1
|
Pang SG, Zhang X, Li ZX, He LF, Chen F, Liu ML, Huang YZ, Mo JM, Luo KL, Xiao JJ, Zhu F. TOPK Inhibition Enhances the Sensitivity of Colorectal Cancer Cells to Radiotherapy by Reducing the DNA Damage Response. Curr Med Sci 2024; 44:545-553. [PMID: 38900386 DOI: 10.1007/s11596-024-2884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.
Collapse
Affiliation(s)
- Shi-Gui Pang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xin Zhang
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhao-Xin Li
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Li-Fei He
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Feng Chen
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ming-Long Liu
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ying-Ze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jian-Mei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Kong-Lan Luo
- Department of Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Juan-Juan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
| | - Feng Zhu
- Translational Medical Center, Huaihe Hospital, Henan University, Kaifeng, 475000, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
2
|
Shu H, Wang Y, Zhang H, Dong Q, Sun L, Tu Y, Liao Q, Feng L, Yao L. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease. Front Pharmacol 2023; 14:1169054. [PMID: 37361201 PMCID: PMC10285316 DOI: 10.3389/fphar.2023.1169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Profibrotic phenotype of renal tubular epithelial cells (TECs) featured with epithelial to mesenchymal transition (EMT) and profibrotic factors secretion, and aberrant accumulation of CD206+ M2 macrophages are the key points in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Nevertheless, the underlying mechanisms involved remain incompletely understood. Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine protein kinase, required for intestinal nutrient transport and ion channels modulation. T-LAK-cell-originated protein kinase (TOPK) is a member of the mitogen activated protein kinase family, linked to cell cycle regulation. However, little is known about their roles in AKI-CKD transition. Methods: In this study, three models were constructed in C57BL/6 mice: low dose and multiple intraperitoneal injection of cisplatin, 5/6 nephrectomy and unilateral ureteral obstruction model. Rat renal tubular epithelial cells (NRK-52E) were dealt with cisplatin to induce profibrotic phenotype, while a mouse monocytic cell line (RAW264.7) were cultured with cisplatin or TGF-β1 to induce M1 or M2 macrophage polarization respectively. And co-cultured NRK-52E and RAW264.7 through transwell plate to explore the interaction between them. The expression of SGK3 and TOPK phosphorylation were detected by immunohistochemistry, immunofluorescence and western blot analysis. Results: In vivo, the expression of SGK3 and p-TOPK were gradually inhibited in TECs, but enhanced in CD206+ M2 macrophages. In vitro, SGK3 inhibition aggravated epithelial to mesenchymal transition through reducing the phosphorylation state of TOPK, and controlling TGF-β1 synthesis and secretion in TECs. However, SGK3/TOPK axis activation promoted CD206+ M2 macrophage polarization, which caused kidney fibrosis by mediating macrophage to myofibroblast transition (MMT). When co-cultured, the TGF-β1 from profibrotic TECs evoked CD206+ M2 macrophage polarization and MMT, which could be attenuated by SGK3/TOPK axis inhibition in macrophages. Conversely, SGK3/TOPK signaling pathway activation in TECs could reverse CD206+ M2 macrophages aggravated EMT. Discussion: We revealed for the first time that SGK3 regulated TOPK phosphorylation to mediate TECs profibrotic phenotype, macrophage plasticity and the crosstalk between TECs and macrophages during AKI-CKD transition. Our results demonstrated the inverse effect of SGK3/TOPK signaling pathway in profibrotic TECs and CD206+ M2 macrophages polarization during the AKI-CKD transition.
Collapse
Affiliation(s)
- Huapan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Nephrology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lulu Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuchi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Feng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Cai C, Yao S, Zou Y, Lu H, Chen X, Wang Y, Zheng K, Zhu F, Wang Y, Xiong H, Zhu J. KRAS G12C mutation-induced TOPK overexpression contributes to tumour progression in non-small cell lung cancer. J Cell Mol Med 2023; 27:1637-1652. [PMID: 37226642 PMCID: PMC10273069 DOI: 10.1111/jcmm.17640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 05/26/2023] Open
Abstract
KRAS mutation is the most frequent type of genetic mutation in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma. However, KRAS mutation can affect many biological processes and the mechanisms underlying KRAS mutation-mediate carcinogenesis in NSCLC have not been fully understood. In this research, we found that KRASG12C mutation was associated with the upregulation of T-LAK cell-originated protein kinase (TOPK), which is a well-known serine/threonine MAPK-like protein kinase implicated in tumorigenesis. The overexpression of TOPK significantly promoted the malignant phenotype of A549 cells, and TOPK silencing impaired the malignant phenotype with KRASG12C mutation. Moreover, we demonstrated that TOPK level was regulated by MAPK/ERK signalling and the transcription factor Elk1. TOPK was also found to promote the activation of NF-κB signalling in A549 cells with KRASG12C mutation via facilitating the phosphorylation of TAK1. In the in vivo tumorigenesis model, the administration of TOPK inhibitor OTS514 enhanced the anticancer effect of 5-FU, and the combinatory use of OTS514 and KRASG12C inhibitor AMG510 showed synergistic anti-tumour effect. These results suggest that KRAS-TOPK axis contributes to the progression of NSCLC and targeting this axis could synergize with anticancer effect of the existing chemotherapeutics.
Collapse
Affiliation(s)
- Chang Cai
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Lu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Zhu
- Cancer Research InstituteThe Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life SciencesUniversity of SouthamptonSouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital SouthamptonSouthamptonUK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junfei Zhu
- Department of Respiratory MedicineTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| |
Collapse
|
4
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu Y, Xiang J, Peng G, Shen C. Omics- and Pharmacogenomic Evidence for the Prognostic, Regulatory, and Immune-Related Roles of PBK in a Pan-Cancer Cohort. Front Mol Biosci 2021; 8:785370. [PMID: 34859058 PMCID: PMC8632063 DOI: 10.3389/fmolb.2021.785370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
PDZ-binding kinase (PBK) is known to regulate tumor progression in some cancer types. However, its relationship to immune cell infiltration and prognosis in different cancers is unclear. This was investigated in the present study by analyzing data from TCGA, GEO, GETx, TIMER, CPTAC, GEPIA2, cBioPortal, GSCALite, PROGNOSCAN, PharmacoDB, STRING, and ENCORI databases. PBK was overexpressed in most tumors including adenocortical carcinoma (hazard ratio [HR] = 2.178, p < 0.001), kidney renal clear cell carcinoma (KIRC; HR = 1.907, p < 0.001), kidney renal papillary cell carcinoma (HR = 3.024, p < 0.001), and lung adenocarcinoma (HR = 1.255, p < 0.001), in which it was associated with poor overall survival and advanced pathologic stage. PBK methylation level was a prognostic marker in thyroid carcinoma (THCA). PBK expression was positively correlated with the levels of BIRC5, CCNB1, CDC20, CDK1, DLGAP5, MAD2L1, MELK, PLK1, TOP2A, and TTK in 32 tumor types; and with the levels of the transcription factors E2F1 and MYC, which regulate apoptosis, the cell cycle, cell proliferation and invasion, tumorigenesis, and metastasis. It was also negatively regulated by the microRNAs hsa-miR-101-5p, hsa-miR-145-5p, and hsa-miR-5694. PBK expression in KIRC, liver hepatocellular carcinoma, THCA, and thymoma was positively correlated with the infiltration of immune cells including B cells, CD4+T cells, CD8+ T cells, macrophages, monocytes, and neutrophils. The results of the functional enrichment analysis suggested that PBK and related genes contribute to tumor development via cell cycle regulation. We also identified 20 drugs that potentially inhibit PBK expression. Thus, PBK is associated with survival outcome in a variety of cancers and may promote tumor development and progression by increasing immune cell infiltration into the tumor microenvironment. These findings indicate that PBK is a potential therapeutic target and has prognostic value in cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Xiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
7
|
Herbert KJ, Puliyadi R, Prevo R, Rodriguez-Berriguete G, Ryan A, Ramadan K, Higgins GS. Targeting TOPK sensitises tumour cells to radiation-induced damage by enhancing replication stress. Cell Death Differ 2021; 28:1333-1346. [PMID: 33168956 PMCID: PMC8027845 DOI: 10.1038/s41418-020-00655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023] Open
Abstract
T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.
Collapse
Affiliation(s)
- Katharine J Herbert
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rathi Puliyadi
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Gonzalo Rodriguez-Berriguete
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Anderson Ryan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Geoff S Higgins
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
8
|
Fu X, Zhao R, Yoon G, Shim JH, Choi BY, Yin F, Xu B, Laster KV, Liu K, Dong Z, Lee MH. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol 2021; 9:638174. [PMID: 33842463 PMCID: PMC8027363 DOI: 10.3389/fcell.2021.638174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Skin cancer is one of the most commonly diagnosed cancers worldwide. The 5-year survival rate of the most aggressive late-stage skin cancer ranges between 20 and 30%. Thus, the discovery and investigation of novel target therapeutic agents that can effectively treat skin cancer is of the utmost importance. The T-lymphokine-activated killer cell-originated protein kinase (TOPK), which belongs to the serine-threonine kinase class of the mitogen-activated protein kinase kinase (MAPKK) family, is highly expressed and activated in skin cancer. The present study investigates the role of 3-deoxysappanchalcone (3-DSC), a plant-derived functional TOPK inhibitor, in suppressing skin cancer cell growth. Purpose In the context of skin cancer prevention and therapy, we clarify the effect and mechanism of 3-DSC on different types of skin cancer and solar-simulated light (SSL)-induced skin hyperplasia. Methods In an in vitro study, western blotting and in vitro kinase assays were utilized to determine the protein expression of TOPK and its activity, respectively. Pull-down assay with 3-DSC and TOPK (wild-type and T42A/N172 mutation) was performed to confirm the direct interaction between T42A/N172 amino acid sites of TOPK and 3-DSC. Cell proliferation and anchorage-independent cell growth assays were utilized to determine the effect of 3-DSC on cell growth. In an in vivo study, the thickness of skin and tumor size were measured in the acute SSL-induced inflammation mouse model or SK-MEL-2 cell-derived xenografts mouse model treated with 3-DSC. Immunohistochemistry analysis of tumors isolated from SK-MEL-2 cell-derived xenografts was performed to determine whether cell-based results observed upon 3-DSC treatment could be recapitulated in vivo. Results 3-DSC is able to inhibit cell proliferation in skin cancer cells in an anchorage-dependent and anchorage-independent manner by regulation of TOPK and its related signaling pathway in vitro. We also found that application of 3-DSC reduced acute SSL-induced murine skin hyperplasia. Additionally, we observed that 3-DSC decreased SK-MEL-2 cell-derived xenograft tumor growth through attenuating phosphorylation of TOPK and its downstream effectors including ERK, RSK, and c-Jun. Conclusions Our results suggest that 3-DSC may function in a chemopreventive and chemotherapeutic capacity by protecting against UV-induced skin hyperplasia and inhibiting tumor cell growth by attenuating TOPK signaling, respectively.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, South Korea
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
9
|
Yang Y, Wu ZX, Wang JQ, Teng QX, Lei ZN, Lusvarghi S, Ambudkar SV, Chen ZS, Yang DH. OTS964, a TOPK Inhibitor, Is Susceptible to ABCG2-Mediated Drug Resistance. Front Pharmacol 2021; 12:620874. [PMID: 33658942 PMCID: PMC7917255 DOI: 10.3389/fphar.2021.620874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023] Open
Abstract
OTS964 is a potent T-LAK cell-originated protein kinase (TOPK) inhibitor. Herein, we investigated the interaction of OTS964 and multidrug resistance (MDR)-associated ATP-binding cassette sub-family G member 2 (ABCG2). The cell viability assay indicated that the effect of OTS964 is limited in cancer drug-resistant and transfected cells overexpressing ABCG2. We found that the known ABCG2 transporter inhibitor has the ability to sensitize ABCG2-overexpressing cells to OTS964. In mechanism-based studies, OTS964 shows inhibitory effect on the efflux function mediated by ABCG2, and in turn, affects the pharmacokinetic profile of other ABCG2 substrate-drugs. Furthermore, OTS964 upregulates ABCG2 protein expression, resulting in enhanced resistance to ABCG2 substrate-drugs. The ATPase assay demonstrated that OTS964 stimulates ATPase activity of ABCG2 in a concentration-dependent manner. The computational molecular docking analysis combined with results from ATPase assay suggested that OTS964 interacts with drug-binding pocket of ABCG2 and has substrate-like behaviors. Thus, OTS964 is an MDR-susceptible agent due to its interactions with ABCG2, and overexpression of ABCG2 transporter may attenuate its therapeutic effect in cancer cells.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
10
|
Wang MY, Qi B, Wang F, Lin ZR, Li MY, Yin WJ, Zhu YY, He L, Yu Y, Yang F, Liu JQ, Chen DP. PBK phosphorylates MSL1 to elicit epigenetic modulation of CD276 in nasopharyngeal carcinoma. Oncogenesis 2021; 10:9. [PMID: 33431797 PMCID: PMC7801519 DOI: 10.1038/s41389-020-00293-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
CD276 (also known as B7-H3, an immune checkpoint molecule) is aberrantly overexpressed in many cancers. However, the upregulation mechanism and in particular, whether oncogenic signaling has a role, is unclear. Here we demonstrate that a pro-oncogenic kinase PBK, the expression of which is associated with immune infiltration in nasopharyngeal carcinoma (NPC), stimulates the expression of CD276 epigenetically. Mechanistically, PBK phosphorylates MSL1 and enhances the interaction between MSL1 and MSL2, MSL3, and KAT8, the components of the MSL complex. As a consequence, PBK promotes the enrichment of MSL complex on CD276 promoter, leading to the increased histone H4 K16 acetylation and the activation of CD276 transcription. In addition, we show that CD276 is highly upregulated and associated with immune infiltrating levels in NPC. Collectively, our findings describe a novel PBK/MSL1/CD276 signaling axis, which may play an important role in immune evasion of NPC and may be targeted for cancer immunotherapy.
Collapse
Affiliation(s)
- Meng-Yao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Bin Qi
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510245, Guangzhou, China
| | - Ming-Yi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Wen-Jing Yin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Yan-Yi Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Lu He
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Yi Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Fang Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Jin-Quan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China.
| | - Dong-Ping Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China.
| |
Collapse
|
11
|
A novel quinolinylmethyl substituted ethylenediamine compound exerts anti-cancer effects via stimulating the accumulation of reactive oxygen species and NO in hepatocellular carcinoma cells. Eur J Pharmacol 2020; 885:173497. [PMID: 32841641 DOI: 10.1016/j.ejphar.2020.173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Owing to the limitations in the current therapeutic strategies for treating HCC, development of novel chemotherapeutic drugs is urgently needed. In the present study, we found that QQM, a newly-synthesized quinolinylmethyl substituted ethylenediamine compound, exhibited anti-HCC effects both in vitro and in vivo. QQM inhibited HCC cell growth and induced G0/G1-phase cell cycle arrest and apoptosis in a dose-dependent manner. Our results showed that QQM acted by significantly increasing intracellular reactive oxygen species in HCC cells, which led to cell apoptosis and growth inhibition. Furthermore, QQM treatment resulted in an accumulation of reactive nitric oxide (NO) in HCC cells, and introduction of a NO scavenger, carboxy-PTIO, largely attenuated QQM-induced cytotoxicity. Finally, we found that QQM inhibited growth and induced apoptosis of HCC xenograft tumors in vivo. Taken together, our results indicated that QQM exerted anti-HCC effects by inducing reactive oxygen species and NO accumulation in HCC cells. Thus, QQM exhibits the qualities of a novel, promising anti-tumor candidate for the treatment of HCC.
Collapse
|
12
|
Zhang E, Yin S, Zhao S, Zhao C, Yan M, Fan L, Hu H. Protective effects of glycycoumarin on liver diseases. Phytother Res 2019; 34:1191-1197. [PMID: 31840883 DOI: 10.1002/ptr.6598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Licorice, an edible and medicinal plant, has long been used to treat various diseases, including liver diseases. Glycycoumarin (GCM) is a representative coumarin compound in licorice with favorable bioavailability feature. Recent studies by us demonstrated that GCM is highly effective against alcoholic liver disease, nonalcoholic fatty liver disease, acetaminophen-induced hepatotoxicity, and liver cancer through mechanisms involved in activation of Nrf2 antioxidant system, stimulation of AMPK-mediated energy homeostasis, induction of autophagy degradation process, and inhibiting oncogenic kinase T-lymphokine-activated killer cell-originated protein kinase activity. In this review, we summarize the findings on the hepatoprotective effect of GCM, discuss the signaling pathways underlying GCM-induced protective effect on liver diseases, and propose the issues that need to be addressed to promote further development of GCM as a clinically useful hepatoprotective agent.
Collapse
Affiliation(s)
- Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Pirovano G, Roberts S, Reiner T. TOPKi-NBD: a fluorescent small molecule for tumor imaging. Eur J Nucl Med Mol Imaging 2019; 47:1003-1010. [PMID: 31734783 DOI: 10.1007/s00259-019-04608-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE OTS514 is a highly specific inhibitor targeting lymphokine-activated killer T cell-originated protein kinase (TOPK). A fluorescently labeled TOPK inhibitor could be used for tumor delineation or intraoperative imaging, potentially improving patient care. METHODS Fluorescently labeled OTS514 was obtained by conjugating the fluorescent small molecule NBD to the TOPK inhibitor. HCT116 colorectal cancer cells were used to generate tumors in NSG mice for in vivo studies. Images were generated in vitro using confocal microscopy and ex vivo using an IVIS Spectrum. RESULTS OTS514 was successfully conjugated to a fluorescent sensor and validated in vitro, in vivo, and ex vivo. The labeling reaction led to TOPKi-NBD with 67% yield and 97% purity after purification. We were able to test binding properties of TOPKi-NBD to its target, TOPK, and compared them to the precursor inhibitor. EC50s showed similar target affinities for TOPKi-NBD and the unlabeled OTS514. TOPKi-NBD showed specific tumor uptake after systemic administration and was microscopically detectable inside cancer cells ex vivo. Blocking controls performed with an excess of the unlabeled OTS514 confirmed specificity of the compound. Overall, the results represent a first step toward the development of a class of TOPK-specific fluorescent inhibitors for in vivo imaging and tumor delineation. CONCLUSIONS TOPK has the potential to be a new molecular target for cancer-specific imaging in a large variety of tumors. This could lead to broad applications in vitro and in vivo.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Stefka AT, Johnson D, Rosebeck S, Park JH, Nakamura Y, Jakubowiak AJ. Potent anti-myeloma activity of the TOPK inhibitor OTS514 in pre-clinical models. Cancer Med 2019; 9:324-334. [PMID: 31714026 PMCID: PMC6943155 DOI: 10.1002/cam4.2695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) continues to be considered incurable, necessitating new drug discovery. The mitotic kinase T‐LAK cell‐originated protein kinase/PDZ‐binding kinase (TOPK/PBK) is associated with proliferation of tumor cells, maintenance of cancer stem cells, and poor patient prognosis in many cancers. In this report, we demonstrate potent anti‐myeloma effects of the TOPK inhibitor OTS514 for the first time. OTS514 induces cell cycle arrest and apoptosis at nanomolar concentrations in a series of human myeloma cell lines (HMCL) and prevents outgrowth of a putative CD138+ stem cell population from MM patient‐derived peripheral blood mononuclear cells. In bone marrow cells from MM patients, OTS514 treatment exhibited preferential killing of the malignant CD138+ plasma cells compared with the CD138− compartment. In an aggressive mouse xenograft model, OTS964 given orally at 100 mg/kg 5 days per week was well tolerated and reduced tumor size by 48%‐81% compared to control depending on the initial graft size. FOXO3 and its transcriptional targets CDKN1A (p21) and CDKN1B (p27) were elevated and apoptosis was induced with OTS514 treatment of HMCLs. TOPK inhibition also induced loss of FOXM1 and disrupted AKT, p38 MAPK, and NF‐κB signaling. The effects of OTS514 were independent of p53 mutation or deletion status. Combination treatment of HMCLs with OTS514 and lenalidomide produced synergistic effects, providing a rationale for the evaluation of TOPK inhibition in existing myeloma treatment regimens.
Collapse
Affiliation(s)
- Andrew T Stefka
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Johnson
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Shaun Rosebeck
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
15
|
Pirovano G, Roberts S, Brand C, Donabedian PL, Mason C, de Souza PD, Higgins GS, Reiner T. [ 18F]FE-OTS964: a Small Molecule Targeting TOPK for In Vivo PET Imaging in a Glioblastoma Xenograft Model. Mol Imaging Biol 2019; 21:705-712. [PMID: 30357568 PMCID: PMC6482100 DOI: 10.1007/s11307-018-1288-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Lymphokine-activated killer T cell-originated protein kinase (TOPK) is a fairly new cancer biomarker with great potential for clinical applications. The labeling of a TOPK inhibitor with F-18 can be exploited for positron emission tomography (PET) imaging allowing more accurate patient identification, stratification, and disease monitoring. PROCEDURES [18F]FE-OTS964 was produced starting from OTS964, a preclinical drug which specifically binds to TOPK, and using a two-step procedure with [18F]fluoroethyl p-toluenesulfonate as a prosthetic group. Tumors were generated in NSG mice by subcutaneous injection of U87 glioblastoma cells. Animals were injected with [18F]FE-OTS964 and PET imaging and ex vivo biodistribution analysis was carried out. RESULTS [18F]FE-OTS964 was successfully synthesized and validated in vivo as a PET imaging agent. The labeling reaction led to 15.1 ± 7.5 % radiochemical yield, 99 % radiochemical purity, and high specific activity. Chemical identity of the radiotracer was confirmed by co-elution on an analytical HPLC with a cold-labeled standard. In vivo PET imaging and biodistribution analysis showed tumor uptake of 3.06 ± 0.30 %ID/cc, which was reduced in animals co-injected with excess blocking dose of OTS541 to 1.40 ± 0.42 %ID/cc. CONCLUSIONS [18F]FE-OTS964 is the first TOPK inhibitor for imaging purposes and may prove useful in the continued investigation of the pharmacology of TOPK inhibitors and the biology of TOPK in cancer patients.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christian Brand
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christian Mason
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Paula Demétrio de Souza
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
16
|
Wu X, Scott H, Carlsson SV, Sjoberg DD, Cerundolo L, Lilja H, Prevo R, Rieunier G, Macaulay V, Higgins GS, Verrill CL, Lamb AD, Cunliffe VT, Bountra C, Hamdy FC, Bryant RJ. Increased EZH2 expression in prostate cancer is associated with metastatic recurrence following external beam radiotherapy. Prostate 2019; 79:1079-1089. [PMID: 31104332 PMCID: PMC6563086 DOI: 10.1002/pros.23817] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Enhancer of zeste 2 (EZH2) promotes prostate cancer progression. We hypothesized that increased EZH2 expression is associated with postradiotherapy metastatic disease recurrence, and may promote radioresistance. METHODS EZH2 expression was investigated using immunohistochemistry in diagnostic prostate biopsies of 113 prostate cancer patients treated with radiotherapy with curative intent. Associations between EZH2 expression in malignant and benign tissue in prostate biopsy cores and outcomes were investigated using univariate and multivariate Cox regression analyses. LNCaP and PC3 cell radiosensitivity was investigated using colony formation and γH2AX assays following UNC1999 chemical probe-mediated EZH2 inhibition. RESULTS While there was no significant association between EZH2 expression and biochemical recurrence following radiotherapy, univariate analysis revealed that prostate cancer cytoplasmic and total EZH2 expression were significantly associated with metastasis development postradiotherapy (P = 0.034 and P = 0.003, respectively). On multivariate analysis, the prostate cancer total EZH2 expression score remained statistically significant (P = 0.003), while cytoplasmic EZH2 expression did not reach statistical significance (P = 0.053). No association was observed between normal adjacent prostate EZH2 expression and biochemical recurrence or metastasis. LNCaP and PC3 cell treatment with UNC1999 reduced histone H3 lysine 27 tri-methylation levels. Irradiation of LNCaP or PC3 cells with a single 2 Gy fraction with UNC1999-mediated EZH2 inhibition resulted in a statistically significant, though modest, reduction in cell colony number for both cell lines. Increased γH2AX foci were observed 24 hours after ionizing irradiation in LNCaP cells, but not in PC3, following UNC1999-mediated EZH2 inhibition vs controls. CONCLUSIONS Taken together, these results reveal that high pretreatment EZH2 expression in prostate cancer in diagnostic biopsies is associated with an increased risk of postradiotherapy metastatic disease recurrence, but EZH2 function may only at most play a modest role in promoting prostate cancer cell radioresistance.
Collapse
Affiliation(s)
- Xiaoning Wu
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Helen Scott
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Sigrid V. Carlsson
- Department of Epidemiology & BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Urology Service at the Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Department of UrologyInstitute of Clinical Sciences, Sahlgrenska Academy at Gothenburg UniversityGothenburgSweden
| | - Daniel D. Sjoberg
- Department of Epidemiology & BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Lucia Cerundolo
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Hans Lilja
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Laboratory Medicine, Surgery (Urology), and Medicine (GU‐Oncology)Memorial Sloan Kettering Cancer CenterNew YorkNew York
- Department of Translational MedicineLund UniversityMalmöSweden
| | - Remko Prevo
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | | | | | - Geoffrey S. Higgins
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Clare L. Verrill
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUnited Kingdom
| | - Alastair D. Lamb
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Vincent T. Cunliffe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUnited Kingdom
| | - Chas Bountra
- Nuffield Department of Medicine, Structural Genomics ConsortiumUniversity of OxfordOxfordUnited Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Richard J. Bryant
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
17
|
4-Hydroxytamoxifen enhances sensitivity of estrogen receptor α-positive breast cancer to docetaxel in an estrogen and ZNF423 SNP-dependent fashion. Breast Cancer Res Treat 2019; 175:567-578. [DOI: 10.1007/s10549-019-05194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/05/2019] [Indexed: 01/12/2023]
|
18
|
Zhang Y, Yang X, Wang R, Zhang X. Prognostic Value of PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) in Patients with Cancer. J Cancer 2019; 10:131-137. [PMID: 30662533 PMCID: PMC6329853 DOI: 10.7150/jca.28216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background: PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) plays a critical role in tumorigenesis and cancer progression. However, the prognostic roles in cancer patients are inconsistent or even controversial. Therefore, we performed a meta-analysis to investigate the prognostic value of PBK/TOPK in cancers. Methods: Literature search was performed using several online databases (PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar, National Knowledge Infrastructure and Wanfang) for eligible articles published up to May 1, 2018. The relationship between PBK/TOPK expression and prognosis in cancers was investigated by using pooled hazard ratios (HRs) with 95% confidence intervals (CIs) through STATA 12.0 software. Results: Totally 20 eligible studies were included in this meta-analysis. The pooled results showed that carriers with high protein expression of PBK/TOPK were significantly associated with poor OS (HR: 1.69, 95% CI: 1.33-2.04) in various cancers, and patients with increased PBK/TOPK protein expression were significantly correlated with inferior RFS (HR: 1.63, 95% CI: 1.02-2.24) and short DFS (HR: 1.69, 95% CI: 1.16-2.23). Conclusions: The findings suggest that PBK/TOPK protein expression might serve as a prognostic tumor marker in cancers.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xianjin Yang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Rong Wang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xu Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| |
Collapse
|
19
|
Herbert KJ, Ashton TM, Prevo R, Pirovano G, Higgins GS. T-LAK cell-originated protein kinase (TOPK): an emerging target for cancer-specific therapeutics. Cell Death Dis 2018; 9:1089. [PMID: 30356039 PMCID: PMC6200809 DOI: 10.1038/s41419-018-1131-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
'Targeted' or 'biological' cancer treatments rely on differential gene expression between normal tissue and cancer, and genetic changes that render tumour cells especially sensitive to the agent being applied. Problems exist with the application of many agents as a result of damage to local tissues, tumour evolution and treatment resistance, or through systemic toxicity. Hence, there is a therapeutic need to uncover specific clinical targets which enhance the efficacy of cancer treatment whilst minimising the risk to healthy tissues. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase which plays a role in cell cycle regulation and mitotic progression. As a consequence, TOPK expression is minimal in differentiated cells, although its overexpression is a pathophysiological feature of many tumours. Hence, TOPK has garnered interest as a cancer-specific biomarker and biochemical target with the potential to enhance cancer therapy whilst causing minimal harm to normal tissues. Small molecule inhibitors of TOPK have produced encouraging results as a stand-alone treatment in vitro and in vivo, and are expected to advance into clinical trials in the near future. In this review, we present the current literature pertaining to TOPK as a potential clinical target and describe the progress made in uncovering its role in tumour development. Firstly, we describe the functional role of TOPK as a pro-oncogenic kinase, followed by a discussion of its potential as a target for the treatment of cancers with high-TOPK expression. Next, we provide an overview of the current preclinical progress in TOPK inhibitor discovery and development, with respect to future adaptation for clinical use.
Collapse
Affiliation(s)
- Katharine J Herbert
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Thomas M Ashton
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
20
|
Prevo R, Pirovano G, Puliyadi R, Herbert KJ, Rodriguez-Berriguete G, O’Docherty A, Greaves W, McKenna WG, Higgins GS. CDK1 inhibition sensitizes normal cells to DNA damage in a cell cycle dependent manner. Cell Cycle 2018; 17:1513-1523. [PMID: 30045664 PMCID: PMC6132956 DOI: 10.1080/15384101.2018.1491236] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/01/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) orchestrates the transition from the G2 phase into mitosis and as cancer cells often display enhanced CDK1 activity, it has been proposed as a tumor specific anti-cancer target. Here we show that the effects of CDK1 inhibition are not restricted to tumor cells but can also reduce viability in non-cancer cells and sensitize them to radiation in a cell cycle dependent manner. Radiosensitization by the specific CDK1 inhibitor, RO-3306, was determined by colony formation assays in three tumor lines (HeLa, T24, SQ20B) and three non-cancer lines (HFL1, MRC-5, RPE). Initial results showed that CDK1 inhibition radiosensitized tumor cells, but did not sensitize normal fibroblasts and epithelial cells in colony formation assays despite effective inhibition of CDK1 signaling. Further investigation showed that normal cells were less sensitive to CDK1 inhibition because they remained predominantly in G1 for a prolonged period when plated in colony formation assays. In contrast, inhibiting CDK1 a day after plating, when the cells were going through G2/M phase, reduced their clonogenic survival both with and without radiation. Our finding that inhibition of CDK1 can damage normal cells in a cell cycle dependent manner indicates that targeting CDK1 in cancer patients may lead to toxicity in normal proliferating cells. Furthermore, our finding that cell cycle progression becomes easily stalled in non-cancer cells under normal culture conditions has general implications for testing anti-cancer agents in these cells.
Collapse
Affiliation(s)
- Remko Prevo
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Giacomo Pirovano
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Rathi Puliyadi
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Katharine J. Herbert
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Gonzalo Rodriguez-Berriguete
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Alice O’Docherty
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - William Greaves
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - W. Gillies McKenna
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| | - Geoff S. Higgins
- Department of Oncology, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, UK
| |
Collapse
|