1
|
Di Pierdomenico J, Gallego‐Ortega A, Martínez‐Vacas A, García‐Bernal D, Vidal‐Sanz M, Villegas‐Pérez MP, García‐Ayuso D. Intravitreal and subretinal syngeneic bone marrow mononuclear stem cell transplantation improves photoreceptor survival but does not ameliorate retinal function in two rat models of retinal degeneration. Acta Ophthalmol 2022; 100:e1313-e1331. [PMID: 35514078 DOI: 10.1111/aos.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To study and compare effects of syngeneic bone marrow mononuclear stem cells (BM-MNCs) transplants on inherited retinal degeneration in two animal models with different etiologies: the RCS and the P23H-1 rats. To compare the safety and efficacy of two methods of intraocular delivery: subretinal and/or intravitreal. METHODS A suspension of BM-MNCs was injected subretinally or intravitreally in the left eyes of P23H-1 and RCS rats at post-natal day (P) 21. At different survival intervals after the injection: 7, 15, 30 or 60 days, the retinas were cross-sectioned, and photoreceptor survival and glial cell responses were investigated using immunodetection of cones (anti-cone arrestin), synaptic connections (anti-bassoon), microglia (anti-Iba-1), astrocytes and Müller cells (anti-GFAP). Electroretinographic function was also assessed longitudinally. RESULTS Intravitreal injections (IVIs) or subretinal injections (SRIs) of BM-MNCs did not produce adverse effects. The transplanted cells survived for up to 15 days but did not penetrate the retina. Both IVIs and SRIs increased photoreceptor survival, decreased synaptic degeneration and glial fibrillary acidic protein (GFAP) expression in Müller cells but did not modify microglial cell activation and migration or the electroretinographic responses. CONCLUSIONS Intravitreal and subretinal syngeneic BM-MNCs transplantation decreases photoreceptor degeneration and shows anti-gliotic effects on Müller cells but does not ameliorate retinal function. Moreover, syngeneic BM-MNCs transplants are more effective than the xenotransplants of these cells. BM-MNC transplantation has potential therapeutic effects that merit further investigation.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Alejandro Gallego‐Ortega
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Ana Martínez‐Vacas
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - David García‐Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina Universidad de Murcia Murcia Spain
| | - Manuel Vidal‐Sanz
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - María P. Villegas‐Pérez
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Diego García‐Ayuso
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| |
Collapse
|
2
|
Jin C, Ou Q, Chen J, Wang T, Zhang J, Wang Z, Wang Y, Tian H, Xu JY, Gao F, Wang J, Li J, Lu L, Xu GT. Chaperone-mediated autophagy plays an important role in regulating retinal progenitor cell homeostasis. Stem Cell Res Ther 2022; 13:136. [PMID: 35365237 PMCID: PMC8973999 DOI: 10.1186/s13287-022-02809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
4
|
Hinkle JW, Mahmoudzadeh R, Kuriyan AE. Cell-based therapies for retinal diseases: a review of clinical trials and direct to consumer "cell therapy" clinics. Stem Cell Res Ther 2021; 12:538. [PMID: 34635174 PMCID: PMC8504041 DOI: 10.1186/s13287-021-02546-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023] Open
Abstract
Background The retinal pigment epithelium (RPE) is implicated in the pathophysiology of many retinal degenerative diseases. This cell layer is also an ideal target for cell-based therapies. Several early phase clinical trials evaluating cell therapy approaches for diseases involving the RPE, such as age-related macular degeneration and Stargardt's macular dystrophy have been published. However, there have also been numerous reports of complications from unproven “cell therapy” treatments marketed by “cell therapy” clinics. This review aims to outline the particular approaches in the different published clinical trials for cell-based therapies for retinal diseases. Additionally, the controversies surrounding experimental treatments offered outside of legitimate studies are presented.
Main body Cell-based therapies can be applied to disorders that involve the RPE via a variety of techniques. A defining characteristic of any cell therapy treatment is the cell source used: human embryonic stem cells, induced pluripotent stem cells, and human umbilical tissue-derived cells have all been studied in published trials. In addition to the cell source, various trials have evaluated particular immunosuppression regiments, surgical approaches, and outcome measures. Data from early phase studies investigating cell-based therapies in non-neovascular age-related macular degeneration (70 patients, five trials), neovascular age-related macular degeneration (12 patients, four trials), and Stargardt’s macular dystrophy (23 patients, three trials) have demonstrated safety related to the cell therapies, though evidence of significant efficacy has not been reported. This is in contrast to the multiple reports of serious complications and permanent vision loss in patients treated at “cell therapy” clinics. These interventions are marketed directly to patients, funded by the patient, lack Food and Drug Administration approval, and lack significant oversight. Conclusion Currently, there are no proven effective cell-based treatments for retinal diseases, although several trials have investigated potential therapies. These studies reported favorable safety profiles with multiple surgical approaches, with cells derived from multiple sources, and with utilized different immunosuppressive regiments. However, data demonstrating the efficacy and long-term safety are still pending. Nevertheless, “cell therapy” clinics continue to conduct direct-to consumer marketing for non-FDA-approved treatments with potentially blinding complications.
Collapse
Affiliation(s)
- John W Hinkle
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raziyeh Mahmoudzadeh
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ajay E Kuriyan
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Intravitreal Use of a Bone Marrow Mononuclear Fraction (BMMF) Containing CD34+ Cells in Patients with Stargardt Type Macular Dystrophy. Stem Cells Int 2020; 2020:8828256. [PMID: 33488737 PMCID: PMC7787861 DOI: 10.1155/2020/8828256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
To assess the therapeutic potential and the safety of intravitreous use of a bone marrow mononuclear fraction (BMMF) containing CD34+ cells in patients with Stargardt type macular dystrophy. The study was conducted on 10 patients with Stargardt dystrophy with worse eye visual acuity ≤ 20/125. A bone marrow aspirate was obtained from all patients, and after processing in the cell therapy center (CTC), 0.1 ml of the intravitreous BMMF suspension was injected into the eye with worse visual acuity. A sham injection was performed in the contralateral eye. The patients were evaluated at baseline and one, three, and six months after the injection. All of them were submitted to measurement of best corrected visual acuity (BCVA), microperimetry, multifocal electroretinography (mfERG) and full field electroretinography (ffERG), autofluorescence (AF), and optical coherence tomography (OCT). Fluorescein angiography was also performed before and six months after the injection. All patients completed the six-month period of evaluation. Mean visual acuity of the treated eye was 1.1 logMAR (20/250) before intravitreous (IV) injection, 0.96 logMAR (20/200+2) one month after injection, and 0.92 logMAR (20/160-1) 3 months after injection. In the untreated eye, mean VA was 1.0 logMAR (20/200) at baseline and 0.96 logMAR (20/200+2) and 0.94 logMAR (20/160-2) one and three months after injection, respectively. In the treated group, VA at baseline ranged from best acuity of 20/125-1 to worst acuity of 20/640+2, going through 20/100+2 and 20/400 during the first month. In the untreated group, BCVA ranged from 20/100+2 to 20/400 at baseline and from 20/100 to 20/400 after one month. The results for the treated group differed significantly at all follow-up times, whereas no significant difference was observed in the untreated group. Regarding the mean sensitivity of microperimetry, although there was improvement throughout all months, a significant difference occurred only during the first month. In the untreated eye, there was no significant difference in any analysis. Angiofluoresceinography did not reveal neovessel formation or tumor growth. The remaining exams were used in order to aid the diagnosis. The results indicate that the use of intravitreous BMMF in patients with Stargardt dystrophy is safe and is associated with a discrete improvement of BCVA and microperimetry in the treated eye compared to the untreated one.
Collapse
|
7
|
Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death Dis 2020; 11:793. [PMID: 32968042 PMCID: PMC7511341 DOI: 10.1038/s41419-020-02955-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Retinal degeneration (RD) is one of the dominant causes of irreversible vision impairment and blindness worldwide. However, the current effective therapeutics for RD in the ophthalmologic clinic are unclear and controversial. In recent years, extensively investigated stem/progenitor cells-including retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs)-with proliferation and multidirectional differentiation potential have presented opportunities to revolutionise the ultimate clinical management of RD. Herein, we provide a comprehensive overview on the progression of clinical trials for RD treatment using four types of stem/progenitor cell-based transplantation to replace degenerative retinal cells and/or to supplement trophic factors from the aspects of safety, effectiveness and their respective advantages and disadvantages. In addition, we also discuss the emerging role of stem cells in the secretion of multifunctional nanoscale exosomes by which stem cells could be further exploited as a potential RD therapy. This review will facilitate the understanding of scientists and clinicians of the enormous promise of stem/progenitor cell-based transplantation for RD treatment, and provide incentive for superior employment of such strategies that may be suitable for treatment of other diseases, such as stroke and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
8
|
Shen Y. Stem cell therapies for retinal diseases: from bench to bedside. J Mol Med (Berl) 2020; 98:1347-1368. [PMID: 32794020 DOI: 10.1007/s00109-020-01960-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
As the human retina has no regenerative ability, stem cell interventions represent potential therapies for various blinding retinal diseases. This type of therapy has been extensively studied in the human eyes through decades of preclinical studies. The safety profiles shown in clinical trials thus far have indicated that these strategies should be further explored. There are still challenges with regard to cell source, cell delivery, immuno-related adverse events and long-term maintenance of the therapeutic effects. Retinal stem cell therapy is likely to be most successful with a combination of multiple technologies, such as gene therapy. The purpose of this review is to present a synthetical and systematic coverage of stem cell therapies that target retinal diseases from bench to bedside, intending to appeal to both junior specialists and the broader community of clinical investigators alike. This review will only focus on therapies that have already been studied in clinical trials. This review summarizes key concepts, highlights the main studies in human patients and discusses the current challenges and potential methods to reduce safety concerns while enhancing the therapeutic effects.
Collapse
Affiliation(s)
- Yuening Shen
- Institute of Ophthalmology, University College London , 11-43 Bath St, London, EC1V 9EL, UK. .,Department of Medical Retina, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| |
Collapse
|
9
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
10
|
Karasu B. Short-term outcomes of subtenon triamcinolone acetonide injections in patients with retinitis pigmentosa-associated cystoid macular edema unresponsive to carbonic anhydrase inhibitors. Int Ophthalmol 2019; 40:677-687. [PMID: 31773389 DOI: 10.1007/s10792-019-01228-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the functional and anatomical results of subtenon triamcinolone acetonide injection (TA) in eyes with retinitis pigmentosa (RP) that had cystoid macular edema (CME) unresponsive to carbonic anhydrase inhibitors (CAIs). MATERIALS AND METHODS This is a prospective, interventional study. Forty-eight consecutive eyes that underwent subtenon TA for CME due to RP were recorded. Central macular thickness (CMT), best-corrected visual acuities (BCVAs) and intraocular pressures (IOPs) were evaluated before and after injection at 2nd week, 1st month, 2nd month and 3rd month, respectively. Spectral-domain optical coherence tomography (SD-OCT) was used to show anatomic findings. Complications such as cataract and glaucoma were recorded. RESULTS A total of 48 eyes of 42 patients with a mean age of 36.25 ± 15.59 years (range 13 to 63 years) and a mean follow-up of 4.45 ± 0.74 months (range 4 to 6 months) were recorded in the study. The mean initial BCVA increased from 1.09 ± 0.52 to 0.54 ± 0.29 logarithmic minimum angle of resolution (log MAR) (p < 0.001) at 3 months after injection and the mean central macular thickness decreased from 591.45 ± 209.55 µm to 270.83 ± 95.48 µm (p < 0.001). The mean iOP increased from 13.58 ± 2.87 mmHg to 15.91 ± 2.47 mmHg (p < 0.001). Multiple injections (3 injections) in 1 eye, 2 injections in 4 eyes and 1 injection in rest of the eyes were performed at 3-month intervals. Complications such as glaucoma and cataract were not observed in any patient during and after the treatment. CONCLUSION In the present study, a significant improvement in visual acuity and CMT were observed in eyes with subtenon TA for CME due to RP unresponsive to CAIS. Further studies with a long follow-up period of the population are required to investigate the role of subtenon TA of CME due to RP.
Collapse
Affiliation(s)
- Buğra Karasu
- Beyoglu Eye Training and Research Hospital, University of Health Sciences, Bereketzade Mah, Bereketzade Sok. No:2, Beyoğlu, 34421, Istanbul, Turkey.
| |
Collapse
|
11
|
Perspectives of Autologous Mesenchymal Stem-Cell Transplantation in Macular Hole Surgery: A Review of Current Findings. J Ophthalmol 2019; 2019:3162478. [PMID: 30918717 PMCID: PMC6409040 DOI: 10.1155/2019/3162478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
The main treatment available for idiopathic macular holes is represented by pars plana vitrectomy with internal limiting membrane peeling. However, late-stage macular holes are affected by a higher risk of surgical failure. Although adjuvant techniques can be employed, a satisfactory functional recovery is difficult to achieve in refractory macular holes. Given their neuroprotective and antiapoptotic properties, mesenchymal stem cells (MSCs) may represent an appealing approach to treat these extreme cases. The purpose of this review is to highlight the findings regarding healing mechanisms exerted by mesenchymal stem cells and preliminary application in cases of refractory macular holes. When compared with MSCs, MSC-derived exosomes may represent a feasible alternative, given their reduced risk of undesired proliferation and easiness of use.
Collapse
|
12
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
13
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
14
|
Vilela CAP, Souza LEB, Siqueira RC, Calado RT, Covas DT, Paula JS. Ex vivo evaluation of intravitreal mesenchymal stromal cell viability using bioluminescence imaging. Stem Cell Res Ther 2018; 9:155. [PMID: 29895334 PMCID: PMC5998578 DOI: 10.1186/s13287-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023] Open
Abstract
Background Bone marrow-derived mesenchymal stromal cell (MSC) therapy is a promising treatment for several degenerative ocular diseases; however, no reproducible method of monitoring these cells into the eye has been established. The aim of this study was to describe successful bioluminescence imaging (BLI) to detect viable luciferase-expressing MSC in the eye. Methods Human donor MSC in culture were transduced with 50 μl luciferase lentiviral vector (three viral particles/cell) prior to intraocular injection. Twenty-one right eyes of 21 rabbits were evaluated through BLI after receiving 1 × 106 luciferase-expressing MSC intravitreally. Contralateral eyes were injected with vehicle (phosphate-buffered saline (PBS)) and were used as controls. At seven different time points (1 h to 60 days), d-luciferin (40 mg/ml, 300 μl PBS) was injected in subsets of six enucleated eyes for evaluation of radiance decay through BLI analysis. CD90 and CD73 immunofluorescence was studied in selected eyes. Results Eyes injected with MSC showed high BLI radiance immediately after d-luciferin injection and progressive decay until 60 days. Mean BLI radiance measures from eyes with luciferase-expressing MSC were significantly higher than controls from 8 h to 30 days. At the thirtieth day, positive CD90- and CD73-expressing cells were observed only in the vitreous cavity of eyes injected with MSC. Conclusions Viable MSC were identified in the vitreous cavity 1 month after a single injection. Our results confirmed BLI as a useful and reliable method to detect MSC injected into the eye globe.
Collapse
Affiliation(s)
- Carolina Assis P Vilela
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Lucas Eduardo B Souza
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Rubens C Siqueira
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rodrigo T Calado
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Dimas T Covas
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Jayter S Paula
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
15
|
Mansour AM, Sheheitli H, Kucukerdonmez C, Sisk RA, Moura R, Moschos MM, Lima LH, Al-Shaar L, Arevalo JF, Maia M, Foster RE, Kayikcioglu O, Kozak I, Kurup S, Zegarra H, Gallego-Pinazo R, Hamam RN, Bejjani RA, Cinar E, Erakgün ET, Kimura A, Teixeira A. INTRAVITREAL DEXAMETHASONE IMPLANT IN RETINITIS PIGMENTOSA–RELATED CYSTOID MACULAR EDEMA. Retina 2018; 38:416-423. [DOI: 10.1097/iae.0000000000001542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Wang JD, An Y, Zhang JS, Wan XH, Jonas JB, Xu L, Zhang W. Human bone marrow mesenchymal stem cells for retinal vascular injury. Acta Ophthalmol 2017; 95:e453-e461. [PMID: 27807930 DOI: 10.1111/aos.13154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/10/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. METHODS Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. RESULTS In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). CONCLUSIONS Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders.
Collapse
Affiliation(s)
- Jin-Da Wang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| | - Ying An
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| | - Jing-Shang Zhang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| | - Xiu-Hua Wan
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| | - Jost B. Jonas
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
- Department of Ophthalmology; Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg; Seegartenklinik; Heidelberg Germany
| | - Liang Xu
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| | - Wei Zhang
- Beijing Institute of Ophthalmology; Beijing Tongren Eye Center; Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences; Beijing China
| |
Collapse
|
17
|
Cotrim CC, Toscano L, Messias A, Jorge R, Siqueira RC. Intravitreal use of bone marrow mononuclear fraction containing CD34 + stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol 2017; 11:931-938. [PMID: 28579742 PMCID: PMC5449098 DOI: 10.2147/opth.s133502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose To evaluate the therapeutic potential and safety of intravitreal injections of bone marrow mononuclear fraction (BMMF) containing CD34+ cells in patients with atrophic age-related macular degeneration (AMD). Methods Ten patients with atrophic AMD and best-corrected visual acuity (BCVA) in the worse-seeing eye of ≤20/100 were enrolled in this study. The bone marrow from all patients was aspirated and processed for mononuclear cell separation. A 0.1 mL suspension of BMMF CD34+ cells was injected into the vitreous cavity of the worse-seeing eye. Patients were evaluated at Baseline and 1,3,6,9 and 12 months after injection. Ophthalmic evaluation included BCVA measurement, microperimetry, infrared imaging, fundus autofluorescence and SD-optical coherence tomography at all study visits. Fluorescein angiography was performed at Baseline and at 6 and 12 months after intravitreal therapy. Results All patients completed the 6-month follow-up, and six completed the 12-month follow-up. Prior to the injection, mean BCVA was 1.18 logMAR (20/320−1), ranging from 20/125 to 20/640−2, and improved significantly at every follow-up visit, including the 12-month one, when BCVA was 1.0 logMAR (20/200) (P<0.05). Mean sensitivity threshold also improved significantly at 6, 9 and 12 months after treatment (P<0.05). Considering the area of atrophy identified by fundus autofluorescence, significant mean BCVA and mean sensitivity threshold improvement were observed in patients with the smallest areas of atrophy. Fluorescein angiography did not identify choroidal new vessels or tumor growth. Conclusion The use of intravitreal BMMF injections in patients with AMD is safe and is associated with significant improvement in BCVA and macular sensitivity threshold. Patients with small areas of atrophy have a better response. The paracrine effect of CD34+ cells may explain the functional improvement observed; however, larger series of patients are necessary to confirm these preliminary findings.
Collapse
Affiliation(s)
- Carina Costa Cotrim
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiza Toscano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - André Messias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo Jorge
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rubens Camargo Siqueira
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Tang Z, Zhang Y, Wang Y, Zhang D, Shen B, Luo M, Gu P. Progress of stem/progenitor cell-based therapy for retinal degeneration. J Transl Med 2017; 15:99. [PMID: 28486987 PMCID: PMC5424366 DOI: 10.1186/s12967-017-1183-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/14/2017] [Indexed: 01/14/2023] Open
Abstract
Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Bingqiao Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Min Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
19
|
Gokuladhas K, Sivapriya N, Barath M, NewComer CH. Ocular progenitor cells and current applications in regenerative medicines - Review. Genes Dis 2017; 4:88-99. [PMID: 30258910 PMCID: PMC6136601 DOI: 10.1016/j.gendis.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
The recent emerging field of regenerative medicine is to present solutions for chronic diseases which cannot be sufficiently repaired by the body's own mechanisms. Stem cells are undifferentiated biological cells and have the potential to develop into many different cell types in the body during early life and growth. Self renewal and totipotency are the characteristic features of stem cells and it holds a promising result for treating various diseases like diabetic foot ulcer, heart diseases, lung diseases, Autism, Skin diseases, arthritis including eye disease. Failure of complete recovery of eye diseases and complications that follow conventional treatments have shifted search to a new form of regenerative medicine using Stem cells. The ocular progenitor cells are remarkable in stem cell biology and replenishing degenerated cells despite being present in low quantity and quiescence in our body has a high therapeutic value. In this paper we have review the applications on ocular progenitor stem cells in treatment of human eye diseases and address the strategies that have been exploited in an effort to regain visual function in the advance treatment of stem cells without any side effects and also present the significance in advance stem cell research.
Collapse
Affiliation(s)
- K Gokuladhas
- World Stem Cell Clinic India LLP (ISO 9001:2015 Certified Clinic), #6, 9th Cross Street, Kapaleeshwar Nagar, Neelankarai, Chennai 600115, India
| | - N Sivapriya
- World Stem Cell Clinic India LLP (ISO 9001:2015 Certified Clinic), #6, 9th Cross Street, Kapaleeshwar Nagar, Neelankarai, Chennai 600115, India
| | - M Barath
- World Stem Cell Clinic India LLP (ISO 9001:2015 Certified Clinic), #6, 9th Cross Street, Kapaleeshwar Nagar, Neelankarai, Chennai 600115, India
| | - Charles H NewComer
- World Stem Cell Clinic India LLP (ISO 9001:2015 Certified Clinic), #6, 9th Cross Street, Kapaleeshwar Nagar, Neelankarai, Chennai 600115, India
| |
Collapse
|
20
|
Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 2017; 56:148-165. [PMID: 27784628 PMCID: PMC5237620 DOI: 10.1016/j.preteyeres.2016.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy.
Collapse
Affiliation(s)
- Susanna S Park
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Gerhard Bauer
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Johnathon D Anderson
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Maria B Grant
- Department of Ophthalmology, Glick Eye Institute, Indiana University, Indianapolis, IN, USA.
| | - Azhar Zam
- UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA; UC Davis RISE Eye-Pod Small Animal Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA.
| | - John S Werner
- Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, 95817, USA.
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
21
|
Satarian L, Nourinia R, Safi S, Kanavi MR, Jarughi N, Daftarian N, Arab L, Aghdami N, Ahmadieh H, Baharvand H. Intravitreal Injection of Bone Marrow Mesenchymal Stem Cells in Patients with Advanced Retinitis Pigmentosa; a Safety Study. J Ophthalmic Vis Res 2017; 12:58-64. [PMID: 28299008 PMCID: PMC5340065 DOI: 10.4103/2008-322x.200164] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To examine the safety of a single intravitreal injection of autologous bone Marrow Mesenchymal stem cells (MSCs) in patients with advanced retinitis pigmentosa (RP). METHODS A prospective, phase I, nonrandomized, open-label study was conducted on 3 eyes of 3 volunteers with advanced RP. Visual acuity, slit-lamp examination, fundus examination, optical coherence tomography, fundus auto-fluorescence, fluorescein angiography and multifocal electroretinography were performed before and after an intravitreal injection of approximately one-million MSCs. The patients were followed for one year. Further evaluation of MSCs was performed by injection of these cells into the mouse vitreous cavity. RESULTS No, adverse events were observed in eyes of 2 out of 3 patients after transplantation of MSCs. These patients reported improvements in perception of the light after two weeks, which lasted for 3 months. However, severe fibrous tissue proliferation was observed in the vitreous cavity and retrolental space of the third patient's eye, which led to tractional retinal detachment (TRD), iris neovascularization and formation of mature cataract. Injection of this patient's MSCs into the vitreous cavity of mice also resulted in fibrosis; however, intravitreal injections of the two other patients' cells into the mouse vitreous did not generate any fibrous tissue. CONCLUSION Intravitreal injection of autologous bone marrow MSCs into patients' eyes with advanced RP does not meet safety standards. Major side effects of this therapy can include fibrosis and TRD. We propose thorough evaluation of MSCs prior to transplantation by intravitreal injection in the laboratory animals.\.
Collapse
Affiliation(s)
- Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Jarughi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Arab
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, González-Zamora J, Carretero-Barrio I, Pastor JC, Fernandez-Bueno I, Srivastava GK. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials. World J Stem Cells 2016; 8:376-383. [PMID: 27928464 PMCID: PMC5120242 DOI: 10.4252/wjsc.v8.i11.376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells (MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in I/II phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase III-IV. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases.
Collapse
|
23
|
Stem Cell Therapy for Treatment of Ocular Disorders. Stem Cells Int 2016; 2016:8304879. [PMID: 27293447 PMCID: PMC4884591 DOI: 10.1155/2016/8304879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.
Collapse
|
24
|
Abstract
INTRODUCTION After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. AREAS COVERED This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. EXPERT OPINION Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.
Collapse
Affiliation(s)
- Henry Klassen
- a University of California, Gavin Herbert Eye Institute & Stem Cell Research Center , Sue & Bill Gross Hall, Room 2006, 845 Health Sciences Road, Irvine, CA 92697-1705, USA +1 94 98 24 77 50 ; +1 94 98 24 96 26 ;
| |
Collapse
|
25
|
Díaz D, Muñoz-Castañeda R, Alonso JR, Weruaga E. Bone Marrow-Derived Stem Cells and Strategies for Treatment of Nervous System Disorders: Many Protocols, and Many Results. Neuroscientist 2014; 21:637-52. [PMID: 25171812 DOI: 10.1177/1073858414547538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow stem cells are the best known stem cell type and have been employed for more than 50 years, especially in pathologies of the hematopoietic and immune systems. However, their therapeutic potential is much broader, and they can also be employed to palliate neural diseases. Apart from their plastic properties, these cells lack the legal or ethical constraints of other stem cell populations, that is, embryonic stem cells. Current research addressing the integration of bone marrow-derived cells into the neural circuits of the central nervous system, their features, and applications is a hotspot in neurobiology. Nevertheless, as in other leading research lines the efficacy and possibilities of their application depend on technical procedures, which are still far from being standardized. Accordingly, for efficient research this large range of variants should be taken into account as they could lead to unexpected results. Rather than focusing on clinical aspects, this review offers a compendium of the methodologies aimed at providing a guide for researchers who are working in the field of bone marrow transplantation in the central nervous system. It seeks to be useful for both introductory and trouble-shooting purposes, and in particular for dealing with the large array of bone marrow transplantation protocols available.
Collapse
Affiliation(s)
- David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain Institute of Biomedical Research of Salamanca, IBSAL, Spain
| |
Collapse
|
26
|
Recent advances of stem cell therapy for retinitis pigmentosa. Int J Mol Sci 2014; 15:14456-74. [PMID: 25141102 PMCID: PMC4159862 DOI: 10.3390/ijms150814456] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive loss of photoreceptors and eventually leads to retina degeneration and atrophy. Until now, the exact pathogenesis and etiology of this disease has not been clear, and many approaches for RP therapies have been carried out in animals and in clinical trials. In recent years, stem cell transplantation-based attempts made some progress, especially the transplantation of bone marrow-derived mesenchymal stem cells (BMSCs). This review will provide an overview of stem cell-based treatment of RP and its main problems, to provide evidence for the safety and feasibility for further clinical treatment.
Collapse
|