1
|
Galaverna F, Flamini S, De Luca CD, Pili I, Boccieri E, Benini F, Quagliarella F, Rosignoli C, Rosichini M, Genah S, Catanoso M, Cardinale A, Volpe G, Coccetti M, Pitisci A, Li Pira G, Carta R, Lucarelli B, Del Bufalo F, Bertaina V, Becilli M, Pagliara D, Algeri M, Merli P, Locatelli F, Velardi E. Mucosal-associated invariant T cells are functionally impaired in pediatric and young adult patients following allogeneic hematopoietic stem cell transplantation and their recovery correlates with clinical outcomes. Haematologica 2024; 109:3222-3236. [PMID: 38813718 PMCID: PMC11443409 DOI: 10.3324/haematol.2023.284649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematologic malignancies undergoing allogeneic (allo)-HSCT between April 2019 and May 2022, from unrelated matched donor (MUD, N=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, N=93) donor after in vitro αβT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis. With a median follow-up of 33 months (range, 12-49 months), overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) were 79.5%, 72%, and 7%, respectively; GvHD-free relapse-free survival (GRFS) was 63%, while cumulative incidence of relapse was 23%. While αβT cells were reconstituted 1-2 years post HSCT, MAIT cells showed delayed recovery and prolonged functional impairment, characterized by expression of activation (CD25, CD38), exhaustion (PD1, TIM3) and senescence (CD57) markers, and suboptimal ex vivo response. OS, DFS, and NRM were not affected by MAIT cells. Interestingly, higher MAIT cells at day +30 correlated with higher incidence of grade II-IV acute GvHD (19% vs. 7%, P=0.06). Furthermore, a greater MAIT-cell count tended to be associated with a higher incidence of chronic GvHD (cGvHD) (17% vs. 6%, P=0.07) resulting in lower GRFS (55% vs. 73%, P=0.05). Higher MAIT cells also correlated with greater cytomegalovirus (CMV) reactivation and lower late blood stream infections (BSI) (44% vs. 24%, P=0.02 and 9% vs. 18%, P=0.08, respectively). Future studies are needed to confirm the impact of early MAIT-cell recovery on cGvHD, CMV reactivation, and late BSI.
Collapse
Affiliation(s)
- Federica Galaverna
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Sara Flamini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Carmen Dolores De Luca
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Ilaria Pili
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Emilia Boccieri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Francesco Quagliarella
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Chiara Rosignoli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome
| | - Shirley Genah
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marialuigia Catanoso
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Gabriele Volpe
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marianna Coccetti
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Angela Pitisci
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Giuseppina Li Pira
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Roberto Carta
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Barbarella Lucarelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Del Bufalo
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Valentina Bertaina
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Becilli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Daria Pagliara
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Mattia Algeri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Health Sciences, Magna Graecia University, Catanzaro
| | - Pietro Merli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Maternal and Child Health, Catholic University of the Sacred Heart, Largo Francesco Vito, 1, 00168 Rome.
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome.
| |
Collapse
|
2
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
3
|
Kreisinger J, Dooley J, Singh K, Čížková D, Schmiedová L, Bendová B, Liston A, Moudra A. Investigating the effects of radiation, T cell depletion, and bone marrow transplantation on murine gut microbiota. Front Microbiol 2024; 15:1324403. [PMID: 38903788 PMCID: PMC11188301 DOI: 10.3389/fmicb.2024.1324403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiome research has gained much attention in recent years as the importance of gut microbiota in regulating host health becomes increasingly evident. However, the impact of radiation on the microbiota in the murine bone marrow transplantation model is still poorly understood. In this paper, we present key findings from our study on how radiation, followed by bone marrow transplantation with or without T cell depletion, impacts the microbiota in the ileum and caecum. Our findings show that radiation has different effects on the microbiota of the two intestinal regions, with the caecum showing increased interindividual variation, suggesting an impaired ability of the host to regulate microbial symbionts, consistent with the Anna Karenina principle. Additionally, we observed changes in the ileum composition, including an increase in bacterial taxa that are important modulators of host health, such as Akkermansia and Faecalibaculum. In contrast, radiation in the caecum was associated with an increased abundance of several common commensal taxa in the gut, including Lachnospiraceae and Bacteroides. Finally, we found that high doses of radiation had more substantial effects on the caecal microbiota of the T-cell-depleted group than that of the non-T-cell-depleted group. Overall, our results contribute to a better understanding of the complex relationship between radiation and the gut microbiota in the context of bone marrow transplantation and highlight the importance of considering different intestinal regions when studying microbiome responses to environmental stressors.
Collapse
Affiliation(s)
- Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - James Dooley
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kailash Singh
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Dagmar Čížková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Lucie Schmiedová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Barbora Bendová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Adrian Liston
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Alena Moudra
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
- The National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
4
|
Fukushima K, Kudo H, Oka K, Hayashi A, Onizuka M, Kusakabe S, Hino A, Takahashi M, Takeda K, Mori M, Ando K, Hosen N. Clostridium butyricum MIYAIRI 588 contributes to the maintenance of intestinal microbiota diversity early after haematopoietic cell transplantation. Bone Marrow Transplant 2024; 59:795-802. [PMID: 38431763 PMCID: PMC11161410 DOI: 10.1038/s41409-024-02250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, β-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
| | - Hayami Kudo
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kentaro Oka
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Atsushi Hayashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Shinsuke Kusakabe
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Akihisa Hino
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Motomichi Takahashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Masaki Mori
- Faculty of Medicine, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Naoki Hosen
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
5
|
Tong L, Meng Y, Zhang L, Yu J, Dou Y. The distribution of intestinal flora after hematopoietic stem cell transplantation in children. Pediatr Transplant 2024; 28:e14678. [PMID: 38148707 DOI: 10.1111/petr.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This prospective study aimed to comprehensively understand the changes in intestinal flora at different stages after hematopoietic stem cell transplantation (HSCT) in pediatric patients and to analyze the effect of intestinal flora on acute graft versus host disease (aGVHD), especially on gastrointestinal graft versus host disease (GI GVHD). METHODS A total of 32 children with primary diseases of primary immunodeficiency disease (PID) and thalassemia were included. 16S sequencing was used to characterize the microbiota layout at three time points peri-transplant including pre-transplant, Day +3, and Day +30. RESULTS By comparing the intestinal flora of children with GI GVHD and those without GI GVHD, it suggests that in children with GI GVHD, the distribution of intestinal flora after transplantation was more variable and more chaotic (chao1 index, Friedman test, p = .029). Besides, Veillonella and Ruminococcaceae were more abundant before transplantation, Bifidobacteriaceae and Bacillales were more abundant after transplantation. Comparing children with PID and thalassemia, it was found that the destruction of gut microbiota diversity was more significant in children with thalassemia after transplantation. The comparison of children with 0-I° aGVHD and II-III° aGVHD indicates that children with II-III° aGVHD had more Bilophila before transplantation than children with 0-I° aGVHD. Additionally, exploratory analyses to evaluate correlations between clinical characteristics (medications, immune cell recovery, etc.) and microbiome features were also performed. CONCLUSIONS This study has synthetically shown the distribution of intestinal flora after allo-HSCT, and some characteristic bacteria at different stages that may serve as potential biomarkers were screened out additionally, perhaps providing clues for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Lin Tong
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Meng
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Luying Zhang
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Antibiotics (Basel) 2023; 12:1667. [PMID: 38136701 PMCID: PMC10740403 DOI: 10.3390/antibiotics12121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, Children’s Haematology and Oncology Clinic, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.p.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, Children’s Haematology and Oncology Clinic, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
7
|
Masetti R, Leardini D, Muratore E, Fabbrini M, D’Amico F, Zama D, Baccelli F, Gottardi F, Belotti T, Ussowicz M, Fraczkiewicz J, Cesaro S, Zecca M, Merli P, Candela M, Pession A, Locatelli F, Prete A, Brigidi P, Turroni S. Gut microbiota diversity before allogeneic hematopoietic stem cell transplantation as a predictor of mortality in children. Blood 2023; 142:1387-1398. [PMID: 37856089 PMCID: PMC10651870 DOI: 10.1182/blood.2023020026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 10/20/2023] Open
Abstract
The correlation existing between gut microbiota diversity and survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults. Pediatric studies question whether this association applies to children as well. Stool samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate diversity with the Shannon index. A global-to-local networking approach was used to characterize the ecological structure of the gut microbiota. Patients were stratified into higher- and lower-diversity groups at 2 time points: before transplantation and at neutrophil engraftment. The higher-diversity group before transplantation exhibited a higher probability of overall survival (88.9% ± 5.7% standard error [SE] vs 62.7% ± 8.2% SE; P = .011) and lower incidence of grade 2 to 4 and grade 3 to 4 acute graft-versus-host disease (aGVHD). No significant difference in relapse-free survival was observed between the 2 groups (80.0% ± 6.0% SE vs 55.4% ± 10.8% SE; P = .091). The higher-diversity group was characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium, Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut microbiota diversity and composition before transplantation correlate with survival and with the likelihood of developing aGVHD.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Fabbrini
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| | - Federica D’Amico
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Gottardi
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Jowita Fraczkiewicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Wrocław, Poland
| | - Simone Cesaro
- Department of Mother and Child, Pediatric Hematology Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, Microbiomics Unit, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Luo H, Liu T, Qu Y, Kuang C, Xiao M, Sun J, Chen H, Wu J, Liu X, Jiang H. Gut microbiota trajectory in β-thalassemia major children who underwent allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2023; 25:e14111. [PMID: 37615262 DOI: 10.1111/tid.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The gut microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) changes, leading to complications such as acute graft-versus-host disease (GVHD). This study aimed to evaluate the human microbiota composition before and after HSCT in β-thalassemia major (β-TM) children. METHOD Twenty-two β-TM children who received allo-HSCT between December 2018 and March 2020 were enrolled. They were followed up for more than 100 days after HSCT, and their gut microbiota information and disease data were recorded at five-time points. RESULTS The dominant bacteria were Bacteroidetes and Firmicutes at the phylum level and Lachnospiraceae at the family level before and after HSCT. In the differential analysis, Ruminococcaceae constantly decreased after HSCT. Besides, Rothia mucilaginosa was the most abundant 2 months after HSCT compared to before it. Additionally, GVHD patients presented decreased levels of Bacteroidetes compared to those without GVHD. Moreover, Blautia levels significantly decreased in critically ill GVHD patients. CONCLUSION The gut microbiota of the 22 β-TM children showed a clear trend of destruction and reconstruction within 100 days after HSCT. The extra-oral infections and inflammations of Rothia mucilaginosa, a Gram-positive bacterium of the normal oropharyngeal tract microbiota, might play an important role in the recovery process of HSCT. Finally, decreased Bacteroidetes levels were associated with GVHD onset.
Collapse
Affiliation(s)
- Hongfeng Luo
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuhua Qu
- Hematology Department, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Caiyun Kuang
- Hematology Department, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Minhua Xiao
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jing Sun
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huimin Chen
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jinhui Wu
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xihong Liu
- Clinical nutrition department, Guangzhou Women and children's medical center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Hua Jiang
- Hematology Department, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
9
|
Wang YM, Abdullah S, Luebbering N, Langenberg L, Duell A, Lake K, Lane A, Hils B, Vazquez Silva O, Trapp M, Nalapareddy K, Koo J, Denson LA, Jodele S, Haslam DB, Faubion WA, Davies SM, Khandelwal P. Intestinal permeability in patients undergoing stem cell transplantation correlates with systemic acute phase responses and dysbiosis. Blood Adv 2023; 7:5137-5151. [PMID: 37083597 PMCID: PMC10480541 DOI: 10.1182/bloodadvances.2023009960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.
Collapse
Affiliation(s)
- YunZu Michele Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sheyar Abdullah
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian Hils
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ormarie Vazquez Silva
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica Trapp
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lee A. Denson
- University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - David B. Haslam
- University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
10
|
Margolis EB, Maron G, Sun Y, Dallas RH, Allison KJ, Ferrolino J, Ross HS, Davis AE, Jia Q, Turner P, Mackay V, Morin CE, Triplett BM, Klein EJ, Englund JA, Tang L, Hayden RT. Microbiota Predict Infections and Acute Graft-Versus-Host Disease After Pediatric Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2023; 228:627-636. [PMID: 37249910 PMCID: PMC10469318 DOI: 10.1093/infdis/jiad190] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Despite preventive measures, infections continue to pose significant risks to pediatric allogeneic hematopoietic cell transplantation (allo-HCT) recipients. The gut microbiota has been linked to clinical outcomes following adult allo-HCT. This study evaluated whether similar disruptions or differing microbiota patterns were associated with infection risk in pediatric allo-HCT. METHODS In a prospective observational study, fecal samples were obtained from 74 children before conditioning and upon neutrophil recovery. Microbiome signatures identified through sequencing were examined for their associations with infections or acute graft-versus-host disease (aGVHD) in the first-year post-HCT using Cox proportional hazards analysis. RESULTS Microbiome disruption in adults, did not predict infection risk in pediatric allo-HCT. Unique microbiota signatures were associated with different infections or aGVHD. A ratio of strict and facultative anaerobes (eg, Lachnoclostridium, Parabacteroides) prior to conditioning predicted bacteremia risk (Cox hazard ratio [HR], 3.89). A distinct ratio of oral (eg, Rothia, Veillonella) to intestinal anaerobes (eg, Anaerobutyricum, Romboutsia) at neutrophil recovery predicted likelihood of bacterial infections (Cox HR, 1.81) and viral enterocolitis (Cox HR, 1.96). CONCLUSIONS Interactions between medical interventions, pediatric hosts, and microbial communities contribute to microbiota signatures that predict infections. Further multicenter study is necessary to validate the generalizability of these ratios as biomarkers.
Collapse
Affiliation(s)
- Elisa B Margolis
- Department of Infectious Diseases, St Jude Children’s Research Hospital
- Department of Pediatrics, University of Tennessee Health Sciences Center
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children’s Research Hospital
- Department of Pediatrics, University of Tennessee Health Sciences Center
| | - Yilun Sun
- Department of Biostatistics, St Jude Children’s Research Hospital
| | - Ronald H Dallas
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Kim J Allison
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Jose Ferrolino
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Hailey S Ross
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Amy E Davis
- Department of Infectious Diseases, St Jude Children’s Research Hospital
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis
| | - Qidong Jia
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Paige Turner
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Victoria Mackay
- Department of Infectious Diseases, St Jude Children’s Research Hospital
| | - Cara E Morin
- Division of Radiology and Medical Imaging, Cincinnati Children's Hospital, Ohio
| | - Brandon M Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children’s Research Hospital, Memphis, Tennessee
| | | | | | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital
| | | |
Collapse
|
11
|
Metafuni E, Di Marino L, Giammarco S, Bellesi S, Limongiello MA, Sorà F, Frioni F, Maggi R, Chiusolo P, Sica S. The Role of Fecal Microbiota Transplantation in the Allogeneic Stem Cell Transplant Setting. Microorganisms 2023; 11:2182. [PMID: 37764025 PMCID: PMC10536954 DOI: 10.3390/microorganisms11092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Microbiota changes during allogeneic hematopoietic stem cell transplantation has several known causes: conditioning chemotherapy and radiation, broad-spectrum antibiotic administration, modification in nutrition status and diet, and graft-versus-host disease. This article aims to review the current knowledge about the close link between microbiota and allogeneic stem cell transplantation setting. The PubMed search engine was used to perform this review. We analyzed data on microbiota dysbiosis related to the above-mentioned affecting factors. We also looked at treatments aimed at modifying gut dysbiosis and applications of fecal microbiota transplantation in the allogeneic stem cell transplant field, with particular interest in fecal microbiota transplantation for graft-versus-host disease (GvHD), multidrug-resistant and clostridium difficile infections, and microbiota restoration after chemotherapy and antibiotic therapy.
Collapse
Affiliation(s)
- Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Luca Di Marino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Roberto Maggi
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| | - Simona Sica
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.G.); (S.B.); (M.A.L.); (F.S.); (P.C.); (S.S.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.M.); (F.F.); (R.M.)
| |
Collapse
|
12
|
Gray AN, DeFilipp Z. Fecal Microbiota Transplantation for Acute Graft-versus-Host Disease After Allogeneic Hematopoietic Cell Transplantation: Expanding the Horizon into Pediatrics. Transplant Cell Ther 2023:S2666-6367(23)01289-7. [PMID: 37169290 DOI: 10.1016/j.jtct.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The microbiome plays a vital role in maintaining homeostasis of the intestinal microenvironment and immune response in allogeneic hematopoietic cell transplantation (HCT) recipients. Disruption of the intestinal microbiome has been associated with the development of acute graft-versus-host disease (GVHD) of the lower GI tract and worse survival. Fecal microbiota transplantation (FMT) can achieve clinical responses in refractory GVHD, establishing the promise of microbiome-directed interventions in this population. While most data about microbial changes in HCT recipients have been generated from the adult population, children with refractory GVHD represent an important group that may benefit from FMT. In this review, we first highlight characteristics that distinguish the pediatric intestinal microbiome from adults. Subsequently, we explore multiple clinical factors that warrant careful consideration to optimize the application of FMT and other microbiome-directed therapeutics to children.
Collapse
Affiliation(s)
- Ashley N Gray
- Children's Hospital Los Angeles, Children's Center for Cancer and Blood Diseases, Division of Hematology, Oncology and Blood & Marrow Transplantation, Los Angeles, CA, USA.
| | - Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
13
|
Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, D'Amico F, Turroni S. Gut microbiota resilience and recovery after anticancer chemotherapy. MICROBIOME RESEARCH REPORTS 2023; 2:16. [PMID: 38046820 PMCID: PMC10688789 DOI: 10.20517/mrr.2022.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
14
|
Gray AN, Tobin NH, Moore TB, Li F, Aldrovandi GM. Longitudinal relationship between the gut microbiota variation and diversity and gut graft-versus-host disease (GVHD) following pediatric allogeneic hematopoietic cell transplantation (HCT) - Case series. Int J Med Microbiol 2023; 313:151580. [PMID: 37121094 DOI: 10.1016/j.ijmm.2023.151580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Allogeneic Hematopoietic Cell Transplantation (HCT) offers children with life-threatening diseases a chance at survival. Complications from graft-versus-host disease (GVHD, Stages 0-4) represent a significant cause of morbidity and mortality which has been recently associated with gut dysbiosis the adult HCT population. Here, our objective was to conduct a prospective, longitudinal cohort study in nine pediatric allogeneic HCT participants by collecting longitudinally post-HCT stool specimens up to 1 year. Stool microbiota analyses showed that allogeneic HCT and antibiotic therapy lead to acute shifts in the diversity of the gut microbiota with those experiencing stages 3-4 gut GVHD having significantly greater microbiota variation over time when compared to control participants (p = 0.007). Pre-HCT microbiota diversity trended towards an inverse relationship with gut microbiota stability over time, however, this did not reach statistical significance (p = 0.05). Future large prospective studies are necessary to elucidate the mechanisms underlying these dynamic changes in the gut microbiota following pediatric allogeneic HCT.
Collapse
Affiliation(s)
- Ashley N Gray
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| | - Theodore B Moore
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine at University of California, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Fan Li
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at University of California, 675 Charles E Young Dr S, Room 4780 (MRL 4-780), Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Advantageous tactics with certain probiotics for the treatment of graft-versus-host-disease after hematopoietic stem cell transplantation. World J Hematol 2023; 10:15-24. [DOI: 10.5315/wjh.v10.i2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) becomes a standard form of cellular therapy for patients with malignant diseases. HSCT is the first-choice of immunotherapy, although HSCT can be associated with many complications such as graft-versus-host disease (GVHD) which is a major cause of morbidity and mortality after allogeneic HSCT. It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids (SCFAs) such as butyrate in the experimental models of GVHD after allogeneic HSCT. Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis, increasing the risk of GVHD. Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria, which might be associated with the biology of regulatory T cells (Tregs). Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT. Here, we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity, which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
16
|
Levofloxacin prophylaxis and parenteral nutrition have a detrimental effect on intestinal microbial networks in pediatric patients undergoing HSCT. Commun Biol 2023; 6:36. [PMID: 36639555 PMCID: PMC9839701 DOI: 10.1038/s42003-023-04436-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The gut microbiome (GM) has shown to influence hematopoietic stem cell transplantation (HSCT) outcome. Evidence on levofloxacin (LVX) prophylaxis usefulness before HSCT in pediatric patients is controversial and its impact on GM is poorly characterized. Post-HSCT parenteral nutrition (PN) is oftentimes the first-line nutritional support in the neutropenic phase, despite the emerging benefits of enteral nutrition (EN). In this exploratory work, we used a global-to-local networking approach to obtain a high-resolution longitudinal characterization of the GM in 30 pediatric HSCT patients receiving PN combined with LVX prophylaxis or PN alone or EN alone. By evaluating the network topology, we found that PN, especially preceded by LVX prophylaxis, resulted in a detrimental effect over the GM, with low modularity, poor cohesion, a shift in keystone species and the emergence of modules comprising several pathobionts, such as Klebsiella spp., [Ruminococcus] gnavus, Flavonifractor plautii and Enterococcus faecium. Our pilot findings on LVX prophylaxis and PN-related disruption of GM networks should be considered in patient management, to possibly facilitate prompt recovery/maintenance of a healthy and well-wired GM. However, the impact of LVX prophylaxis and nutritional support on short- to long-term post-HSCT clinical outcomes has yet to be elucidated.
Collapse
|
17
|
van Lier YF, Rolling T, Armijo GK, Zhai B, Haverkate NJE, Meijer E, Nur E, Blom B, Peled JU, van den Brink MRM, Hohl TM, Hazenberg MD, Markey KA. Profiling the Fungal Microbiome after Fecal Microbiota Transplantation for Graft-versus-Host Disease: Insights from a Phase 1 Interventional Study. Transplant Cell Ther 2023; 29:63.e1-63.e5. [PMID: 36280104 PMCID: PMC10190111 DOI: 10.1016/j.jtct.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Disruption of the intestinal bacterial microbiota is frequently observed in the context of allogeneic hematopoietic cell transplantation (HCT) and is particularly pronounced in patients who develop graft-versus-host disease (GVHD). Donor fecal microbiota transplantation (FMT) restores gut microbial diversity and reduces GVHD in HCT recipients. The composition of the intestinal fungal community in patients with GVHD, and whether fungal taxa are transferred during FMT are currently unknown. We performed a secondary analysis of our clinical trial of FMT in patients with steroid-refractory GVHD with a focus on the mycobiota. We characterized the fecal mycobiota of 17 patients and healthy FMT donors using internal transcribed spacer amplicon sequencing. The donor who provided the majority of FMT material in our study represents an n-of-one study of the intestinal flora over time. In this donor, mycobiota composition fluctuated over time while the bacterial microbiota remained stable over 16 months. Fungal DNA was detected more frequently in baseline stool samples from patients with steroid-refractory GVHD than in patients with steroid-dependent GVHD. We could detect fungal taxa in the majority of samples but did not see evidence of mycobiota transfer from donor to recipient. Our study demonstrates the feasibility of profiling the mycobiota alongside the more traditional bacterial microbiota, establishes the methodology, and provides a first insight into the mycobiota composition of patients with GVHD.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Clinical Development Infectious Diseases, BioNTech SE, Mainz, Germany
| | - Gabriel K Armijo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nienke J E Haverkate
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Meijer
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, University of Washington, Seattle, Washington.
| |
Collapse
|
18
|
van Lier YF, Vos J, Blom B, Hazenberg MD. Allogeneic hematopoietic cell transplantation, the microbiome, and graft-versus-host disease. Gut Microbes 2023; 15:2178805. [PMID: 36794370 PMCID: PMC9980553 DOI: 10.1080/19490976.2023.2178805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Many patients with hematological malignancies, such as acute myeloid leukemia, receive an allogeneic hematopoietic cell transplantation (HCT) to cure their underlying condition. Allogeneic HCT recipients are exposed to various elements during the pre-, peri- and post-transplant period that can disrupt intestinal microbiota, including chemo- and radiotherapy, antibiotics, and dietary changes. The dysbiotic post-HCT microbiome is characterized by low fecal microbial diversity, loss of anaerobic commensals, and intestinal domination, particularly by Enterococcus species, and is associated with poor transplant outcomes. Graft-versus-host disease (GvHD) is a frequent complication of allogeneic HCT caused by immunologic disparity between donor and host cells and results in tissue damage and inflammation. Microbiota injury is particularly pronounced in allogeneic HCT recipients who go on to develop GvHD. At present, manipulation of the microbiome for example, via dietary interventions, antibiotic stewardship, prebiotics, probiotics, or fecal microbiota transplantation, is widely being explored to prevent or treat gastrointestinal GvHD. This review discusses current insights into the role of the microbiome in GvHD pathogenesis and summarizes interventions to prevent and treat microbiota injury.
Collapse
Affiliation(s)
- Yannouck F. van Lier
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Jaël Vos
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Mette D. Hazenberg
- Department of Hematology, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC location AMC, Amsterdam, The Netherlands,Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands,CONTACT Mette D. Hazenberg Department of Hematology, Amsterdam UMC, Meibergdreef 9, Amsterdam1105 AZ, The Netherlands
| |
Collapse
|
19
|
Rückert T, Andrieux G, Boerries M, Hanke-Müller K, Woessner NM, Doetsch S, Schell C, Aumann K, Kolter J, Schmitt-Graeff A, Schiff M, Braun LM, Haring E, Kissel S, Siranosian BA, Bhatt AS, Nordkild P, Wehkamp J, Jensen BAH, Minguet S, Duyster J, Zeiser R, Köhler N. Human β-defensin 2 ameliorates acute GVHD by limiting ileal neutrophil infiltration and restraining T cell receptor signaling. Sci Transl Med 2022; 14:eabp9675. [PMID: 36542690 DOI: 10.1126/scitranslmed.abp9675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD), which is driven by allogeneic T cells, has a high mortality rate and limited treatment options. Human β-defensin 2 (hBD-2) is an endogenous epithelial cell-derived host-defense peptide. In addition to its antimicrobial effects, hBD-2 has immunomodulatory functions thought to be mediated by CCR2 and CCR6 in myeloid cells. In this study, we analyzed the effect of recombinant hBD-2 on aGVHD development. We found that intestinal β-defensin expression was inadequately induced in response to inflammation in two independent cohorts of patients with aGVHD and in a murine aGVHD model. Treatment of mice with hBD-2 reduced GVHD severity and mortality and modulated the intestinal microbiota composition, resulting in reduced neutrophil infiltration in the ileum. Furthermore, hBD-2 treatment decreased proliferation and proinflammatory cytokine production by allogeneic T cells in vivo while preserving the beneficial graft-versus-leukemia effect. Using transcriptome and kinome profiling, we found that hBD-2 directly dampened primary murine and human allogeneic T cell proliferation, activation, and metabolism in a CCR2- and CCR6-independent manner by reducing proximal T cell receptor signaling. Furthermore, hBD-2 treatment diminished alloreactive T cell infiltration and the expression of genes involved in T cell receptor signaling in the ilea of mice with aGVHD. Together, we found that both human and murine aGVHD were characterized by a lack of intestinal β-defensin induction and that recombinant hBD-2 represents a potential therapeutic strategy to counterbalance endogenous hBD-2 deficiency.
Collapse
Affiliation(s)
- Tamina Rückert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Kathrin Hanke-Müller
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg,79104 Freiburg, Germany
| | - Nadine M Woessner
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Doetsch
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Konrad Aumann
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Marcel Schiff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Biology, University of Freiburg,79104 Freiburg, Germany
| | - Sandra Kissel
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Peter Nordkild
- Defensin Therapeutics ApS, DK-2200 Copenhagen N, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Susana Minguet
- Faculty of Biology, University of Freiburg,79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Pre-Transplant Prediction of Acute Graft-versus-Host Disease Using the Gut Microbiome. Cells 2022; 11:cells11244089. [PMID: 36552852 PMCID: PMC9776596 DOI: 10.3390/cells11244089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gut microbiota is thought to influence host responses to allogeneic hematopoietic stem cell transplantation (aHSCT). Recent evidence points to this post-transplant for acute graft-versus-host disease (aGvHD). We asked whether any such association might be found pre-transplant and conducted a metagenome-wide association study (MWAS) to explore. Microbial abundance profiles were estimated using ensembles of Kaiju, Kraken2, and DeepMicrobes calls followed by dimensionality reduction. The area under the curve (AUC) was used to evaluate classification of the samples (aGvHD vs. none) using an elastic net to test the relevance of metagenomic data. Clinical data included the underlying disease (leukemia vs. other hematological malignancies), recipient age, and sex. Among 172 aHSCT patients of whom 42 developed aGVHD post transplantation, a total of 181 pre-transplant tool samples were analyzed. The top performing model predicting risk of aGVHD included a reduced species profile (AUC = 0.672). Beta diversity (37% in Jaccard's Nestedness by mean fold change, p < 0.05) was lower in those developing aGvHD. Ten bacterial species including Prevotella and Eggerthella genera were consistently found to associate with aGvHD in indicator species analysis, as well as relief and impurity-based algorithms. The findings support the hypothesis on potential associations between gut microbiota and aGvHD based on a data-driven approach to MWAS. This highlights the need and relevance of routine stool collection for the discovery of novel biomarkers.
Collapse
|
21
|
Ingham AC, Pamp SJ. Mucosal microbiotas and their role in stem cell transplantation. APMIS 2022; 130:741-750. [PMID: 35060190 PMCID: PMC9790582 DOI: 10.1111/apm.13208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Mucosal microbiotas and their role in stem cell transplantation. Patients with hematological disorders such as leukemia often undergo allogeneic hematopoietic stem cell transplantation, and thereby receive stem cells from a donor for curation of disease. This procedure also involves immunosuppressive and antimicrobial treatments that disturb the important interactions between the microbiota and the immune system, especially at mucosal sites. After transplantation, bacterial diversity decreases together with a depletion of Clostridia, and shifts toward predominance of Proteobacteria. Infectious and inflammatory complications, such as graft-versus-host disease, also interfere with patient recovery. This review collects and contextualizes current knowledge of the role of mucosal microbiotas at different body sites in stem cell transplantation, proposes underlying mechanisms, and discusses potential clinical value of bacterial markers for improved treatment strategies.
Collapse
Affiliation(s)
- Anna Cäcilia Ingham
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Sünje Johanna Pamp
- Research Group for Genomic EpidemiologyTechnical University of DenmarkKongens LyngbyDenmark,Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
22
|
Vaitkute G, Panic G, Alber DG, Faizura-Yeop I, Cloutman-Green E, Swann J, Veys P, Standing JF, Klein N, Bajaj-Elliott M. Linking gastrointestinal microbiota and metabolome dynamics to clinical outcomes in paediatric haematopoietic stem cell transplantation. MICROBIOME 2022; 10:89. [PMID: 35689247 PMCID: PMC9185888 DOI: 10.1186/s40168-022-01270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Haematopoietic stem cell transplantation is a curative procedure for a variety of conditions. Despite major advances, a plethora of adverse clinical outcomes can develop post-transplantation including graft-versus-host disease and infections, which remain the major causes of morbidity and mortality. There is increasing evidence that the gastrointestinal microbiota is associated with clinical outcomes post-haematopoietic stem cell transplantation. Herein, we investigated the longitudinal dynamics of the gut microbiota and metabolome and potential associations to clinical outcomes in paediatric haematopoietic stem cell transplantation at a single centre. RESULTS On admission (baseline), the majority of patients presented with a different gut microbial composition in comparison with healthy control children with a significantly lower alpha diversity. A further, marked decrease in alpha diversity was observed immediately post-transplantation and in most microbial diversity, and composition did not return to baseline status whilst hospitalised. Longitudinal trajectories identified continuous fluctuations in microbial composition, with the dominance of a single taxon in a significant proportion of patients. Using pam clustering, three clusters were observed in the dataset. Cluster 1 was common pre-transplantation, characterised by a higher abundance of Clostridium XIVa, Bacteroides and Lachnospiraceae; cluster 2 and cluster 3 were more common post-transplantation with a higher abundance of Streptococcus and Staphylococcus in the former whilst Enterococcus, Enterobacteriaceae and Escherichia predominated in the latter. Cluster 3 was also associated with a higher risk of viraemia. Likewise, further multivariate analysis reveals Enterobacteriaceae, viraemia, use of total parenteral nutrition and various antimicrobials contributing towards cluster 3, Streptococcaceae, Staphylococcaceae, Neisseriaceae, vancomycin and metronidazole contributing towards cluster 2. Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae and not being on total parenteral nutrition contributed to cluster 1. Untargeted metabolomic analyses revealed changes that paralleled fluctuations in microbiota composition; importantly, low faecal butyrate was associated with a higher risk of viraemia. CONCLUSIONS These findings highlight the frequent shifts and dominations in the gut microbiota of paediatric patients undergoing haematopoietic stem cell transplantation. The study reveals associations between the faecal microbiota, metabolome and viraemia. To identify and explore the potential of microbial biomarkers that may predict the risk of complications post-HSCT, larger multi-centre studies investigating the longitudinal microbial profiling in paediatric haematopoietic stem cell transplantation are warranted. Video abstract.
Collapse
Affiliation(s)
- Gintare Vaitkute
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
- Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, UCL, London, NW3 2PF UK
| | - Gordana Panic
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Dagmar G. Alber
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
| | | | | | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Paul Veys
- Great Ormond Street Hospital NHS Foundation Trust, London, WC1N 3JH UK
| | - Joseph F. Standing
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
- Great Ormond Street Hospital NHS Foundation Trust, London, WC1N 3JH UK
| | - Nigel Klein
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
- Great Ormond Street Hospital NHS Foundation Trust, London, WC1N 3JH UK
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH UK
| |
Collapse
|
23
|
Reduced Enterohepatic Recirculation of Mycophenolate and Lower Blood Concentrations are Associated with the Stool Bacterial Microbiome After Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:372.e1-372.e9. [PMID: 35489611 DOI: 10.1016/j.jtct.2022.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mycophenolate mofetil (MMF) is an important immunosuppressant used after allogeneic hematopoietic cell transplant (HCT). MMF has a narrow therapeutic index and blood concentrations of mycophenolic acid (MPA), the active component of MMF, are highly variable. Low MPA concentrations are associated with risk of graft vs host disease (GvHD) while high concentrations are associated with toxicity. Reasons for variability are not well known and may be due, at least in part, to the presence of β-glucuronidase producing bacteria in the gastrointestinal tract which enhance MPA enterohepatic recirculation (EHR) by transforming MPA metabolites formed in the liver back to MPA. OBJECTIVE To determine if individuals with high MPA EHR have a greater abundance of β-glucuronidase producing bacteria in their stool and higher MPA concentrations relative to those with low EHR. STUDY DESIGN We conducted a pharmacomicrobiomics study in 20 adult HCT recipients receiving a myeloablative or reduced intensity preparative regimen. Participants received MMF 1g IV every 8 hours with tacrolimus. Intensive pharmacokinetic sampling of mycophenolate was conducted before hospital discharge. Total MPA, MPA glucuronide (MPAG) and acylMPAG were measured. EHR was defined as a ratio of MPA area under the concentration-versus-time curve (AUC)4-8 to MPA AUC0-8. Differences in stool microbiome diversity and composition, determined by shotgun metagenomic sequencing, were compared above and below the median EHR (22%, range 5-44%). RESULTS Median EHR was 12% and 29% in the low and high EHR groups, respectively. MPA troughs, MPA AUC4-8 and acylMPAG AUC4-8/AUC0-8, were greater in the high EHR group vs low EHR group [1.53 vs 0.28 mcg/mL, p = 0.0001], [7.33 vs 1.79 hr*mcg/mL, p = 0.0003] and [0.33 vs 0.24 hr*mcg/mL, p = 0.0007], respectively. MPA AUC0-8 was greater in the high EHR than the low EHR group and trended towards significance [22.8 vs. 15.3 hr*mcg/mL, p=0.06]. Bacteroides vulgatus, stercoris and thetaiotaomicron were 1.2-2.4 times more abundant (p=0.039, 0.024, 0.046, respectively) in the high EHR group. MPA EHR was positively correlated with B. vulgatus (⍴=0.58, p≤0.01) and B. thetaiotaomicron (⍴=0.46, p<0.05) and negatively correlated with Blautia hydrogenotrophica (⍴=-0.53, p<0.05). Therapeutic MPA troughs were achieved in 80% of patients in the high EHR group and 0% in the low EHR. There was a trend towards differences in MPA AUC0-8 and MPA Css mcg/mL in high vs. low EHR groups (p=0.06). CONCLUSION MPA EHR was variable. Patients with high MPA EHR had greater abundance of Bacteroides species in stool and higher MPA exposure than patients with low MPA EHR. Bacteroides may therefore be protective from poor outcomes such as graft vs host disease but in others it may increase the risk of MPA adverse effects. These data need to be confirmed and studied after oral MMF.
Collapse
|
24
|
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
25
|
Febrile Neutropenia Duration Is Associated with the Severity of Gut Microbiota Dysbiosis in Pediatric Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Cancers (Basel) 2022; 14:cancers14081932. [PMID: 35454840 PMCID: PMC9026899 DOI: 10.3390/cancers14081932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Febrile neutropenia is a common complication in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation. Its genesis is often attributed to infections; however, a specific cause frequently cannot be defined. We hypothesize that the composition of the intestinal flora may contribute to the genesis of the neutropenic fever. We analyzed the microbial composition of stool samples from pediatric patients from three European centers and assessed the relationship with the duration of the fever during neutropenia. We found that a more stable composition of the microbiota during the transplantation course is associated with a shorter duration of fever. Moreover, patients with a higher duration of fever presented higher levels of Collinsella, Megasphaera, Prevotella, Roseburia, Eggerthella and Akkermansia in the stool. Abstract Febrile neutropenia (FN) is a common complication in pediatric patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Frequently, a precise cause cannot be identified, and many factors can contribute to its genesis. Gut microbiota (GM) has been recently linked to many transplant-related complications, and may also play a role in the pathogenesis of FN. Here, we conducted a longitudinal study in pediatric patients receiving HSCT from three centers in Europe profiling their GM during the transplant course, particularly at FN onset. We found that a more stable GM configuration over time is associated with a shorter duration of fever. Moreover, patients with longer lasting fever exhibited higher pre-HSCT levels of Collinsella, Megasphaera, Prevotella and Roseburia and increased proportions of Eggerthella and Akkermansia at the engraftment. These results suggest a possible association of the GM with the genesis and course of FN. Data seem consistent with previous reports on the relationship of a so-called “healthy” GM and the reduction of transplant complications. To our knowledge, this is the first report in the pediatric HSCT setting. Future studies are warranted to define the underling biological mechanisms and possible clinical implications.
Collapse
|
26
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
27
|
Elgarten CW, Tanes C, Lee JJ, Danziger-Isakov LA, Grimley MS, Green M, Michaels MG, Barnum JL, Ardura MI, Auletta JJ, Blumenstock J, Seif AE, Bittinger KL, Fisher BT. Early stool microbiome and metabolome signatures in pediatric patients undergoing allogeneic hematopoietic cell transplantation. Pediatr Blood Cancer 2022; 69:e29384. [PMID: 34709713 PMCID: PMC8629955 DOI: 10.1002/pbc.29384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The contribution of the gastrointestinal tract microbiome to outcomes after allogeneic hematopoietic cell transplantation (HCT) is increasingly recognized. Investigations of larger pediatric cohorts aimed at defining the microbiome state and associated metabolic patterns pretransplant are needed. METHODS We sought to describe the pretransplant stool microbiome in pediatric allogenic HCT patients at four centers. We performed shotgun metagenomic sequencing and untargeted metabolic profiling on pretransplant stool samples. Samples were compared with normal age-matched controls and by clinical characteristics. We then explored associations between stool microbiome measurements and metabolite concentrations. RESULTS We profiled stool samples from 88 pediatric allogeneic HCT patients, a median of 4 days before transplant. Pretransplant stool samples differed from healthy controls based on indices of alpha diversity and in the proportional abundance of specific taxa and bacterial genes. Relative to stool from healthy patients, samples from HCT patients had decreased proportion of Bacteroides, Ruminococcaeae, and genes involved in butyrate production, but were enriched for gammaproteobacterial species. No systematic differences in stool microbiome or metabolomic profiles by age, transplant indication, or hospital were noted. Stool metabolites demonstrated strong correlations with microbiome composition. DISCUSSION Stool samples from pediatric allogeneic HCT patients demonstrate substantial dysbiosis early in the transplant course. As microbiome disruptions associate with adverse transplant outcomes, pediatric-specific analyses examining longitudinal microbiome and metabolome changes are imperative to identify causal associations and to inform rational design of interventions.
Collapse
Affiliation(s)
- Caitlin W. Elgarten
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia,Center for Pediatric Clinical Effectiveness Research, Children’s Hospital of Philadelphia
| | - Ceylan Tanes
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia Research Institute
| | - Jung-jin Lee
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia Research Institute
| | - Lara A. Danziger-Isakov
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital, Medical Center and University of Cincinnati
| | - Michael S. Grimley
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Hospital
| | - Michael Green
- Division of Infectious Diseases, UPMC Children’s Hospital of Pittsburgh
| | | | - Jessie L. Barnum
- Division of Blood and Marrow Transplantation, UPMC Children’s Hospital of Pittsburgh
| | | | - Jeffery J. Auletta
- Division of Infectious Diseases, Nationwide Children’s Hospital,Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital,National Marrow Donor Program/Be The Match
| | - Jesse Blumenstock
- Center for Pediatric Clinical Effectiveness Research, Children’s Hospital of Philadelphia
| | - Alix E. Seif
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia,Center for Pediatric Clinical Effectiveness Research, Children’s Hospital of Philadelphia
| | - Kyle L. Bittinger
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia Research Institute,Division of Gastroenterology, Department of Pediatrics, Children’s Hospital of Philadelphia
| | - Brian T. Fisher
- Center for Pediatric Clinical Effectiveness Research, Children’s Hospital of Philadelphia,Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital of Philadelphia
| |
Collapse
|
28
|
Nabarrete JM, Pereira AZ, Garófolo A, Seber A, Venancio AM, Grecco CES, Bonfim CMS, Nakamura CH, Fernandes D, Campos DJ, Oliveira FLC, Cousseiro FK, Rossi FFP, Gurmini J, Viani KHC, Guterres LF, Mantovani LFAL, Darrigo LG, Albuquerque MIBPE, Brumatti M, Neves MA, Duran N, Villela NC, Zecchin VG, Fernandes JF. Brazilian Nutritional Consensus in Hematopoietic Stem Cell Transplantation: children and adolescents. EINSTEIN-SAO PAULO 2021; 19:eAE5254. [PMID: 34909973 PMCID: PMC8664291 DOI: 10.31744/einstein_journal/2021ae5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2020] [Indexed: 11/28/2022] Open
Abstract
The Brazilian Nutritional Consensus in Hematopoietic Stem Cell Transplantation: Children and Adolescents was developed by dietitians, physicians, and pediatric hematologists from 10 Brazilian reference centers in hematopoietic stem cell transplantation. The aim was to emphasize the importance of nutritional status and body composition during treatment, as well as the main characteristics related to patient´s nutritional assessment. This consensus is intended to improve and standardize nutrition therapy during hematopoietic stem cell transplantation. The consensus was approved by the Brazilian Society of Bone Marrow Transplantation.
Collapse
Affiliation(s)
- Juliana Moura Nabarrete
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Andrea Z Pereira
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Adriana Garófolo
- Universidade Federal de São PauloInstituto de Oncologia PediátricaSão PauloSPBrazilInstituto de Oncologia Pediátrica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Adriana Seber
- Universidade Federal de São PauloSão PauloSPBrazilUniversidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Angela Mandelli Venancio
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Carlos Eduardo Setanni Grecco
- Universidade de São PauloFaculdade de Medicina de Ribeirão PretoHospital das ClínicasRibeirão PretoSPBrazilHospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carmem Maria Sales Bonfim
- Universidade Federal do ParanáHospital de ClínicasCuritibaSPBrazilHospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Claudia Harumi Nakamura
- Universidade Federal de São PauloInstituto de Oncologia PediátricaSão PauloSPBrazilInstituto de Oncologia Pediátrica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Daieni Fernandes
- Santa Casa de Misericórdia de Porto AlegrePorto AlegreRSBrazilSanta Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Denise Johnsson Campos
- Universidade Federal do ParanáHospital de ClínicasCuritibaSPBrazilHospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Fernanda Luisa Ceragioli Oliveira
- Universidade Federal de São PauloEscola Paulista de MedicinaSão PauloSPBrazilEscola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Flávia Krüger Cousseiro
- Santa Casa de Misericórdia de Porto AlegrePorto AlegreRSBrazilSanta Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Flávia Feijó Panico Rossi
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Jocemara Gurmini
- Universidade Federal do ParanáHospital de ClínicasCuritibaSPBrazilHospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Karina Helena Canton Viani
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrazilInstituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Luciana Fernandes Guterres
- Santa Casa de Misericórdia de Porto AlegrePorto AlegreRSBrazilSanta Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Luiz Guilherme Darrigo
- Universidade de São PauloFaculdade de Medicina de Ribeirão PretoHospital das ClínicasRibeirão PretoSPBrazilHospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Maria Isabel Brandão Pires e Albuquerque
- Instituto Nacional de Câncer José Alencar Gomes da SilvaRio de JaneiroRJBrazilInstituto Nacional de Câncer José Alencar Gomes da Silva - INCA, Rio de Janeiro, RJ, Brazil.
| | - Melina Brumatti
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Mirella Aparecida Neves
- Universidade Federal do ParanáHospital de ClínicasCuritibaSPBrazilHospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Natália Duran
- Hospital de Câncer de BarretosBarretosSPBrazilHospital de Câncer de Barretos, Barretos, SP, Brazil.
| | - Neysimelia Costa Villela
- Hospital de Câncer de BarretosBarretosSPBrazilHospital de Câncer de Barretos, Barretos, SP, Brazil.
| | - Victor Gottardello Zecchin
- Universidade Federal de São PauloInstituto de Oncologia PediátricaSão PauloSPBrazilInstituto de Oncologia Pediátrica, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Juliana Folloni Fernandes
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Masetti R, Muratore E, Leardini D, Zama D, Turroni S, Brigidi P, Esposito S, Pession A. Gut microbiome in pediatric acute leukemia: from predisposition to cure. Blood Adv 2021; 5:4619-4629. [PMID: 34610115 PMCID: PMC8759140 DOI: 10.1182/bloodadvances.2021005129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition also influences treatment-related side effects and even the efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of cancer-related death during childhood. Outcomes have improved considerably over the past 4 decades, with the current long-term survival for acute lymphoblastic leukemia being ∼90%. However, several acute toxicities and long-term sequelae are associated with the multimodal therapy protocols applied in these patients. Specific GM configurations could contribute to the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs, or alloimmune reactions, contributing to several health-related issues in AL survivors. The purpose of this article is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM toward a potentially health-promoting configuration are also highlighted.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, and
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; and
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
30
|
Ciftciler R, Ciftciler AE. The importance of microbiota in hematology. Transfus Apher Sci 2021; 61:103320. [PMID: 34801432 DOI: 10.1016/j.transci.2021.103320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/20/2023]
Abstract
Whilst particular infectious bacteria are well-established to be associated with hematological diseases, more recent interest has focused on the entire microbial community of mucosal surfaces. In particular, the link between hematology and the microbiota (defined as the total assemblage of microorganisms in a mucosal environment)/ microbiome (i.e. the entire ecological habitat, including organisms, their genomes and environmental conditions) is becoming more well-known. Dysbiosis, or a change in the microbiome, has been linked to the development of neoplasms, infections, inflammatory illnesses, and immune-mediated disorders, according to growing data. Microbiota may influence distant tumor microenvironment through a variety of methods, including cytokine release control, dendritic cell activation, and T-cell lymphocyte stimulation. There are numerous major implications to study the microbiome in patients with benign and malignant hematologic disorders. In this review, we investigated the structure and function of the microbiome in patients with benign and malignant hematological diseases. Chemotherapy and immunosuppressive agents used in treatment of these benign and malignant hematological diseases may cause or exacerbate dysbiosis and infectious problems. After understanding the importance of microbiota in hematological diseases, we think that use of probiotics and dietary prebiotic substances targeting microbiota modification aiming to improve hematological disease outcomes should be investigated in future studies.
Collapse
Affiliation(s)
- Rafiye Ciftciler
- Aksaray University Training and Research Hospital, Department of Hematology, Aksaray, Turkey.
| | | |
Collapse
|
31
|
Lin D, Hu B, Li P, Zhao Y, Xu Y, Wu D. Roles of the intestinal microbiota and microbial metabolites in acute GVHD. Exp Hematol Oncol 2021; 10:49. [PMID: 34706782 PMCID: PMC8555140 DOI: 10.1186/s40164-021-00240-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/25/2021] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most curative strategies for the treatment of many hematologic malignancies and diseases. However, acute graft-versus-host disease (GVHD) limits the success of allo-HSCT. The prevention and treatment of acute GVHD is the key issue for improving the efficacy of allo-HSCT and has become a research hotspot. The intestine is the primary organ targeted by acute GVHD, and the intestinal microbiota is critical for maintaining the homeostasis of the intestinal microenvironment and the immune response. Many studies have demonstrated the close association between the intestinal microbiota and the pathogenesis of acute GVHD. Furthermore, dysbiosis of the microbiota, which manifests as alterations in the diversity and composition of the intestinal microbiota, and alterations of microbial metabolites are pronounced in acute GVHD and associated with poor patient prognosis. The microbiota interacts with the host directly via microbial surface antigens or microbiota-derived metabolites to regulate intestinal homeostasis and the immune response. Therefore, intervention strategies targeting the intestinal microbiota, including antibiotics, prebiotics, probiotics, postbiotics and fecal microbiota transplantation (FMT), are potential new treatment options for acute GVHD. In this review, we discuss the alterations and roles of the intestinal microbiota and its metabolites in acute GVHD, as well as interventions targeting microbiota for the prevention and treatment of acute GVHD.
Collapse
Affiliation(s)
- Dandan Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Bo Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Pengfei Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Ye Zhao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
32
|
Lee KA, Luong MK, Shaw H, Nathan P, Bataille V, Spector TD. The gut microbiome: what the oncologist ought to know. Br J Cancer 2021; 125:1197-1209. [PMID: 34262150 PMCID: PMC8548300 DOI: 10.1038/s41416-021-01467-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome (GM) has been implicated in a vast number of human pathologies and has become a focus of oncology research over the past 5 years. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation and protection against pathogens. Strong evidence is emerging to support the effects of the GM on the development of some malignancies but also on responses to cancer therapies, most notably, immune checkpoint inhibition. Tools for manipulating the GM including dietary modification, probiotics and faecal microbiota transfer (FMT) are in development. Current understandings of the many complex interrelationships between the GM, cancer, the immune system, nutrition and medication are ultimately based on a combination of short-term clinical trials and observational studies, paired with an ever-evolving understanding of cancer biology. The next generation of personalised cancer therapies focusses on molecular and phenotypic heterogeneity, tumour evolution and immune status; it is distinctly possible that the GM will become an increasingly central focus amongst them. The aim of this review is to provide clinicians with an overview of microbiome science and our current understanding of the role the GM plays in cancer.
Collapse
Affiliation(s)
- K A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK.
- Department of Medical Oncology, The Royal Marsden, London, UK.
| | - M K Luong
- Department of Medical Oncology, Guy's & St Thomas Hospital, London, UK
| | - H Shaw
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK
- Early Phase Trial Unit, Department of Medical Oncology, University College London Hospital, London, UK
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK
| | - V Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, Mount Vernon Hospital, Northwood, UK
| | - T D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
33
|
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Biliński J, Roviello G, Iannone LF, Atzeni A, Sobocki BK, Połom K. Gut Microbiome Modulation and Faecal Microbiota Transplantation Following Allogenic Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2021; 13:cancers13184665. [PMID: 34572894 PMCID: PMC8464896 DOI: 10.3390/cancers13184665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, allogenic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy that is mainly recommended for hematologic malignancies. However, complications (such as graft-versus-host disease, mucositis, disease relapse, and infections) associated with the HSCT procedure contribute to the development of gut microbiota imbalance, gut-barrier disruption, and increased intestinal permeability. In the present narrative review, the crosstalk between gut microbiota products and intestinal homeostasis is discussed. Notably, gut-microbiota-related aspects have an impact on patients' clinical outcomes and overall survival. In accordance with the most recent published data, gut microbiota is crucial for the treatment effectiveness of many diseases, not only gastrointestinal cancers but also hematologic malignancies. Therefore, it is necessary to indicate a therapeutic method allowing to modulate gut microbiota in HSCT recipients. Currently, fecal microbiota transplantation (FMT) is the most innovative method used to alter/restore gut microbiota composition, as well as modulate its activity. Despite the fact that some previous data have shown promising results, the knowledge regarding FMT in HSCT is still strongly limited, except for the treatment of Clostridium difficile infection. Additionally, administration of prebiotics, probiotics, synbiotics, and postbiotics can also modify gut microbiota; however, this strategy should be considered carefully due to the high risk of fungemia/septicemia (especially in case of fungal probiotics).
Collapse
Affiliation(s)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Jarosław Biliński
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Luigi Francesco Iannone
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Alessandro Atzeni
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Faculty of Medicine and Health Sciences, Campus Vapor Vell, 43210 Reus, Spain;
| | - Bartosz Kamil Sobocki
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, 80-214 Gdańsk, Poland;
| |
Collapse
|
34
|
High Throughput Analysis Reveals Changes in Gut Microbiota and Specific Fecal Metabolomic Signature in Hematopoietic Stem Cell Transplant Patients. Microorganisms 2021; 9:microorganisms9091845. [PMID: 34576740 PMCID: PMC8469814 DOI: 10.3390/microorganisms9091845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/29/2022] Open
Abstract
There is mounting evidence for the emerging role of gut microbiota (GM) and its metabolites in profoundly impacting allogenic hematopoietic stem cell transplantation (allo-HSCT) and its subsequent complications, mainly infections and graft versus host-disease (GvHD). The present study was performed in order to investigate changes in GM composition and fecal metabolic signature between transplant patients (n = 15) and healthy controls (n = 18). The intestinal microbiota was characterized by NGS and gas chromatography-mass spectrometry was employed to perform untargeted analysis of fecal metabolites. We found lower relative abundances of Actinobacteria, Firmicutes, and Bacteroidetes and a higher abundance of Proteobacteria phylum after allo-HSCT. Particularly, the GvHD microbiota was characterized by a lower relative abundance of the short-chain fatty acid-producing bacteria, namely, the Feacalibacterium, Akkermansia, and Veillonella genera and the Lachnospiraceae family, and an enrichment in multidrug-resistant bacteria belonging to Escherichia, Shigella, and Bacteroides. Moreover, network analysis showed that GvHD was linked to a higher number of positive interactions of Blautia and a significant mutual-exclusion rate of Citrobacter. The fecal metabolome was dominated by lipids in the transplant group when compared with the healthy individuals (p < 0.05). Overall, 76 metabolites were significantly altered within transplant recipients, of which 24 were selected as potential biomarkers. Furthermore, the most notable altered metabolic pathways included the TCA cycle; butanoate, propanoate, and pyruvate metabolisms; steroid biosynthesis; and glycolysis/gluconeogenesis. Specific biomarkers and altered metabolic pathways were correlated to GvHD onset. Our results showed significant shifts in gut microbiota structure and fecal metabolites characterizing allo-HSCT.
Collapse
|
35
|
Microbiome markers are early predictors of acute GVHD in allogeneic hematopoietic stem cell transplant recipients. Blood 2021; 137:1556-1559. [PMID: 33171492 DOI: 10.1182/blood.2020007158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
|
36
|
Van Lier YF, Van den Brink MRM, Hazenberg MD, Markey KA. The post-hematopoietic cell transplantation microbiome: relationships with transplant outcome and potential therapeutic targets. Haematologica 2021; 106:2042-2053. [PMID: 33882637 PMCID: PMC8327718 DOI: 10.3324/haematol.2020.270835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Microbiota injury occurs in many patients undergoing allogeneic hematopoietic cell transplantation, likely as a consequence of conditioning regimens involving chemo- and radiotherapy, the widespread use of both prophylactic and therapeutic antibiotics, and profound dietary changes during the peri-transplant period. Peri-transplant dysbiosis is characterized by a decrease in bacterial diversity, loss of commensal bacteria and single-taxon domination (e.g., with Enterococcal strains). Clinically, deviation of the post-transplant microbiota from a normal, high-diversity, healthy state has been associated with increased risk of bacteremia, development of graft-versus-host disease and decreases in overall survival. A number of recent clinical trials have attempted to target the microbiota in allogeneic hematopoietic cell transplantation patients via dietary interventions, selection of therapeutic antibiotics, administration of pre- or pro-biotics, or by performing fecal microbiota transplantation. These strategies have yielded promising results but the mechanisms by which these interventions influence transplant-related complications remain largely unknown. In this review we summarize the current approaches to targeting the microbiota, discuss potential underlying mechanisms and highlight the key outstanding areas that require further investigation in order to advance microbiota- targeting therapies.
Collapse
Affiliation(s)
- Yannouck F Van Lier
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam
| | - Marcel R M Van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Hematopoiesis, Sanquin Research, Amsterdam
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
37
|
An infectious diseases perspective on the microbiome and allogeneic stem cell transplant. Curr Opin Infect Dis 2021; 33:426-432. [PMID: 33148984 DOI: 10.1097/qco.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The gut microbiome presents a novel source of diagnostic and therapeutic potential to modify post allogeneic stem cell transplant complications. There is an explosion of interest in microbiome research, mostly in the form of single-centre prospective time-series cohorts utilizing a variety of sampling frequencies and metagenomic technologies to sequence the microbiome. The purpose of this review is to summarize important recent publications and contextualize them within what has already been described in this rapidly growing field. RECENT FINDING Results from observational human cohort and animal transplant models add to the growing body of evidence that the microbiome modulates the immunopathogenesis of posttransplant complications. This is particularly the case for recipients of grafts replete with T cells where the evidence that acute graft-versus-host disease is mediated by anaerobic commensal-associated short-chain fatty acids, which interact with mucosa-associated (CD4FOXP3) T-regulatory cells. SUMMARY Future human research into the role of the microbiome in allogeneic stem transplant should incorporate rigorous and considered experimental design in addition to next-generation sequencing technology to better portray microbiome functional potential and active gene expression. In combination with host immune phenotyping, which would facilitate a robust understanding of the host--microbiome interaction that is required before meaningful translation into clinical diagnostics and therapeutics can be expected.
Collapse
|
38
|
Ingham AC, Kielsen K, Mordhorst H, Ifversen M, Aarestrup FM, Müller KG, Pamp SJ. Microbiota long-term dynamics and prediction of acute graft-versus-host disease in pediatric allogeneic stem cell transplantation. MICROBIOME 2021; 9:148. [PMID: 34183060 PMCID: PMC8240369 DOI: 10.1186/s40168-021-01100-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) exhibit changes in their gut microbiota and are experiencing a range of complications, including acute graft-versus-host disease (aGvHD). It is unknown if, when, and under which conditions a re-establishment of microbial and immunological homeostasis occurs. It is also unclear whether microbiota long-term dynamics occur at other body sites than the gut such as the mouth or nose. Moreover, it is not known whether the patients' microbiota prior to HSCT holds clues to whether the patient would suffer from severe complications subsequent to HSCT. Here, we take a holobiont perspective and performed an integrated host-microbiota analysis of the gut, oral, and nasal microbiota in 29 children undergoing allo-HSCT. RESULTS The bacterial diversity decreased in the gut, nose, and mouth during the first month and reconstituted again 1-3 months after allo-HSCT. The microbial community composition traversed three phases over 1 year. Distinct taxa discriminated the microbiota temporally at all three body sides, including Enterococcus spp., Lactobacillus spp., and Blautia spp. in the gut. Of note, certain microbial taxa appeared already changed in the patients prior to allo-HSCT as compared with healthy children. Acute GvHD occurring after allo-HSCT could be predicted from the microbiota composition at all three body sites prior to HSCT. The reconstitution of CD4+ T cells, TH17, and B cells was associated with distinct taxa of the gut, oral, and nasal microbiota. CONCLUSIONS This study reveals for the first time bacteria in the mouth and nose that may predict aGvHD. Monitoring of the microbiota at different body sites in HSCT patients and particularly through involvement of samples prior to transplantation may be of prognostic value and could assist in guiding personalized treatment strategies. The identification of distinct bacteria that have a potential to predict post-transplant aGvHD might provide opportunities for an improved preventive clinical management, including a modulation of microbiomes. The host-microbiota associations shared between several body sites might also support an implementation of more feasible oral and nasal swab sampling-based analyses. Altogether, the findings suggest that the microbiota and host factors together could provide actionable information to guiding precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Anna Cäcilia Ingham
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
- Present address: Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Katrine Kielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Mordhorst
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Klaus Gottlob Müller
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sünje Johanna Pamp
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark.
- Present address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
van Lier YF, Davids M, Haverkate NJE, de Groot PF, Donker ML, Meijer E, Heubel-Moenen FCJI, Nur E, Zeerleder SS, Nieuwdorp M, Blom B, Hazenberg MD. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med 2021; 12:12/556/eaaz8926. [PMID: 32801142 DOI: 10.1126/scitranslmed.aaz8926] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Disruption of the intestinal microbiota occurs frequently in allogeneic hematopoietic cell transplantation (allo-HCT) recipients and predisposes them to development of graft-versus-host disease (GvHD). In a prospective, single-center, single-arm study, we investigated the effect of donor fecal microbiota transplantation (FMT) on symptoms of steroid-refractory or steroid-dependent, acute or late-onset acute intestinal GvHD in 15 individuals who had undergone allo-HCT. Study participants received a fecal suspension from an unrelated healthy donor via nasoduodenal infusion. Donor FMT was well tolerated, and infection-related adverse events did not seem to be related to the FMT procedure. In 10 of 15 study participants, a complete clinical response was observed within 1 month after FMT, without additional interventions to alleviate GvHD symptoms. This response was accompanied by an increase in gut microbial α-diversity, a partial engraftment of donor bacterial species, and increased abundance of butyrate-producing bacteria, including Clostridiales and Blautia species. In 6 of the 10 responding donor FMT recipients, immunosuppressant drug therapy was successfully tapered. Durable remission of steroid-refractory or steroid-dependent GvHD after donor FMT was associated with improved survival at 24 weeks after donor FMT. This study highlights the potential of donor FMT as a treatment for steroid-refractory or steroid-dependent GvHD, but larger clinical trials are needed to confirm the safety and efficacy of this procedure.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Nienke J E Haverkate
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Pieter F de Groot
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Marjolein L Donker
- Department of Hematology, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands
| | - Ellen Meijer
- Department of Hematology, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands
| | | | - Erfan Nur
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Sacha S Zeerleder
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, Netherlands.,Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Diabetes Center, Department of Internal Medicine, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands.,Institute for Cardiovascular Research (ICaR), Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands.,Wallenberg Laboratory, University of Gothenburg, SE-413 45 Goteborg, Sweden
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands. .,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
40
|
Goeser F, Sifft B, Stein-Thoeringer C, Farowski F, Strassburg CP, Brossart P, Higgins PG, Scheid C, Wolf D, Holderried TAW, Vehreschild MJGT, Cruz Aguilar MR. Fecal microbiota transfer for refractory intestinal graft-versus-host disease - Experience from two German tertiary centers. Eur J Haematol 2021; 107:229-245. [PMID: 33934412 DOI: 10.1111/ejh.13642] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Steroid refractory graft-vs-host disease (sr-GvHD) represents a challenging complication after allogeneic hematopoietic cell transplantation (allo-HCT). Intestinal microbiota (IM) diversity and dysbiosis were identified as influencing factors for the development of acute GvHD. Fecal microbiota transfer (FMT) is hypothesized to restore IM dysbiosis, but there is limited knowledge about the significance of FMT in the treatment of sr-GvHD. OBJECTIVES We studied the effects of FMT on sr-GvHD in allo-HCT patients from two German tertiary clinical centers (n = 11 patients; period: March 2017 until July 2019). To assess safety and clinical efficacy, we analyzed clinical data pre- and post-FMT (day -14 to +30 relative to FMT). Moreover, IM were analyzed in donor samples and in a subset of patients pre- and post-FMT by 16S rRNA sequencing. RESULTS Post-FMT, we observed no intervention-associated, systemic inflammatory responses and only minor side effects (5/11 patients: abdominal pain and transformation of peristalsis-each 3/11 and vomiting-1/11). Stool frequencies and volumes were significantly reduced [pre- vs post-FMT (d14): P < .05, respectively] as well as clear attenuation regarding both grading and staging of sr-GvHD was present upon FMT. Moreover, IM analyses revealed an increase of alpha diversity as well as a compositional shifts toward the donor post-FMT. CONCLUSIONS In our study, we observed positive effects on sr-GVHD after FMT without the occurrence of major adverse events. Although these findings are in line with published data on beneficial effects of FMT in sr-GvHD, further randomized clinical studies are urgently needed to better define the clinical validity including mode of action.
Collapse
Affiliation(s)
- Felix Goeser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany
| | - Barbara Sifft
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | | | - Fedja Farowski
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Peter Brossart
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | - Paul G Higgins
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Christoph Scheid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Dominik Wolf
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany.,UKIM 5, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Tobias A W Holderried
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marta Rebeca Cruz Aguilar
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Functional and phylogenetic alterations in gut microbiome are linked to graft-versus-host disease severity. Blood Adv 2021; 4:1824-1832. [PMID: 32353108 DOI: 10.1182/bloodadvances.2020001531] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is the main complication of hematopoietic stem cell transplantation (HSCT). Changes in gut microbiota composition have been associated with subsequent aGVHD, and reconstitution of healthy microbiota is currently being explored as a therapeutic approach. However, the specific actors in the intestinal ecosystem involved in the pathologic process at the time of aGVHD onset are not yet fully known. We prospectively collected stool samples from patients who underwent allogeneic HSCT. Patients sampled at aGVHD onset were compared with non-GVHD patients. To identify phylogenetic and functional signatures of the disease process, we determined fecal short-chain fatty acid (SFCA) profiles and used high-throughput DNA sequencing and real-time quantitative polymerase chain reaction to assess the microbiota composition. Microbiota alterations were highly specific of gastrointestinal (GI) aGVHD severity. Bacterial biomass and α-diversity were lower in severe aGVHD. We identified several bacterial signatures associated with severe aGVHD at disease onset; a negative correlation was observed with anaerobic bacteria of the Lachnospiraceae, especially the Blautia genus, and Ruminococcaceae families. In parallel, in severe aGVHD patients, we showed a dramatic decrease in the levels of the main SFCAs: acetate (75.8%), propionate (95.8%), and butyrate (94.6%). Mild aGVHD patients were characterized by conserved levels of propionate and Blautia propionate producers. Butyrate was significantly decreased in all GI aGVHD stages, representing a potential diagnostic marker of the disease. Specific microbiota and metabolic alterations were thus associated with aGVHD severity and may be useful for diagnostic and pathophysiologic purposes.
Collapse
|
42
|
Su F, Luo Y, Yu J, Shi J, Zhao Y, Yan M, Huang H, Tan Y. Tandem fecal microbiota transplantation cycles in an allogeneic hematopoietic stem cell transplant recipient targeting carbapenem-resistant Enterobacteriaceae colonization: a case report and literature review. Eur J Med Res 2021; 26:37. [PMID: 33910622 PMCID: PMC8080403 DOI: 10.1186/s40001-021-00508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Due to limited antibiotic options, carbapenem-resistant Enterobacteriaceae (CRE) infections are associated with high non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Also, intestinal CRE colonization is a risk factor for subsequent CRE infection. Several clinical studies have reported successful fecal microbiota transplantation (FMT) for the gut decontamination of a variety of multidrug-resistant bacteria (MDRB), even in immunosuppressed patients. Similarly, other studies have also indicated that multiple FMTs may increase or lead to successful therapeutic outcomes. CASE PRESENTATION We report CRE colonization in an allo-HSCT patient with recurrent CRE infections, and its successful eradication using tandem FMT cycles at 488 days after allo-HSCT. We also performed a comprehensive microbiota analysis. No acute or delayed adverse events (AEs) were observed. The patient remained clinically stable with CRE-negative stool culture at 26-month follow-up. Our analyses also showed some gut microbiota reconstruction. We also reviewed the current literature on decolonization strategies for CRE. CONCLUSIONS CRE colonization led to a high no-relapse mortality after allo-HSCT; however, well-established decolonization strategies are currently lacking. The successful decolonization of this patient suggests that multiple FMT cycles may be potential options for CRE decolonization.
Collapse
Affiliation(s)
- Fengqin Su
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mengni Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China. .,Hematology Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
43
|
Henig I, Yehudai-Ofir D, Zuckerman T. The clinical role of the gut microbiome and fecal microbiota transplantation in allogeneic stem cell transplantation. Haematologica 2021; 106:933-946. [PMID: 33241674 PMCID: PMC8017815 DOI: 10.3324/haematol.2020.247395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
Abstract
Outcomes of allogeneic hematopoietic stem cell transplantation (allo- HSCT) have improved in the recent decade; however, infections and graft-versus-host disease remain two leading complications significantly contributing to early transplant-related mortality. In past years, the human intestinal microbial composition (microbiota) has been found to be associated with various disease states, including cancer, response to cancer immunotherapy and to modulate the gut innate and adaptive immune response. In the setting of allo-HSCT, the intestinal microbiota diversity and composition appear to have an impact on infection risk, mortality and overall survival. Microbial metabolites have been shown to contribute to the health and integrity of intestinal epithelial cells during inflammation, thus mitigating graft-versus-host disease in animal models. While the cause-andeffect relationship between the intestinal microbiota and transplant-associated complications has not yet been fully elucidated, the above findings have already resulted in the implementation of various interventions aiming to restore the intestinal microbiota diversity and composition. Among others, these interventions include the administration of fecal microbiota transplantation. The present review, based on published data, is intended to define the role of the latter approach in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Israel Henig
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Dana Yehudai-Ofir
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa.
| |
Collapse
|
44
|
Pession A, Zama D, Muratore E, Leardini D, Gori D, Guaraldi F, Prete A, Turroni S, Brigidi P, Masetti R. Fecal Microbiota Transplantation in Allogeneic Hematopoietic Stem Cell Transplantation Recipients: A Systematic Review. J Pers Med 2021; 11:100. [PMID: 33557125 PMCID: PMC7913807 DOI: 10.3390/jpm11020100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
The disruption of gut microbiota eubiosis has been linked to major complications in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Various strategies have been developed to reduce dysbiosis and related complications. Fecal microbiota transplantation (FMT) consists of the infusion of fecal matter from a healthy donor to restore impaired intestinal homeostasis, and could be applied in the allo-HSCT setting. We conducted a systematic review of studies addressing the use of FMT in allo-HSCT patients. In the 23 papers included in the qualitative synthesis, FMT was used for the treatment of recurrent Clostridioides difficile infections or as a therapeutic strategy for steroid-resistant gut aGvHD. FMT was also performed with a preventive aim (e.g., to decolonize from antibiotic-resistant bacteria). Additional knowledge on the biological mechanisms underlying clinical findings is needed in order to employ FMT in clinical practice. There is also concern regarding the administration of microbial consortia in immune-compromised patients with altered gut permeability. Therefore, the safety profile and efficacy of the procedure must be determined to better assess the role of FMT in allo-HSCT recipients.
Collapse
Affiliation(s)
- Andrea Pession
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Daniele Zama
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
| | - Federica Guaraldi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (D.G.); (F.G.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit—IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.P.); (D.Z.); (D.L.); (A.P.); (R.M.)
| |
Collapse
|
45
|
Bossù G, Di Sario R, Argentiero A, Esposito S. Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics (Basel) 2021; 10:antibiotics10020152. [PMID: 33546312 PMCID: PMC7913491 DOI: 10.3390/antibiotics10020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
In children with cancer, chemotherapy can produce cytotoxic effects, resulting in immunosuppression and an augmented risk of febrile neutropenia and bloodstream infections. This has led to widespread use of antibiotic prophylaxis which, combined with intensive chemotherapy treatment, could have a long-term effect on the gastrointestinal microbiome. In this review, we aimed to analyze the current literature about the widespread use of antibiotic prophylaxis in children experiencing infectious complications induced by chemotherapy and its effects on the gut microbiome. Our review of the literature shows that antimicrobial prophylaxis in children with cancer is still a trending topic and, at the moment, there are not enough data to define universal guidelines. Children with cancer experience long and painful medical treatments and side effects, which are associated with great economic and social burdens, important psychological consequences, and dysbiosis induced by antibiotics and also by chemotherapy. Considering the importance of a healthy gut microbiota, studies are needed to understand the impact of dysbiosis in response to therapy in these children and to define how to modulate the microbiome to favor a positive therapeutic outcome.
Collapse
|
46
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
47
|
Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes 2021; 13:1966262. [PMID: 34455917 PMCID: PMC8436969 DOI: 10.1080/19490976.2021.1966262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used for the treatment of hematologic cancers and disorders. However, graft-versus-host disease (GVHD) in which the donor immune cells attack the genetically-disparate recipient is a significant cause of morbidity. Acute GVHD is an inflammatory condition and the gastrointestinal system is a major organ affected but is also tied to beneficial graft-versus-tumor (GVT) effects. There is increasing interest on the role of the microbiome on immune function as well as on cancer progression and immunotherapy outcomes. However, there are still significant unanswered questions on the role the microbiome plays in GVHD progression or how to exploit the microbiome in GVHD prevention or treatment. In this review, concepts of HSCT with the focus on GVHD pathogenesis as well as issues in preclinical models used to study GVHD will be discussed with an emphasis on the impact of the microbiome. Factors affecting the microbiome and GVHD outcome such as obesity are also examined. The bridging of preclinical models and clinical outcomes in relation to the role of the microbiome will also be discussed along with possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USAs
| |
Collapse
|
48
|
Yu J, Sun H, Cao W, Han L, Song Y, Wan D, Jiang Z. Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Exp Hematol Oncol 2020; 9:35. [PMID: 33292670 PMCID: PMC7716583 DOI: 10.1186/s40164-020-00194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of the gut microbiota (GM) have demonstrated the close link between human wellness and intestinal commensal bacteria, which mediate development of the host immune system. The dysbiosis, a disruption of the microbiome natural balance, can cause serious health problems. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cause significant changes in GM due to their underlying malignancies and exposure to extensive chemotherapy and systemic antibiotics, which may lead to different disorders. There are complex and multi-directional interactions among intestinal inflammation, GM and immune reactivity after HSCT. There is considerable effect of the human intestinal microbiome on clinical course following HSCT. Some bacteria in the intestinal ecosystem may be potential biomarkers or therapeutic targets for preventing relapse and improving survival rate after HSCT. Microbiota can be used as predictor of mortality in allo-HSCT. Two different strategies with targeted modulation of GM, preemptive and therapeutic, have been used for preventing or treating GM dysbiosis in patients with HSCT. Preemptive strategies include enteral nutrition (EN), prebiotic, probiotic, fecal microbiota transplantation (FMT) and antibiotic strategies, while therapeutic strategies include FMT, probiotic and lactoferrine usages. In this review, we summarize the advance of therapies targeting GM in patients with HSCT.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijie Han
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Masetti R, Zama D, Leardini D, Muratore E, Turroni S, Prete A, Brigidi P, Pession A. The gut microbiome in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer 2020; 67:e28711. [PMID: 32939928 DOI: 10.1002/pbc.28711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The gut microbiome (GM) has been associated with different clinical outcomes in the context of allogeneic hematopoietic stem cell transplantation (HSCT). Large multicenter cohort studies in adults have found significant correlations with overall survival, relapse, and incidence of complications. Moreover, GM is already a promising target for therapeutic interventions. However, few data are available in children, a population presenting unique features and challenges. During childhood, the GM evolves rapidly with large structural fluctuations, alongside with the maturation of the immune system. Furthermore, the HSCT procedure presents significant differences in children. These considerations underline the importance of a specific focus on the pediatric setting, and the role of GM and its age-dependent trajectory in influencing the immunity reconstitution and clinical outcomes. This review provides a comprehensive overview of the available evidence in the field of GM and pediatric HSCT, highlighting age-specific issues and discussing GM-based therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medicine and Surgery (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| |
Collapse
|
50
|
Allogenic stem cell transplant-associated acute graft versus host disease: a computational drug discovery text mining approach using oral and gut microbiome signatures. Support Care Cancer 2020; 29:1765-1779. [PMID: 33094358 DOI: 10.1007/s00520-020-05821-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Acute graft versus host disease (aGVHD) is a major cause of non-relapse morbidity and mortality post-allogenic hematopoietic stem cell transplant (HSCT). Using conventional literature search and computational approaches, our objective was to identify oral and gut bacterial species associated with aGVHD, potentially affecting drug treatment via lipopolysaccharide (LPS) pathways. METHODS Medline, PubMed, PubMed Central, and Google Scholar were searched using MeSH terms. The top 100 hits per database were curated, and 25 research articles were selected to examine oral and gut microbiomes associated with health, HSCT, and aGVHD. Literature search validation, aGVHD drug targets, and microbial metabolic pathway identification were completed using BioReader, MACADAM, KEGG, and STRING programs. RESULTS Our review determined that (1) oral genera Rothia, Solobacterium, and Veillonella were identified in HSCT patients' stool and associated with aGVHD; (2) shifts in gut enterococci profiles were determined in HSCT-associated aGVHD; (3) gut microbiome dysbiosis prior or during HSCT and lower Shannon diversity index at time of HSCT were also associated with increased risk of aGVHD and transplant related death; and (4) Coriobacteriaceae family was negatively correlated with gut aGVHD, whereas Eubacterium limosum was associated with decreased risk of chronic GVHD relapse. Additionally, we identified molecular pathways related to TLR4/ LPS, including candidate aGVHD drug targets, impacted by oral and gut bacterial taxa. CONCLUSION Reduced microbial diversity reflects higher severity and mortality rate in HSCT patients with aGVHD. Multi-omics approaches to decipher oral and gut microbiome associations will be critical for developing aGVHD preventive therapies.
Collapse
|