1
|
Ardila CM, Jiménez-Arbeláez GA, Vivares-Builes AM. Perioperative analgesic efficacy and adverse events of fentanyl in dentistry: A systematic review. Oral Dis 2024; 30:2807-2819. [PMID: 37837245 DOI: 10.1111/odi.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVES To assess the efficacy and adverse events linked to the utilization of fentanyl for perioperative pain management in dentistry. METHODS This systematic review of randomized clinical trials (RCTs) adhered to the PRISMA guidelines and incorporated various databases. RESULTS Eleven RCTs studying 674 patients were analyzed. Perioperative pain was predominantly evaluated in patients undergoing surgery for impacted molars, although some studies also included patients with other conditions such as oral submucous fibrosis, maxillary cancer, bony temporomandibular joint ankylosis, irreversible pulpitis, among others. Combined with dexmedetomidine, fentanyl produced enhanced analgesic effects. It demonstrated comparable efficacy when compared to nefopam and nalbuphine. Both intranasal and intravenous administration routes proved equally effective. In four RCTs, the transdermal fentanyl patch outperformed the control group, except in the clinical trial where it was compared to ropivacaine. The main adverse events associated with the use of fentanyl included nausea, vomiting, drowsiness, delirium, and respiratory depression; however, they were like those reported in the comparison groups. CONCLUSIONS While fentanyl demonstrated satisfactory perioperative analgesic efficacy, there were other alternatives that displayed better or comparable outcomes. Due to the risks and potential for misuse of fentanyl, these alternatives must be considered although adverse events were also reported.
Collapse
Affiliation(s)
- Carlos M Ardila
- Universidad de Antioquia, Medellín, Colombia
- Biomedical Stomatology Research Group, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
2
|
Nauta S, Greven J, Hofman M, Mohren R, Meesters DM, Möckel D, Lammers T, Hildebrand F, Siegel TP, Cuypers E, Heeren RM, Poeze M. Mass Spectrometry Reveals Molecular Effects of Citrulline Supplementation during Bone Fracture Healing in a Rat Model. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1184-1196. [PMID: 38679918 PMCID: PMC11157653 DOI: 10.1021/jasms.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (μCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. μCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with μCT.
Collapse
Affiliation(s)
- Sylvia Nauta
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Johannes Greven
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martijn Hofman
- Center
of Musculoskeletal Surgery, Bonifatius Hospital
Lingen, 49808 Lingen, Germany
| | - Ronny Mohren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Dennis M. Meesters
- Department
of Genetics & Cell Biology, Maastricht
University, 6229ER Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Diana Möckel
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Frank Hildebrand
- Department
of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Tiffany Porta Siegel
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Eva Cuypers
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Ron M.A. Heeren
- Division
of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging
(M4i) Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Martijn Poeze
- Division
of Traumasurgery, Department of Surgery, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
- NUTRIM, School
for Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Pérez-González F, Abusamak M, Sáez-Alcaide LM, García-Denche JT, Marino FAT. Effect of time-dependent ibuprofen administration on the post operatory after impacted third molar extraction: a cross-over randomized controlled trial. Oral Maxillofac Surg 2023; 27:699-706. [PMID: 35918624 PMCID: PMC9345738 DOI: 10.1007/s10006-022-01104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate time-dependent administration of ibuprofen in a lower third molar extraction model. METHODS Eleven patients requiring bilateral surgical removal of lower third molars were recruited and randomized into a blinded crossover randomized controlled trial. For 3 days after surgery, the control group was prescribed ibuprofen 400 mg every 8 h. On the other hand, the experimental group received also ibuprofen 400 mg at breakfast and lunch, replacing the dinner intake with a placebo. Pain measurements (Visual Analog Scale from 0 to 10) were recorded at baseline, 24, 48, and 72 h postoperatively. Facial swelling and trismus were also measured at baseline, 24, and 72 h postoperatively. RESULTS Postoperative swelling and pain perception did not show significative difference between the control and experimental groups at 24, 48, and 72 h. Trismus was significantly lower in the control group than in the experimental group at 72 h postoperatively (p = 0.008). Rescue medication consumption seemed to be comparable between groups. CONCLUSION Eliminating night time ibuprofen might be insignificant for pain control after third molar extraction.
Collapse
Affiliation(s)
- Fabián Pérez-González
- Faculty of Dentistry, Department of Dental Clinical Specialties, University Complutense of Madrid, Plaza Ramón y Cajal S/N, 28040, Madrid, Spain.
| | - Mohammad Abusamak
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Luis Miguel Sáez-Alcaide
- Faculty of Dentistry, Department of Dental Clinical Specialties, University Complutense of Madrid, Plaza Ramón y Cajal S/N, 28040, Madrid, Spain
| | - Jesus Torres García-Denche
- Faculty of Dentistry, Department of Dental Clinical Specialties, University Complutense of Madrid, Plaza Ramón y Cajal S/N, 28040, Madrid, Spain
| | | |
Collapse
|
4
|
Tamimi Z, Abusamak M, Al-Waeli H, Al-Tamimi M, Al Habashneh R, Ghanim M, Al-Nusair M, Gao Q, Nicolau B, Tamimi F. NSAID chronotherapy after impacted third molar extraction: a randomized controlled trial. Oral Maxillofac Surg 2022; 26:663-672. [PMID: 35064366 DOI: 10.1007/s10006-021-01029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Postoperative pain management impacts patients' quality of life and morbidity. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are widely used for this following a 3-doses-per-day regime. However, pain and inflammation follow a circadian rhythm, and animal models assessing the scheduling of NSAID administration (e.g., chronotherapy) have shown that while their use during the active phase of the day enhances postoperative recovery, their administration during the resting phase could have detrimental effects. This observation has led us to hypothesize that night administration of NSAID might be unnecessary in post-surgical scenarios. Therefore, a randomized clinical trial was conducted to test this hypothesis in surgical third molar extractions. MATERIALS AND METHODS Seventy (18-35 years) healthy participants requiring surgical removal of impacted lower third molars were recruited and randomized into a double-blind placebo-controlled study. For three days postoperatively, the treatment group (n = 33) received ibuprofen (400 mg) at 8 AM, 1 PM, and a placebo at 8 PM, while the control group (n = 37) received ibuprofen (400 mg) at 8 AM, 1 PM, and 8 PM. Pain severity was assessed by visual analog scale (VAS) and healing indicators including facial swelling, mouth opening, and C-reactive protein blood levels were also measured. RESULTS Pain VAS measures showed a circadian variation peaking at night. Also, no significant differences were observed between the two groups of the study in terms of postoperative pain scores (estimate: 0.50, 95% CI = [- 0.38, 1.39]) or any other healing indicator. CONCLUSIONS Postoperative pain follows a circadian rhythm. Moreover, night administration of ibuprofen might not provide any significant benefits in terms of pain management and control of inflammation, and two doses during the day only could be sufficient for pain management after surgical interventions. KNOWLEDGE TRANSFER STATEMENT Even though this study cannot rule out the possibility that a reduced regime is different than a standard regime, nocturnal doses of ibuprofen seem to have no clinical significance in the short term, and the results of this study provide evidence in favor of reducing ibuprofen administration from three doses to two doses only after third molar surgery.
Collapse
Affiliation(s)
- Zaid Tamimi
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan.
| | | | - Haider Al-Waeli
- Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | | | - Rola Al Habashneh
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Ghanim
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Al-Nusair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Belinda Nicolau
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Alveolar socket healing in 5-lipoxygenase knockout aged female mice treated or not with high dose of zoledronic acid. Sci Rep 2021; 11:19535. [PMID: 34599216 PMCID: PMC8486749 DOI: 10.1038/s41598-021-98713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigated the role 5-lypoxigenase (5-LO) on alveolar socket healing in aged female mice treated with zoledronic acid (ZL). Forty 129/Sv female mice (64–68 weeks old), 20 wild type (WT) and 20 5-LO knockout (5LOKO) were equally distributed according to ZL treatment: WT Control, WT ZL, 5LOKO Control, and 5LOKO ZL. ZL groups were treated with an intraperitoneal injection of 250 µg/Kg of ZL, while controls were treated with saline. Treatments were administered once a week, starting four weeks before surgery for tooth extraction and until 7 and 21 days post-surgery. Mice were euthanized for a comprehensive microscopic analysis (microCT, histomorphometry and immunohistochemistry). WT ZL mice presented intense inflammatory infiltrate (7 days), delayed bone formation (21 days), reduced collagenous matrix quality, and a deficiency in Runx-2 + , TRAP + , and macrophages as compared to controls. 5LOKO ZL animals presented decreased number of Runx-2 + cells in comparison to 5LOKO Control at 7 days, but no major changes in bone healing as compared to WT or 5LOKO mice at 21 days. The knockout of 5LO favored intramembranous bone healing in aged female mice, with a direct impact on inflammatory response and bone metabolism on the development of ONJ-like lesions.
Collapse
|
6
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Al-Waeli H, Reboucas AP, Mansour A, Morris M, Tamimi F, Nicolau B. Non-steroidal anti-inflammatory drugs and bone healing in animal models-a systematic review and meta-analysis. Syst Rev 2021; 10:201. [PMID: 34238360 PMCID: PMC8268344 DOI: 10.1186/s13643-021-01690-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/26/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAID) have excellent anti-inflammatory and analgesic properties and are extensively used to treat post-traumatic or surgical musculoskeletal pain. Although an extensive literature exists on the administration of NSAID on animal bone healing, no systematic review and meta-analysis of animal studies that investigate the effect of NSAID administration on bone fracture healing. Objective of this study is to conduct a systematic review and meta-analysis to estimate the effect of NSAIDs administration on bone healing biomechanical and histomorphometric measurements in different animal models after bone fracture surgery. METHODS We performed a systematic review and meta-analysis of animal studies to estimate the effect of NSAID administration after bone fracture on healing outcomes. We searched eight databases without limiting the search to starting date up to 1 February 2021 for articles on fractured bone healing in animal models in which NSAID were administered. RESULTS Out of 6732 articles screened, 47 were included and 3 common bone healing outcomes were analysed: biomechanical properties (maximum force to break, stiffness, and work-to-failure), micro-computed tomography (μ-CT), and histomorphometric measurements. The studies were generally of low-quality scores because crucial information, especially concerning randomization, blinding, and allocation concealment, was poorly reported. Our results show that the negative effects of NSAID after bone fracture on certain biomechanical properties of the healing bones was not statistically significant in mice compared with other animals, in females compared with males, and in younger compared with older animals. CONCLUSION The findings demonstrated that NSAIDs administration decreased the biomechanical properties of healing bones after fracture surgery in comparison to the control group. Moreover, different effect on certain outcomes was detected among different sites, sex of the animals, and the time of assessment. TRIAL REGISTRATION Protocol published and registered in SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) in 2017, https://www.radboudumc.nl/getmedia/757ec408-7a9e-4635-8233-ae951effea54/Non-Steroidal-Anti-inflammatory-Drugs-and-bone-healing-in-animal-Models-Systematic-Review-and-Meta-Analysis.aspx.
Collapse
Affiliation(s)
- Haider Al-Waeli
- Faculty of Dentistry, Dalhousie University, 5981 University Ave, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Ana Paula Reboucas
- Faculty of Dentistry, Federal University of Minas Gerais, Minas Gerais, Brazil
- College of Dental Medicine, Qatar University, University Street, Doha, Qatar
| | - Alaa Mansour
- School of Dental Medicine, University at Buffalo, Buffalo, NY, 14214, USA
| | - Martin Morris
- Schulich Library, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, University Street, Doha, Qatar
| | - Belinda Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| |
Collapse
|
8
|
Faki Y, Er A. Different Chemical Structures and Physiological/Pathological Roles of Cyclooxygenases. Rambam Maimonides Med J 2021; 12:RMMJ.10426. [PMID: 33245277 PMCID: PMC7835113 DOI: 10.5041/rmmj.10426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review describes cyclooxygenase (COX), which synthesizes prostanoids that play an important role in living things. The authors conducted a national and international literature review on the subject. The COX enzyme uses arachidonic acid to form prostanoids, which play a role in several physiological and pathological conditions. This enzyme has different isoforms, mainly COX-1 and COX-2. The constitutive isoform is COX-1, while COX-2 is the inducible isoform. Both are expressed in different tissues and at different levels, but they may also coexist within the same tissue. Both isoforms show essentially the same mode of action, but their substrates and inhibitors may differ. The COX-1 isoform, which plays a role in the continuation of physiological events, has an increased expression level in various carcinomas, and the COX-2 isoform, which is increased in inflammatory conditions, is typically expressed at low physiological levels in some tissues such as the brain, kidney, and uterus. In addition to investigating the efficacies of the COX-1 and COX-2 isoforms, the discovery of potential new COX enzymes and their effect continues. This review also looks at the roles of the COX enzyme in certain physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Ayse Er
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Biguetti CC, Couto MCR, Silva ACR, Shindo JVTC, Rosa VM, Shinohara AL, Andreo JC, Duarte MAH, Wang Z, Brotto M, Matsumoto MA. New Surgical Model for Bone-Muscle Injury Reveals Age and Gender-Related Healing Patterns in the 5 Lipoxygenase (5LO) Knockout Mouse. Front Endocrinol (Lausanne) 2020; 11:484. [PMID: 32849277 PMCID: PMC7431610 DOI: 10.3389/fendo.2020.00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Signaling lipid mediators released from 5 lipoxygenase (5LO) pathways influence both bone and muscle cells, interfering in their proliferation and differentiation capacities. A major limitation to studying inflammatory signaling pathways in bone and muscle healing is the inadequacy of available animal models. We developed a surgical injury model in the vastus lateralis (VL) muscle and femur in 129/SvEv littermates mice to study simultaneous musculoskeletal (MSK) healing in male and female, young (3 months) and aged (18 months) WT mice compared to mice lacking 5LO (5LOKO). MSK defects were surgically created using a 1-mm punch device in the VA muscle followed by a 0.5-mm round defect in the femur. After days 7 and 14 post-surgery, the specimens were removed for microtomography (microCT), histopathology, and immunohistochemistry analyses. In addition, non-injured control skeletal muscles along with femur and L5 vertebrae were analyzed. Bones were microCT phenotyped, revealing that aged female WT mice presented reduced BV/TV and trabecular parameters compared to aged males and aged female 5LOKO mice. Skeletal muscles underwent a customized targeted lipidomics investigation for profiling and quantification of lipid signaling mediators (LMs), evidencing age, and gender related-differences in aged female 5LOKO mice compared to matched WT. Histological analysis revealed a suitable bone-healing process with osteoid deposition at day 7 post-surgery, followed by woven bone at day 14 post-surgery, observed in all young mice. Aged WT females displayed increased inflammatory response at day 7 post-surgery, delayed bone matrix maturation, and increased TRAP immunolabeling at day 14 post-surgery compared to 5LOKO females. Skeletal muscles of aged animals showed higher levels of inflammation in comparison to young controls at day 14 post-surgery; however, inflammatory process was attenuated in aged 5LOKO mice compared to aged WT. In conclusion, this new model shows that MSK healing is influenced by age, gender, and the 5LO pathway, which might serve as a potential target to investigate therapeutic interventions and age-related MSK diseases. Our new model is suitable for bone-muscle crosstalk studies.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Maira Cristina Rondina Couto
- Department of Health Sciences, Universidade Do Sagrado Coração, Bauru, Brazil
- Bauru School of Dentistry, University of São Paulo, FOB-USP, São Paulo, Brazil
| | | | | | - Vinicius Mateus Rosa
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Jesus Carlos Andreo
- Bauru School of Dentistry, University of São Paulo, FOB-USP, São Paulo, Brazil
| | | | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
10
|
Kelly RR, McCrackin MA, Russell DL, Leddy LR, Cray JJ, LaRue AC. Murine Aseptic Surgical Model of Femoral Atrophic Nonunion. MethodsX 2020; 7:100898. [PMID: 32382524 PMCID: PMC7199014 DOI: 10.1016/j.mex.2020.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Although bone repair is typically an efficient process, an inadequate healing response can occur, with approximately 5-20% of fractures developing nonunion. Even with improved healing strategies and external fixation devices, overall rate of nonunion has not been significantly reduced, particularly for atrophic nonunion. Atrophic nonunion is characterized by sparse or no callus formation and is difficult to treat clinically, resulting in long-term pain and functional limitation. Reliable preclinical models are needed to study the pathophysiology of atrophic nonunion to create better treatment options. The MouseNail kit (RISystem, Landquart, Switzerland) provides a highly standardized approach in which stabilized segmental bone defects are achieved through interlocked intramedullary nailing. However, reliably performing this surgery is technically challenging, particularly while maintaining strict asepsis. Skilled and aseptic surgical execution is important and necessary because it ensures optimal animal welfare and reproducibility. Therefore, the aim of this paper is to describe:•Novel modifications to the MouseNail kit that allow for: 1) a completely aseptic surgical environment, including description of a hanging limb orthopedic aseptic preparation and 2) a reduction in fracture gap size necessary for induction of atrophic nonunion.•Pre- to post-operative recommendations to facilitate successful performance of murine orthopedic survival surgery.
Collapse
Affiliation(s)
- Ryan R Kelly
- Research Services, Ralph H. Johnson VA Medical Center
| | - Mary Ann McCrackin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA
| | | | - Lee R Leddy
- Department of Orthopedics, The Medical University of South Carolina, Charleston, SC
| | - James J Cray
- Division of Anatomy, The Ohio State University, Columbus, OH
| | - Amanda C LaRue
- Research Services, Ralph H. Johnson VA Medical Center.,Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC
| |
Collapse
|
11
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
12
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
13
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
14
|
Feigenson M, Jonason JH, Shen J, Loiselle AE, Awad HA, O'Keefe RJ. Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair. Ann Biomed Eng 2019; 48:927-939. [PMID: 30980293 DOI: 10.1007/s10439-019-02264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/19/2023]
Abstract
Fracture healing is a complex and integrated process that involves mesenchymal progenitor cell (MPC) recruitment, proliferation and differentiation that eventually results in bone regeneration. Prostaglandin E2 (PGE2) is an important regulator of bone metabolism and has an anabolic effect on fracture healing. Prior work from our laboratory showed EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation. We also showed that bone marrow MSCs from EP1-/- mice exhibit increased osteoblastic differentiation in vitro. In this study we investigate the changes in the periosteal derived MPCs (PDMPCs), which are crucial for fracture repair, upon EP1 deletion. EP1-/- PDMPCs exhibit increased numbers of total (CFU-F) and osteoblastic colonies (CFU-O) as well as enhanced osteoblastic and chondrogenic differentiation. Moreover, we tested the possible therapeutic application of a specific EP1 receptor antagonist to accelerate fracture repair. Our findings showed that EP1 antagonist administration to wild type mice in the early stages of repair similarly resulted in enhanced CFU-F, CFU-O, and osteoblast differentiation in PDMPCs and resulted in enhanced fracture callus formation at 10 days post fracture and increased bone volume and improved biomechanical healing of femur fractures at 21 days post fracture.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA
| | - Alayna E Loiselle
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
16
|
Iacona JR, Monteleone NJ, Lutz CS. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells. Oncotarget 2018; 9:26751-26769. [PMID: 29928483 PMCID: PMC6003571 DOI: 10.18632/oncotarget.25482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Arachidonic acid (AA) can be converted into prostaglandins (PGs) or leukotrienes (LTs) by the enzymatic actions of cyclooxygenases (COX-1 and COX-2) or 5-lipoxygenase (5-LO), respectively. PGs and LTs are lipid signaling molecules that have been implicated in various diseases, including multiple cancers. 5-LO and its activating protein (FLAP) work together in the first two conversion steps of LT production. Previous work has suggested a role for LTs in cancer development and progression. MicroRNAs (miRNAs) are small RNA molecules that negatively regulate gene expression post-transcriptionally, and have previously been shown to be involved in cancer. Here, we show that high FLAP expression is associated with lower overall survival in lung adenocarcinoma patients, and FLAP protein is overexpressed in lung cancer cells compared to normal lung cells. Our lab has previously shown that miR-146a regulates COX-2 in lung cancer cells, and this miRNA is also predicted to target FLAP. Transient and stable transfections of miR-146a repress endogenous FLAP expression in lung cancer cells, and reporter assays show this regulation occurs through a direct interaction between the FLAP 3′ untranslated region (UTR) and miR-146a. Restoration of miR-146a also results in decreased cancer cell Leukotriene B4 (LTB4) production. Additionally, methylation analysis indicates the miR-146a promoter is hypermethylated in lung cancer cell lines. Taken together, this study and previous work from our lab suggest miR-146a is an endogenous dual inhibitor of AA metabolism in lung cancer cells by regulating both PG and LT production through direct targeting of the COX-2 and FLAP 3’ UTRs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
| | - Nicholas J Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
| |
Collapse
|
17
|
Marquez-Lara A, Hutchinson ID, Nuñez F, Smith TL, Miller AN. Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality. JBJS Rev 2018; 4:01874474-201603000-00004. [PMID: 27500434 DOI: 10.2106/jbjs.rvw.o.00055] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are often avoided by orthopaedic surgeons because of their possible influence on bone-healing. This belief stems from multiple studies, in particular animal studies, that show delayed bone-healing or nonunions associated with NSAID exposure. The purpose of this review was to critically analyze the quality of published literature that evaluates the impact of NSAIDs on clinical bone-healing. METHODS A MEDLINE and Embase search was conducted to identify all articles relating to bone and fracture-healing and the utilization of NSAIDs. All human studies, including review articles, were identified for further analysis. Non-English-language manuscripts and in vitro and animal studies were excluded. A total of twelve clinical articles and twenty-four literature reviews were selected for analysis. The quality of the clinical studies was assessed with a modified Coleman Methodology Score with emphasis on the NSAID utilization. Review articles were analyzed with regard to variability in the cited literature and final conclusions. RESULTS The mean modified Coleman Methodology Score (and standard deviation) was significantly lower (p = 0.032) in clinical studies that demonstrated a negative effect of NSAIDs on bone-healing (40.0 ± 14.3 points) compared with those that concluded that NSAIDs were safe (58.8 ± 10.3 points). Review articles also demonstrated substantial variability in the number of cited clinical studies and overall conclusions. There were only two meta-analyses and twenty-two narrative reviews. The mean number (and standard deviation) of clinical studies cited was significantly greater (p = 0.008) for reviews that concluded that NSAIDs were safe (8.0 ± 4.8) compared with those that recommended avoiding them (2.1 ± 2.1). Unanimously, all reviews admitted to the need for prospective randomized controlled trials to help clarify the effects of NSAIDs on bone-healing. CONCLUSIONS This systematic literature review highlights the great variability in the interpretation of the literature addressing the impact of NSAIDs on bone-healing. Unfortunately, there is no consensus regarding the safety of NSAIDs following orthopaedic procedures, and future studies should aim for appropriate methodological designs to help to clarify existing discrepancies to improve the quality of care for orthopaedic patients. CLINICAL RELEVANCE This systematic review highlights the limitations in the current understanding of the effects of NSAIDs on bone healing. Thus, withholding these medications does not have any proven scientific benefit to patients and may even cause harm by increasing narcotic requirements in cases in which they could be beneficial for pain management. This review should encourage further basic-science and clinical studies to clarify the risks and benefits of anti-inflammatory medications in the postoperative period, with the aim of improving patient outcomes.
Collapse
Affiliation(s)
- Alejandro Marquez-Lara
- 1Department of Orthopaedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
18
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Nguyen M, Singhal P, Piet JW, Shefelbine SJ, Maden M, Voss SR, Monaghan JR. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl. Development 2017; 144:601-611. [PMID: 28087637 DOI: 10.1242/dev.139873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2023]
Abstract
Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.
Collapse
Affiliation(s)
- Matthew Nguyen
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Pankhuri Singhal
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Judith W Piet
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sandra J Shefelbine
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - S Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Vitkov L, Hartl D, Hannig M. Is osseointegration inflammation-triggered? Med Hypotheses 2016; 93:1-4. [DOI: 10.1016/j.mehy.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022]
|
21
|
The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model. Mediators Inflamm 2015; 2015:926369. [PMID: 26063979 PMCID: PMC4438175 DOI: 10.1155/2015/926369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition.
Collapse
|
22
|
Control of the inflammatory response mechanisms mediated by natural and induced regulatory T-cells in HCV-, HTLV-1-, and EBV-associated cancers. Mediators Inflamm 2014; 2014:564296. [PMID: 25525301 PMCID: PMC4267219 DOI: 10.1155/2014/564296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/18/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Virus infections are involved in chronic inflammation and, in some cases, cancer development. Although a viral infection activates the immune system's response that eradicates the pathogen mainly through inflammatory mechanisms, it is now recognized that this inflammatory condition is also favorable to the development of tumors. Indeed, it is well described that viruses, such as hepatitis C virus (HCV), Epstein Barr virus (EBV), human papillomavirus (HPV) or human T-cell lymphotropic virus type-1 (HTLV-1), are important risk factors for tumor malignancies. The inflammatory response is a fundamental immune mechanism which involves several molecular and cellular components consisting of cytokines and chemokines that are released by various proinflammatory cells. In parallel to this process, some endogenous recruited components release anti-inflammatory mediators to restore homeostasis. The development of tools and strategies using viruses to hijack the immune response is mostly linked to the presence of regulatory T-cells (Treg) that can inhibit inflammation and antiviral responses of other effector cells. In this review, we will focus on current understanding of the role of natural and induced Treg in the control and the resolution of inflammatory response in HCV-, HTLV-1-, and EBV-associated cancers.
Collapse
|