1
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Morizane C, Ueno M, Ioka T, Tajika M, Ikeda M, Yamaguchi K, Hara H, Yabusaki H, Miyamoto A, Iwasa S, Muto M, Takashima T, Minashi K, Komatsu Y, Nishina T, Nakajima TE, Takeno A, Moriwaki T, Furukawa M, Sahara T, Ikezawa H, Nomoto M, Takashima S, Uehara T, Funasaka S, Yashiro M, Furuse J. Tasurgratinib in patients with cholangiocarcinoma or gastric cancer: Expansion part of the first-in-human phase I study. Cancer Sci 2024. [PMID: 39462221 DOI: 10.1111/cas.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/29/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a highly conserved family of transmembrane receptor tyrosine kinases with multiple roles in the regulation of key cellular processes. Specific FGFR mutations have been observed in several types of cancers, including gastric carcinoma and cholangiocarcinoma. Dose escalation data of 24 Japanese patients with solid tumors treated with Tasurgratinib (previously known as E7090), a potent, selective FGFR1-3 inhibitor, was reported in a phase I, first-in-human, single-center study. Based on the safety, pharmacokinetic, and pharmacodynamic profiles observed in this study, the recommended dose of 140 mg once daily was selected for the expansion part (Part 2), a multicenter expansion of the dose-finding study restricted to patients with tumors harboring FGFR gene alterations. Safety and preliminary efficacy were assessed in Part 2. Pharmacodynamic pharmacogenomic markers (serum phosphate, FGF23, and 1,25-(OH)2-vitamin D, circulating tumor DNA) and pharmacokinetic profiles were also evaluated. A total of 16 patients were enrolled in Part 2, six with cholangiocarcinoma and 10 with gastric cancer. The most common treatment-emergent adverse events were hyperphosphatemia, palmar-plantar erythrodysesthesia syndrome, and paronychia. Five partial responses (83.3%) in cholangiocarcinoma patients and one partial response (11.1%) in gastric cancer patients were observed; median progression-free survival was 8.26 months (95% confidence interval [CI] 3.84, not evaluable [NE]) and 3.25 months (95% CI 0.95, 4.86), and overall survival was 22.49 months (95% CI 6.37, NE) and 4.27 months (95% CI 2.23, 7.95), respectively, in the two groups. In conclusion, Tasurgratinib 140 mg has a tolerable safety profile with good clinical efficacy in patients with cholangiocarcinoma harboring FGFR2 gene rearrangements.
Collapse
Affiliation(s)
| | | | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Japan
| | | | | | - Kensei Yamaguchi
- The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Atsushi Miyamoto
- National Hospital Organization Osaka National Hospital, Osaka, Japan
| | | | | | - Tsutomu Takashima
- Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | | | - Tomohiro Nishina
- National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Takako Eguchi Nakajima
- St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Early Clinical Development, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | - Masakazu Yashiro
- Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | |
Collapse
|
3
|
Kawakami H. New therapeutic target molecules for gastric and gastroesophageal junction cancer. Int J Clin Oncol 2024; 29:1228-1236. [PMID: 38630383 DOI: 10.1007/s10147-024-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
Molecularly targeted therapy for receptor tyrosine kinases (RTKs) has faced limitations in gastric and gastroesophageal junction (G/GEJ) cancer except for HER2-targeted agents, possibly due to inappropriate assay selection that has hindered identification of sensitive patients, in addition to coexisting genetic abnormalities as well as intratumoral heterogeneity. Immunohistochemistry of RTKs has, thus, proved largely unsuccessful for patient selection, and detection of RTK gene amplification as a true oncogenic driver is problematic given the small numbers of affected individuals. FGFR2 amplification is associated with poor prognosis in G/GEJ cancer, and immunohistochemistry of the FGFR2b protein isoform has proved effective for the detection of such FGFR2-dependent tumors. Phase III and Ib/III trials of the FGFR2-targeted antibody bemarituzumab for G/GEJ cancer overexpressing FGFR2b are ongoing based on the promising result in a phase II trial, especially in cases with an FGFR2b positivity of ≥ 10%. Challenges to EGFR- and MET-targeted therapies are being tackled with antibody-drug conjugates (ADCs) and bispecific antibodies. CLDN18.2 is expressed in some G/GEJ tumors but lacks oncogenic driver potential, and the CLDN18.2-targeted antibody zolbetuximab prolonged the survival of CLDN18.2-positive G/GEJ cancer patients in phase III trials. Antibody-drug conjugates and ADCs that target CLDN18.2 are also being pursued for treatment of such patients. Similarly, targeting of nondriver molecules such as DKK1, TROP2, and CEACAM5 is under investigation in early-stage clinical trials. This shift in focus from target molecules with driver potential to markers for precise drug delivery should increase the number of possible targets in G/GEJ cancer.
Collapse
Affiliation(s)
- Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, 589-8511, Japan.
| |
Collapse
|
4
|
Sappenfield R, Mehlhaff E, Miller D, Ebben JE, Uboha NV. Current and Future Biomarkers in Esophagogastric Adenocarcinoma. J Gastrointest Cancer 2024; 55:549-558. [PMID: 38280174 DOI: 10.1007/s12029-023-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/29/2024]
Abstract
PURPOSE Biomarker-based therapies have shown improved patient outcomes across various cancer types. The purpose of this review to summarize our knowledge of current and future biomarkers in esophagogastric adenocarcinoma (EGA). METHODS In this publication, we will review current standard biomarkers in patients with upper GI cancers. We will also discuss novel biomarkers that are under investigations and their associated therapies that are currently in clinical trials. RESULTS EGAa are a group of heterogeneous diseases, both anatomically and molecularly. There are several established biomarkers (HER2, PD-L1, microsattelite instability or mismatch repair protein expression) that allow for individualized treatments for patients with these cancers. There are also several emerging biomarkers for EGA, some of which have clinically relevant associated therapies. Claudin 18.2 is the furthest along among these. Anti-claudin antibody, zolbetuximab, improved overall survival in biomarker select patients with advanced GEA in two phase 3 studies. Other novel biomarkers, such as FGFR2b and DKN01, are also in the process of validation, and treatments based on the presence of these biomarkers are currently in clinical studies. CONCLUSION Ongoing efforts to identify novel biomarkers in EGA have led to enhanced subclassification of upper GI cancers. These advances, coupled with the strategic application of targeted therapies and immunotherapy when appropriate, hold promise to further improve patients outcomes.
Collapse
Affiliation(s)
- Ryan Sappenfield
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53792, USA
| | - Eric Mehlhaff
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Devon Miller
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Johnathan E Ebben
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
5
|
Lau DK, Collin JP, Mariadason JM. Clinical Developments and Challenges in Treating FGFR2-Driven Gastric Cancer. Biomedicines 2024; 12:1117. [PMID: 38791079 PMCID: PMC11118914 DOI: 10.3390/biomedicines12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Recent advances in the treatment of gastric cancer (GC) with chemotherapy, immunotherapy, anti-angiogenic therapy and targeted therapies have yielded some improvement in survival outcomes; however, metastatic GC remains a lethal malignancy and amongst the leading causes of cancer-related mortality worldwide. Importantly, the ongoing molecular characterisation of GCs continues to uncover potentially actionable molecular targets. Among these, aberrant FGFR2-driven signalling, predominantly arising from FGFR2 amplification, occurs in approximately 3-11% of GCs. However, whilst several inhibitors of FGFR have been clinically tested to-date, there are currently no approved FGFR-directed therapies for GC. In this review, we summarise the significance of FGFR2 as an actionable therapeutic target in GC, examine the recent pre-clinical and clinical data supporting the use of small-molecule inhibitors, antibody-based therapies, as well as novel approaches such as proteolysis-targeting chimeras (PROTACs) for targeting FGFR2 in these tumours, and discuss the ongoing challenges and opportunities associated with their clinical development.
Collapse
Affiliation(s)
- David K. Lau
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Oncology, Monash Health, Clayton, VIC 3168, Australia
| | - Jack P. Collin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - John M. Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| |
Collapse
|
6
|
Abstract
To develop radiolabeled FGFR2-targeting probes for visualizing fibroblast growth factor receptor (FGFR) expression levels in the tumor microenvironment, four novel 99mTc-labeled FGFR2-targeting peptides ([99mTc]Tc-FGFR2-1, [99mTc]Tc-FGFR2-2, [99mTc]Tc-FGFR2-3, and [99mTc]Tc-FGFR2-4) with different amino acid linkers between the targeted peptide moiety and the 99mTc chelating group were designed and synthesized. The in vitro cellular inhibition, internalization, and efflux results demonstrated that the four 99mTc complexes exhibited FGFR2-specific binding and prolonged cellular retention in DU145 human prostate cancer cells, which indicated that modification from the glycine side (N-terminal) of CH02 was feasible. Among them, [99mTc]Tc-FGFR2-1 exhibited the highest in vitro cellular uptake and in vivo tumor uptake at 30 min postinjection, and tumor uptake could be significantly inhibited by the competitor CH02 (53% inhibited, p < 0.05), suggesting the tumor-specific targeting ability of [99mTc]Tc-FGFR2-1. The DU145-xenografted tumor lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT at 30 min postinjection of [99mTc]Tc-FGFR2-1, highlighting its potential as a SPECT imaging probe for tumor FGFR2 detection.
Collapse
Affiliation(s)
- Jingjing Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Mingxuan Fan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiaying Peng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hao Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
8
|
Baccili Cury Megid T, Farooq AR, Wang X, Elimova E. Gastric Cancer: Molecular Mechanisms, Novel Targets, and Immunotherapies: From Bench to Clinical Therapeutics. Cancers (Basel) 2023; 15:5075. [PMID: 37894443 PMCID: PMC10605200 DOI: 10.3390/cancers15205075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer is a global health concern, ranking fifth in cancer diagnoses and fourth in cancer-related deaths worldwide. Despite recent advancements in diagnosis, most cases are detected at advanced stages, resulting in poor outcomes. However, recent breakthroughs in genome analysis have identified biomarkers that hold positive clinical significance for GC treatment. These biomarkers and classifications offer the potential for more precise diagnostic and therapeutic approaches for GC patients. In this review, we explore the classification and molecular pathways in this disease, highlighting potential biomarkers that have emerged in recent studies including targeted therapies and immunotherapies. These advancements provide a promising direction for improving the management of GC.
Collapse
Affiliation(s)
| | | | | | - Elena Elimova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (T.B.C.M.); (A.R.F.); (X.W.)
| |
Collapse
|
9
|
Zhang Z, Yu Y, Xie T, Qi C, Zhang X, Shen L, Peng Z. Pulmonary lymphangitis carcinomatosis: A peculiar presentation clustering in MET-amplified gastric cancer. Cancer Med 2023; 12:19583-19594. [PMID: 37772487 PMCID: PMC10587944 DOI: 10.1002/cam4.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The clinicopathological features of MET-amplified gastric cancer (GC) and real-world data on the efficacy of MET-targeted therapies remain unknown. Pulmonary lymphangitis carcinomatosis (PLC) is a peculiar manifestation of GC, whose management has not been thoroughly described. METHODS This study analyzed patients diagnosed with MET-amplified GC or GC with PLC at any time point of the disease course from 2011 to 2021 in two centers. Clinicopathological features and survival outcomes of MET-amplified GC were analyzed. The clinical and molecular implications of GC with PLC were discussed. RESULTS Fifty-eight patients with MET-amplified GC and 20 patients with GC accompanied by PLC were finally enrolled for analysis (including 13 overlapped patients). GC with PLC was more common in female patients (p = 0.010), diagnosed at a younger age (p = 0.002), presented with a higher baseline ECOG PS (p = 0.016), and was more likely to develop lung metastasis (p < 0.001), and serous effusion (p = 0.026) than GC without PLC. Patients with primary MET-amplified GC had a worse prognosis than those with secondary MET-amplified GC (p = 0.005). The application of anti-MET therapy was associated with numerically prolonged survival, but the association was not statistically significant (p = 0.07). MET amplification was concentrated in patients with PLC, in which anti-MET therapies elicited a high response rate. CONCLUSIONS MET-targeted therapies are efficacious in real-world populations with MET-amplified GC. Patients with PLC have distinct clinical and molecular features and might benefit from MET-targeted therapies.
Collapse
Affiliation(s)
- Zhening Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yiyi Yu
- Fudan Zhongshan Cancer CenterZhongshan Hospital Fudan UniversityShanghaiChina
| | - Tong Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal OncologyPeking University Cancer Hospital & InstituteBeijingChina
| |
Collapse
|
10
|
Ratti M, Orlandi E, Hahne JC, Vecchia S, Citterio C, Anselmi E, Toscani I, Ghidini M. Targeting FGFR Pathways in Gastrointestinal Cancers: New Frontiers of Treatment. Biomedicines 2023; 11:2650. [PMID: 37893023 PMCID: PMC10603875 DOI: 10.3390/biomedicines11102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In carcinogenesis of the gastrointestinal (GI) tract, the deregulation of fibroblast growth factor receptor (FGFR) signaling plays a critical role. The aberrant activity of this pathway is described in approximately 10% of gastric cancers and its frequency increases in intrahepatic cholangiocarcinomas (iCCAs), with an estimated frequency of 10-16%. Several selective FGFR inhibitors have been developed in the last few years with promising results. For example, targeting the FGFR pathway is now a fundamental part of clinical practice when treating iCCA and many clinical trials are ongoing to test the safety and efficacy of anti-FGFR agents in gastric, colon and pancreatic cancer, with variable results. However, the response rates of anti-FGFR drugs are modest and resistances emerge rapidly, limiting their efficacy and causing disease progression. In this review, we aim to explore the landscape of anti-FGFR inhibitors in relation to GI cancer, with particular focus on selective FGFR inhibitors and drug combinations that may lead to overcoming resistance mechanisms and drug-induced toxicities.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Jens Claus Hahne
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Stefano Vecchia
- Pharmacy Unit, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
11
|
Petrillo A, Smyth EC, van Laarhoven HWM. Emerging targets in gastroesophageal adenocarcinoma: what the future looks like. Ther Adv Med Oncol 2023; 15:17588359231173177. [PMID: 37197225 PMCID: PMC10184253 DOI: 10.1177/17588359231173177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) is a heterogeneous disease with a poor prognosis. Chemotherapy has been the cornerstone in treating metastatic diseases. Recently, the introduction of immunotherapy demonstrated improved survival outcomes in localized and metastatic diseases. Beyond immunotherapy, several attempts were made to improve patient survival by understanding the molecular mechanisms of GEA and several molecular classifications were published. In this narrative review, we will discuss emerging targets in GEA, including fibroblast growth factor receptor and Claudin 18.2, as well as the accompanying drugs. In addition, novel agents directed against well-known targets, such as HER2 and angiogenesis, will be discussed, as well as cellular therapies like CAR-T and SPEAR-T cells.
Collapse
Affiliation(s)
- Angelica Petrillo
- Medical Oncology Unit, Ospedale del Mare, Via E. Russo, Naples 80147, Italy
| | - Elizabeth C. Smyth
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Decoding the Conformational Selective Mechanism of FGFR Isoforms: A Comparative Molecular Dynamics Simulation. Molecules 2023; 28:molecules28062709. [PMID: 36985681 PMCID: PMC10052029 DOI: 10.3390/molecules28062709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play critical roles in the regulation of cell growth, differentiation, and proliferation. Specifically, FGFR2 gene amplification has been implicated in gastric and breast cancer. Pan-FGFR inhibitors often cause large toxic side effects, and the highly conserved ATP-binding pocket in the FGFR1/2/3 isoforms poses an immense challenge in designing selective FGFR2 inhibitors. Recently, an indazole-based inhibitor has been discovered that can selectively target FGFR2. However, the detailed mechanism involved in selective inhibition remains to be clarified. To this end, we performed extensive molecular dynamics simulations of the apo and inhibitor-bound systems along with multiple analyses, including Markov state models, principal component analysis, a cross-correlation matrix, binding free energy calculation, and community network analysis. Our results indicated that inhibitor binding induced the phosphate-binding loop (P-loop) of FGFR2 to switch from the open to the closed conformation. This effect enhanced extensive hydrophobic FGFR2-inhibitor contacts, contributing to inhibitor selectivity. Moreover, the key conformational intermediate states, dynamics, and driving forces of this transformation were uncovered. Overall, these findings not only provided a structural basis for understanding the closed P-loop conformation for therapeutic potential but also shed light on the design of selective inhibitors for treating specific types of cancer.
Collapse
|
13
|
Pettitt GA, Hurst CD, Khan Z, McPherson HR, Dunning MC, Alder O, Platt FM, Black EVI, Burns JE, Knowles MA. Development of resistance to FGFR inhibition in urothelial carcinoma via multiple pathways in vitro. J Pathol 2023; 259:220-232. [PMID: 36385700 PMCID: PMC10107504 DOI: 10.1002/path.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geoffrey A Pettitt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Zubeda Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Helen R McPherson
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Matthew C Dunning
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Emma VI Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| |
Collapse
|
14
|
Businello G, Angerilli V, Lonardi S, Bergamo F, Valmasoni M, Farinati F, Savarino E, Spolverato G, Fassan M. Current molecular biomarkers evaluation in gastric/gastroesophageal junction adenocarcinoma: pathologist does matter. Updates Surg 2023; 75:291-303. [PMID: 35834132 PMCID: PMC9852175 DOI: 10.1007/s13304-022-01330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
The comprehensive molecular characterization of gastric and gastroesophageal junction adenocarcinomas has led to the improvement of targeted and more effective treatments. As a result, several biomarkers have been introduced into clinical practice and the implementation of innovative diagnostic tools is under study. Such assessments are mainly based on the evaluation of limited biopsy material in clinical practice. In this setting, the pathologist represents a key player in the selection of patients facilitating precision medicine approaches.
Collapse
Affiliation(s)
| | | | - Sara Lonardi
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Francesca Bergamo
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Gaya Spolverato
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy.
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy.
| |
Collapse
|
15
|
Röcken C. Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol 2023; 149:467-481. [PMID: 36260159 PMCID: PMC9889517 DOI: 10.1007/s00432-022-04408-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
Predictive biomarkers are the mainstay of precision medicine. This review summarizes the advancements in tissue-based diagnostic biomarkers for gastric cancer, which is considered the leading cause of cancer-related deaths worldwide. A disease seen in the elderly, it is often diagnosed at an advanced stage, thereby limiting therapeutic options. In Western countries, neoadjuvant/perioperative (radio-)chemotherapy is administered, and adjuvant chemotherapy is administered in the East. The morpho-molecular classification of gastric cancer has opened novel avenues identifying Epstein-Barr-Virus (EBV)-positive, microsatellite instable, genomically stable and chromosomal instable gastric cancers. In chromosomal instable tumors, receptor tyrosine kinases (RKTs) (e.g., EGFR, FGFR2, HER2, and MET) are frequently overexpressed. Gastric cancers such as microsatellite instable and EBV-positive types often express immune checkpoint molecules, such as PD-L1 and VISTA. Genomically stable tumors show alterations in claudin 18.2. Next-generation sequencing is increasingly being used to search for druggable targets in advanced palliative settings. However, most tissue-based biomarkers of gastric cancer carry the risk of a sampling error due to intratumoral heterogeneity, and adequate tissue sampling is of paramount importance.
Collapse
Affiliation(s)
- C. Röcken
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, Haus U33, 24105 Kiel, Germany
| |
Collapse
|
16
|
Wan G, Feng Z, Zhang Q, Li X, Ran K, Feng H, Luo T, Zhou S, Su C, Wei W, Wang N, Gao C, Zhao L, Yu L. Design and Synthesis of Fibroblast Growth Factor Receptor (FGFR) and Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Cancer. J Med Chem 2022; 65:16541-16569. [PMID: 36449947 DOI: 10.1021/acs.jmedchem.2c01413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The activation of the STAT signal after incubation with the HDAC inhibitor represents a key mechanism causing resistance to HDAC inhibitors in some solid tumor cells, while the FGFR inhibitor could downregulate the level of pSTAT3. Inspired by the therapeutic prospect of FGFR/HDAC dual inhibitors, we designed and synthesized a series of quinoxalinopyrazole hydroxamate derivatives as FGFR/HDAC dual inhibitors. Among them, compound 10e potently inhibited FGFR1-4 and HDAC1/2/6/8 and presented improved antiproliferative effects of tumor cells. Further studies indicated that 10e also downregulated the expression of pSTAT3, potentially overcoming resistance to HDAC inhibitors. What's more, 10e significantly inhibited the tumor growth in HCT116 and SNU-16 xenograft models with favorable pharmacokinetic profiles. Collectively, these results supported that 10e could be a new drug candidate for malignant tumors.
Collapse
Affiliation(s)
- Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Kai Ran
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Huan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shuyan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Chang Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chao Gao
- Institute of Immunology and Inflammation,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
FGFR2-amplified tumor clones are markedly heterogeneously distributed in carcinomas of the upper gastrointestinal tract. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04460-w. [DOI: 10.1007/s00432-022-04460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Background
FGFR2 is a therapy-relevant target in tumors of the upper gastrointestinal tract (GIT), and clinical trials are currently underway to test the efficacy of FGFR2 inhibitors. Tumor heterogeneity is one of the relevant causes of treatment failure. Almost nothing is known about the heterogeneous distribution of FGFR2-amplified clones in adenocarcinomas of the upper GIT.
Patients and methods
To assess FGFR2 gene copy number alteration and intratumoral heterogeneity of upper GIT adenocarcinomas, we analyzed 893 patient-derived formalin-fixed paraffin-embedded tumor specimens, including primary operated and neoadjuvant-treated tumors (462 gastric carcinomas and 429 esophageal adenocarcinomas) as well as complementary lymph node and distant metastasis by fluorescence in situ hybridization.
Results
Twenty-six gastric tumors (5.6%) and 21 esophageal adenocarcinomas (4.9%) showed FGFR2 amplification. Overall, 93% of gastric carcinomas and 83% of esophageal carcinomas showed heterogeneous amplification. FGFR2 amplification was found in different histological growth patterns, including intestinal and diffuse type according to the Lauren classification. In the primary gastric carcinoma group, FGFR2 amplification was associated with poor prognosis (p = 0.005).
Conclusion
Homogeneous FGFR2 amplification in tumors of the upper GIT is the exception. This has highly relevant implications in the nature of FGFR2 diagnostics (sufficient tumor cell number, determination of amplification at metastasis versus primary tumor, etc.) and on the response probability of appropriate inhibitors. It is relevant that the often poorly treatable and aggressive subtype of diffuse carcinomas (poorly cohesive carcinomas) also shows FGFR2 amplification and that an individualized therapy option with FGFR2 inhibitors could be an option in this group.
Collapse
|
18
|
Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol 2022; 23:1430-1440. [PMID: 36244398 DOI: 10.1016/s1470-2045(22)00603-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Outcomes are poor in patients with HER2-negative, advanced gastric or gastro-oesophageal junction adenocarcinomas. In this study, we investigated efficacy and safety of the first-in-class, afucosylated, humanised IgG1 anti-fibroblast growth factor receptor 2 isoform IIb (FGFR2b) monoclonal antibody bemarituzumab with modified 5-fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma. METHODS In the randomised, double-blind, placebo-controlled phase 2 trial (FIGHT), patients aged 18 years and older with HER2 non-positive, FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma, and an Eastern Cooperative Oncology Group performance status of 0-1 were recruited from 144 clinical sites across 17 countries. Patients with previous treatment with any selective inhibitor of the FGF-FGFR pathway were excluded. Eligible patients were randomly assigned (1:1), using permuted-block randomisation (block size of four) and a central interactive voice-web-based response system, stratified by geographical region, previous treatment with curative intent, and administration of mFOLFOX6 while being screened for FGFR2b status, to either bemarituzumab (15 mg/kg of bodyweight) or matched placebo intravenously every 2 weeks. All patients also received mFOLFOX6 (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, and 5-fluorouracil as a 400 mg/m2 bolus followed by 2400 mg/m2 over approximately 46 h) intravenously every 2 weeks. Patients were given treatment until disease progression (defined by Response Evaluation Criteria in Solid Tumours [RECIST] version 1.1), unacceptable toxicity, withdrawal of consent, or death. The primary endpoint was progression-free survival in the intention-to-treat population (defined as all patients randomly assigned to treatment). Safety was assessed in all patients who received at least one dose of assigned treatment. This study is registered with ClinicalTrials.gov, NCT03694522, and is now complete. FINDINGS Between Nov 14, 2017, and May 8, 2020, 910 patients were screened and 155 were randomly assigned to the bemarituzumab (n=77) or placebo group (n=78). Median age was 60·0 years (IQR 51·0-67·0), 44 (28%) participants were women, 111 (72%) were men, 89 (57%) were Asian, and 61 (39%) were White. At the time of the primary analysis and at a median follow-up of 10·9 months (IQR 6·3-14·2), median progression-free survival was 9·5 months (95% CI 7·3-12·9) in the bemarituzumab group and 7·4 months (5·8-8·4) in the placebo group (hazard ratio [HR] 0·68 [95% CI 0·44-1·04; p=0·073). Common grade 3 or worse adverse events were decreased neutrophil count (23 [30%] of 76 in the bemarituzumab group vs 27 [35%] of 77 in the placebo group), cornea disorder (18 [24%] vs none), neutropenia (ten [13%] vs seven [9%]), stomatitis (seven [9%] vs one [1%]), and anaemia (six [8%] vs ten [13%]). Serious treatment-emergent adverse events were reported in 24 (32%) patients in the bemarituzumab group and 28 (36%) in the placebo group. Serious mFOLFOX6 treatment-related adverse events occurred in nine (12%) patients in the bemarituzumab group and in 15 (19%) patients in the placebo group. All-grade corneal events (adverse events of special interest) occurred in 51 (67%) patients in the bemarituzumab group and eight (10%) in the placebo group; grade 3 corneal events were reported only in 18 (24%) patients in the bemarituzumab group. Treatment-related deaths occurred in three patients in the bemarituzumab group (two due to sepsis, one due to pneumonia) and none in the placebo group. INTERPRETATION In this exploratory phase 2 study, despite no statistically significant improvement in progression-free survival, treatment with bemarituzumab showed promising clinical efficacy. Confirmatory phase 3 trials of bemarituzumab plus mFOLFOX6 powered to demonstrate statistical significance are being investigated in patients with previously untreated, FGFR2b-overexpressing, advanced gastric or gastro-oesophageal junction adenocarcinoma. FUNDING Five Prime Therapeutics.
Collapse
|
19
|
Gordon A, Johnston E, Lau DK, Starling N. Targeting FGFR2 Positive Gastroesophageal Cancer: Current and Clinical Developments. Onco Targets Ther 2022; 15:1183-1196. [PMID: 36238135 PMCID: PMC9553429 DOI: 10.2147/ott.s282718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Despite recent advances in the systemic treatment of gastroesophageal cancers, prognosis remains poor. Comprehensive molecular analyses have characterized the genomic landscape of gastroesophageal cancer that has established therapeutic targets such as human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor receptor (VEGFR) and programmed death ligand 1 (PD-L1). The aberrant fibroblast growth factor receptor 2 (FGFR2) pathway is attractive for targetable therapy with FGFR inhibition based on preclinical data showing a pivotal role in the progression of gastric cancer (GC). FGFR2 amplification is the most common FGFR2 gene aberration in gastroesophageal cancer, and most associated with diffuse GC, which is often linked to poorer prognostic outcomes. There has been considerable progress with drug development focused on FGFR inhibition. At present, there is no approved FGFR inhibitor for FGFR2 positive gastroesophageal cancer. A selective FGFR2b monoclonal antibody bemarituzumab is currently being investigated in the first phase III randomized trial for patients with first line advanced GC, which may change the treatment paradigm for FGFR2b positive GC. The role of FGFR signalling, specifically FGFR2, is less established in oesophageal squamous cell cancer (ESCC) with a paucity of evidence for clinical benefit in these patients. Precision medicine is part of the wider approach in gastrointestinal cancers; however, it can be challenging due to heterogeneity and here circulating tumour DNA (ctDNA) for patient selection may have future clinical utility. In our review, we outline the FGFR pathway and focus on the developments and challenges of targeting FGFR2 driven gastroesophageal cancers.
Collapse
Affiliation(s)
- Anderley Gordon
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation, London, UK
| | - Edwina Johnston
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation, London, UK
| | - David K Lau
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation, London, UK
| | - Naureen Starling
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation, London, UK,Correspondence: Naureen Starling, Gastrointestinal and Lymphoma Unit, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, United Kingdom, Tel +44 2086426011, Email
| |
Collapse
|
20
|
Patient Selection Approaches in FGFR Inhibitor Trials-Many Paths to the Same End? Cells 2022; 11:cells11193180. [PMID: 36231142 PMCID: PMC9563413 DOI: 10.3390/cells11193180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-selected patient populations. Different approaches and technologies have been applied in clinical trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hybridization) and to detection of various DNA alterations (e.g., copy number variations, mutations, gene fusions). We review, here, the advantages and limitations of the different technologies and discuss the importance of tissue and disease context in identifying the best predictive biomarker for FGFR targeting therapies.
Collapse
|
21
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Kim M, Seo AN. Molecular Pathology of Gastric Cancer. J Gastric Cancer 2022; 22:273-305. [PMID: 36316106 PMCID: PMC9633931 DOI: 10.5230/jgc.2022.22.e35] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 08/29/2023] Open
Abstract
Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea.
| |
Collapse
|
23
|
Kim H, Park S, Kang SY, Ahn S, Kim KM. Peritoneal Seeding Is More Common in Gastric Cancer Patients with FGFR2 Amplification or High Tumor Mutation Burden. Diagnostics (Basel) 2022; 12:diagnostics12102355. [PMID: 36292044 PMCID: PMC9601213 DOI: 10.3390/diagnostics12102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fibroblast growth factor receptor-2 (FGFR2) gene alterations have been identified in solid tumors. FGFR2 amplification is found in 2−9% of gastric carcinomas. We hypothesized that FGFR2 could be associated with peritoneal seeding and studied 360 advanced gastric carcinoma patients; 222 (61.7%) were male, 246 (73.7%) had poorly differentiated histology, and 175 (48.6%) presented with peritoneal seeding. High tumor mutation burden (TMB) was observed in 44 (12.2%) patients, high microsatellite instability (MSI) was observed in 12 (3.33%) patients, ERBB2 amplification was observed in 44 (12.2%) patients, EBV positivity was observed in 10 (10/278; 3.6%) patients, and PD-L1 positivity was observed in 186 (186/264; 70.5%) cases. We found FGFR2 amplification in 26 (7.2%) patients, of which 12 (46.2%) were female and 22 (84.6%) had poorly differentiated histology. In these 26 cases, the copy number of FGFR2 amplification ranged from 3.7 to 274. Eighteen of them showed seeding, and this association was statistically significant (18/26, 69.2%; 157/334, 47%; p = 0.023). In addition, high TMB was significantly associated with seeding (p = 0.028; OR = 1.83). Poorly differentiated histology was significantly associated with seeding (p = 0.04) but not with FGFR2 amplification (p > 0.1). Seeding was frequent in gastric carcinoma patients with FGFR2 amplification, in patients with high TMB, or in those who were female. The subgroup of patients with FGFR2 amplification could be potential candidates for targeted therapeutic agents.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Pathology Center, Seegene Medical Foundation, Seoul 06351, Korea
| | - Sujin Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
24
|
Zeng J, Ran K, Li X, Tao L, Wang Q, Ren J, Hu R, Zhu Y, Liu Z, Yu L. A novel small molecule RK-019 inhibits FGFR2-amplification gastric cancer cell proliferation and induces apoptosis in vitro and in vivo. Front Pharmacol 2022; 13:998199. [PMID: 36210834 PMCID: PMC9532703 DOI: 10.3389/fphar.2022.998199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is one of the most malignant cancers and is estimated to be fifth in incidence ratio and the third leading cause of cancer death worldwide. Despite advances in GC treatment, poor prognosis and low survival rate necessitate the development of novel treatment options. Fibroblast growth factor receptors (FGFRs) have been suggested to be potential targets for GC treatment. In this study, we report a novel selective FGFR inhibitor, RK-019, with a pyrido [1, 2-a] pyrimidinone skeleton. In vitro, RK-019 showed excellent FGFR1-4 inhibitory activities and strong anti-proliferative effects against FGFR2-amplification (FGFR2-amp) GC cells, including SNU-16 and KATO III cells. Treatment with RK-019 suppressed phosphorylation of FGFR and its downstream pathway proteins, such as FRS2, PLCγ, AKT, and Erk, resulting in cell cycle arrest and induction of apoptosis. Furthermore, daily oral administration of RK-019 could attenuate tumor xenograft growth with no adverse effects. Here, we reported a novel specific FGFR inhibitor, RK-019, with potent anti-FGFR2-amp GC activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Ran
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xinyue Li
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Longyue Tao
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Ren
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Hu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihao Liu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Tsytsykova AV, Wiley G, Li C, Pelikan RC, Garman L, Acquah FA, Mooers BH, Tsitsikov EN, Dunn IF. Mutated KLF4(K409Q) in meningioma binds STRs and activates FGF3 gene expression. iScience 2022; 25:104839. [PMID: 35996584 PMCID: PMC9391581 DOI: 10.1016/j.isci.2022.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that has been proven necessary for both induction and maintenance of pluripotency and self-renewal. Whole-genome sequencing defined a unique mutation in KLF4 (KLF4K409Q) in human meningiomas. However, the molecular mechanism of this tumor-specific KLF4 mutation is unknown. Using genome-wide high-throughput and focused quantitative transcriptional approaches in human cell lines, primary meningeal cells, and meningioma tumor tissue, we found that a change in the evolutionarily conserved DNA-binding domain of KLF4 alters its DNA recognition preference, resulting in a shift in downstream transcriptional activity. In the KLF4K409Q-specific targets, the normally silent fibroblast growth factor 3 (FGF3) is activated. We demonstrated a neomorphic function of KLF4K409Q in stimulating FGF3 transcription through binding to its promoter and in using short tandem repeats (STRs) located within the locus as enhancers.
Collapse
Affiliation(s)
- Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Chuang Li
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Richard C. Pelikan
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Francis A. Acquah
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blaine H.M. Mooers
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Zhao C, Miao J, Sun R, Liang R, Chen W, Gao Y, Wang X, Han S, Zhao W, Lei T, Huang C. MBD1/HDAC3-miR-5701-FGFR2 axis promotes the development of gastric cancer. Aging (Albany NY) 2022; 14:5878-5894. [PMID: 35876658 PMCID: PMC9365560 DOI: 10.18632/aging.204190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related deaths worldwide due to the lack of specific biomarkers for the early diagnosis and universal accepted therapy for advanced GC. Lower levels of miR-5701 were found in the GC tissue from the online sequencing data and confirmed in the GC tissues and GC cell lines. Overexpression of miR-5701 inhibited the proliferation and migration of GC cells and promoted the apoptosis of these cells. Bioinformatics analyses and luciferase assay showed that miR-5701 targeted FGFR2, which acted as an oncogene in GC. Nude mice with GC cells overexpressing miR-5701 exhibited smaller tumor sizes and less lung metastases. The miR-5701 expression was directly, transcriptionally inhibited by MBD1 together with HDAC3 by binding together to form a complex. Knocked down MBD1 or HDAC3 increased the miR-5701 expression. These results indicated the potential use of exogenously administered miR-5701 or agents that elevated endogenous miR-5701 to inhibit GC, improving the prognosis of patients with GC.
Collapse
Affiliation(s)
- Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, Shaanxi Province, P.R. China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People’s Armed Police Force, Xi’an 710054, Shaanxi Province, P.R. China
| | - Wenhu Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang Province, P.R. China
| | - Yi Gao
- Department of Cell Biology and Genetics, Medical School of Yan’an University, Yan’an 716000, Shaanxi Province, P.R. China
| | - Xiaofei Wang
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| | - Shuiping Han
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Wenbao Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Ting Lei
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, Shaanxi Province, P.R. China
| | - Chen Huang
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, P.R. China
| |
Collapse
|
27
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
28
|
Wu X, Liu Z, Gan C, Wei W, Zhang Q, Liu H, Que H, Su X, Yue L, He H, Ouyang L, Ye T. Design, synthesis and biological evaluation of a series of novel pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as FGFRs-dominant multi-target receptor tyrosine kinase inhibitors for the treatment of gastric cancer. Bioorg Chem 2022; 127:105965. [PMID: 35759882 DOI: 10.1016/j.bioorg.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer is the second most lethal cancer across the world. With the progress in therapeutic approaches, the 5-year survival rate of early gastric cancer can reach > 95%. However, the prognosis and survival time of advanced gastric cancer is still somber. Therefore, more effective targeted therapies for gastric cancer treatment are urgently needed. FGFR, VEGFR and other receptor tyrosine kinases have recently been suggested as potential targets for gastric cancer treatment. We herein report the discovery of pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as a new class of FGFRs-dominant multi-target receptor tyrosine kinase inhibitors. SAR assessment identified the most active compounds 8f and 8k, which showed excellent inhibitory activity against a variety of receptor tyrosine kinases. Moreover, 8f and 8k displayed excellent potency in the SNU-16 gastric cancer cell line. Furthermore, 8f and 8k could inhibit FGFR1 phosphorylation and downstream signaling pathways as well as induce cell apoptosis. In vivo, 8f and 8k suppress tumor growth in the SNU-16 xenograft model without inducing obvious toxicity. These findings raise the possibility that compounds 8f and 8k might serve as potential agents for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cailin Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualong He
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
29
|
Incidence of FGFR2 Amplification and FGFR2 Fusion in Patients with Metastatic Cancer Using Clinical Sequencing. JOURNAL OF ONCOLOGY 2022; 2022:9714570. [PMID: 35342406 PMCID: PMC8956403 DOI: 10.1155/2022/9714570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/27/2022] [Indexed: 12/14/2022]
Abstract
Aberrations in the fibroblast growth factor receptor2 (FGFR2) gene, including genetic alterations and chromosomal rearrangements, lead to the development and progression of cancer with poor prognosis. However, the mechanisms underlying the FGFR2 signaling pathway to facilitate the development of FGFR2-targeted therapies have not been fully explored. Here, we examined the clinicopathological features of FGFR2 amplification and fusion in gastrointestinal tract/genitourinary tract cancers. FGFR2 amplification and fusion were identified in approximately 1.5% and 1.1% of all cancer types in 1,373 patients, respectively, with both FGFR2 amplification and fusion occurring together at a rate of approximately 0.6%. Of all cancer types screened, gastric cancer (GC) was the most common cancer type with FGFR2 amplification (87.5% of all FGFR2 amplification case) or fusion (46.7% of all cases). In addition, FGFR2 alteration had poorer overall survival (OS, 13.7 months vs. 50.2 months, P = 0.0001) and progression-free survival (PFS, 5.6 months vs. 11.4 months, P = 0.0005) than did those without FGFR2 alteration, respectively. Taken together, our data underscore to screen solid cancer patients for FGFR2 aberrations in oncology clinic.
Collapse
|
30
|
Schrumpf T, Behrens HM, Haag J, Krüger S, Röcken C. FGFR2 overexpression and compromised survival in diffuse-type gastric cancer in a large central European cohort. PLoS One 2022; 17:e0264011. [PMID: 35167603 PMCID: PMC8846517 DOI: 10.1371/journal.pone.0264011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The significance of fibroblast growth factor receptor 2 (FGFR2) in gastric cancer (GC) has been studied predominantly in Asian patient cohorts. Data on White patients are scarce. Here, we aimed to independently validate the expression and putative tumor biological significance of FGFR2 in a large non-Asian GC cohort. Immunohistochemistry (IHC) was performed on large-area tissue sections from 493 patients with GC and evaluated using the HScore. GCs with moderate and strong FGFR2 expression were studied for Fgfr2 amplification using chromogenic in situ hybridization (CISH). Median overall survival was determined using the Kaplan–Meier method. The majority [240 (99.1%)] of FGFR2-positive GCs showed a variable combination of staining intensities with marked intratumoral heterogeneity, including weak [198 (40.2%) cases], moderate [145 (29.4%)], and strong [108 (21.9%)] staining in diverse combinations. 250 (50.9%) GCs expressed no FGFR2. Fgfr2 gene amplification was found in 40% of selected cases with high protein expression and was also heterogeneous at the cell level. FGFR2 protein expression did not correlate with patient survival in the entire cohort However, using different cutoff values, a negative correlation between FGFR2-expression and patient outcome was found for diffuse-type GC. FGFR2 expression was associated with a lower tumor grade and intestinal phenotype (p≤0.0001). FGFR2–positive diffuse-type GCs classify a small subset of patients with a poor tumor specific survival (5.29±1.3 vs. 14.67±1.9 months; p = 0.004).
Collapse
Affiliation(s)
- Thorben Schrumpf
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hans-Michael Behrens
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jochen Haag
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
- * E-mail:
| |
Collapse
|
31
|
Lengyel CG, Hussain S, Seeber A, Jamil Nidhamalddin S, Trapani D, Habeeb BS, Elfaham E, Mazher SA, Seid F, Khan SZ, El Bairi K, Odhiambo A, Altuna SC, Petrillo A. FGFR Pathway Inhibition in Gastric Cancer: The Golden Era of an Old Target? Life (Basel) 2022; 12:81. [PMID: 35054474 PMCID: PMC8778800 DOI: 10.3390/life12010081] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-associated death worldwide. The majority of patients are diagnosed at an advanced/metastatic stage of disease due to a lack of specific symptoms and lack of screening programs, especially in Western countries. Thus, despite the improvement in GC therapeutic opportunities, the survival is disappointing, and the definition of the optimal treatment is still an unmet need. Novel diagnostic techniques were developed in clinical trials in order to characterize the genetic profile of GCs and new potential molecular pathways, such as the Fibroblast Growth Factor Receptor (FGFR) pathway, were identified in order to improve patient's survival by using target therapies. The aim of this review is to summarize the role and the impact of FGFR signaling in GC and to provide an overview regarding the potential effectiveness of anti-FGFR agents in GC treatment in the context of precision medicine.
Collapse
Affiliation(s)
- Csongor G. Lengyel
- Head and Neck Surgery, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Sadaqat Hussain
- Oncology Department, University Hospital of Leicester, Leicester LE1 5WW, UK;
| | - Andreas Seeber
- Comprehensive Cancer Center Innsbruck, Department of Hematology and Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | | | - Baker S. Habeeb
- Medical Oncology, Shaqlawa Teaching Hospital, Erbil 44001, Iraq;
| | - Essam Elfaham
- Department of Hematoncology, Kuwait Cancer Control Center (KCCC), Kuwait City 20001, Kuwait;
| | - Syed Ayub Mazher
- Division of Internal Medicine, UT Southwestern Clements University Hospital, Dallas, TX 75390, USA;
| | - Fahmi Seid
- Department of Oncology, College of Medicine and Health Sciences, Hawassa University, Hawassa 1560, Ethiopia;
| | - Shah Z. Khan
- Department of Clinical Oncology, BINOR Cancer Hospital, Bannu 28000, Pakistan;
| | | | - Andrew Odhiambo
- Unit of Medical Oncology, Department of Clinical Medicine, University of Nairobi, Nairobi 00202, Kenya;
| | | | | |
Collapse
|
32
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
33
|
Xiang H, Chan AG, Ahene A, Bellovin DI, Deng R, Hsu AW, Jeffry U, Palencia S, Powers J, Zanghi J, Collins H. Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer. MAbs 2021; 13:1981202. [PMID: 34719330 PMCID: PMC8565817 DOI: 10.1080/19420862.2021.1981202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bemarituzumab (FPA144) is a first-in-class, humanized, afucosylated immunoglobulin G1 monoclonal antibody (mAb) directed against fibroblast growth factor receptor 2b (FGFR2b) with two mechanisms of action against FGFR2b-overexpressing tumors: inhibition of FGFR2b signaling and enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). Bemarituzumab is being developed as a cancer therapeutic, and we summarize here the key nonclinical data that supported moving it into clinical trials. Bemarituzumab displayed sub-nanomolar cross-species affinity for FGFR2b receptors, with >20-fold enhanced binding affinity to human Fc gamma receptor IIIa compared with the fucosylated version. In vitro, bemarituzumab induced potent ADCC against FGFR2b-expressing tumor cells, and inhibited FGFR2 phosphorylation and proliferation of SNU-16 gastric cancer cells in a concentration-dependent manner. In vivo, bemarituzumab inhibited tumor growth through inhibition of the FGFR2b pathway and/or ADCC in mouse models. Bemarituzumab demonstrated enhanced anti-tumor activity in combination with chemotherapy, and due to bemarituzumab-induced natural killer cell-dependent increase in programmed death-ligand 1, also resulted in enhanced anti-tumor activity when combined with an anti-programmed death-1 antibody. Repeat-dose toxicity studies established the highest non-severely-toxic dose at 1 and 100 mg/kg in rats and cynomolgus monkeys, respectively. In pharmacokinetic (PK) studies, bemarituzumab exposure increase was greater than dose-proportional, with the linear clearance in the expected dose range for a mAb. The PK data in cynomolgus monkeys were used to project bemarituzumab linear PK in humans, which were consistent with the observed human Phase 1 data. These key nonclinical studies facilitated the successful advancement of bemarituzumab into the clinic.
Collapse
Affiliation(s)
- Hong Xiang
- Five Prime Therapeutics, Inc, South San Francisco, California.,Clinical Pharmacology, Modeling and Simulation, Amgen Inc, Thousand Oaks, California
| | - Abigael G Chan
- Five Prime Therapeutics, Inc, South San Francisco, California.,Global Project Management, Zai Lab (US) LLC, Menlo Park, California
| | - Ago Ahene
- Five Prime Therapeutics, Inc, South San Francisco, California.,Bioanalytic Sciences, Amgen Inc, South San Francisco, California
| | - David I Bellovin
- Five Prime Therapeutics, Inc, South San Francisco, California.,Bioanalytic Sciences, Amgen Inc, South San Francisco, California
| | - Rong Deng
- R&D Q-Pharm Consulting LLC, Pleasanton
| | - Amy W Hsu
- Five Prime Therapeutics, Inc, South San Francisco, California.,Research, Merck & Co., Inc, South San Francisco, California
| | - Ursula Jeffry
- Five Prime Therapeutics, Inc, South San Francisco, California.,Toxicology Department, NGM Biopharmaceuticals, Inc, San Francisco, California
| | - Servando Palencia
- Five Prime Therapeutics, Inc, South San Francisco, California.,Research, Teva Pharmaceuticals, Redwood city, California
| | - Janine Powers
- Five Prime Therapeutics, Inc, South San Francisco, California.,Translational Medicine, Nurix Therapeutics, San Francisco, California
| | - James Zanghi
- Five Prime Therapeutics, Inc, South San Francisco, California.,Bioanalytic Sciences, Genentech Inc., South San Francisco, California
| | - Helen Collins
- Five Prime Therapeutics, Inc, South San Francisco, California.,Clinic, Amgen Inc., South San Francisco, California
| |
Collapse
|
34
|
Repetto M, Crimini E, Giugliano F, Morganti S, Belli C, Curigliano G. Selective FGFR/FGF pathway inhibitors: inhibition strategies, clinical activities, resistance mutations, and future directions. Expert Rev Clin Pharmacol 2021; 14:1233-1252. [PMID: 34591728 DOI: 10.1080/17512433.2021.1947246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Fibroblast growth factor receptor (FGFR)/fibroblast growth factor (FGF) is a pathway characterized by recurring alterations in cancer. Its dysregulations enhance cancer cell proliferation, survival, migration and invasion, as well as angiogenesis and immune evasion.Areas covered: FGFR/FGF selective inhibitors belong to a broad class of drugs with some being approved for specific indications and others under investigation in ongoing phase I and II clinical trials. In this review, all available clinical data from trials on selective FGFR/FGF inhibitors as well as described resistance mutations and mechanisms are presented. FGFR/FGF pathway inhibitors are classified according to the mechanism they employ to dampen/suppress signaling and to the preferred FGFR binding mode when X-ray crystal structure is available.Expert opinion: Data presented suggests the general actionability of FGFR1,2,3 mutations and fusions across histologies, whereas FGFR1,2,3 amplifications alone are poor predictors of response to tyrosine kinase inhibitors. Overexpression on immunohistochemistry (IHC) of FGF19, the stimulatory ligand of FGFR4, can predict response to FGFR selective inhibitors in hepatocellular carcinoma. Whereas IHC overexpression of FGFR1,2,3 is not sufficient to predict benefit from FGFR inhibitors across solid tumors. FGFR1,2,3 mRNA overexpression can predict response even in absence of structural alteration. Data on resistance mutations suggests the need for new inhibitors to overcome gatekeeper mutations.
Collapse
Affiliation(s)
- Matteo Repetto
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Morganti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
35
|
DW14383 is an irreversible pan-FGFR inhibitor that suppresses FGFR-dependent tumor growth in vitro and in vivo. Acta Pharmacol Sin 2021; 42:1498-1506. [PMID: 33288861 PMCID: PMC8379184 DOI: 10.1038/s41401-020-00567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) is a promising anticancer target. Currently, most FGFR inhibitors lack sufficient selectivity and have nonnegligible activity against kinase insert domain receptor (KDR), limiting their feasibility due to the serious side effects. Notably, compensatory activation occurs among FGFR1-4, suggesting the urgent need to develop selective pan-FGFR1-4 inhibitors. Here, we explored the antitumor activity of DW14383, a novel irreversible FGFR1-4 inhibitor. DW14383 exhibited equivalently high potent inhibition against FGFR1, 2, 3 and 4, with IC50 values of less than 0.3, 1.1, less than 0.3, and 0.5 nmol/L, respectively. It is a selective FGFR inhibitor, exhibiting more than 1100-fold selectivity for FGFR1 over recombinant KDR, making it one of the most selective FGFR inhibitors over KDR described to date. Furthermore, DW14383 significantly inhibited cellular FGFR1-4 signaling, inducing G1/S cell cycle arrest, which in turn antagonized FGFR-dependent tumor cell proliferation. In contrast, DW14383 had no obvious antiproliferative effect against cancer cell lines without FGFR aberration, further confirming its selectivity against FGFR. In representative FGFR-dependent xenograft models, DW14383 oral administration substantially suppressed tumor growth by simultaneously inhibiting tumor proliferation and angiogenesis via inhibiting FGFR signaling. In summary, DW14383 is a promising selective irreversible pan-FGFR inhibitor with pan-tumor spectrum potential in FGFR1-4 aberrant cancers, which has the potential to overcome compensatory activation among FGFR1-4.
Collapse
|
36
|
Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol 2021; 5:66. [PMID: 34272467 PMCID: PMC8285406 DOI: 10.1038/s41698-021-00204-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Various genetic alterations of the fibroblast growth factor receptor (FGFR) family have been detected across a wide range of cancers. However, inhibition of FGFR signaling by kinase inhibitors demonstrated limited clinical effectiveness. Herein, we evaluated the transforming activity and sensitivity of 160 nonsynonymous FGFR mutations and ten fusion genes to seven FGFR tyrosine kinase inhibitors (TKI) using the mixed-all-nominated-in-one (MANO) method, a high-throughput functional assay. The oncogenicity of 71 mutants was newly discovered in this study. The FGFR TKIs showed anti-proliferative activities against the wild-type FGFRs and their fusions, while several hotspot mutants were relatively resistant to those TKIs. The drug sensitivities assessed with the MANO method were well concordant with those evaluated using in vitro and in vivo assays. Comprehensive analysis of published FGFR structures revealed a possible mechanism through which oncogenic FGFR mutations reduce sensitivity to TKIs. It was further revealed that recurrent compound mutations within FGFRs affect the transforming potential and TKI-sensitivity of corresponding kinases. In conclusion, our study suggests the importance of selecting suitable inhibitors against individual FGFR variants. Moreover, it reveals the necessity to develop next-generation FGFR inhibitors, which are effective against all oncogenic FGFR variants.
Collapse
|
37
|
Fong CYK, Chau I. Harnessing biomarkers of response to improve therapy selection in esophago-gastric adenocarcinoma. Pharmacogenomics 2021; 22:703-726. [PMID: 34120461 PMCID: PMC8265282 DOI: 10.2217/pgs-2020-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced esophago-gastric (OG) adenocarcinomas have a high mortality rate and new therapeutic options are urgently required. Despite recent advances in understanding the molecular characteristics of OG cancers, tumor heterogeneity poses a challenge in developing new therapeutics capable of improving patient outcomes. Consequently, chemotherapy remains the mainstay of systemic treatment, with the HER2 being the only predictive biomarker routinely targeted in clinical practice. Recent data indicate that immunotherapy will be incorporated into first-line chemotherapy, but further research is required to refine patient selection. This review will summarize the clinical strategies being evaluated to utilize our knowledge of predictive biomarkers with reference to novel therapeutics, and discuss the barriers to implementing precision oncology in OG adenocarcinoma.
Collapse
Affiliation(s)
- Caroline YK Fong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Ian Chau
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
38
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
39
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Clinical difference between fibroblast growth factor receptor 2 subclass, type IIIb and type IIIc, in gastric cancer. Sci Rep 2021; 11:4698. [PMID: 33633310 PMCID: PMC7907198 DOI: 10.1038/s41598-021-84107-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) has two isoforms: IIIb type and IIIc type. Clinicopathologic significance of these two FGFR2 subtypes in gastric cancer remains to be known. This study aimed to clarify the clinicopathologic difference of FGFR2IIIb and/or FGFR2IIIc overexpression. A total of 562 patients who underwent gastrectomy was enrolled. The expressions of FGFR2IIIb and FGFR2IIIc were retrospectively examined by immunohistochemistry or fluorescence in situ hybridization (FISH) using the 562 gastric tumors. We evaluated the correlation between clinicopathologic features and FGFR2IIIb overexpression and/or FGFR2IIIc overexpression in gastric cancer. FGFR2IIIb overexpression was observed in 28 cases (4.9%), and FGFR2IIIc overexpression was observed in four cases (0.7%). All four FGFR2IIIc cases were also positive for FGFR2IIIb, but not in the same cancer cells. FGFR2IIIb and/or FGFR2IIIc overexpression was significantly correlated with lymph node metastasis and clinical stage. Both FGFR2IIIb and FGFR2IIIc were significantly associated with poor overall survival. A multivariate analysis showed that FGFR2IIIc expression was significantly correlated with overall survival. FISH analysis indicated that FGFR2 amplification was correlated with FGFR2IIIb and/or FGFR2IIIc overexpression. These findings suggested that gastric tumor overexpressed FGFR2IIIc and/or FGFR2IIIb at the frequency of 4.9%. FGFR2IIIc overexpression might be independent prognostic factor for patients with gastric cancer.
Collapse
|
41
|
Cheng X, Qian L, Wang B, Tan M, Li J. SPA: A Quantitation Strategy for MS Data in Patient-derived Xenograft Models. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:522-533. [PMID: 33631430 PMCID: PMC9040016 DOI: 10.1016/j.gpb.2019.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/12/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
With the development of mass spectrometry (MS)-based proteomics technologies, patient-derived xenograft (PDX), which is generated from the primary tumor of a patient, is widely used for the proteome-wide analysis of cancer mechanism and biomarker identification of a drug. However, the proteomics data interpretation is still challenging due to complex data deconvolution from the PDX sample that is a cross-species mixture of human cancerous tissues and immunodeficient mouse tissues. In this study, by using the lab-assembled mixture of human and mouse cells with different mixing ratios as a benchmark, we developed and evaluated a new method, SPA (shared peptide allocation), for protein quantitation by considering the unique and shared peptides of both species. The results showed that SPA could provide more convenient and accurate protein quantitation in human–mouse mixed samples. Further validation on a pair of gastric PDX samples (one bearing FGFR2 amplification while the other one not) showed that our new method not only significantly improved the overall protein identification, but also detected the differential phosphorylation of FGFR2 and its downstream mediators (such as RAS and ERK) exclusively. The tool pdxSPA is freely available at https://github.com/Li-Lab-Proteomics/pdxSPA.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Qian
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
42
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
43
|
Businello G, Galuppini F, Fassan M. The impact of recent next generation sequencing and the need for a new classification in gastric cancer. Best Pract Res Clin Gastroenterol 2021; 50-51:101730. [PMID: 33975684 DOI: 10.1016/j.bpg.2021.101730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The phenotypical and molecular heterogeneity of gastric cancer has hampered the introduction in clinical practice of a unifying classification of the disease. However, as next generation sequencing (NGS) technologies enhanced the comprehension of the molecular landscape of gastric cancer, novel molecular classification systems have been proposed, allowing the dissection of molecular tumor heterogeneity and paving the way for the development of new targeted therapies. Moreover, the use of NGS analyses in the molecular profiling of formalin-fixed paraffin-embedded (FFPE) specimens will improve patient selection for the enrolment in novel clinical trials. In conclusion, the application of NGS in precision oncology will revolutionize the diagnosis and clinical management in gastric cancer patients.
Collapse
Affiliation(s)
- Gianluca Businello
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Francesca Galuppini
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
44
|
Lau DK, Luk IY, Jenkins LJ, Martin A, Williams DS, Schoffer KL, Chionh F, Buchert M, Sjoquist K, Boussioutas A, Hayes SA, Ernst M, Weickhardt AJ, Pavlakis N, Tebbutt NC, Mariadason JM. Rapid Resistance of FGFR-driven Gastric Cancers to Regorafenib and Targeted FGFR Inhibitors can be Overcome by Parallel Inhibition of MEK. Mol Cancer Ther 2021; 20:704-715. [PMID: 33563752 DOI: 10.1158/1535-7163.mct-20-0836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Amplification or overexpression of the FGFR family of receptor tyrosine kinases occurs in a significant proportion of gastric cancers. Regorafenib is a multikinase inhibitor of angiogenic and oncogenic kinases, including FGFR, which showed activity in the randomized phase II INTEGRATE clinical trial in advanced gastric cancer. There are currently no biomarkers that predict response to this agent, and whether regorafenib is preferentially active in FGFR-driven cancers is unknown. Through screening 25 gastric cancer cell lines, we identified five cell lines that were exquisitely sensitive to regorafenib, four of which harbored amplification or overexpression of FGFR family members. These four cell lines were also sensitive to the FGFR-specific inhibitors, BGJ398, erdafitinib, and TAS-120. Regorafenib inhibited FGFR-driven MAPK signaling in these cell lines, and knockdown studies confirmed their dependence on specific FGFRs for proliferation. In the INTEGRATE trial cohort, amplification or overexpression of FGFRs 1-4 was detected in 8%-19% of cases, however, this was not associated with improved progression-free survival and no objective responses were observed in these cases. Further preclinical analyses revealed FGFR-driven gastric cancer cell lines rapidly reactivate MAPK/ERK signaling in response to FGFR inhibition, which may underlie the limited clinical response to regorafenib. Importantly, combination treatment with an FGFR and MEK inhibitor delayed MAPK/ERK reactivation and synergistically inhibited proliferation of FGFR-driven gastric cancer cell lines. These findings suggest that upfront combinatorial inhibition of FGFR and MEK may represent a more effective treatment strategy for FGFR-driven gastric cancers.
Collapse
Affiliation(s)
- David K Lau
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew Martin
- NHMRC Clinical trials Centre, Sydney University, Sydney, New South Wales, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, New South Wales, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Kael L Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Fiona Chionh
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Katrin Sjoquist
- NHMRC Clinical trials Centre, Sydney University, Sydney, New South Wales, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, New South Wales, Australia
| | - Alex Boussioutas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A Hayes
- Kolling Institute for Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew J Weickhardt
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Nick Pavlakis
- Kolling Institute for Medical Research, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Niall C Tebbutt
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia. .,Department of Medical Oncology, Austin Health, Heidelberg, Victoria, Australia.,Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, New South Wales, Australia
| |
Collapse
|
45
|
Sun Y, Li G, Zhu W, He Q, Liu Y, Chen X, Liu J, Lin J, Han-Zhang H, Yang Z, Lizaso A, Xiang J, Mao X, Liu H, Gao Y. A comprehensive pan-cancer study of fibroblast growth factor receptor aberrations in Chinese cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1290. [PMID: 33209870 PMCID: PMC7661893 DOI: 10.21037/atm-20-5118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The prevalence and types of fibroblast growth factor receptor (FGFR) mutations vary significantly among different ethnic groups. The optimal application of FGFR inhibitors depends on these variations being comprehensively understood. However, such an analysis has yet to be conducted in Chinese patients. Methods We retrospectively screened the genomic profiling results of 10,582 Chinese cancer patients across 16 cancer types to investigate the frequency and distribution of FGFR aberrations. Results FGFR aberrations were identified in 745 patients, equating to an overall prevalence of 7.0%. A majority of the aberrations occurred on FGFR1 (56.8%), which was followed by FGFR3 (17.7%), FGFR2 (14.4%), and FGFR4 (2.8%). Further, 8.5% of patients had aberrations of more than 1 FGFR gene. The most common types of aberrations were amplification (53.7%), other mutations (38.8%), and fusions (5.6%). FGFR fusion and amplification occurred concurrently in 1.9% of the patients. FGFR aberrations were detected in 12 of the 16 cancers, with the highest prevalence belonging to colorectal cancer (CRC) (31%). Other FGFR-aberrant cancer types included stomach (16.8%), breast (14.3%), and esophageal (12.7%) cancer. Breast tumors were also more likely than other cancer types to have concurrent FGFR rearrangements and amplifications (P<0.001). In comparison with the public dataset, our cohort had a significantly higher number of FGFR aberrations in colorectal (P<0.001) and breast cancer (P=0.05). Conclusions Among the Chinese cancer patients in our study, the overall prevalence of FGFR aberrations was 7.0%. FGFR1 amplification was the most common genetic alteration in CRC, breast cancer, and lung cancer; while FGFR2 amplification was more commonly observed in gastric cancer than in other cancers in our cohort. Our study advances the understanding of the distribution of FGFR aberrations in various cancer types in the Chinese population, which will facilitate the further development of FGFR inhibitors.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gao Li
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuyan He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchang Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Juan Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital; Nanjing, China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, China
| | | | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | | | - Xinru Mao
- Burning Rock Biotech, Guangzhou, China
| | - Hao Liu
- Burning Rock Biotech, Guangzhou, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Xiang H, Liu L, Gao Y, Ahene A, Macal M, Hsu AW, Dreiling L, Collins H. Population pharmacokinetic analysis of phase 1 bemarituzumab data to support phase 2 gastroesophageal adenocarcinoma FIGHT trial. Cancer Chemother Pharmacol 2020; 86:595-606. [PMID: 32965540 PMCID: PMC7561547 DOI: 10.1007/s00280-020-04139-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022]
Abstract
Purpose To report population pharmacokinetic (PK) analysis of the phase 1 study (FPA144-001, NCT02318329) and to select a clinical dose and schedule that will achieve an empirical target trough concentration (Ctrough) for an anti-fibroblast growth factor receptor 2b antibody, bemarituzumab. Methods Nonlinear mixed-effect modeling was used to analyse PK data. In vitro binding affinity and receptor occupancy of bemarituzumab were determined. Simulation was conducted to estimate dose and schedule to achieve an empirical target Ctrough in a phase 2 trial (FIGHT, NCT03694522) for patients receiving first-line treatment combined with modified 5-fluourouracil, oxaliplatin and leucovorin (mFOLFOX6) for gastric and gastroesophageal junction adenocarcinoma. Results Bemarituzumab PK is best described by a two-compartment model with parallel linear and nonlinear (Michaelis–Menten) elimination from the central compartment. Albumin, gender, and body weight were identified as the covariates on the linear clearance and/or volume of distribution in the central compartment, and no dose adjustment was warranted. An empirical target of bemarituzumab Ctrough of ≥ 60 µg/mL was projected to achieve > 95% receptor occupancy based on in vitro data. Fifteen mg/kg every 2 weeks, with a single dose of 7.5 mg/kg on Cycle 1 Day 8, was projected to achieve the target Ctrough on Day 15 in 98% of patients with 96% maintaining the target at steady state, which was confirmed in the FIGHT trial. Conclusion A projected dose and schedule to achieve the target Ctrough was validated in phase 1 of the FIGHT trial which supported selection of the phase 2 dose and schedule for bemarituzumab. Electronic supplementary material The online version of this article (10.1007/s00280-020-04139-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Xiang
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA.
| | - Lucy Liu
- Shanghai Qiangshi Information Technology Co., Ltd, Shanghai, China
| | - Yuying Gao
- Shanghai Qiangshi Information Technology Co., Ltd, Shanghai, China
| | - Ago Ahene
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Monica Macal
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA.,TRex Bio, Inc., South San Francisco, CA, USA
| | - Amy W Hsu
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA.,Merck and Co., South San Francisco, CA, USA
| | - Lyndah Dreiling
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Helen Collins
- Five Prime Therapeutics, Inc., 111 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| |
Collapse
|
47
|
Schaalan M, Mohamed W, Fathy S. MiRNA-200c, MiRNA-139 and ln RNA H19; new predictors of treatment response in H-pylori- induced gastric ulcer or progression to gastric cancer. Microb Pathog 2020; 149:104442. [PMID: 32795593 DOI: 10.1016/j.micpath.2020.104442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the pathogenesis of gastric ulcer and progression to gastric cancer could be attributed to altered inflammatory/immunological response and associated differential non-coding RNAs expression signatures. However, co-expression profiling of lncRNA-miRNAs in GU/GC patients are scarcely focused on. Therefore, in the present study the expression of H19 and related miRNAs including miR-139, and miR-200 were assayed in the plasma samples of treatment responsive GU vs nonresponsive GC patients. This study is a case-control study carried out on 130 subjects recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, in Egypt. All recruited patients were diagnosed with H-pylori infection, 50 of them were gastric cancer patients (GC), with previous H-pylori induced gastric ulcer but were treatment non-respondent. Real-time PCR was performed to evaluate the expression level of serum non-coding RNA; miRNA-200c, miR-139, Ln RNA H19 in patients with peptic ulcer treatment non-respondent, who progressed to GC vs non-progressed gastric ulcer patients (GU) (n = 50), and compared to early diagnosed H-pylori-gastric ulcer patients (n = 30). The association between these miRNAs and the FGF-18/FGF-R signaling indicators of H-pylori-GC pathogenesis were then investigated. RESULTS: showed that the H19 level was significantly elevated while miR-139 and miR-200c expression were significantly down-regulated in GC patients, compared to GU participants (P < 0.01). The herein investigated ncRNAs are correlated to the disease duration with Ln H19 being significantly correlated with all inflammatory markers; TNF-α, INF-γ, TAC, MMP-9, and FGF18/FGFR2. A significant correlation was also observed between miRNA 200c and each of miRNA 139 and FGFR2. Moreover, ROC analysis revealed that miRNA 200c showed the highest AUC (0.906) and 81.2% sensitivity and 100% specificity. Moreover, the combined analysis of miRNA 200c/miRNA 139 revealed superior AUC (0.96) and 93% sensitivity and 100% specificity, than each separately. As for discriminative accuracy between stages III to IV of gastric cancer, LncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%). The current study demonstrated that the combination of serum miRNA 200c/miRNA 139 expression levels (down-regulation) could provide a new potential prognostic panel for GU predictive response and potential sequelae. In conclusion, LncRNA H19 and related miRNAs, miRNA 200c/miRNA 139, could serve as a potential diagnostic biomarker for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Mona Schaalan
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Waleed Mohamed
- Department of Internal Medicine, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt.
| | - Shimaa Fathy
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| |
Collapse
|
48
|
Punjani N, Lamb DJ. Male infertility and genitourinary birth defects: there is more than meets the eye. Fertil Steril 2020; 114:209-218. [PMID: 32741459 PMCID: PMC10590568 DOI: 10.1016/j.fertnstert.2020.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Male factor infertility is a significant problem present in up to 50% of infertile couples. The relationship between male infertility and systemic disease is of significant interest, and emerging evidence suggests a relationship between male infertility and male genitourinary (GU) birth defects (cryptorchidism, hypospadias, ambiguous genitalia, and congenital anomalies of the kidney and urinary tract). Many of these birth defects are treated in isolation by busy urologists without acknowledgment that these may be related to more global syndromic conditions. Conversely, geneticists and nonurologists who treat variable systemic phenotypes may overlook GU defects, which are indeed related conditions. Many of these defects are attributed to copy number variants dosage-sensitive genes due to chromosome microdeletions or microduplications. These variants are responsible for disease phenotypes seen in the general population. The copy number variants described in this review are syndromic in some cases and responsible for both GU birth defects as well as other systemic phenotypes. This review highlights the emerging evidence between these birth defects, male infertility, and other systemic conditions.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, New York
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York; Center for Reproductive Genomics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
49
|
Lian Z, Du W, Zhang Y, Fu Y, Liu T, Wang A, Cai T, Zhu J, Zeng Y, Liu Z, Huang JA. Anlotinib can overcome acquired resistance to EGFR-TKIs via FGFR1 signaling in non-small cell lung cancer without harboring EGFR T790M mutation. Thorac Cancer 2020; 11:1934-1943. [PMID: 32433828 PMCID: PMC7327692 DOI: 10.1111/1759-7714.13485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Although many studies have defined mechanisms of resistance to EGFR‐TKIs, acquired resistance remains the major limitation of monotherapy with EGFR‐TKIs. Methods Cell viability was analyzed using a Cell Counting Kit‐8 (CCK‐8) assay. EGFR T790M mutation was sequenced on a HiSeq 4000 platform. mRNAs from HCC827 and HCC827 gefitinib‐resistant (GR) cells were analyzed by genome analyzer‐based deep sequencing. The effect of anlotinib on apoptosis and cell cycle arrest of HCC827 GR was detected by fluorescence‐activated cell sorting (FACS) analysis. A mouse xenograft model was used to assess the effect of anlotinib on HCC827 GR cells. Results The T790M mutation was found in the PC‐9 GR cell line but not in the HCC827 GR cell line. Anlotinib could suppress the growth of HCC827 GR cells by inhibiting FGFR1 in vitro and in a mouse xenograft model. Moreover, FGFR1 was overexpressed in HCC827 GR cells, and the knockdown of FGFR1 reversed gefitinib resistance in HCC827 GR cells. Furthermore, anlotinib induced apoptosis and cell cycle arrest in HCC827 GR cells by increasing the activity of Caspase‐3. Conclusions FGFR1 overexpression could be the mechanism of EGFR‐TKI acquired resistance and anlotinib can suppresse the growth of EGFR‐TKI‐resistant NSCLC cells without T790M mutation.
Collapse
Affiliation(s)
- Zengzhi Lian
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Yang Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Yulong Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Anqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Tingting Cai
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| |
Collapse
|
50
|
Catenacci DVT, Rasco D, Lee J, Rha SY, Lee KW, Bang YJ, Bendell J, Enzinger P, Marina N, Xiang H, Deng W, Powers J, Wainberg ZA. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J Clin Oncol 2020; 38:2418-2426. [PMID: 32167861 PMCID: PMC7367551 DOI: 10.1200/jco.19.01834] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To evaluate the safety, pharmacokinetics, and preliminary activity of bemarituzumab in patients with FGFR2b-overexpressing gastric and gastroesophageal junction adenocarcinoma (GEA). PATIENTS AND METHODS FPA144-001 was a phase I, open-label, multicenter trial consisting of the following 3 parts: part 1a involved dose escalation in patients with recurrent solid tumors at doses ranging from 0.3 to 15 mg/kg; part 1b involved dose escalation in patients with advanced-stage GEA; and part 2 involved dose expansion in patients with advanced-stage GEA that overexpressed FGFR2b at various levels (4 cohorts; high, medium, low, and no FGFR2b overexpression) and 1 cohort of patients with FGFR2b-overexpressing advanced-stage bladder cancer. RESULTS Seventy-nine patients were enrolled; 19 were enrolled in part 1a, 8 in part 1b, and 52 in part 2. No dose-limiting toxicities were reported, and the recommended dose was identified as 15 mg/kg every 2 weeks based on safety, tolerability, pharmacokinetic parameters, and clinical activity. The most frequent treatment-related adverse events (TRAEs) were fatigue (17.7%), nausea (11.4%), and dry eye (10.1%). Grade 3 TRAEs included nausea (2 patients) and anemia, neutropenia, increased AST, increased alkaline phosphatase, vomiting, and an infusion reaction (1 patient each). Three (10.7%) of 28 patients assigned to a cohort receiving a dose of ≥ 10 mg/kg every 2 weeks for ≥ 70 days reported reversible grade 2 corneal TRAEs. No TRAEs of grade ≥ 4 were reported. Five (17.9%; 95% CI, 6.1% to 36.9%) of 28 patients with high FGFR2b-overexpressing GEA had a confirmed partial response. CONCLUSION Overall, bemarituzumab seems to be well tolerated and demonstrated single-agent activity as late-line therapy in patients with advanced-stage GEA. Bemarituzumab is currently being evaluated in combination with chemotherapy in a phase III trial as front-line therapy for patients with high FGFR2b-overexpressing advanced-stage GEA.
Collapse
Affiliation(s)
| | - Drew Rasco
- The START Center for Cancer Care, San Antonio, TX
| | - Jeeyun Lee
- Samsung Medical Center, Seoul, South Korea
| | - Sun Young Rha
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yung Jue Bang
- Seoul National University College of Medicine, Seoul, South Korea
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN
| | | | | | - Hong Xiang
- Five Prime Therapeutics, South San Francisco, CA
| | - Wei Deng
- Five Prime Therapeutics, South San Francisco, CA
| | | | | |
Collapse
|