1
|
Gheorghiu A, Brunborg C, Johannesen TB, Helseth E, Zwart JA, Wiedmann MKH. Lifestyle and metabolic factors affect risk for meningioma in women: a prospective population-based study (The Cohort of Norway). Front Oncol 2024; 14:1428142. [PMID: 39188673 PMCID: PMC11345274 DOI: 10.3389/fonc.2024.1428142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background Meningioma is the most common primary brain tumor, with a clear preponderance in women. Obesity is considered a risk factor for the development of meningioma. Obesity is also the clinical hallmark of metabolic syndrome, characterized by glucose intolerance, dyslipidemia, and hypertension. Lifestyle and metabolic factors directly impact overweight and obesity and are therefore potential risk factors for meningioma development. The aim of this study is to assess lifestyle and metabolic factors for meningioma risk in women. Methods The Cohort of Norway (CONOR) is a nationwide health survey, conducted between 1994 and 2003, including anthropometric measures, blood tests, and health questionnaires. Linkage to the National Cancer Registry enabled the identification of intracranial meningioma during follow-up until December 2018. Results A total of 81,652 women were followed for a combined total of 1.5 million years, and 238 intracranial meningiomas were identified. Increasing levels of physical activity (HR 0.81; 95% CI 0.68-0.96; p trend <0.02) and parity (HR 0.83; 95% CI 0.71-0.97; p trend <0.03) were negatively associated with meningioma risk. Diabetes mellitus or glucose intolerance increased the risk for meningioma (HR 2.54; 95% CI 1.60-4.05). Overweight and obesity were not associated with meningioma risk, nor was metabolic syndrome. However, participants without metabolic dysfunction had a reduced meningioma risk, while participants with all five metabolic factors present had a 4-fold risk increase for meningioma (HR 4.28; 95% CI 1.34-13.68). Conclusion Lifestyle factors seem to significantly influence meningioma risk. However, disentangling the complex associations and interactions between factors for meningioma risk will be a challenging task for future studies.
Collapse
Affiliation(s)
- Anamaria Gheorghiu
- Department of Neurosurgery, Bagdasar-Arseni University Hospital, Bucharest, Romania
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tom B. Johannesen
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Immler M, Wolfram M, Oevermann A, Walter I, Wolfesberger B, Tichy A, Gradner G. Expression of somatostatin receptors in canine and feline meningioma. Vet Med Sci 2024; 10:e1537. [PMID: 39011594 PMCID: PMC11250153 DOI: 10.1002/vms3.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES The standard treatment for canine and feline meningiomas includes radiotherapy, surgical excision or combined therapy. However, new therapeutic approaches are required due to the possible recurrence or progression of meningiomas despite initial therapy. Adjunctive therapy with synthetic long-acting somatostatin (SST) analogues has been described in humans with SST-expressing tumours. The expression of SST receptors (SSTRs) by feline meningiomas is currently unknown, and there are little data about canine meningiomas. We hypothesized that SSTR is expressed by canine and feline meningiomas (S1). METHODS Seven canines and 11 felines with histologically confirmed meningiomas underwent STTR screening. RNA expressions of SSTR1, SSTR2, SSTR3 and SSTR5 (canine) and SSTR1-SSTR 5 (feline) in fresh frozen and formalin-fixed and paraffin-embedded (FFPE) samples were investigated using real-time (RT)-qPCR. The expression of SSTR1 and SSTR2 in FFPE samples was evaluated using immunohistochemistry (IHC). The specificity of applied antibodies for canine and feline species was confirmed by western blotting. RESULTS In canine meningiomas (n = 7), RNA expression of SSTR1, SSTR2 and SSTR5 was detected in all samples; SSTR3 RNA expression was detected in only 33% of samples. In feline meningiomas (n = 12), RNA expression of SSTR1, SSTR4, SSTR5 and SSTR2 was detected in 91%, 46%, 46% and 36% of samples, respectively; SSTR3 was not expressed. Overall, the detection rate was lower in FFPE samples. IHC revealed the expression of SSTR1 and SSTR2 in all samples from both species. However, it is important to exercise caution when interpreting IHC results due to the presence of diffuse background staining. CONCLUSIONS SSTRs are widely expressed in canine and feline meningiomas, thereby encouraging further studies investigating SSTR expression to conduct trials about the effect of adjunctive therapy with long-acting SST-analogues.
Collapse
Affiliation(s)
- Martin Immler
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Michael Wolfram
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Anna Oevermann
- Division of Neurological SciencesVetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012BernSwitzerland
| | - Ingrid Walter
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Birgitt Wolfesberger
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Alexander Tichy
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Gabriele Gradner
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| |
Collapse
|
3
|
Joy Trybula S, Nandoliya KR, Youngblood MW, Karras CL, Fernandez LG, Oyon DE, Texakalidis P, Khan OH, Lesniak MS, Tate MC, Rosenow JM, Hill VB, Hijaz TA, Russell EJ, Sachdev S, Kalapurakal JA, Horbinski CM, Magill ST, Chandler JP. Predictors of salvage therapy for parasagittal meningiomas treated with primary surgery, radiosurgery, or surgery plus adjuvant radiotherapy. J Clin Neurosci 2024; 124:102-108. [PMID: 38685181 DOI: 10.1016/j.jocn.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Parasagittal meningiomas (PM) are treated with primary microsurgery, radiosurgery (SRS), or surgery with adjuvant radiation. We investigated predictors of tumor progression requiring salvage surgery or radiation treatment. We sought to determine whether primary treatment modality, or radiologic, histologic, and clinical variables were associated with tumor progression requiring salvage treatment. METHODS Retrospective study of 109 consecutive patients with PMs treated with primary surgery, radiation (RT), or surgery plus adjuvant RT (2000-2017) and minimum 5 years follow-up. Patient, radiologic, histologic, and treatment data were analyzed using standard statistical methods. RESULTS Median follow up was 8.5 years. Primary treatment for PM was surgery in 76 patients, radiation in 16 patients, and surgery plus adjuvant radiation in 17 patients. Forty percent of parasagittal meningiomas in our cohort required some form of salvage treatment. On univariate analysis, brain invasion (OR: 6.93, p < 0.01), WHO grade 2/3 (OR: 4.54, p < 0.01), peritumoral edema (OR: 2.81, p = 0.01), sagittal sinus invasion (OR: 6.36, p < 0.01), sagittal sinus occlusion (OR: 4.86, p < 0.01), and non-spherical shape (OR: 3.89, p < 0.01) were significantly associated with receiving salvage treatment. On multivariate analysis, superior sagittal sinus invasion (OR: 8.22, p = 0.01) and WHO grade 2&3 (OR: 7.58, p < 0.01) were independently associated with receiving salvage treatment. There was no difference in time to salvage therapy (p = 0.11) or time to progression (p = 0.43) between patients receiving primary surgery alone, RT alone, or surgery plus adjuvant RT. Patients who had initial surgery were more likely to have peritumoral edema on preoperative imaging (p = 0.01). Median tumor volume was 19.0 cm3 in patients receiving primary surgery, 5.3 cm3 for RT, and 24.4 cm3 for surgery plus adjuvant RT (p < 0.01). CONCLUSION Superior sagittal sinus invasion and WHO grade 2/3 are independently associated with PM progression requiring salvage therapy regardless of extent of resection or primary treatment modality. Parasagittal meningiomas have a high rate of recurrence with 80.0% of patients with WHO grade 2/3 tumors with sinus invasion requiring salvage treatment whereas only 13.6% of the WHO grade 1 tumors without sinus invasion required salvage treatment. This information is useful when counseling patients about disease management and setting expectations.
Collapse
Affiliation(s)
- S Joy Trybula
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Constantine L Karras
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luis G Fernandez
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel E Oyon
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pavlos Texakalidis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Osaama H Khan
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Virginia B Hill
- Department of Radiology, Division of Neuroradiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek A Hijaz
- Department of Radiology, Division of Neuroradiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric J Russell
- Department of Radiology, Division of Neuroradiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - John A Kalapurakal
- Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - James P Chandler
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Inetas-Yengin G, Bayrak OF. Related mechanisms, current treatments, and new perspectives in meningioma. Genes Chromosomes Cancer 2024; 63:e23248. [PMID: 38801095 DOI: 10.1002/gcc.23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Meningiomas are non-glial tumors that are the most common primary brain tumors in adults. Although meningioma can possibly be cured with surgical excision, variations in atypical/anaplastic meningioma have a high recurrence rate and a poor prognosis. As a result, it is critical to develop novel therapeutic options for high-grade meningiomas. This review highlights the current histology of meningiomas, prevalent genetic and molecular changes, and the most extensively researched signaling pathways and therapies in meningiomas. It also reviews current clinical studies and novel meningioma treatments, including immunotherapy, microRNAs, cancer stem cell methods, and targeted interventions within the glycolysis pathway. Through the examination of the complex landscape of meningioma biology and the highlighting of promising therapeutic pathways, this review opens the way for future research efforts aimed at improving patient outcomes in this prevalent intracranial tumor entity.
Collapse
Affiliation(s)
- Gizem Inetas-Yengin
- Department of Medical Genetics, Yeditepe University, Medical School, Istanbul, Turkey
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University, Medical School, Istanbul, Turkey
| |
Collapse
|
5
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
6
|
Meidrops K, Groma V, Goldins NR, Apine L, Skuja S, Svirskis S, Gudra D, Fridmanis D, Stradins P. Understanding Bartonella-Associated Infective Endocarditis: Examining Heart Valve and Vegetation Appearance and the Role of Neutrophilic Leukocytes. Cells 2023; 13:43. [PMID: 38201247 PMCID: PMC10778237 DOI: 10.3390/cells13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The endocardium and cardiac valves undergo severe impact during infective endocarditis (IE), and the formation of vegetation places IE patients at a heightened risk of embolic complications and mortality. The relevant literature indicates that 50% of IE cases exhibit structurally normal cardiac valves, with no preceding history of heart valve disease. Gram-positive cocci emerge as the predominant causative microorganisms in IE, while Gram-negative Bartonella spp., persisting in the endothelium, follow pathogenic pathways distinct from those of typical IE-causing agents. Employing clinical as well as advanced microbiological and molecular assays facilitated the identification of causative pathogens, and various morphological methods were applied to evaluate heart valve damage, shedding light on the role of neutrophilic leukocytes in host defense. In this research, the immunohistochemical analysis of neutrophilic leukocyte activation markers such as myeloperoxidase, neutrophil elastase, calprotectin, and histone H3, was performed. A distinct difference in the expression patterns of these markers was observed when comparing Bartonella spp.-caused and non-Bartonella spp.-caused IE. The markers exhibited significantly higher expression in non-Bartonella spp.-caused IE compared to Bartonella spp.-caused IE, and they were more prevalent in vegetation than in the valvular leaflets. Notably, the expression of these markers in all IE cases significantly differed from that in control samples. Furthermore, we advocated the use of 16S rRNA Next-Generation Sequencing on excised heart valves as an effective diagnostic tool for IE, particularly in cases where blood cultures yielded negative results. The compelling results achieved in this study regarding the enigmatic nature of Bartonella spp. IE's pathophysiology contribute significantly to our understanding of the peculiarities of inflammation and immune responses.
Collapse
Affiliation(s)
- Kristians Meidrops
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Valerija Groma
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia
| | - Niks Ricards Goldins
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
| | - Lauma Apine
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
| | - Sandra Skuja
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Joint Laboratory of Electron Microscopy, Riga Stradins University, 9 Kronvalda Boulevard, LV-1010 Riga, Latvia
| | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Str. 5, LV-1067 Riga, Latvia;
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (D.F.)
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (D.F.)
| | - Peteris Stradins
- Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia (L.A.); (P.S.)
- Centre of Cardiac Surgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|
7
|
SAITO R, CHAMBERS JK, UCHIDA K. The expression of platelet-derived growth factor and its receptor in canine and feline meningiomas. J Vet Med Sci 2023; 85:1057-1062. [PMID: 37558425 PMCID: PMC10600539 DOI: 10.1292/jvms.23-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Feline meningiomas usually have benign biological behavior, while canine and human meningiomas are often classified as grade 2 or 3. Activation of the platelet-derived growth factor (PDGF) and its receptor signal pathway through PDGFβ/Rβ autocrine and paracrine is considered to play an important role in the tumor proliferation and malignant transformation of human meningiomas. However, there have been few studies about the expression of these molecules in canine meningiomas and no studies about their expression in feline meningiomas. We analyzed the PDGFα/Rα and PDGFβ/Rβ expression in canine and feline meningiomas by immunohistochemistry and western blotting. Immunohistochemically, most canine meningiomas showed the expression of PDGFα (42/44; 95.5%), PDGFRα (44/44; 100%) and PDGFRβ (35/44; 79.5%), and a few showed the expression of PDGFβ (8/44; 18.2%). In contrast, feline meningiomas were immunopositive for PDGFRα and PDGFRβ in all cases (14/14; 100%), while no or a few cases expressed PDGFα (0/14; 0%) and PDGFβ (2/14; 14.3%). Western blotting revealed specific bands for PDGFα, PDGFRα and PDGFRβ, but not for PDGFβ in a canine meningioma. In a feline meningioma, specific bands for PDGFRα and PDGFRβ were detected, but not for PDGFα and PDGFβ. These results suggested that canine meningiomas commonly express PDGFα/Rα, and thus autocrine or paracrine PDGFα/Rα signaling may be involved in their initiation and progression. Moreover, PDGF negativity may be related to benign biological behavior and a low histopathological grade in feline meningioma.
Collapse
Affiliation(s)
- Ryo SAITO
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Yang J, Guo Z, Song M, Pan Q, Zhao J, Huang Y, Han Y, Ouyang D, Yang C, Chen H, Di M, Tang Y, Zhu Q, Wang Q, Li Y, He J, Weng D, Xiang T, Xia J. Lenvatinib improves anti-PD-1 therapeutic efficacy by promoting vascular normalization via the NRP-1-PDGFRβ complex in hepatocellular carcinoma. Front Immunol 2023; 14:1212577. [PMID: 37545530 PMCID: PMC10400764 DOI: 10.3389/fimmu.2023.1212577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The limited response to immune checkpoint blockades (ICBs) in patients with hepatocellular carcinoma (HCC) highlights the urgent need for broadening the scope of current immunotherapy approaches. Lenvatinib has been shown a potential synergistic effect with ICBs. This study investigated the optimal method for combining these two therapeutic agents and the underlying mechanisms. Methods The effect of lenvatinib at three different doses on promoting tissue perfusion and vascular normalization was evaluated in both immunodeficient and immunocompetent mouse models. The underlying mechanisms were investigated by analyzing the vascular morphology of endothelial cells and pericytes. The enhanced immune infiltration of optimal-dose lenvatinib and its synergistic effect of lenvatinib and anti-PD-1 antibody was further evaluated by flow cytometry and immunofluorescence imaging. Results There was an optimal dose that superiorly normalized tumor vasculature and increased immune cell infiltration in both immunodeficient and immunocompetent mouse models. An adequate concentration of lenvatinib strengthened the integrity of human umbilical vein endothelial cells by inducing the formation of the NRP-1-PDGFRβ complex and activating the Crkl-C3G-Rap1 signaling pathway in endothelial cells. Additionally, it promoted the interaction between endothelial cells and pericytes by inducing tyrosine-phosphorylation in pericytes. Furthermore, the combination of an optimal dose of lenvatinib and an anti-PD-1 antibody robustly suppressed tumor growth. Conclusions Our study proposes a mechanism that explains how the optimal dose of lenvatinib induces vascular normalization and confirms its enhanced synergistic effect with ICBs.
Collapse
Affiliation(s)
- Jieying Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhixing Guo
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Ultrasound, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mengjia Song
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuzhong Pan
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingjing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Huang
- Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Dijun Ouyang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaopin Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muping Di
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qijing Wang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongqiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Desheng Weng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tong Xiang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - JianChuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Tang H, Hu Y, Deng J. Extracellular Vesicles and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:69-80. [PMID: 37603273 DOI: 10.1007/978-981-99-1443-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hypertension implicates multiple organs and systems, accounting for the majority of cardiovascular diseases and cardiac death worldwide. Extracellular vesicles derived from various types of cells could transfer a variety of substances such as proteins, lipids, and nucleic acids from cells to cells, playing essential roles in both physiological and pathological processes. Extracellular vesicles are demonstrated to be closely associated with the development of essential hypertension by mediating the renin-angiotensin-aldosterone system and crosstalk between multiple vascular cells. Extracellular vesicles also participate in various kinds of pathogenesis of secondary hypertensions including acute kidney injury, renal parenchymal diseases, kidney transplantation, secretory diseases (primary aldosteronism, pheochromocytoma and paraganglioma, Cushing's syndrome), and obstructive sleep apnea. Extracellular vesicles have been proved to have the potential to be served as new biomarkers in the diagnosis, treatment, and prognosis assessment of hypertension. In the future, large multicenter cohorts are highly in demand for further verifying the sensitivity and specificity of extracellular vesicles as biomarkers.
Collapse
Affiliation(s)
- Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxue Hu
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Jiali Deng
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
10
|
Aihara S, Nakano T, Torisu K, Kitazono T. Glucose degradation products in peritoneal dialysis solution impair angiogenesis by dysregulating angiogenetic factors in endothelial and vascular smooth muscle cells. Clin Exp Nephrol 2022; 26:1160-1169. [PMID: 36070106 DOI: 10.1007/s10157-022-02272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The accumulation of glucose degradation products (GDPs) during peritoneal dialysis (PD) can lead to immature angiogenesis in the peritoneum. However, the effect of GDPs on angiogenesis, at concentrations observed in dialysate effluent, has not been widely investigated. We do not know how the inflammation observed in PD-related peritonitis affects angiogenesis of the peritoneum. METHODS Human umbilical vessel endothelial cells (HUVEC) and human umbilical aortic smooth muscle cells (HUASMC) were used to examine the response to the three main GDPs found in peritoneal dialysate (methylglyoxal (MGO), 3-deoxyglucosone (3-DG), and 5-hydroxymethylfurfural (5-HMF). Supernatant from lipopolysaccharide (LPS)-activated murine macrophage cell lines (RAW 264.7 cells) were used to stimulate angiogenesis in the peritoneum. Changes in the expression of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor B (PDGFB) in HUVEC, and PDGF-receptor beta (PDGF-Rβ) in HUASMC, were examined by real-time PCR, Western blot, and ELISA. RESULTS In HUVECs, the expression of PDGFB mRNA and protein were decreased by exposure to MGO, 3-DG, and 5-HMF at concentrations observed in dialysate effluent. A subsequent decrease in secreted PDGF-BB was observed. In HUASMCs, MGO and 5-HMF increased the expression of VEGF-A mRNA and protein, while 5-HMF decreased the expression of PDGF-Rβ. VEGF-A is upregulated, and PDGF-Rβ is downregulated, by conditioned medium of LPS-stimulated macrophages in HUASMCs. CONCLUSIONS The GDPs of PD effluent cause an imbalance of angiogenic factors in endothelial cells and vascular smooth muscle cells that may lead to immature angiogenesis in the peritoneum.
Collapse
Affiliation(s)
- Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
von Spreckelsen N, Kesseler C, Brokinkel B, Goldbrunner R, Perry A, Mawrin C. Molecular neuropathology of brain-invasive meningiomas. Brain Pathol 2022; 32:e13048. [PMID: 35213084 PMCID: PMC8877755 DOI: 10.1111/bpa.13048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Invasion of brain tissue by meningiomas has been identified as one key factor for meningioma recurrence. The identification of meningioma tumor tissue surrounded by brain tissue in neurosurgical samples has been touted as a criterion for atypical meningioma (CNS WHO grade 2), but is only rarely seen in the absence of other high-grade features, with brain-invasive otherwise benign (BIOB) meningiomas remaining controversial. While post-surgery irradiation therapy might be initiated in brain-invasive meningiomas to prevent recurrences, specific treatment approaches targeting key molecules involved in the invasive process are not established. Here we have compiled the current knowledge about mechanisms supporting brain tissue invasion by meningiomas and summarize preclinical models studying targeted therapies with potential inhibitory effects.
Collapse
Affiliation(s)
- Niklas von Spreckelsen
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Christoph Kesseler
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| | | | - Roland Goldbrunner
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Arie Perry
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of Neurological SurgeryUCSFSan FranciscoCaliforniaUSA
| | - Christian Mawrin
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
12
|
La Salvia S, Gunasekaran PM, Byrd JB, Erdbrügger U. Extracellular Vesicles in Essential Hypertension: Hidden Messengers. Curr Hypertens Rep 2020; 22:76. [PMID: 32880744 DOI: 10.1007/s11906-020-01084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Hypertension affects about half of all Americans, yet in the vast majority of cases, the factors causing the hypertension cannot be clearly delineated. Developing a more precise understanding of the molecular pathogenesis of HTN and its various phenotypes is therefore a pressing priority. Circulating and urinary extracellular vesicles (EVs) are potential novel candidates as biomarkers and bioactivators in HTN. EVs are a heterogeneous population of small membrane fragments shed from various cell types into various body fluids. As EVs carry protein, RNA, and lipids, they also play a role as effectors and novel cell-to-cell communicators. In this review, we discuss the diagnostic, functional, and regenerative role of EVs in essential HTN and focus on EV protein and RNA cargo as the most extensively studied EV cargo. RECENT FINDINGS The field of EVs in HTN is still a young one and earlier studies have not used the novel EV detection tools currently available. More rigor and transparency in EV research are needed. Current data suggest that EVs represent potential novel biomarkers in HTN. EVs correlate with HTN severity and possibly end-organ damage. However, it has yet to be discerned which specific subtype(s) of EV reflects best HTN pathophysiology. Evolving studies are also showing that EVs might be novel regulators in vascular and renal tubular function and also be therapeutic. RNA in EVs has been studied in the context of hypertension, largely in the form of studies of miRNA, which are reviewed herein. Beyond miRNAs, mRNA in urinary EVs changed in response to sodium loading in humans. EVs represent promising novel biomarkers and bioactivators in essential HTN. Novel tools are being developed to apply more rigor in EV research including more in vivo models and translation to humans.
Collapse
Affiliation(s)
- Sabrina La Salvia
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA.
| | - Pradeep Moon Gunasekaran
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - James Brian Byrd
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Uta Erdbrügger
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA
| |
Collapse
|
13
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
14
|
Burnett BA, Womeldorff MR, Jensen R. Meningioma: Signaling pathways and tumor growth. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:137-150. [PMID: 32553285 DOI: 10.1016/b978-0-12-804280-9.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Meningiomas are the most common primary intracranial brain tumor in adult humans; however, our understanding of meningioma tumorigenesis is relatively limited in comparison with the body of research available for other intracranial tumors such as gliomas. Here we briefly describe the current understanding of aberrant signaling pathways and tumor growth mechanisms responsible for meningioma differentiation, cellular growth, development, inhibition, and death. Numerous cellular functions impacted by these signaling pathways are critical for angiogenesis, proliferation, and apoptosis. Ultimately, a further understanding of the signaling pathways involved in meningioma tumorigenesis will lead to better treatment modalities in the future.
Collapse
Affiliation(s)
- Brian Andrew Burnett
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | | | - Randy Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
15
|
Ansari SF, Shah KJ, Hassaneen W, Cohen-Gadol AA. Vascularity of meningiomas. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:153-165. [PMID: 32553286 DOI: 10.1016/b978-0-12-804280-9.00010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Information on the vascular supply to meningiomas is critical to the neurosurgeon. Most meningiomas are supplied by the external carotid artery, though many get pial contribution as well. Angiogenesis is critical for these neoplasms to grow. Vascular endothelial growth factor (VEGF) has been a popular target of research to decrease angiogenesis. Peritumoral brain edema (PTBE) is occasionally seen in meningiomas, which makes surgical resection more challenging. The exact cause of PTBE remains unclear, but a number of factors have been postulated to contribute. Assessment of the vascularity of meningiomas is best carried out with angiography, but noninvasive techniques are improving, diminishing the need for more invasive imaging. Embolization of tumors can be performed to minimize perioperative blood loss and potentially lower surgical morbidity. However, it has not been shown to improve outcomes, and procedural risks exist. Higher grade tumors commonly have higher vascularity. Higher vascular meningiomas are more likely to recur and have higher levels of VEGF. The vascularity of meningiomas remains a topic of interest and is the focus of many research projects.
Collapse
Affiliation(s)
- Shaheryar F Ansari
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, United States
| | - Kushal J Shah
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, United States; Department of Neurosurgery, University of Kansas, Kansas City, MO, United States
| | - Wael Hassaneen
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, United States; Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL, United States; Department of Neurosurgery, Carle Illinois College of Medicine, Champaign, IL, United States
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, IN, United States.
| |
Collapse
|
16
|
Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. Front Oncol 2019; 9:1031. [PMID: 31649887 PMCID: PMC6795693 DOI: 10.3389/fonc.2019.01031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.
Collapse
Affiliation(s)
- Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Sonntagbauer
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology, and Biophysics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Jungwirth G, Warta R, Beynon C, Sahm F, von Deimling A, Unterberg A, Herold-Mende C, Jungk C. Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT. Acta Neuropathol Commun 2019; 7:140. [PMID: 31470906 PMCID: PMC6716845 DOI: 10.1186/s40478-019-0793-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Intraventricular meningiomas (IVMs) account for less than 5% of all intracranial meningiomas; hence their molecular phenotype remains unknown. In this study, we were interested whether genetic alterations in IVMs differ from meningiomas in other locations and analyzed our institutional series with respect to clinical and molecular characteristics. A total of 25 patients with surgical removal of an IVM at our department between 1986 and 2018 were identified from our institutional database. Median progression-free survival (PFS) was 79 months (range of 2-319 months) and PFS at 5 years was 86%. Corresponding tumor tissue was available for 18 patients including one matching recurrence and was subjected to targeted panel sequencing of 130 selected genes frequently mutated in brain cancers by applying a custom hybrid capture approach on a NextSeq500 instrument. Loss of chromosome 22q and 1p occurred frequently in 89 and 44% of cases. Deleterious NF2 mutations were found in 44% of IVMs (n = 8/18). In non-NF2-mutated IVMs, previously reported genetic alterations including TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT were lacking, suggesting alternative genes in the pathogenesis of non-NF2 IVMs. In silico analysis revealed possible damaging mutations of APC, GABRA6, GSE1, KDR, and two SMO missense mutations differing from previously reported ones. Interestingly, all WHO°II IVMs (n = 3) harbored SMARCB1 and SMARCA4 mutations, indicating a role of the SWI/SNF chromatin remodeling complex in aggressive IVMs.
Collapse
Affiliation(s)
- Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christopher Beynon
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, INF 224, D-69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, INF 224, D-69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, INF 400, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Okabayashi K, Narita T, Takashiro S, Nadaoka S, Kanai S, Ito D, Kitagawa M. mRNA expression of tumor-associated genes in canine grade I meningiomas. J Vet Med Sci 2019; 81:369-372. [PMID: 30674739 PMCID: PMC6451920 DOI: 10.1292/jvms.18-0491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study was undertaken to establish a method for measuring mRNA expression by using real-time RT-PCR in the diagnosis of canine meningiomas. When performing real-time RT-PCR, it is
essential to include appropriate control tissues and to select appropriate housekeeping genes as an internal standard. Based on the results of our study, RPS18 constitutes a
suitable internal standard for the comparison of mRNA expression between normal meninges and meningiomas. The results showed increased mRNA expression of VEGFA and
EGFR; however, mRNA expression of KDR was reduced. Measuring mRNA expression by using real-time RT-PCR with appropriate control tissues and internal
standards can provide useful information to understanding the pathogenesis of canine meningiomas, which corresponds with immunohistochemical findings.
Collapse
Affiliation(s)
- Ken Okabayashi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Takanori Narita
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Saki Takashiro
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sawako Nadaoka
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Shuichiro Kanai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Daisuke Ito
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masato Kitagawa
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
19
|
Dijkstra BM, Motekallemi A, den Dunnen WFA, Jeltema JR, van Dam GM, Kruyt FAE, Groen RJM. SSTR-2 as a potential tumour-specific marker for fluorescence-guided meningioma surgery. Acta Neurochir (Wien) 2018; 160:1539-1546. [PMID: 29858948 PMCID: PMC6060877 DOI: 10.1007/s00701-018-3575-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Meningiomas are the most frequently occurring primary intracranial tumours in adults. Surgical removal can only be curative by complete resection; however surgical access can be challenging due to anatomical localization and local invasion of bone and soft tissues. Several intraoperative techniques have been tried to improve surgical resection, including intraoperative fluorescence guided imaging; however, no meningioma-specific (fluorescent) targeting has been developed yet. Here, we aimed to identify the most promising biomarkers for targeted intra-operative fluorescence guided meningioma surgery. METHODS One hundred forty-eight meningioma specimens representing all meningioma grades were analysed using immunohistochemistry (IHC) on tissue microarrays (TMAs) to determine expression patterns of meningioma biomarkers epithelial membrane antigen (EMA), platelet-derived growth factor β (PDGF-β), vascular endothelial growth factor α (VEGF-α), and somatostatin receptor type 2 (SSTR-2). Subsequently, the most promising biomarker was selected based on TArget Selection Criteria (TASC). Marker expression was examined by IHC in 3D cell culture models generated from freshly resected tumour material. RESULTS TMA-IHC showed strongest staining for SSTR-2. All cases were positive, with 51.4% strong/diffuse, 30.4% moderate/diffuse and only 18.2% focal/weak staining patterns. All tested biomarkers showed at least weak positivity in all meningiomas, regardless of WHO grade. TASC analysis showed that SSTR-2 was the most promising target for fluorescence guided imaging, with a total score of 21 (out of 22). SSTR-2 expression was determined on original patient tumours and 3D cultures of three established cultures. CONCLUSIONS SSTR-2 expression was highly sensitive and specific in all 148 meningiomas, regardless of WHO grade. According to TASC analysis, SSTR-2 is the most promising receptor for meningioma targeting. After establishing in vitro meningioma models, SSTR-2 cell membrane expression was confirmed in two of three meningioma cultures as well. This indicates that specific fluorescence in an experimental setting can be performed for the further development of targeted fluorescence guided meningioma surgery and near-infrared fluorescent tracers targeting SSTR-2.
Collapse
Affiliation(s)
- B M Dijkstra
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - A Motekallemi
- Department of Neurosurgery, University Medical Center Münster, Münster, Germany
| | - W F A den Dunnen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J R Jeltema
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - G M van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - F A E Kruyt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R J M Groen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
20
|
Spagnuolo RD, Brich S, Bozzi F, Conca E, Castelli C, Tazzari M, Maestro R, Brenca M, Gualeni AV, Gloghini A, Stacchiotti S, Pierotti MA, Pilotti S, Negri T. Sunitinib-induced morpho-functional changes and drug effectiveness in malignant solitary fibrous tumours. Oncotarget 2018; 7:45015-45026. [PMID: 27304187 PMCID: PMC5216702 DOI: 10.18632/oncotarget.7523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Sunitinib improves the outcomes of patients with solitary fibrous tumours (SFTs). The aim of this study was to investigate and contextualise sunitinib-induced morpho-functional changes in order to gain insights into the drug's mechanism of action.To this end, four surgical specimens obtained from two sunitinib-responsive patients with malignant SFT, and one primary cell culture obtained from fresh tumoral tissue and its stabilised cell line, were studied by means of immunohistochemistry, bright field in situ hybridisation, immunofluorescence/confocal microscopy, and biochemistry.The post-sunitinib surgical samples were characterised by two biologically relevant morpho-functional changes: clear areas and necrotic foci. The first were associated with the attenuation/loss of PDGFRB expression and decreased mTOR signalling, and corresponded to a pathological response. The second were associated with the over-expression of PDGFRB and VEGFA, strong mTOR signalling activation, and the appearance of HIF1α expression, hallmarks of pathological progression. The analysis clearly showed that sunitinib reduces the vascular supply network and inhibits tumoral cells. It also either induces autophagy, thus favouring drug response, or impairs autophagy as a result of lysosome sequestration, thus favouring disease progression. These distinct autophagic events were associated with different myeloid immune contextures. Finally, we also found that PDGFRB is one of the components of a complex that includes Beclin 1 and VPS34.The results of these tissue-based analyses provide new insights into sunitinib's mechanism of action in SFT patients.
Collapse
Affiliation(s)
- Rosalin D Spagnuolo
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Brich
- MOSE-DEA, University of Trieste, Trieste, Italy.,Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabio Bozzi
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Conca
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumours, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella Tazzari
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumours, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Maestro
- Experimental Oncology 1, Centro di Riferimento Oncologico, Aviano, Italy
| | - Monica Brenca
- Experimental Oncology 1, Centro di Riferimento Oncologico, Aviano, Italy
| | - Ambra V Gualeni
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Scientific Directorate, Fondazione Città della Speranza, Padua, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Negri
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
21
|
Raheja A, Colman H, Palmer CA, Couldwell WT. Dramatic radiographic response resulting in cerebrospinal fluid rhinorrhea associated with sunitinib therapy in recurrent atypical meningioma: case report. J Neurosurg 2017; 127:965-970. [DOI: 10.3171/2016.9.jns161629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sunitinib is a multiple tyrosine kinase inhibitor with antiangiogenic, cytostatic, and antimigratory activity for meningiomas. A recent clinical trial of sunitinib for treatment of recurrent Grade II and III meningiomas suggested potential efficacy in this population, but only 2 patients exhibited significant radiographic response with tumor volume reduction. The authors illustrate another such case and discuss a complication related to this dramatic tumor volume reduction in aggressive skull base meningiomas.The authors describe the case of a 39-year-old woman who had undergone repeat surgical interventions and courses of radiotherapy over the previous 11 years for recurrent cranial and spinal meningiomas. Despite 4 operations over the course of 4 years on her right petroclival meningioma with cavernous sinus and jugular fossa extensions, she had progressive neurological deficits and tumor recurrences. The specimen histology progressed from WHO Grade I initially to Grade II at the time of the third recurrence. The lesion was then irradiated 3 times using stereotactic radiosurgery for further recurrences. More recently, the tumor size increased rapidly on imaging, in association with progressive neurological symptoms arising from brainstem compression and vasogenic edema. Institution of sunitinib therapy yielded a dramatic radiographic response, with marked reduction in the tumor volume and reduction of brainstem vasogenic edema within a few weeks of initiation of treatment. The significant radiographic response of tumor in the clival region was also associated with CSF rhinorrhea from a dural breach created by resolution of the invasive skull base meningioma, which necessitated withholding the sunitinib medication. To address the leak, the authors undertook surgical exploration and transsphenoidal packing using an autologous fat graft and a vascularized pedicled nasoseptal flap. The patient has done well during follow-up of 3 months after packing, with no evidence of recurrent CSF leak, and the medication was subsequently restarted.Prior clinical data and the dramatic radiographic response in this patient suggest that sunitinib holds promising therapeutic potential in carefully selected patients with recurrent atypical meningiomas where conventional strategies have been exhausted. There is a potential risk of associated CSF rhinorrhea, especially in more invasive skull base lesions showing dramatic radiographic response.
Collapse
|
22
|
Review of controversies in management of non-benign meningioma. J Clin Neurosci 2016; 31:37-46. [DOI: 10.1016/j.jocn.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/23/2022]
|
23
|
Differences in Dural Penetration of Clival Chordomas Are Associated with Different Prognosis and Expression of Platelet-Derived Growth Factor Receptor-β. World Neurosurg 2016; 98:288-295. [PMID: 27506406 DOI: 10.1016/j.wneu.2016.07.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We sought to compare the prognosis of clival chordomas with different dural penetration and establish the relationship between dural penetration and platelet-derived growth factor receptor (PDGFR)-β signaling pathway. METHODS Tumors in Type I (33 cases) showed limited dural penetration, while those in Type II (34 cases) had more serious dural penetration. Cox multivariate regression analysis was used to analyze risk factors affecting survival. Kaplan-Meier analysis measured overall survival (OS) and progression-free survival (PFS). To determine the relationship between dural penetration and PDGFR-β signaling, expression of PDGFR-β, Akt, mammalian target of rapamycin (mTOR), and phosphatase and tensin homolog (PTEN) expression was compared using immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and Western blotting. RESULTS Total resection was achieved in 9 cases in Type I and 11 in Type II. There were significant correlations between OS and dural penetration (P = 0.032) and age (P = 0.034). PFS correlated significantly with dural penetration (P = 0.022), gender (P = 0.001), and degree of resection (P = 0.001). Mean OS in Type I was significantly longer than in Type II (P = 0.046). Patients aged <55 years had longer OS than those aged ≥55 years (P = 0.004). Total resection was correlated with longer PFS (P = 0.011). Among patients with tumors totally resected, mean PFS in Type I was significantly longer than in Type II (P = 0.007). Expression of PDGFR-β in Type II was higher than in Type I. CONCLUSIONS Clival chordomas have different degrees of dural penetration. Patients with chordomas with serious dural penetration have poorer prognosis. Higher expression of PDGFR-β is related to more serious dural penetration of clival chordomas.
Collapse
|
24
|
Messerer M, Richoz B, Cossu G, Dhermain F, Hottinger A, Parker F, Levivier M, Daniel R. Recent advances in the management of atypical meningiomas. Neurochirurgie 2016; 62:213-22. [DOI: 10.1016/j.neuchi.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/17/2016] [Accepted: 02/26/2016] [Indexed: 11/26/2022]
|
25
|
Van Pham P, Vu NB, Phan NK. Hypoxia promotes adipose-derived stem cell proliferation via VEGF. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0004-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Hilton DA, Shivane A, Kirk L, Bassiri K, Enki DG, Hanemann CO. Activation of multiple growth factor signalling pathways is frequent in meningiomas. Neuropathology 2015; 36:250-61. [DOI: 10.1111/neup.12266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/14/2023]
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Leanne Kirk
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Kayleigh Bassiri
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - Doyo G Enki
- Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| |
Collapse
|
27
|
Chamberlain MC. IFN-α for recurrent surgery- and radiation-refractory high-grade meningioma: a retrospective case series. CNS Oncol 2015; 2:227-35. [PMID: 25054463 DOI: 10.2217/cns.13.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Limited literature is available regarding the treatment of recurrent surgery- and radiation-refractory meningioma, and it primarily examines the treatment of low-grade (WHO grade 1) meningioma. Data regarding systemic therapy for recurrent high-grade meningioma are sparse. A retrospective case series of patients with recurrent WHO grade 2/3 meningioma treated with IFN-α following progression after surgery, radiotherapy and hydroxyurea was carried out, with the primary study objective of overall response rate, and median and 6-month progression-free survival (PFS). PATIENTS & METHODS 35 patients (28 women and 17 men; median age 63 years; range: 36-86 years) with recurrent high-grade meningioma (WHO grade 2 [n = 22] or 3 [n = 13]) were treated with IFN-α (10 million units/m(2)) subcutaneously every 2 days; one cycle was operationally defined as 4 weeks of IFN-α. Patients had progressed radiographically after prior therapy with surgery (35 out of 35), radiotherapy (35 out of 35; external-beam radiotherapy: 35 out of 35; and stereotactic radiotherapy: 34 out of 35) and hydroxyurea chemotherapy (35 out of 35). One patient was also treated with a somatostatin analog before initiating IFN-α treatment. RESULTS Patients received one to 13 cycles (median: three) of IFN-α with moderate toxicity (100% of patients manifested grades 1-3 toxicity, of which only 20% were grade 3). There were no radiographic responses, 63% of patients had stable disease and 37% manifested progressive disease at first evaluation. PFS was 17% at 6 months (95% CI: 0.07-0.31; median PFS: 12 weeks; 95% CI: 8-20 weeks; range: 4-52 weeks). Following progression on IFN-α, the majority of patients (60%) were subsequently treated on an alternative therapy. CONCLUSION In this large retrospective series, IFN-α was moderately toxic, but appeared to have limited activity in patients with recurrent high-grade meningiomas.
Collapse
Affiliation(s)
- Marc C Chamberlain
- University of Washington, Department of Neurology & Neurological Surgery, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, 825 Eastlake Avenue E, PO Box 19023, MS-G4940, Seattle, WA 98109-1023, USA.
| |
Collapse
|
28
|
Jitariu AA, Cimpean AM, Kundnani NR, Raica M. Platelet-derived growth factors induced lymphangiogenesis: evidence, unanswered questions and upcoming challenges. Arch Med Sci 2015; 11:57-66. [PMID: 25861290 PMCID: PMC4379379 DOI: 10.5114/aoms.2015.49217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between angiogenesis and lymphangiogenesis in embryonic development continues during postnatal life and has specific mechanisms involving factors that initiate activation of the intracellular cascade for their specific receptors. Platelet-derived growth factors (PDGFs) and their corresponding receptors (PDGFRs) are known as important regulators of blood vessel development in both normal and pathologic angiogenesis. Despite some recent papers which reported a potential role of the PDGF/PDGFR axis in lymphatic spread of tumor cells, a few papers have suggested the potential role of PDGFs in tumor lymphangiogenesis development. The present paper summarizes the potential lymphangiogenic role of the PDGF/PDGFR axis, underlying upcoming challenges in the field.
Collapse
Affiliation(s)
| | | | | | - Marius Raica
- Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
29
|
Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. BIOMED RESEARCH INTERNATIONAL 2015; 2015:646853. [PMID: 25821815 PMCID: PMC4363610 DOI: 10.1155/2015/646853] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 11/28/2022]
Abstract
Meningiomas constitute up to 13% of all intracranial tumors.
The predictive factors for meningioma have not been unambiguously defined;
however some limited data suggest that the expression of matrix metalloproteinases
(MMPs) and vascular endothelial growth factor (VEGF) may be associated with the
presence of peritumoral brain edema (PTBE) and worse clinical outcome.
The aim of this study was to analyze the expressions of MMP-9 and VEGF
in a group of meningiomas of various grades and to study associations
between these two markers and PTBE. The study included patients with
supratentorial meningiomas. The patients were divided into low- (G1) and
high-grade meningiomas (G2 and G3). PTBE was assessed on MRI. The
expressions of VEGF and MMP-9 were determined immunohistochemically.
The expression of MMP-9 was observed significantly more often in G3
meningiomas than in lower grade tumors. The presence of stage II or III PTBE
was associated with a significant increase in MMP-9 expression. The expression
of VEGF did not differ across the PTBE stages. Our findings point to a
significant role of MMP-9 and VEGF in the pathogenesis of peritumoral brain edema in low- and high-grade meningiomas.
Collapse
|
30
|
James AW, Chang L, Shrestha S, Tirado CA, Dry SM. An unusual complex karyotype in myopericytoma. J Orthop 2015; 12:58-62. [PMID: 25829759 DOI: 10.1016/j.jor.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Myopericytoma is a perivascular neoplasm commonly found in the skin and soft tissue of extremities. These lesions often exhibit concentric vascular proliferation of spindle shaped myoid cells. METHODS/RESULTS We present a case of a 76-year old male who was diagnosed with myopericytoma and subsequent cytogenetic analysis found a highly abnormal karyotype. This karyotype includes cytogenetic mutations that have not been described in previous case studies of myopericytoma. CONCLUSIONS Some of these aberrations occur on genes that are involved in hedgehog signaling as well as pericyte proliferation, indicating a potential pericyte origin for myopericytoma tumors.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Le Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Swati Shrestha
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos A Tirado
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Zhu Y, Zhang JJ, Xie KL, Tang J, Liang WB, Zhu R, Zhu Y, Wang B, Tao JQ, Zhi XF, Li Z, Gao WT, Jiang KR, Miao Y, Xu ZK. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of pancreatic cancer by triggering malignancy-related positive feedback loops signaling. J Transl Med 2014; 12:309. [PMID: 25367394 PMCID: PMC4236435 DOI: 10.1186/s12967-014-0309-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Background MUC4 plays important roles in the malignant progression of human pancreatic cancer. But the huge length of MUC4 gene fragment restricts its functional and mechanism research. As one of its splice variants, MUC4/Y with coding sequence is most similar to that of the full-length MUC4 (FL-MUC4), together with alternative splicing of the MUC4 transcript has been observed in pancreatic carcinomas but not in normal pancreas. So we speculated that MUC4/Y might be involved in malignant progression similarly to FL-MUC4, and as a research model of MUC4 in pancreatic cancer. The conjecture was confirmed in the present study. Methods MUC4/Y expression was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) using gene-specific probe in the clinic samples. The effects of MUC4/Y were observed by serial in vitro and in vivo experiments based on stable over-expressed cell model. The underlying mechanisms were investigated by sequence-based transcriptome analysis and verified by qRT-PCR, Western blot and enzyme-linked immunosorbent assays. Results The detection of clinical samples indicates that MUC4/Y is significantly positive-correlated with tumor invasion and distant metastases. Based on stable forced-expressed pancreatic cancer PANC-1 cell model, functional studies show that MUC4/Y enhances malignant activity in vitro and in vivo, including proliferation under low-nutritional-pressure, resistance to apoptosis, motility, invasiveness, angiogenesis, and distant metastasis. Mechanism studies indicate the novel finding that MUC4/Y triggers malignancy-related positive feedback loops for concomitantly up-regulating the expression of survival factors to resist adverse microenvironment and increasing the expression of an array of cytokines and adhesion molecules to affect the tumor milieu. Conclusions In light of the enormity of the potential regulatory circuitry in cancer afforded by MUC4 and/or MUC4/Y, repressing MUC4 transcription, inhibiting post-transcriptional regulation, including alternative splicing, or blocking various pathways simultaneously may be helpful for controlling malignant progression. MUC4/Y- expression model is proven to a valuable tool for the further dissection of MUC4-mediated functions and mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0309-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Zhu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Jing-Jing Zhang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Kun-Ling Xie
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Jie Tang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Wen-Biao Liang
- Jiangsu Province Blood Center, Nanjing, 210042, People's Republic of China.
| | - Rong Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yan Zhu
- Department of Pathology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| | - Jin-Qiu Tao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Xiao-Fei Zhi
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zheng Li
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Wen-Tao Gao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Kui-Rong Jiang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Yi Miao
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| | - Ze-Kuan Xu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
32
|
Preusser M, Berghoff AS, Hottinger AF. High-grade meningiomas: new avenues for drug treatment? Curr Opin Neurol 2014; 26:708-15. [PMID: 24184974 DOI: 10.1097/wco.0000000000000035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW For standard first-line treatment of high-grade meningiomas, surgical resection and radiotherapy are regarded as standard of care. In the recurrent setting after exhaustion of all local treatment options, no effective therapies are known and several drugs have failed to show efficacy, but novel compounds may offer hope for better disease control. RECENT FINDINGS Upregulation of proangiogenic molecules and dysregulation of some signaling pathways such as the platelet-derived growth factor and mammalian target of rapamycin are recurrently found in high-grade meningiomas. Furthermore, in-vitro studies and single patient experience indicate that trabectedin may be an effective therapy in this tumor type. Unfortunately, so far there is a lack of conclusive clinical trials to draw definite conclusions of efficacy of these approaches. SUMMARY There remains a significant unmet need for defining the role of medical therapy in recurrent high-grade meningioma, and more basic research and multicentric well designed trials are needed in this rare and devastating tumor type. Potentially promising novel therapeutics include antiangiogenic drugs, molecular inhibitors of signaling cascades, immunotherapeutics or trabectedin. However, more basic research is required to identify more promising drug targets. VIDEO ABSTRACT AVAILABLE See the Video Supplementary Digital Content 1 (http://links.lww.com/CONR/A22).
Collapse
Affiliation(s)
- Matthias Preusser
- aDepartment of Medicine I & Comprehensive Cancer Center - CNS Unit, Medical University of Vienna bDepartment of Clinical Neurosciences, CHUV, Lausanne University Medical Center and University of Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neurooncol 2014; 117:93-101. [PMID: 24449400 DOI: 10.1007/s11060-014-1358-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
When surgery and radiation are no longer treatment options, salvage systemic therapy has been used for recurrent meningiomas with little compelling evidence to suggest effectiveness. Patients with surgery and radiation refractory recurrent meningiomas were treated with the oral multifunctional tyrosine kinase inhibitor PTK787/ZK 222584 (PTK787) at a dose of 500 mg twice a day. Each treatment cycle was 4 weeks with MRI done every 8 weeks. Twenty-five patients (14 men; 11 women) with a median age of 59 years and KPS of 80 were treated. Meningioma WHO Grade was I in 2 patients, II in 14 patients and III in 8 patients; 1 patient had a hemangiopericytoma. All patients had prior surgery, external beam radiation therapy or radiosurgery and 11 patients prior systemic chemotherapy. Median number of cycles of PTK 787 administered was 4 (range <1-22). Best response in the 22 evaluable patients was stable disease in 15 (68.2 %). Predominant PTK787 related toxicities included fatigue (60 %), hypertension (24 %) and elevated transaminases (24 %). Grade II patients had a progression free survival (PFS)-6 of 64.3 %, a median PFS of 6.5 months and an overall survival (OS) of 26.0 months; grade III patients had a PFS-6 of 37.5 %, median PFS of 3.6 months and OS 23 months. PTK787 was modestly toxic at the dose of 500 mg administered twice per day. Activity as determined by PFS-6 suggests that targeting PDGF/VEGF pathway warrants further investigation.
Collapse
|
34
|
Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 2013; 35:E18. [DOI: 10.3171/2013.10.focus13341] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Object
Currently, few medical options exist for refractory and atypical/anaplastic meningiomas. New developments in chemotherapeutic options for meningiomas have been explored over the past decade. The authors review these recent developments, with an emphasis on emerging avenues for therapy, clinical efficacy, and adverse effects.
Methods
A review of the literature was performed to identify any studies exploring recent medical and chemotherapeutic agents that have been or are currently being tested for meningiomas. Results from included preclinical and human clinical trials were reviewed and summarized.
Results
Current guidelines recommend only 3 drugs that can be used to treat patients with refractory and highgrade meningiomas: hydroxyurea, interferon-α 2B, and Sandostatin long-acting release. Recent developments in the medical treatment of meningiomas have been made across a variety of pharmacological classes, including cytotoxic agents, hormonal agents, immunomodulators, and targeted agents toward a variety of growth factors and their signaling cascades. Promising avenues of therapy that are being evaluated for efficacy and safety include antagonists of platelet-derived growth factor receptor, epidermal growth factor receptor, vascular endothelial growth factor receptor, and mammalian target of rapamycin. Because malignant transformation in meningiomas is likely to be mediated by numerous processes interacting via a complex matrix of signals, combination therapies affecting multiple molecular targets are currently being explored and hold significant promise as adjuvant therapy options.
Conclusions
Improved understanding of the molecular mechanisms driving meningioma tumorigenesis and malignant transformation has resulted in the targeted development of more specific agents for chemotherapeutic intervention in patients with nonresectable, aggressive, and malignant meningiomas.
Collapse
Affiliation(s)
| | | | - Gabriel Zada
- 3Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|