tumor samples, suggesting that the permeability to anticancer drugs could be also limited across brain tumor vessels. At concentrations comprised between 5 and 50 microM, indomethacin significantly increased the cytotoxic effect of etoposide in both cell lines but it was more efficient in increasing the cytotoxicity of VCR on GL15 cells, as compared with 8MG cells. These results suggest that the association of indomethacin to VCR or etoposide could be of interest in the clinical management of gliomas.
Collapse
Affiliation(s)
- B Benyahia
- Department of Neurology Mazarin (AP-HP) and INSERM U495, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang Z, Horn M, Wang J, Shen DD, Ho RJY. Development and characterization of a recombinant Madin-Darby canine kidney cell line that expresses rat multidrug resistance-associated protein 1 (rMRP1). AAPS PHARMSCI 2004; 6:E8. [PMID: 15198509 PMCID: PMC2750943 DOI: 10.1208/ps060108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug resistance-associated protein 1 (MRP1) is one of the major proteins shown to mediate efflux transport of a broad range of antitumor drugs, glucuronide conjugates, and glutathione, in addition to endogenous substrates. Significant differences in substrate selectivity were reported for murine and human MRP1. As preclinical drug disposition and pharmacokinetics studies are often conducted in rats, we have recently cloned the rat MRP1 (rMRP1) and demonstrated that rMRP1 expressed in transfected cells effluxes calcein, a commonly used fluorescence substrate for human MRP1. To further characterize the rat ortholog of MRP1, we isolated a cell line stably expressing recombinant rMRP1. These cells were tested for their ability to transport calcein and a range of chemotherapeutic drugs. Our results showed that cells expressing rMRP1 consistently efflux calcein at a rate 5-fold greater than control cells. The rMRP1 transfected cells, like their human ortholog, can confer drug resistance to vinca alkaloid (vinblastine and vincristine) and anthracycline drugs (daunorubcin and doxorubicin), and the resistance conferred by the MRP1 can be partially abolished by the MRP-specific inhibitors. The transepithelial permeability due to rMRP1 expression in differentiated Madin-Darby canine kidney cells (MDCK) cells was also investigated. The MRP1 transport activity is directional, as demonstrated by directional vinblastine transport. Collectively, our results demonstrate that the cellular expression of rMRP1, like its human ortholog, could confer resistance to anticancer drugs.
Collapse
Affiliation(s)
- Ziping Yang
- Departments of Pharmaceutics and Pharmacy, University of Washington, 98195-7610 Seattle, WA
| | - Micha Horn
- Departments of Pharmaceutics and Pharmacy, University of Washington, 98195-7610 Seattle, WA
| | - Joanne Wang
- Departments of Pharmaceutics and Pharmacy, University of Washington, 98195-7610 Seattle, WA
| | - Danny D Shen
- Departments of Pharmaceutics and Pharmacy, University of Washington, 98195-7610 Seattle, WA
| | - Rodney JY Ho
- Departments of Pharmaceutics and Pharmacy, University of Washington, 98195-7610 Seattle, WA
| |
Collapse
|
31
|
Koike K, Deeley RG, Cole SPC. Mapping of the MRPm5 epitope to the cytosolic region between transmembrane helices 13 and 14 in the drug and organic anion transporter, MRP1 (ABCC1). Biochem Biophys Res Commun 2004; 315:719-25. [PMID: 14975760 DOI: 10.1016/j.bbrc.2004.01.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/16/2022]
Abstract
Multidrug resistance in human tumour cells is often associated with increased expression of the 190kDa multidrug resistance protein, MRP1, that belongs to the ATP-binding cassette superfamily of transport proteins. MRP1 is also an efficient transporter of many organic anions. In the present study, we have mapped the epitope of the MRP1-specific murine monoclonal antibody (MAb) MRPm5 to the decapeptide (1063)FFERTPSGNL(1072) located in the cytoplasmic loop (CL6) linking transmembrane helices 13 and 14 in the third membrane spanning domain of the protein. Several amino acids in the cytoplasmic loops of MRP1 have been reported to be important for its transport function; nevertheless, MAb MRPm5 does not inhibit vesicular uptake of the high affinity substrate leukotriene C(4). None of the other MRP1-reactive MAbs described to date map to CL6 of MRP1 which in turn enhances the utility of MAb MRPm5 for both clinical and experimental investigations of this transporter.
Collapse
Affiliation(s)
- Koji Koike
- Cancer Research Laboratories, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | |
Collapse
|
32
|
Kubitz R, Sütfels G, Kühlkamp T, Kölling R, Häussinger D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 2004; 126:541-53. [PMID: 14762791 DOI: 10.1053/j.gastro.2003.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Bile secretion depends on the delivery and removal of transporter proteins to and from the canalicular membrane. Trafficking of the bile salt export pump (BSEP) to the canalicular membrane was investigated in HepG2 cells and rat hepatocytes. METHODS Subcellular localization of BSEP was determined by confocal laser scanning microscopy using different BSEP antibodies. RESULTS Ten percent of untreated HepG2 cells developed pseudocanaliculi, but only 15% of these pseudocanaliculi contained BSEP, which largely colocalized with the Golgi marker GM130. Cycloheximide, an inhibitor of protein translation, induced a microtubule- and p38(MAP) kinase-dependent decrease of Golgi-associated BSEP, accompanied by a more than 2-fold increase in BSEP-positive pseudocanaliculi. Also, tauroursodeoxycholate (TUDC), which activates p38(MAP) kinase (p38(MAPK), increased BSEP-positive pseudocanaliculi by more than 50% in rat sodium taurocholate cotransporting peptide (Ntcp)-transfected but not in untransfected HepG2 cells. The TUDC-dependent increase was sensitive to inhibitors of p38(MAPK) and microtubules and involved Ca(2+)-independent protein kinase C isoforms as suggested by its sensitivity to Gö6850 but insensitivity to Gö6976. In isolated rat hepatocytes with intact bile secretion, no colocalization of rat isoforms of the bile salt export pump (Bsep) and Golgi was found, but colocalization occurred after inhibition of p38(MAPK) and PKC, suggesting that Bsep trafficking to the canalicular membrane depends on the basal activity of these kinases in polarized cells. CONCLUSIONS p38(MAPK) regulates BSEP trafficking from the Golgi to the canalicular membrane, and the Golgi may serve as a BSEP pool in certain forms of cholestasis or when p38(MAPK) activity is inhibited. Activation of p38(MAPK) by TUDC can recruit Golgi-associated BSEP in line with its choleretic action.
Collapse
Affiliation(s)
- Ralf Kubitz
- Department of Gastroenterology, Hepatology, and Infectiology, Heinrch Heine University, Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
33
|
Westlake CJ, Qian YM, Gao M, Vasa M, Cole SPC, Deeley RG. Identification of the Structural and Functional Boundaries of the Multidrug Resistance Protein 1 Cytoplasmic Loop 3†. Biochemistry 2003; 42:14099-113. [PMID: 14640677 DOI: 10.1021/bi035333y] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistance protein (MRP) 1 is a member of the ABCC branch of the ATP binding cassette (ABC) transporter superfamily that can confer resistance to natural product chemotherapeutic drugs and transport a variety of conjugated organic anions, as well as some unconjugated compounds in a glutathione- (GSH-) dependent manner. In addition to the two tandemly repeated polytopic membrane-spanning domains (MSDs) typical of ABC transporters, MRP1 and its homologues MRP2, -3, -6, and -7 contain a third NH(2)-terminal MSD. The cytoplasmic loop (CL3) connecting this MSD, but apparently not the MSD itself, is required for MRP1 leukotriene C(4) (LTC(4)) transport activity, substrate binding and appropriate trafficking of the protein to the basolateral membrane. We have used a baculovirus dual-expression system to produce various functionally complementing fragments of MRP1 in insect Sf21 cells to precisely define the region in CL3 that is required for activity and substrate binding. Using a parallel approach in polarized MDCK-I cells, we have also defined the region of CL3 that is required for basolateral trafficking. The CL3 NH(2)- and COOH-proximal functional boundaries have been identified as Cys(208) and Asn(260), respectively. Cys(208) also corresponds to the NH(2)-proximal boundary of the region required for basolateral trafficking in MDCK-I cells. However, additional residues downstream of the CL3 COOH-proximal functional boundary extending to Lys(270) were found to be important for basolateral localization. Finally, we show that regions in CL3 necessary for LTC(4) binding and transport are also required for binding of the photoactivatable GSH derivative azidophenacyl-GSH.
Collapse
|
34
|
Zhang DW, Gu HM, Situ D, Haimeur A, Cole SPC, Deeley RG. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. J Biol Chem 2003; 278:46052-63. [PMID: 12954620 DOI: 10.1074/jbc.m308403200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Payen LF, Gao M, Westlake CJ, Cole SPC, Deeley RG. Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). J Biol Chem 2003; 278:38537-47. [PMID: 12882957 DOI: 10.1074/jbc.m305786200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.
Collapse
Affiliation(s)
- Lea F Payen
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R. Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 2003; 307:282-90. [PMID: 12893836 DOI: 10.1124/jpet.103.054304] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain expression of the multidrug resistance proteins (MRPs), a collection of membrane-associated ATP-dependent efflux transporters, is poorly understood. Although several studies have examined the expression of these proteins within the brain barriers (i.e., the blood-brain barrier and choroid plexus), little information is available with respect to brain parenchyma cells such as microglia and astrocytes. Because microglia are the primary brain cells infected by the human immunodeficiency virus type 1 (HIV-1), MRP1 expression within microglia may contribute to lower brain accumulation of anti-HIV drugs. To examine the expression pattern of MRP1 within microglia, we performed reverse transcriptase-polymerase chain reaction analysis and Western blotting on a rat brain microglia cell line MLS-9, and in primary cultures of rat microglia. Both rat MRP1 (rMPR1) mRNA and protein were expressed in the cell line, as well as the primary cultures. We then characterized rMRP1-mediated transport properties in MLS-9 cells using [3H]vincristine, a known MRP1 substrate. Vincristine accumulation by monolayers of MLS-9 cells increased significantly in the presence of several well established MRP1 inhibitors (MK571, genistein, sulfinpyrazone, probenecid, and indomethacin), protease inhibitors, or the ATPase inhibitor sodium azide. In addition, vincristine accumulation was significantly modulated by altering the intracellular concentration of the reduced form of glutathione, further suggesting the involvement of rMRP1-mediated transport. These results provide strong evidence that the MRP1 protein is both expressed and functional in microglia cells. They also suggest that brain parenchyma can act as a "second" barrier to drug permeability and regulate brain distribution/accumulation of various xenobiotics, including protease inhibitors.
Collapse
Affiliation(s)
- Shannon Dallas
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Ito KI, Weigl KE, Deeley RG, Cole SPC. Mutation of proline residues in the NH(2)-terminal region of the multidrug resistance protein, MRP1 (ABCC1): effects on protein expression, membrane localization, and transport function. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:103-14. [PMID: 12948592 DOI: 10.1016/s0005-2736(03)00228-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.
Collapse
Affiliation(s)
- Ken-ichi Ito
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Nunoya K, Grant CE, Zhang D, Cole SPC, Deeley RG. Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1). Drug Metab Dispos 2003; 31:1016-26. [PMID: 12867490 DOI: 10.1124/dmd.31.8.1016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) transports a wide range of structurally diverse conjugated and nonconjugated organic anions and some peptides, including oxidized and reduced glutathione (GSH). The protein confers resistance to certain heavy metal oxyanions and a variety of natural product-type chemotherapeutic agents. Elevated levels of MRP1 have been detected in many human tumors, and the protein is a candidate therapeutic target for drug resistance reversing agents. Previously, we have shown that human MRP1 (hMRP1) and murine MRP1 (mMRP1) differ in their substrate specificity despite a high degree of structural conservation. Since rat models are widely used in the drug discovery and development stage, we have cloned and functionally characterized rat MRP1 (rMRP1). Like mMRP1 and in contrast to hMRP1, rMRP1 confers no, or very low, resistance to anthracyclines and transports the two estrogen conjugates, 17beta-estradiol-17-(beta-d-glucuronide) (E217betaG) and estrone 3-sulfate, relatively poorly. Mutational studies combined with vesicle transport assays identified several amino acids conserved between rat and mouse, but not hMRP1, that make major contributions to these differences in substrate specificity. Despite the fact that the rodent proteins transport E217betaG poorly and the GSH-stimulated transport of estrone 3-sulfate is low compared with hMRP1, site-directed mutagenesis studies indicate that different nonconserved amino acids are involved in the low efficiency with which each of the two estrogen conjugates is transported. Our studies also suggest that although rMRP1 and mMRP1 are 95% identical in primary structure, their substrate specificities may be influenced by amino acids that are not conserved between the two rodent proteins.
Collapse
Affiliation(s)
- Kenichi Nunoya
- Department of Xenobiotic and Disposition, Minase Research Institute, Ono Pharmaceutical Co, Ltd, OSaka, Japan
| | | | | | | | | |
Collapse
|
39
|
Konno T, Ebihara T, Hisaeda K, Uchiumi T, Nakamura T, Shirakusa T, Kuwano M, Wada M. Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2. J Biol Chem 2003; 278:22908-17. [PMID: 12682044 DOI: 10.1074/jbc.m302868200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells. We examined the kinetic properties of each chimeric protein by measuring LTC4 and methotrexate transport in inside-out membrane vesicles, sensitivity to an anticancer agent, etoposide, and subcellular localization by indirect immunofluorescence methods. The following results were determined in these studies: (i) when the NH2-proximal 108 amino acids of MRP2, including transmembrane (TM) helices 1-3, were exchanged with the corresponding region of MRP1, Km(LTC4) values of the chimera decreased approximately 4-fold and Km(methotrexate) values increased approximately 5-fold relative to those of wild-type MRP2 and MRP1, respectively, whereas resistance to etoposide increased approximately 3-fold; (ii) when the NH2-proximal region up to TM9 of MRP2 was exchanged with the corresponding region of MRP1, a further increase in etoposide resistance was observed, and subcellular localization moved from the apical to the lateral membrane; (iii) when two-thirds of MRP2 at the NH2 terminus were exchanged with the corresponding MRP1 region, the chimeric protein transported LTC4 with an efficiency comparable with that achieved by the wild-type MRP1; and (iv) exchange of the COOH-terminal 51 amino acids between MRP1 and MRP2 did not affect the localization of either of the proteins. These results provide a strong framework for further studies aimed at determining the precise domains of MRP1 and MRP2 with affinity for LTC4 and anticancer agents.
Collapse
Affiliation(s)
- Toshikazu Konno
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Leslie EM, Létourneau IJ, Deeley RG, Cole SPC. Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochemistry 2003; 42:5214-24. [PMID: 12731862 DOI: 10.1021/bi027076n] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities.
Collapse
Affiliation(s)
- Elaine M Leslie
- Department of Pharmacology & Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
41
|
Flego M, Mennella V, Moretti F, Poloni F, Dupuis ML, Ascione A, Barca S, Felici F, Cianfriglia M. Identification by phage display of the linear continuous MRPr1 epitope in the multidrug resistance-associated protein (MRP1). Biol Chem 2003; 384:139-42. [PMID: 12674507 DOI: 10.1515/bc.2003.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to study the structure of the multidrug resistance-associated protein (MRP1), which is one of the most important members of the ATP-binding cassette (ABC) protein family acting as drug-efflux systems, we have developed an epitope mapping-based strategy. By means of the mAb MRPr1, we have immunoselected clones from two distinct random peptide libraries displayed on phages and have identified several peptide sequences mimicking the internal conformation of this 190 kDa multidrug transporter protein. Phage clones able to block the immunolabeling of the MRPr1 antibody to MRP1-overexpressing multidrug resistance (MDR) H69/AR cells were isolated and, after sequencing the corresponding inserts, their amino acid sequence was compared to that of MRP1. This analysis led to the identification of the consensus sequence L.SLNWED, corresponding to the MRP1 segment LWSLNKED (residues 241-248). This MRP1 sequence is partially overlapping with the MRPr1 epitope GSDLWSLNKE (residues 238-247) previously mapped using peptide scanning techniques. These results demonstrate the high reliability of phage display technology to study not only the topography of complex integral membrane proteins such as MRP1, but also to help identify critical residues participating in the formation of the epitope structure.
Collapse
Affiliation(s)
- Michela Flego
- Laboratory of Immunology, Istituto Superiore di Sanità, Viale R. Elena 299, I-00161, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qian YM, Grant CE, Westlake CJ, Zhang DW, Lander PA, Shepard RL, Dantzig AH, Cole SPC, Deeley RG. Photolabeling of human and murine multidrug resistance protein 1 with the high affinity inhibitor [125I]LY475776 and azidophenacyl-[35S]glutathione. J Biol Chem 2002; 277:35225-31. [PMID: 12138119 DOI: 10.1074/jbc.m206058200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent transporter of structurally diverse organic anion conjugates. The protein also actively transports a number of non-conjugated chemotherapeutic drugs and certain anionic conjugates by a presently poorly understood GSH-dependent mechanism. LY475776is a newly developed (125)I-labeled azido tricyclic isoxazole that binds toMRP1 with high affinity and specificity in a GSH-dependent manner. The compound has also been shown to photolabel a site in the COOH-proximal region of MRP1's third membrane spanning domain (MSD). It is presently not known where GSH interacts with the protein. Here, we demonstrate that the photactivateable GSH derivative azidophenacyl-GSH can substitute functionally for GSH in supporting the photolabeling of MRP1 by LY475776 and the transport of another GSH-dependent substrate, estrone 3-sulfate. In contrast to LY475776, azidophenacyl-[(35)S] photolabels both halves of the protein. Photolabeling of the COOH-proximal site can be markedly stimulated by low concentrations of estrone 3-sulfate, suggestive of cooperativity between the binding of these two compounds. We show that photolabeling of the COOH-proximal site by LY475776 and the labeling of both NH(2)- and COOH- proximal sites by azidophenacyl-GSH requires the cytoplasmic linker (CL3) region connecting the first and second MSDs of the protein, but not the first MSD itself. Although required for binding, CL3 is not photolabeled by azidophenacyl-GSH. Finally, we identify non-conserved amino acids in the third MSD that contribute to the high affinity with which LY475776 binds to MRP1.
Collapse
Affiliation(s)
- Yue-Ming Qian
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fernández SBM, Holló Z, Kern A, Bakos E, Fischer PA, Borst P, Evers R. Role of the N-terminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells. J Biol Chem 2002; 277:31048-55. [PMID: 12060660 DOI: 10.1074/jbc.m204267200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In polarized cells, the multidrug resistance protein MRP2 is localized in the apical plasma membrane, whereas MRP1, another multidrug resistance protein (MRP) family member, is localized in the basolateral membrane. MRP1 and MRP2 are thought to contain an N-terminal region of five transmembrane segments (TMD(0)) coupled to 2 times six transmembrane segments via an intracellular loop (L(0)). We previously demonstrated for MRP1 that a mutant lacking TMD(0) but still containing L(0), called L(0)DeltaMRP1, was functional and routed to the lateral plasma membrane. To investigate the role of the TMD(0)L(0) region of MRP2 in routing to the apical membrane, we generated mutants similar to those made for MRP1. In contrast to L(0)DeltaMRP1, L(0)DeltaMRP2 was associated with an intracellular compartment, most likely endosomes. Co-expression with TMD(0), however, resulted in apical localization of L(0)DeltaMRP2 and transport activity. Uptake experiments with vesicles containing L(0)DeltaMRP2 demonstrated that the molecule is able to transport LTC(4). An MRP2 mutant without TMD(0)L(0), DeltaMRP2, was only core-glycosylated and localized intracellularly. Co-expression of DeltaMRP2 with TMD(0)L(0) resulted in an increased protein level of DeltaMRP2, full glycosylation of the protein, routing to the apical membrane, and transport activity. Our results suggest that the TMD(0) region is required for routing to or stable association with the apical membrane.
Collapse
|
44
|
Mao Q, Qiu W, Weigl KE, Lander PA, Tabas LB, Shepard RL, Dantzig AH, Deeley RG, Cole SPC. GSH-dependent photolabeling of multidrug resistance protein MRP1 (ABCC1) by [125I]LY475776. Evidence of a major binding site in the COOH-proximal membrane spanning domain. J Biol Chem 2002; 277:28690-9. [PMID: 12034727 DOI: 10.1074/jbc.m202182200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates transported by the 190-kDa multidrug resistance protein 1 (MRP1) (ABCC1) include endogenous organic anions such as the cysteinyl leukotriene C(4). In addition, MRP1 confers resistance against various anticancer drugs by reducing intracellular accumulation by co-export of drug with reduced GSH. We have examined the properties of LY475776, an intrinsically photoactivable MRP1-specific tricyclic isoxazole modulator that inhibits leukotriene C(4) transport by this protein in a GSH-dependent manner. We show that [125I]LY475776 photolabeling of MRP1 requires GSH but is also supported by several non-reducing GSH derivatives and peptide analogs. Limited proteolysis revealed that [(125)I]LY475776 labeling was confined to the 75-kDa COOH-proximal half of MRP1. More extensive proteolysis generated two major 125I-labeled fragments of approximately 56 and approximately 41 kDa, and immunoblotting with regionally directed antibodies showed that these fragments correspond to amino acids approximately 1045-1531 and approximately 1150-1531, respectively. However, an approximately 33-kDa COOH-terminal immunoreactive fragment was not labeled, inferring that the major [125I]LY475776-labeling site resides approximately between amino acids 1150-1250. This region encompasses transmembrane (TM) segments 16 and 17 at the COOH-proximal end of the third membrane spanning domain of the protein. [125I]LY475776 labeling of mutant MRP1 molecules with substitutions of Trp(1246) in TM17 were reduced >80% compared with wild-type MRP1, confirming that TM17 is important for LY475776 binding. Finally, vanadate-induced trapping of ADP inhibited [125I]LY475776 labeling, suggesting that ATP hydrolysis causes a conformational change in MRP1 that reduces the affinity of the protein for this inhibitor.
Collapse
Affiliation(s)
- Qingcheng Mao
- Cancer Research Laboratories and Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang DW, Cole SPC, Deeley RG. Determinants of the substrate specificity of multidrug resistance protein 1: role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. J Biol Chem 2002; 277:20934-41. [PMID: 11925441 DOI: 10.1074/jbc.m201311200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human multidrug resistance protein 1 (MRP1) confers resistance to many natural product chemotherapeutic agents and actively transports structurally diverse organic anion conjugates. We previously demonstrated that two hydrogen-bonding amino acid residues in the predicted transmembrane 17 (TM17) of MRP1, Thr(1242) and Trp(1246), were important for drug resistance and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport. To determine whether other residues with hydrogen bonding potential within TM17 influence substrate specificity, we replaced Ser(1233), Ser(1235), Ser(1237), Gln(1239), Thr(1241), and Asn(1245) with Ala and Tyr(1236) and Tyr(1243) with Phe. Mutations S1233A, S1235A, S1237A, and Q1239A had no effect on any substrate tested. In contrast, mutations Y1236F and T1241A decreased resistance to vincristine but not to VP-16, doxorubicin, and epirubicin. Mutation Y1243F reduced resistance to all drugs tested by 2-3-fold. Replacement of Asn(1245) with Ala also decreased resistance to VP-16, doxorubicin, and epirubicin but increased resistance to vincristine. This mutation also decreased E(2)17betaG transport approximately 5-fold. Only mutation Y1243F altered the ability of MRP1 to transport both leukotriene 4 and E(2)17betaG. Together with our previous results, these findings suggest that residues with side chain hydrogen bonding potential, clustered in the cytoplasmic half of TM17, participate in the formation of a substrate binding site.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Cancer Research Laboratories and Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
46
|
Connolly L, Moran E, Larkin A, Scheffer G, Scheper R, Sarkadi B, Kool M, Clynes M. A new monoclonal antibody, P2A8(6), that specifically recognizes a novel epitope on the multidrug resistance-associated protein 1 (MRP1), but not on MRP2 nor MRP3. HYBRIDOMA AND HYBRIDOMICS 2002; 20:333-41. [PMID: 11839251 DOI: 10.1089/15368590152740734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multidrug resistance (MDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with MDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2A8(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.
Collapse
Affiliation(s)
- L Connolly
- National Cell and Tissue Culture Centre/Bioresearch Ireland, D.C.U., Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Chemotherapeutics are the most effective treatment for metastatic tumours. However, the ability of cancer cells to become simultaneously resistant to different drugs--a trait known as multidrug resistance--remains a significant impediment to successful chemotherapy. Three decades of multidrug-resistance research have identified a myriad of ways in which cancer cells can elude chemotherapy, and it has become apparent that resistance exists against every effective drug, even our newest agents. Therefore, the ability to predict and circumvent drug resistance is likely to improve chemotherapy.
Collapse
Affiliation(s)
- Michael M Gottesman
- Laboratory of Cell Biology and Cancer Therapeutics Branch, The Center for Cancer Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
48
|
Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002; 125:22-31. [PMID: 11834590 DOI: 10.1093/brain/awf002] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is resistant to drug treatment in about one-third of cases, but the mechanisms underlying this drug resistance are not understood. In cancer, drug resistance has been studied extensively. Amongst the various resistance mechanisms, overexpression of drug resistance proteins, such as multi-drug resistance gene-1 P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1), has been shown to correlate with cellular resistance to anticancer drugs. Previous studies in human epilepsy have shown that MDR1 and MRP1 may also be overexpressed in brain tissue from patients with refractory epilepsy; expression has been shown in glia and neurones, which do not normally express these proteins. We examined expression of MDR1 and MRP1 in refractory epilepsy from three common causes, dysembryoplastic neuroepithelial tumours (DNTs; eight cases), focal cortical dysplasia (FCD; 14 cases) and hippocampal sclerosis (HS; eight cases). Expression was studied immunohistochemically in lesional tissue from therapeutic resections and compared with expression in histologically normal adjacent tissue. With the most sensitive antibodies, in all eight DNT cases, reactive astrocytes within tumour nodules expressed MDR1 and MRP1. In five of eight HS cases, reactive astrocytes within the gliotic hippocampus expressed MDR1 and MRP1. Of 14 cases of FCD, MDR1 and MRP1 expression was noted in reactive astrocytes in all cases. In five FCD cases, MRP1 expression was also noted in dysplastic neurones. In FCD and DNTs, accentuation of reactivity was noted around lesional vessels. Immunoreactivity was always more frequent and intense in lesional reactive astrocytes than in glial fibrillary acidic protein-positive reactive astrocytes in adjacent histologically normal tissue. MDR1 is able to transport some antiepileptic drugs (AEDs), and MRP1 may also do so. The overexpression of these drug resistance proteins in tissue from patients with refractory epilepsy suggests one possible mechanism for drug resistance in patients with these pathologies. We propose that overexpressed resistance proteins lower the interstitial concentration of AEDs in the vicinity of the epileptogenic pathology and thereby render the epilepsy caused by these pathologies resistant to treatment with AEDs.
Collapse
Affiliation(s)
- S M Sisodiya
- Epilepsy Research Group, University Department of Clinical Neurology, University College London, London, UK.
| | | | | | | | | |
Collapse
|
49
|
Fernetti C, Pascolo L, Podda E, Gennaro R, Stebel M, Tiribelli C. Preparation of an antibody recognizing both human and rodent MRP1. Biochem Biophys Res Commun 2001; 288:1064-8. [PMID: 11689020 DOI: 10.1006/bbrc.2001.5885] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the high level of identity among human, mouse, and rat MRP1 protein sequence, we produced a specific polyclonal antibody (MRP1-A23) against a synthetic polypeptide covering the C-terminus of the human protein. Western blot analysis showed a reactivity against human MRP1 similar to that obtained with the monoclonal QCRL1 antibody. Differently from other available antibodies against human MPR1, MRP1-A23 also detected both rat and mouse MRP1. No cross-reactivity was observed with either human or mouse MRP2 while MRP1-A23 weakly cross-reacted with rat MRP2 in the protein region ranging from 1512 to 1533 amino acids. These data indicate that MRP1-A23 allows specific MRP1 detection in both human and rodent tissues and may provide an important tool in the study of MRP1 expression and function in both experimental and clinical materials.
Collapse
Affiliation(s)
- C Fernetti
- CSF and Department of BBCM, Centro Servizi Polivalenti d'Ateneo, University of Trieste, Via Giorgieri 1, Trieste, 34127, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Qian YM, Qiu W, Gao M, Westlake CJ, Cole SP, Deeley RG. Characterization of binding of leukotriene C4 by human multidrug resistance protein 1: evidence of differential interactions with NH2- and COOH-proximal halves of the protein. J Biol Chem 2001; 276:38636-44. [PMID: 11507101 DOI: 10.1074/jbc.m107025200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein.
Collapse
Affiliation(s)
- Y M Qian
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|