1
|
Diab L, Al Kattar S, Oueini N, Hawi J, Chrabieh A, Dosh L, Jurjus R, Leone A, Jurjus A. Syndecan-1: a key player in health and disease. Immunogenetics 2024; 77:9. [PMID: 39688651 DOI: 10.1007/s00251-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target. However, despite its broad involvement in several disease processes, the underlying mechanism contributing to its diverse functions, pathogenesis, and therapeutic uses remains underexplored. Therefore, this review examines the role of SDC-1 in health and disease, focusing on liver pathologies, inflammatory diseases, infectious diseases, and cancer, and sheds light on SDC-1-based therapeutic approaches. Moreover, it delves into the mechanisms through which SDC-1 contributes to these diseases, emphasizing cell-type specific mechanisms. By comprehensively summarizing the significance of SDC-1, its association with several diseases, and its underlying mechanisms of action, the findings of this review could inform future research directions toward the development of targeted therapies and early diagnosis for a multitude of disease entities.
Collapse
Affiliation(s)
- Lara Diab
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sahar Al Kattar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Naim Oueini
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University, Kaslik, Jounieh, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Antoine Chrabieh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
4
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Amorós-Pérez B, Rivas-Pardo B, Gómez del Moral M, Subiza JL, Martínez-Naves E. State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future? Cells 2024; 13:725. [PMID: 38727261 PMCID: PMC11083689 DOI: 10.3390/cells13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.
Collapse
Affiliation(s)
- Beatriz Amorós-Pérez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Inmunotek S.L., 28805 Madrid, Spain;
| | - Benigno Rivas-Pardo
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
6
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
7
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Muendlein A, Severgnini L, Decker T, Heinzle C, Leiherer A, Geiger K, Drexel H, Winder T, Reimann P, Mayer F, Nonnenbroich C, Dechow T. Circulating syndecan-1 and glypican-4 predict 12-month survival in metastatic colorectal cancer patients. Front Oncol 2022; 12:1045995. [PMID: 36353562 PMCID: PMC9638102 DOI: 10.3389/fonc.2022.1045995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Cell surface syndecans and glypicans play important roles in the development and prognosis of colorectal cancer (CRC). Their soluble forms from proteoglycan shedding can be detected in blood and have been proposed as new prognostic biomarkers in several cancer entities. However, studies on circulating syndecan-1 (SDC1) and glypican-4 (GPC4) in CRC are limited. We, therefore, evaluated the impact of plasma SDC1 and GPC4 on the prognosis of metastatic (m)CRC patients. The present study included 93 patients with mCRC. The endpoints were progression-free survival (PFS) and overall survival (OS) at 12 months. SDC1 and GPC4 levels were measured in plasma using enzyme-linked immunosorbent assays. Plasma levels of SDC1 and GPC4 were significantly correlated. Significant correlations of these two markers were also found with carcinoembryonic antigen (CEA). Kaplan-Meier curve analyses indicated that PFS and OS probabilities significantly decreased with increasing levels of SDC1 and GPC4, respectively. Multivariable Cox regression analyses showed that both markers were significantly associated with PFS and OS independently from clinicopathological characteristics including CEA. Respective adjusted hazard ratios (HR) together with corresponding 95% confidence intervals for one standard deviation change of SDC1 were 1.32 [1.02-1.84] for PFS and 1.48 [1.01-2.15] for OS. Adjusted HRs [95% confidence intervals] of GPC4 were 1.42 [1.07-1.89] for PFS and 2.40 [1.51-3.81] for OS. Results from area under the receiver operating characteristic curve analyses suggest that GPC4 and SDC1 add additional prognostic values to CEA for OS. In conclusion, we showed significant associations of circulating SDC1 and GPC4 with poor survival of mCRC patients.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- *Correspondence: Axel Muendlein,
| | - Luciano Severgnini
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, Molecular Biology Laboratory, Dornbirn, Austria
- Department of Internal Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
| | - Thomas Winder
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Patrick Reimann
- Department of Haematology and Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Frank Mayer
- Praxis und Tagesklinik Prof. Dr. Oettle Helmut Prof. Mayer Frank, Friedrichshafen, Germany
| | | | | |
Collapse
|
9
|
Theodoro TR, Serrano RL, Turke KC, Waisberg J, Pinhal MAS. Alterations of the Extracellular Matrix in Colorectal Carcinoma. Genet Test Mol Biomarkers 2022; 26:468-475. [PMID: 36219734 DOI: 10.1089/gtmb.2021.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The process of proliferation and invasion of tumor cells depends on changes in the extracellular matrix (ECM) through the activation of enzymes and alterations in the profile of ECM components. Our aims are to investigate the mRNA and protein expression profiles of the ECM components, heparanase-1 (HPSE), heparanase-2 (HPSE2), matrix metalloproteinase-9 (MMP-9), and syndecan-1 (SDC1) in neoplastic and nonneoplastic tissues of 24 patients with colorectal carcinoma (CRC) and to test for associations between these expression patterns with the presence or absence of lymph node metastasis. Materials and Methods: This was a cross-sectional study in which 24 adult patients with CRC were admitted for resectional surgery. We analyzed the mRNA and protein expression patterns of the HPSE, HPSE2, MMP-9, and SDC1 genes by quantitative reverse transcription PCR and immunohistochemistry, respectively. Additionally, we investigated whether variations exist in the expression of the ECM components between the affected tissue and nontumoral tissue collected from the same patient. Tissue samples were collected immediately after the surgical resection. Results and Conclusion: The data showed higher mRNA and protein expression levels of HPSE2 (p = 0.0058), MMP-9 (p = 0.0268), and SDC1 (p = 0.0002) in tumor samples when compared with the nonneoplastic tissues. There was, however, only an increase in the level of the HPSE protein in the tumoral tissues. Increased expression of HPSE2 was observed in patients with lymph node metastasis (p = 0.031). This elevation in HPSE2 mRNA expression in patients with lymph node metastasis potentially indicates that it may participate in driving colorectal carcinoma progression.
Collapse
Affiliation(s)
| | | | | | - Jaques Waisberg
- Department of Surgery, Centro Universitário FMABC, Santo André, Brazil.,Department of Surgery, Hospital do Servidor Público Estadual, São Paulo, Brazil
| | | |
Collapse
|
10
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
11
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
12
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, Das A, Gopinath SCB, Rajan M, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Batumalaie K, Wu YS. Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. JOURNAL OF ONCOLOGY 2022; 2022:3249766. [PMID: 35586209 PMCID: PMC9110224 DOI: 10.1155/2022/3249766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
Cancer is one of the major causes of death worldwide. Its treatments usually fail when the tumor has become malignant and metastasized. Metastasis is a key source of cancer recurrence, which often leads to resistance towards chemotherapeutic agents. Hence, most cancer-related deaths are linked to the occurrence of chemoresistance. Although chemoresistance can emerge through a multitude of mechanisms, chemoresistance and metastasis share a similar pathway, which is an epithelial-to-mesenchymal transition (EMT). Matrix metalloproteinases (MMPs), a class of zinc and calcium-chelated enzymes, are found to be key players in driving cancer migration and metastasis through EMT induction. The aim of this review is to discuss the regulatory roles and associated molecular mechanisms of specific MMPs in regulating chemoresistance, particularly EMT initiation and resistance to apoptosis. A brief presentation on their potential diagnostic and prognostic values was also deciphered. It also aimed to describe existing MMP inhibitors and the potential of utilizing other strategies to inhibit MMPs to reduce chemoresistance, such as upstream inhibition of MMP expressions and MMP-responsive nanomaterials to deliver drugs as well as epigenetic regulations. Hence, manipulation of MMP expression can be a powerful tool to aid in treating patients with chemo-resistant cancers. However, much still needs to be done to bring the solution from bench to bedside.
Collapse
Affiliation(s)
- Bernadette Xin Jie Tune
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, 47000 Selangor, Malaysia
| | - Iswar Hazarika
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Anju Das
- Department of Pharmacology, Royal School of Pharmacy, Royal Global University, Guwahati 781035, India
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor 42610, Malaysia
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| |
Collapse
|
14
|
Vang S, Cochran P, Sebastian Domingo J, Krick S, Barnes JW. The Glycobiology of Pulmonary Arterial Hypertension. Metabolites 2022; 12:metabo12040316. [PMID: 35448503 PMCID: PMC9026683 DOI: 10.3390/metabo12040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease of complex etiology. Cases of PAH that do not receive therapy after diagnosis have a low survival rate. Multiple reports have shown that idiopathic PAH, or IPAH, is associated with metabolic dysregulation including altered bioavailability of nitric oxide (NO) and dysregulated glucose metabolism. Multiple processes such as increased proliferation of pulmonary vascular cells, angiogenesis, apoptotic resistance, and vasoconstriction may be regulated by the metabolic changes demonstrated in PAH. Recent reports have underscored similarities between metabolic abnormalities in cancer and IPAH. In particular, increased glucose uptake and altered glucose utilization have been documented and have been linked to the aforementioned processes. We were the first to report a link between altered glucose metabolism and changes in glycosylation. Subsequent reports have highlighted similar findings, including a potential role for altered metabolism and aberrant glycosylation in IPAH pathogenesis. This review will detail research findings that demonstrate metabolic dysregulation in PAH with an emphasis on glycobiology. Furthermore, this report will illustrate the similarities in the pathobiology of PAH and cancer and highlight the novel findings that researchers have explored in the field.
Collapse
|
15
|
Guo M, Xu J, Zhao S, Shen D, Jiang W, Zhang L, Ding X, Xu X. Suppressing Syndecan-1 Shedding to Protect Against Renal Ischemia/Reperfusion Injury by Maintaining Polarity of Tubular Epithelial Cells. Shock 2022; 57:256-263. [PMID: 34313252 DOI: 10.1097/shk.0000000000001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Syndecan-1 (SDC-1), a type of heparan sulfate proteoglycan on the surface of epithelial cells, is involved in maintaining cell morphology. Loss of cell polarity constitutes the early stage of ischemic acute kidney injury (AKI). This study investigated the role of SDC-1 shedding in I/R-induced AKI and the underlying mechanisms. Levels of the shed SDC-1 in the serum were measured with ELISA 12 and 24 h after reperfusion in renal I/R model mice. Na+/K+-ATPase-α1 expression was evaluated using western blotting in vivo and immunofluorescence in hypoxia/reoxygenation (H/R) cysts. Renal tubular epithelial cell apoptosis was measured using TUNEL in vivo and flow cytometry in vitro. Furthermore, plasma syndecan-1 (pSDC-1) levels were measured in patients at the time of anesthesia resuscitation after cardiac surgery. We found that shed SDC-1 levels increased and Na+/K+-ATPase-α1 expression decreased after H/R in the three-dimensional (3D) tubular model, and this state was exacerbated with extended period of hypoxia. After the inhibition of SDC-1 shedding by GM6001, SDC-1 and Na+/K+-ATPase-α1 expression was restored, while H/R-induced apoptosis was decreased. In vivo, SDC-1 shedding was induced by renal I/R and was accompanied with a loss of renal tubular epithelial cell polarity and increased apoptosis. GM6001 pretreatment protected against I/R injury by alleviating the disruption of cell polarity and apoptosis. pSDC-1 levels were significantly higher in AKI patients than in non-AKI patients. ROC curve showed that the accuracy of pSDC-1 for AKI prediction was 0.769. In conclusion, inhibition of I/R-induced SDC-1 shedding could contribute to renal protection by restoring the loss of cell polarity and alleviating apoptosis in tubular epithelial cells.
Collapse
Affiliation(s)
- Man Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Daoqi Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Wuhua Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| |
Collapse
|
16
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
17
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
18
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
19
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
20
|
Gondelaud F, Bouakil M, Le Fèvre A, Miele AE, Chirot F, Duclos B, Liwo A, Ricard-Blum S. Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biol Plus 2021; 12:100081. [PMID: 34505054 PMCID: PMC8416954 DOI: 10.1016/j.mbplus.2021.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/26/2022] Open
Abstract
Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.
Collapse
Key Words
- CCS, collision cross section
- CD, circular dichroism
- CSD, charge state distribution
- Cell-matrix interactions
- Conformations
- DLS, dynamic light scattering
- DTT, dithiothreitol
- ED, ectodomain
- ESI-IM-MS, electrospray ionization - ion mobility - mass spectrometry
- ESI-MS, electrospray ionization - mass spectrometry
- GAG, glycosaminoglycan
- IDP, intrinsically disordered protein
- Intrinsically disordered proteins
- MoRF, molecular recognition feature
- PAGE, polyacrylamide gel electrophoresis
- PMG, pre-molten globule
- RC, random-coil
- SASA, solvent accessible surface area
- SAXS, small angle X-ray scattering
- SDC, syndecan
- SDS, sodium dodecyl sulfate
- SEC, size exclusion chromatography
- Syndecans
- TFE, trifluoroethanol
Collapse
Affiliation(s)
- Frank Gondelaud
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Mathilde Bouakil
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélien Le Fèvre
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Adriana Erica Miele
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Fabien Chirot
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Bertrand Duclos
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| | - Adam Liwo
- Laboratory of Molecular Modeling, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne cedex, France
| |
Collapse
|
21
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22179185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Correspondence: (M.-Y.L.); (S.R.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
- Correspondence: (M.-Y.L.); (S.R.)
| |
Collapse
|
22
|
Nadanaka S, Bai Y, Kitagawa H. Cleavage of Syndecan-1 Promotes the Proliferation of the Basal-Like Breast Cancer Cell Line BT-549 Via Akt SUMOylation. Front Cell Dev Biol 2021; 9:659428. [PMID: 34113616 PMCID: PMC8185021 DOI: 10.3389/fcell.2021.659428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4-O-sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1. Syndecan-1 is a membrane-bound proteoglycan associated with an aggressive phenotype and poor prognosis in breast cancer. In addition, the cleavage of syndecan-1 at a specific juxtamembrane cleavage site is implicated in the pathophysiological response in breast cancer. Knockout of C4ST-1 remarkably suppressed both the cleavage of syndecan-1 and proliferation of BT-549 cells. Kinases (AKT1, ERK1/2, PI3K, and STAT3) comprising cancer proliferative pathways are phosphorylated in C4ST-1 knockout cells at a level similar to that in parental BT-549 cells, whereas levels of phosphorylated S6 kinase and SUMOylated AKT (hyperactivated AKT observed in breast cancer) decreased in C4ST-1 knockout cells. An MMP inhibitor, GM6001, suppressed the small ubiquitin-like modifier (SUMO) modification of AKT, suggesting that cleavage of syndecan-1 by MMPs is involved in the SUMO modification of AKT. Forced expression of the cytoplasmic domain of syndecan-1, which is generated by MMP-dependent cleavage, increased the SUMO modification of AKT and global protein SUMOylation. Furthermore, syndecan-1 C-terminal domain-expressing BT-549 cells were more proliferative and sensitive to a potent SUMOylation inhibitor, tannic acid, compared with BT-549 cells transfected with an empty expression vector. These findings assign new functions to the C-terminal fragment of syndecan-1 generated by MMP-dependent proteolysis, thereby broadening our understanding of their physiological importance and implying that the therapeutic inhibition of syndecan-1 cleavage could affect the progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yaqiang Bai
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
23
|
Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract 2021; 222:153431. [PMID: 34029877 DOI: 10.1016/j.prp.2021.153431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The prognosis of patients with colorectal cancer (CRC) is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to study molecules involved in the progression of colorectal cancer tumorigenesis and to shed light on their potential use as targetable proteins in diagnostics and therapy. As syndecan-4 (SDC4) is a transmembrane proteoglycan with important functions in cell adhesion, migration, cytoskeleton organization, and gene expression through the binding of extracellular matrix molecules, it might play a role in local tumor cell invasion. To clarify its impact on the progression of CRC, we analyzed 177 patients for SDC4 expression in colon carcinoma tissue, lymph node and liver metastasis under consideration of specific morphological features and cellular elements of CRC. Highly upregulated SDC4 was particularly expressed at the tumor invasion front. Expression was strongest in tumor cell buds appearing as membranous expression polarized to peritumoral stromal cells. Increased SDC4 expression directed to the tumor-stromal- or tumor-endothelial-interface was also confirmed for metastasis and angioinvasive tumor cell clusters. Furthermore, strong immunoreactivity of SDC4 in fibroblasts and macrophages being in contact with invasive tumor cells suggests a cooperation between the different types of cells in tumor progression at the cell-matrix interface and a role for SDC4 in tumor cells attached to the extracellular matrix. Overexpression of SDC4 in tumor cells at the invasion front was significantly associated with progressive pathological features and inversely related to disease-free and overall survival. Therefore, overexpression of SDC4 may be a predictor for poor prognosis in patients with CRC and might prove useful in clinical practice, thus identifying patients with potential disease progression. Further investigations will have to reveal the functional role of SDC4 in tumor cell buds, fibroblasts and macrophages at the tumor stromal interface to confirm that SDC4 might also be a possible therapeutic target for the treatment of patients with advanced CRC.
Collapse
Affiliation(s)
| | - Inken Haeusler-Pliske
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Frank Meyer
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | |
Collapse
|
24
|
Overexpression of Human Syndecan-1 Protects against the Diethylnitrosamine-Induced Hepatocarcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13071548. [PMID: 33801718 PMCID: PMC8037268 DOI: 10.3390/cancers13071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Syndecan-1 is a Janus-faced proteoglycan: depending on the type of cancer, it can promote or inhibit the development of tumors. Our previous in vitro experiments revealed that transfection of human syndecan-1 (hSDC1) into hepatoma cells, initiating hepatocyte-like differentiation. To further confirm the antitumor action of hSDC1 in the context of liver carcinogenesis, mice transgenic for albumin promoter-driven hSDC1 were created with exclusive expression of hSDC1 in the liver. Indeed, hSDC1 interfered with the development of liver cancer in diethylnitrosamine (DEN)-induced hepatocarcinogenesis experiments. The mechanism was found to be related to lipid metabolism that plays an important role in the induction of nonalcoholic liver cirrhosis. Nonalcoholic fatty liver disease is known to promote the development of cancer; therefore, the oncoprotective effect of hSDC1 may be mediated by a beneficial modulation of lipid metabolism. Abstract Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the β-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.
Collapse
|
25
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
26
|
Syndecan-1 Overexpressing Mesothelioma Cells Inhibit Proliferation, Wound Healing, and Tube Formation of Endothelial Cells. Cancers (Basel) 2021; 13:cancers13040655. [PMID: 33562126 PMCID: PMC7915211 DOI: 10.3390/cancers13040655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The transmembrane proteoglycan syndecan-1 (SDC-1) is an important mediator of cell-matrix interactions. The heparan sulfate side-chains of SDC-1 can bind to a multitude of growth factors, cytokines, and chemokines, thereby regulating a plethora of physiological and pathological processes, including angiogenesis. The extracellular region of SDC-1 can be released from the cell surface by the action of sheddases including matrix metalloproteinase-7 and 9, resulting in a soluble protein that is still active and can act as a competitive activator or inhibitor of the cell surface receptor. Accelerated shedding and loss of cell surface SDC-1 is associated with epithelial to mesenchymal transition (EMT) and achievement of a more invasive phenotype in malignant mesothelioma (MM). Transfection with SDC-1 reverts the morphology in epithelioid direction and inhibits the proliferation and migration of MM cells. This study aimed to investigate the role of SDC-1 in angiogenesis. We demonstrate that overexpression and silencing of SDC-1 alters the secretion of angiogenic proteins in MM cells. Upon SDC-1 overexpression, several factors collectively inhibit the proliferation, wound closure, and tube formation of endothelial cells, whereas SDC-1 silencing only affects wound healing. Abstract Malignant mesothelioma (MM) is an aggressive tumor of the serosal cavities. Angiogenesis is important for mesothelioma progression, but so far, anti-angiogenic agents have not improved patient survival. Our hypothesis is that better understanding of the regulation of angiogenesis in this tumor would largely improve the success of such a therapy. Syndecan-1 (SDC-1) is a transmembrane heparan sulfate proteoglycan that acts as a co-receptor in various cellular processes including angiogenesis. In MM, the expression of SDC-1 is generally low but when present, SDC-1 associates to epithelioid differentiation, inhibition of tumor cell migration and favorable prognosis, meanwhile SDC-1 decrease deteriorates the prognosis. In the present study, we studied the effect of SDC-1 overexpression and silencing on MM cells ability to secrete angiogenic factors and monitored the downstream effect of SDC-1 modulation on endothelial cells proliferation, wound healing, and tube formation. This was done by adding conditioned medium from SDC-1 transfected and SDC-1 silenced mesothelioma cells to endothelial cells. Moreover, we investigated the interplay and molecular functional changes in angiogenesis in a co-culture system and characterized the soluble angiogenesis-related factors secreted to the conditioned media. We demonstrated that SDC-1 over-expression inhibited the proliferation, wound healing, and tube formation of endothelial cells. This effect was mediated by a multitude of angiogenic factors comprising angiopoietin-1 (Fold change ± SD: 0.65 ± 0.07), FGF-4 (1.45 ± 0.04), HGF (1.33 ± 0.07), NRG1-β1 (1.35 ± 0.08), TSP-1 (0.8 ± 0.02), TIMP-1 (0.89 ± 0.01) and TGF-β1 (1.35 ± 0.01). SDC-1 silencing increased IL8 (1.33 ± 0.06), promoted wound closure, but did not influence the tube formation of endothelial cells. Pleural effusions from mesothelioma patients showed that Vascular Endothelial Growth Factor (VEGF) levels correlate to soluble SDC-1 levels and have prognostic value. In conclusion, SDC-1 over-expression affects the angiogenic factor secretion of mesothelioma cells and thereby inhibits endothelial cells proliferation, tube formation, and wound healing. VEGF could be used in prognostic evaluation of mesothelioma patients together with SDC-1.
Collapse
|
27
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
28
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
29
|
Al-Maghrabi J. Loss of expression of Syndecan-1 is associated with Tumor Recurrence, Metastatic Potential, and Poor Survival in patients with Colorectal carcinoma. Pak J Med Sci 2021; 37:114-120. [PMID: 33437261 PMCID: PMC7794120 DOI: 10.12669/pjms.37.1.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The loss of expression of syndecansyndecan-1 is associated with poor prognosis in many types of human cancer. The objective of this study was to evaluate the relation between syndecan-1 immunoexpression and several clinicopathological parameters in a subset of colorectal carcinoma (CRC) patients. METHODS Pathology tissue blocks of 202 primary tumors, 41 adenomas, and 37 normal colonic mucosae were used in this study. The cases diagnosed in the period 1995-2015 was included in the study. Immunohistochemistry analysis was performed using anti-CD138/syndecan-1 (B-A38) mouse monoclonal antibody. A semiquantitative method was used to score the syndecan-1 expression based on an evaluation of the percentage and intensity of the membranous and cytoplasmic expression. The data collected from Pathology Department at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. This is a retrospective cohort study that was conducted from July 2018 until August 2019. RESULTS Loss of syndecan-1 immunoexpression was observed in 72 (42.6%), 5 (12.2%), and 3 (8.1%) cases of CRC, adenomas, and normal mucosae, respectively. Low expression of syndecan-1 showed an association with nodal (p=0.003) and distant (p=0.001) metastasis, lymphovascular invasion (p=0.001), and tumor recurrence (p=0.006). Low syndecan-1 expression were associated with short overall survival (OS) (log rank 4.019, p=0.045) and disease-free survival (DFS) probabilities (log rank 4.748, p=0.029). CONCLUSION Loss of syndecan-1 immunoexpression is associated with metastatic potential, tumor recurrence and shorter survival in CRC and is considered a potential biomarker of poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- Jaudah Al-Maghrabi, MD, FRCPC, FCAP. Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Jang B, Kim A, Hwang J, Song HK, Kim Y, Oh ES. Emerging Role of Syndecans in Extracellular Matrix Remodeling in Cancer. J Histochem Cytochem 2020; 68:863-870. [PMID: 32623937 PMCID: PMC7711240 DOI: 10.1369/0022155420930112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) offers a structural basis for regulating cell functions while also acting as a collection point for bioactive molecules and connective tissue cells. To perform pathological functions under a pathological condition, the involved cells need to regulate the ECM to support their altered functions. This is particularly common in the development of cancer. The ECM has been recognized as a key driver of cancer development and progression, and ECM remodeling occurs at all stages of cancer progression. Thus, cancer cells need to change the ECM to support relevant cell surface adhesion receptor-mediated cell functions. In this context, it is interesting to examine how cancer cells regulate ECM remodeling, which is critical to tumor malignancy and metastatic progression. Here, we review how the cell surface adhesion receptor, syndecan, regulates ECM remodeling as cancer progresses, and explore how this can help us better understand ECM remodeling under these pathological conditions.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ayoung Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yunjeon Kim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
32
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
33
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
34
|
Soluble Syndecan-1 Levels Are Associated with Survival in Platinum-Treated Bladder Cancer Patients. Diagnostics (Basel) 2020; 10:diagnostics10110864. [PMID: 33114033 PMCID: PMC7690724 DOI: 10.3390/diagnostics10110864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-containing chemotherapy represents the first-line treatment for patients with locally advanced or metastatic muscle-invasive bladder cancer. Recently, novel therapies have become available for cisplatin-ineligible or -resistant patients. Therefore, prediction of cisplatin response is required to optimize therapy decisions. Syndecan-1 (SDC1) tissue expression and serum concentration may be associated with cisplatin resistance. Thus, pre-treatment serum levels of SDC1 and its expression in chemo-naïve tissues were assessed in 121 muscle-invasive bladder cancer patients who underwent postoperative platinum-based chemotherapy. SDC1 concentrations were evaluated by ELISA in 52 baseline and 90 follow-up serum samples and tissue expressions were analyzed by immunohistochemistry in an independent cohort of 69 formalin-fixed paraffin-embedded tumor samples. Pre-treatment SDC1 serum levels were significantly higher in lymph node metastatic (p = 0.009) and female patients (p = 0.026). SDC1 tissue expression did not correlate with clinicopathological parameters. High pre-treatment SDC1 serum level and the presence of distant metastasis were independent risk factors for overall survival (Hazard ratio (HR): 1.439, 95% Confidence interval (CI): 1.003–2.065, p = 0.048; HR: 2.269, 95%CI: 1.053–4.887, p = 0.036). Our results demonstrate an independent association between high baseline serum SDC1 concentration and poor survival in platinum-treated patients. Analyzing baseline serum SDC1 levels may help to predict platinum-containing chemotherapy and could help to optimize therapeutic decision-making.
Collapse
|
35
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
36
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
37
|
Zhang K, Li R, Xu G, Han H, Qin L. Effect of GM6001 on the expression of syndecan-1 in rats with acute kidney injury and its protective effect on the kidneys. Exp Ther Med 2020; 20:2049-2054. [PMID: 32782516 PMCID: PMC7401296 DOI: 10.3892/etm.2020.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022] Open
Abstract
Expression of syndecan-1 (SDC-1) in rats with acute kidney injury and the protective effect of GM6001 on the kidney were investigated. Fifty SD rats were selected and randomly divided into control group (CG) (n=15), treatment control group (TCG) (n=10), module group (MG) (n=15) and treatment group (TG) (n=10). In TG, the model of acute renal injury (AKI) in rats was established after pretreatment of intraperitoneal injection of GM6001 one day before modeling. In MG, the same amount of saline was injected intraperitoneally one day before modeling and the same treatment was done on the day of modeling. In CG, the same amount of saline was injected intraperitoneally one day before modeling but the model was not made. In TCG, rats were pretreated with intraperitoneal injection of GM6001 one day before modeling but the model was not made. The contents of blood urea nitrogen (BUN) in serum, serum creatinine (SCR), uric acid (UA) and blood β2-microglobulin (β2-MG) were detected by ELISA. The content of SDC-1 in renal tissues was detected by qRT-PCR and western blotting. Expression of SDC-1 in renal tissue of 24 rats after modeling was lower than that of MG (P<0.050). SDC-1 expression was the highest in TG (P<0.05). Compared with before modeling, the contents of BUN, SCR, UA and β2-MG in MG and TG increased (P<0.05). After modeling, the contents of serum BUN, SCR, UA and β2-MG in TG were significantly lower than those in MG (P<0.05). The levels of SDC-1 in renal tissue of rats with acute kidney injury increased. After GM6001 treatment, SDC-1 levels can be improved and has a certain protective effect on the kidneys.
Collapse
Affiliation(s)
- Kunying Zhang
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Rongxin Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Guodong Xu
- Department of Pathology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Lili Qin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
38
|
Jary M, Hasanova R, Vienot A, Asgarov K, Loyon R, Tirole C, Bouard A, Orillard E, Klajer E, Kim S, Viot J, Colle E, Adotevi O, Bouché O, Lecomte T, Borg C, Feugeas JP. Molecular description of ANGPT2 associated colorectal carcinoma. Int J Cancer 2020; 147:2007-2018. [PMID: 32222972 DOI: 10.1002/ijc.32993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Angiopoietin-2 (ANGPT2) is a prognostic factor in metastatic colorectal cancer (CRC). Nevertheless, it remains to be elucidated which molecular characteristics make up the ANGPT2-related poor-prognosis CRC subset. Public transcriptomic datasets were collected from Gene Expression Omnibus GEO and with the TCGAbiolinks R-package for the TCGA. After appropriate normalization, differential expression analysis was performed using Benjamini and Hochberg method for false discovery rate. Plasma from two prospective clinical trials were used to investigate the clinical impact of ANGPT2-related biomarkers. In the 935 samples included in four annotated platforms (GPL) and derived from localized CRC, ANGPT2hi expression conferred a worst overall survival (HR = 1.20; p = 0.02). CRC stage, ANGPT2hi expression but not Consortium Molecular Subtype (CMS) predict overall survival in multivariate analysis. ANGPT2 expression was not correlated with a specific CMS nor to RAS, RAF, MSI, p53, CIN, CIMP genomic alterations. Gene expression analysis revealed that ANGPT2hi CRC subset is characterized by angiogenesis-related gene expression, presence of myeloid cells, stromal organization and resistance to chemotherapy. A prognostic model was proposed using seric levels of ANGPT2, STC1 and CD138 in 97 mCRC patients. Our results provide evidence that ANGPT2 is a prognostic factor in localized CRC and defined a specific CRC subset with potential clinical implementation.
Collapse
Affiliation(s)
- Marine Jary
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Reyhan Hasanova
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Angélique Vienot
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Kamal Asgarov
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Romain Loyon
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Charline Tirole
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Adeline Bouard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| | - Emeline Orillard
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Julien Viot
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Elise Colle
- University Hospital St-Antoine, Paris, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Olivier Bouché
- Department of Hepato-Gastroenterology and Digestive Oncology, University Hospital Robert Debré, Reims, France
| | - Thierry Lecomte
- Department of Hepato-Gastroenterology and Digestive Oncology, CHRU de Tours, Tours Cedex 09, France.,University of Tours, Tours Cedex 01, France
| | - Christophe Borg
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,Clinical Investigation Center in Biotherapy, INSERM CIC-BT1431, University Hospital of Besançon, Besançon, France
| | - Jean P Feugeas
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaireet Génique, Besançon, France
| |
Collapse
|
39
|
Yu L, Zhang B, Du X, Yu Z, Yang X, Jiang Y. Evaluating the effectiveness of chemotherapy for thymic epithelial tumors using the CD-DST method. Thorac Cancer 2020; 11:1160-1169. [PMID: 32196982 PMCID: PMC7180557 DOI: 10.1111/1759-7714.13362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Thymic epithelial tumors (TET) are frequently eligible for curative-intent surgical resection. For locally advanced TETs, chemotherapy has been used to both reduce the tumor burden and achieve prolonged disease control. However, effective therapy for this disease largely remains to be determined. Here, we report the chemosensitivity of 100 patients with TETs determined by the collagen gel droplet embedded culture-drug sensitivity test (CD-DST). METHODS A total of 100 patients with TETs underwent surgical resection. The efficacy of antitumor agents on TET cells was tested by CD-DST. RESULTS Thymic epithelial tumors were pathologically confirmed after surgery: two cases were type A thymoma, 17 were type AB, 12 were type B1, 44 were type B2, 12 were type B3, and there were 13 cases with thymic carcinoma. A total of 36% patients with TETs were sensitive to different types of chemotherapeutic agents. There was no significant differences in age, histological type, clinical staging, or association with autoimmune diseases between sensitive and nonsensitive cases. Type B1 and B2 thymoma were relatively more sensitive to chemotherapeutic agents (6/12 and 18/44, respectively), while sensitivity of type B3 cases to chemotherapeutic agents was much lower (only 2/12). Cases with type A thymoma were not sensitive to any antitumor drugs. Among 11 chemotherapeutic agents tested in our study, the sensitivity of TETs to EPI was the highest (16%). No patients with thymoma were sensitive to Alimta (Pemetrexed). CONCLUSIONS Our work illuminates the effectiveness of chemotherapy for TETs and provides important clues for choosing antitumor drugs with relatively high drug sensitivity to TETs in advance.
Collapse
Affiliation(s)
- Lei Yu
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Bao‐xun Zhang
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Xin Du
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Zhen Yu
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Xing‐guo Yang
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Yu‐xuan Jiang
- Department of Thoracic Surgery, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Yu L, Xu H, Zhang S, Chen J, Yu Z. SDC1 promotes cisplatin resistance in hepatic carcinoma cells via PI3K-AKT pathway. Hum Cell 2020; 33:721-729. [PMID: 32314115 DOI: 10.1007/s13577-020-00362-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
This study is to analyze the potential contribution of Syndecan 1 (SDC1) to cisplatin resistance in hepatic carcinoma. Cell proliferation and viability were determined by direct counting and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. The protein levels of SDC1, p-AKT, AKT and β-actin were quantified by western blotting. The SDC1 transcript abundance was measured by real-time polymerase chain reaction. The relative expression of SDC1 in clinical liver tumor samples was analyzed with immunohistochemistry. SDC1 was up-regulated in cisplatin-resistant HepG2 cells (denoted as HepG2 CR hereafter). SDC1-knockdown re-sensitized HepG2 CR cells to cisplatin treatment. Ectopic over-expression of SDC1 conferred drug resistance to naïve HepG2 cells. PI3K/AKT pathway was over-activated in HepG2 CR cells, and simultaneous administration with PI3K inhibitor greatly surmounted the resistance. We also demonstrated that SDC1 was aberrantly up-regulated in clinical hepatocellular carcinoma samples. Our study highlighted the importance of SDC1-PI3K/AKT signaling in the cisplatin resistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liquan Yu
- General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Hong Xu
- General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Song Zhang
- General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Jiangming Chen
- General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Zhongshan Yu
- General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
41
|
Ma X, Liu X, Feng J, Zhang D, Huang L, Li D, Yin L, Li L, Wang XZ. Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability. Inflammation 2020; 42:1901-1912. [PMID: 31273573 DOI: 10.1007/s10753-019-01052-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate-labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| | - Jiali Feng
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Dong Zhang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Dongxiao Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Liang Yin
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lan Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Xiao-Zhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| |
Collapse
|
42
|
Nallanthighal S, Heiserman JP, Cheon DJ. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol 2019; 7:86. [PMID: 31334229 PMCID: PMC6624409 DOI: 10.3389/fcell.2019.00086] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
As our understanding of cancer cell biology progresses, it has become clear that tumors are a heterogenous mixture of different cell populations, some of which contain so called "cancer stem cells" (CSCs). Hallmarks of CSCs include self-renewing capability, tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major structural component of the tumor microenvironment, is a highly dynamic structure and increasing evidence suggests that ECM proteins establish a physical and biochemical niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance between ECM synthesis and secretion and altered expression of matrix-remodeling enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer compared to normal ECM. In this review, we will provide a brief overview of how different components of the ECM modulate CSC properties then discuss how physical, mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact that current CSC targeting therapies face many challenges, a better understanding of CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to eliminate CSCs.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
43
|
Loss of SDC1 Expression Is Associated with Poor Prognosis of Colorectal Cancer Patients in Northern China. DISEASE MARKERS 2019; 2019:3768708. [PMID: 31182980 PMCID: PMC6515153 DOI: 10.1155/2019/3768708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/05/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
Background Syndecan-1 (SDC1/CD138) is a key cell surface adhesion molecule essential for maintaining cell morphology and the interactions with the surrounding microenvironment. SDC1 tumor immunoexpression may be increased or decreased in epithelial malignant neoplasms compared to that in adjacent non-neoplastic tissue, depending on the type of carcinoma, and it has been correlated with various clinicopathological parameters and patient prognosis. SDC1 expression is decreased in colorectal cancer (CRC) tissue, but the relationship between prognosis and SDC1 expression in CRC patients is controversial. Methods In this study, SDC1 expression was detected in 65 adjacent non-neoplastic colorectal tissues, 477 CRCs, and 79 metastatic lymph nodes using tissue microarray. Results The data show that SDC1 decreased in CRC tissues (p ≤ 0.001) and metastatic lymph node tissues (p ≤ 0.001) compared to that in adjacent non-neoplastic colorectal tissues. Loss of SDC1 protein expression is associated with poor overall (p < 0.0001) and disease-free survival (p < 0.0001), differentiation (p = 0.017), stage (p ≤ 0.001), and lymph node metastasis (p ≤ 0.001) in CRC patients. Conclusions These data suggest that the loss of SDC1 plays an important role in CRC malignant progression. Loss of SDC1 expression indicates poor prognosis in patients from northern China with CRC.
Collapse
|
44
|
Lin L, Li X, Pan C, Lin W, Shao R, Liu Y, Zhang J, Luo Y, Qian K, Shi M, Bin J, Liao Y, Liao W. ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis 2019; 10:173. [PMID: 30787271 PMCID: PMC6382779 DOI: 10.1038/s41419-019-1362-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
For gastric cancer (GC) control, metastasis and chemoresistance are the major challenges, accompanied with various stresses. Ataxin-2-like (ATXN2L) was discovered as a novel regulator of stress granules, yet its function in cancers remained unknown. Hence, we wanted to explore the functions of ATXN2L to see whether it participates in stress-related cancer malignant activities. Clinical follow-up was performed to see the impact of ATXN2L on GC patient survival. As a result, ATXN2L expression was upregulated in GC tissue and indicated adverse prognosis for overall survival and recurrence. In GC cells, ATXN2L expression was knocked down and functional experiments were performed. ATXN2L promoted GC cell migration and invasion via epithelial to mesenchymal transition, yet no influence on proliferation was detected by ATXN2L interference. When adding the chemotherapeutic agent oxaliplatin to induce stress, silencing ATXN2L sensitized GC cells to oxaliplatin. Interestingly, oxaliplatin was found to in turn promote ATXN2L expression and stress granule assembly. Then, two acquired oxaliplatin-resistant strains were generated by long-term oxaliplatin induction. The oxaliplatin-resistant strains presented with elevated ATXN2L levels, while silencing ATXN2L in the strains reversed the oxaliplatin resistance by increasing reactive oxygen species production and apoptosis. These results suggested that ATXN2L was responsible for not only intrinsic but also acquired oxaliplatin chemoresistance. Finally, ATXN2L-related signaling was screened using bioinformatic methods, and epidermal growth factor (EGF) was verified to promote ATXN2L expression via PI3K/Akt signaling activation. Blocking EGFR/ATXN2L signaling reversed GC cell oxaliplatin resistance and inhibited migration. In conclusion, ATXN2L promotes cell invasiveness and oxaliplatin resistance and can be upregulated by EGF via PI3K/Akt signaling. ATXN2L may be an indicator and therapeutic target in GC, especially for oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyin Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanying Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Shao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Luo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Qian
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Syndecan-1 Shedding Inhibition to Protect Against Ischemic Acute Kidney Injury Through HGF Target Signaling Pathway. Transplantation 2019; 102:e331-e344. [PMID: 29557914 DOI: 10.1097/tp.0000000000002170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The hepatocyte growth factor (HGF) target pathway plays pivotal renoprotective roles after acute kidney injury. Syndecan-1 (SDC-1) serves as the coreceptor for HGF. Shedding of SDC-1 is involved in various pathological processes. Thus, we hypothesized that ischemia/reperfusion injury induced SDC-1 shedding, and inhibiting SDC-1 shedding would protect against kidney injury by potentiating activation of the HGF receptor mesenchymal epithelial transition factor (c-Met). METHODS Expression of SDC-1 and its sheddases were observed in kidneys of sham and ischemia/reperfusion (I/R) mice. To inhibit SDC-1 shedding, mice were injected with the sheddase inhibitor GM6001 before I/R surgery, and then, renal inflammation, tubular apoptosis, and activation of the c-Met/AKT/glycogen synthase kinase-3β (GSK-3β) pathway were analyzed. In vitro, human proximal tubular cell lines were pretreated with GM6001 under hypoxia/reperfusion conditions. The apoptosis and viability of cells and expression of c-Met/AKT/GSK-3β pathway components were evaluated. The relationship was further confirmed by treatment with SU11274, a specific inhibitor of phospho-c-Met. RESULTS Shedding of SDC-1 was induced after ischemia/reperfusion injury both in vivo and in vitro. GM6001 pretreatment suppressed SDC-1 shedding, alleviated renal inflammation and tubular apoptosis, and upregulated phosphorylation of the c-Met/AKT/GSK-3β pathway. In vitro, pretreatment with GM6001 also decreased hypoxia/reperfusion-induced cell apoptosis and promoted activation of the c-Met pathway. In addition, the cytoprotective role of GM6001 was attenuated by suppressing c-Met phosphorylation with SU11274. CONCLUSIONS Our findings suggest that inhibiting I/R-induced SDC-1 shedding protected against ischemic acute kidney injury by potentiating the c-Met/AKT/GSK-3β pathway.
Collapse
|
46
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
47
|
Johzuka J, Ona T, Nomura M. One Hour In Vivo-like Phenotypic Screening System for Anti-cancer Drugs Using a High Precision Surface Plasmon Resonance Device. ANAL SCI 2018; 34:1189-1194. [PMID: 30305596 DOI: 10.2116/analsci.18p013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In anti-cancer drug (candidate) screening, there is the need for evaluation at physiological concentrations similar to in vivo. This is often performed by three-dimensionally (3D) cultured cells; however, it requires a long culture period of 2 - 4 weeks with tedious experimental procedures. Here, we report on a high precision surface plasmon resonance (HP-SPR)-3D system. We developed the system with average fluctuation of 50 ndeg s-1 using two-dimensionally cultured cells attached onto a sensor chip by applying collagen on the top to change their activity into in vivo-like conditions without cell division. It allowed in vivo-like phenotypic screening for anti-cancer drugs within 1 h of drug addition. The data were collected as the stable linear signal change parts for at least 5 min after 25 min following drug addition. The results provided compatibility to clinically related chemosensitivity test for anti-cancer (P <0.001) using two cell lines of pancreatic cancer and three anti-cancer drugs to represent differences in individual gene expression and drug mode of action.
Collapse
Affiliation(s)
- Junko Johzuka
- O'Atari, Inc.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Global Innovation Center, Kyushu University
| | - Toshihiro Ona
- O'Atari, Inc.,Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Global Innovation Center, Kyushu University
| | - Masatoshi Nomura
- Department of Endocrine and Metabolic Diseases/Diabetes Mellitus, Kyushu University Hospital
| |
Collapse
|
48
|
Zhang Q, Wang C, Han X, Yang G, Ge Z, Zhang G. Knockdown of ADAM17 inhibits cell proliferation and increases oxaliplatin sensitivity in HCT-8 colorectal cancer through EGFR-PI3K-AKT activation. Biochem Biophys Res Commun 2018; 503:2333-2339. [DOI: 10.1016/j.bbrc.2018.06.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022]
|
49
|
Szarvas T, Sevcenco S, Módos O, Keresztes D, Nyirády P, Kubik A, Romics M, Kovalszky I, Reis H, Hadaschik B, Shariat SF, Kramer G. Circulating syndecan-1 is associated with chemotherapy-resistance in castration-resistant prostate cancer. Urol Oncol 2018; 36:312.e9-312.e15. [DOI: 10.1016/j.urolonc.2018.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/29/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
|
50
|
Parimon T, Brauer R, Schlesinger SY, Xie T, Jiang D, Ge L, Huang Y, Birkland TP, Parks WC, Habiel DM, Hogaboam CM, Gharib SA, Deng N, Liu Z, Chen P. Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1094-1103. [PMID: 29355516 DOI: 10.1016/j.ajpath.2017.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
Syndecan-1 is a transmembrane proteoglycan expressed prominently by lung epithelium and has pleiotropic functions such as regulating cell migration, proliferation, and survival. Loss of syndecan-1 expression by lung cancer cells is associated with higher-grade cancers and worse clinical prognosis. We evaluated the effects of syndecan-1 in various cell-based and animal models of lung cancer and found that lung tumorigenesis was moderated by syndecan-1. We also demonstrate that syndecan-1 (or lack thereof) alters the miRNA cargo carried within exosomes exported from lung cancer cells. Analysis of the changes in miRNA expression identified a distinct shift toward augmented procancer signaling consistent with the changes found in lung adenocarcinoma. Collectively, our work identifies syndecan-1 as an important factor in lung cancer cells that shapes the tumor microenvironment through alterations in miRNA packaging within exosomes.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Rena Brauer
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Saundra Y Schlesinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Ting Xie
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Lingyin Ge
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Ying Huang
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Timothy P Birkland
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William C Parks
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - David M Habiel
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Nan Deng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhenqui Liu
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Chen
- Division of Pulmonary and Critical Care, Department of Medicine, Women's Guild Lung Institute; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|