1
|
Matsuyama M, Ortega JT, Fedorov Y, Scott-McKean J, Muller-Greven J, Buck M, Adams D, Jastrzebska B, Greenlee W, Matsuyama S. Development of novel cytoprotective small compounds inhibiting mitochondria-dependent cell death. iScience 2023; 26:107916. [PMID: 37841588 PMCID: PMC10568349 DOI: 10.1016/j.isci.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
We identified cytoprotective small molecules (CSMs) by a cell-based high-throughput screening of Bax inhibitors. Through a medicinal chemistry program, M109S was developed, which is orally bioactive and penetrates the blood-brain/retina barriers. M109S protected retinal cells in ocular disease mouse models. M109S directly interacted with Bax and inhibited the conformational change and mitochondrial translocation of Bax. M109S inhibited ABT-737-induced apoptosis both in Bax-only and Bak-only mouse embryonic fibroblasts. M109S also inhibited apoptosis induced by staurosporine, etoposide, and obatoclax. M109S decreased maximal mitochondrial oxygen consumption rate and reactive oxygen species production, whereas it increased glycolysis. These effects on cellular metabolism may contribute to the cytoprotective activity of M109S. M109S is a novel small molecule protecting cells from mitochondria-dependent apoptosis both in vitro and in vivo. M109S has the potential to become a research tool for studying cell death mechanisms and to develop therapeutics targeting mitochondria-dependent cell death pathway.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuri Fedorov
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonah Scott-McKean
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeannie Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Drew Adams
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Wang Y, Liu B, Lu H, Liu J, Romanienko PJ, Montelione GT, Shen Z. SETD4-mediated KU70 methylation suppresses apoptosis. Cell Rep 2022; 39:110794. [PMID: 35545041 PMCID: PMC9201767 DOI: 10.1016/j.celrep.2022.110794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/28/2021] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian KU70 is a pleiotropic protein functioning in DNA repair and cytoplasmic suppression of apoptosis. We report a regulatory mechanism by which KU70’s cytoplasmic function is enabled due to a methylation at K570 of KU70 by SET-domain-containing protein 4 (SETD4). While SETD4 silencing reduces the level of methylated KU70, over-expression of SETD4 enhances methylation of KU70. Mutations of Y272 and Y284 of SETD4 abrogate methylation of KU70. Although SETD4 is predominantly a nuclear protein, the methylated KU70 is enriched in the cytoplasm. SETD4 knockdown enhances staurosporine (STS)-induced apoptosis and cell killing. Over-expression of the wild-type (WT) SETD4, but not the SETD4-Y272/Y284F mutant, suppresses STS-induced apoptosis. The KU70-K570R (mouse Ku70-K568R) mutation dampens the anti-apoptosis activity of KU70. Our study identifies KU70 as a non-histone substrate of SETD4, discovers a post-translational modification of KU70, and uncovers a role for SETD4 and KU70-K570 methylation in the suppression of apoptosis. Wang et al. identify the methylation of mammalian KU70 by SETD4. This post-translational modification is critical for KU70 localization to the cytoplasm and subsequent suppression of apoptosis.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Peter J Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
| | - Zhiyuan Shen
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
3
|
Betlej G, Lewińska A, Adamczyk-Grochala J, Błoniarz D, Rzeszutek I, Wnuk M. Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicol In Vitro 2022; 80:105323. [DOI: 10.1016/j.tiv.2022.105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
|
4
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
5
|
Skp2 regulates DNA damage repair and apoptosis via interaction with Ku70. Exp Cell Res 2020; 397:112335. [PMID: 33132134 DOI: 10.1016/j.yexcr.2020.112335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Skp2, an oncoprotein, regulates tumor proliferation, invasion and metastasis. Ku70 is a critical component of the non-homologous end-joining (NHEJ) process. Both Skp2 and Ku70 are positively associated in multiple cancers. However, there is no report about the relationship between Skp2 and Ku70 proteins. METHODS In this study, we carried out Bioinformatics and molecular biological methods to investigate the relationship between Skp2 and Ku70 proteins. RESULTS We first observed Skp2 and Ku70 mRNAs were significantly increased in cervical cancer tissues. And we identified Ku70 as a Skp2-binding protein and the binding site located in the C-terminal of Ku70 protein. We further found that Skp2 knockdown decreased the Ku70 protein level in cells, and increase the cellular apoptosis and DNA damage, suggesting Skp2 mediates the Ku70 protein stability and function via post-translational modification. CONCLUSION The direct interaction between Skp2 and Ku70 proteins mediates the DNA damage repair and cellular apoptosis by regulating Ku70 stability and function via post-translational modification. The molecular mechanisms how Skp2 stabilize Ku70 would be clarified in our following research work.
Collapse
|
6
|
Tang B, Zhang Y, Wang W, Qi G, Shimamoto F. PARP6 suppresses the proliferation and metastasis of hepatocellular carcinoma by degrading XRCC6 to regulate the Wnt/β-catenin pathway. Am J Cancer Res 2020; 10:2100-2113. [PMID: 32775003 PMCID: PMC7407359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/11/2020] [Indexed: 06/11/2023] Open
Abstract
PARP6 belongs to the mono-ADP-ribosyltransferase family and has been shown to be involved in the genesis and development of some tumours. However, the role of PARP6 in hepatocellular carcinoma (HCC) development remains to be fully elucidated. In the current study, we demonstrated that PARP6 was expressed at a low level in HCC cells and was negatively related to the degree of tumour differentiation. Additionally, silencing PARP6 led to an increase in the proliferation, invasion and migration ability of HCC cells in both in vitro and in vivo assays. Conversely, an elevation in the PARP6 expression level had the opposite effect. Through gene chip analysis combined with experimental verification, we confirmed that PARP6 can inhibit the expression of XRCC6 by inducing degradation and thus affect the Wnt/β-Catenin signalling pathway, which contributes to the suppression of HCC. Further mechanistic investigation demonstrated that the ubiquitin ligase HDM2 can interact with PARP6 and XRCC6, and mediated the regulatory effect of PARP6 on XRCC6 degradation. Taking together, PARP6 appears to inhibit HCC progression through the XRCC6/Wnt/β-catenin signal axis and could be used as a biomarker for the clinical monitoring of HCC development.
Collapse
Affiliation(s)
- Bo Tang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Yi Zhang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Wei Wang
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Guangying Qi
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Hiroshima Shudo University Hiroshima 731-3195, Japan
| |
Collapse
|
7
|
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood) 2019; 244:621-629. [PMID: 30836793 DOI: 10.1177/1535370219833624] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Bax induces mitochondria-dependent programed cell death. While cytotoxic drugs activating Bax have been developed for cancer treatment, clinically effective therapeutics suppressing Bax-induced cell death rescuing essential cells have not been developed. This mini-review will summarize previously reported Bax inhibitors including peptides, small compounds, and antibodies. We will discuss potential applications and the future direction of these Bax inhibitors.
Collapse
Affiliation(s)
- Kelsey Jensen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - David Jasen WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Sean Wong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Yoon S, Beermann ML, Yu B, Shao D, Bachschmid M, Miller JB. Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. J Neuromuscul Dis 2018; 5:59-73. [PMID: 29278895 PMCID: PMC5836413 DOI: 10.3233/jnd-170262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency. Objectives: To identify mechanisms of pathogenesis in MDC1A. Methods: We used immunocytochemical and molecular studies of human myogenic cells and mouse muscles—comparing laminin-α2-deficient vs. healthy controls—to identify mechanisms that regulate pathological activation of caspase in laminin-α2-deficiency. Results: In cultures of myogenic cells from MDC1A donors, p53 accumulated in a subset of nuclei and aberrant caspase activation was inhibited by the p53 inhibitor pifithrin-alpha. Also, the p53 target BBC3 (PUMA) was upregulated in both MDC1A myogenic cells and Lama2–/– mouse muscles. In addition, studies with sirtuin inhibitors and SIRT1 overexpression showed that caspase activation in MDC1A myotubes was inversely related to sirtuin deacetylase activity. Caspase activation in laminin-α2-deficiency was, however, not associated with increased phosphorylation of p38 MAPK. Conclusions: Aberrant caspase activation in MDC1A cells was mediated both by sirtuin deacetylase activity and by p53. Interventions that inhibit aberrant caspase activation by targeting sirtuin or p53 function could potentially be useful in ameliorating MDC1A.
Collapse
Affiliation(s)
- Soonsang Yoon
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mary Lou Beermann
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bryant Yu
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bachschmid
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
9
|
Sonavane M, Sykora P, Andrews JF, Sobol RW, Gassman NR. Camptothecin Efficacy to Poison Top1 Is Altered by Bisphenol A in Mouse Embryonic Fibroblasts. Chem Res Toxicol 2018; 31:510-519. [PMID: 29799191 DOI: 10.1021/acs.chemrestox.8b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Peter Sykora
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Joel F Andrews
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Robert W Sobol
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Natalie R Gassman
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| |
Collapse
|
10
|
Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, Janoshazi AK, Stefanick DF, Horton JK, Krasich R, Longley MJ, Copeland WC, Griffith JD, Wilson SH. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst) 2017; 60:77-88. [PMID: 29100041 PMCID: PMC5919216 DOI: 10.1016/j.dnarep.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA; University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36604, USA
| | - Agnes K Janoshazi
- Signal Transduction Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
11
|
Cai J, Wei J, Schrott V, Zhao J, Bullock G, Zhao Y. Induction of deubiquitinating enzyme USP50 during erythropoiesis and its potential role in the regulation of Ku70 stability. J Investig Med 2017; 66:1-6. [PMID: 29101126 PMCID: PMC5836291 DOI: 10.1136/jim-2017-000622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/23/2023]
Abstract
Anemia is a very common blood disorder that affects the lives of billions of people worldwide. Anemia is caused by the loss of blood, increased destruction of red blood cells (RBCs), or reduced production of RBCs. Erythropoiesis is the complex process of RBC differentiation and maturation, in which protein degradation plays a crucial role. Protein ubiquitination regulates programmed protein degradation, which can be reversed by deubiquitinating enzymes (DUBs); however, the role of DUBs in erythropoiesis has not been well studied. We examined the expression of DUBs during erythropoiesis using an ex vivo human CD34+ hematopoietic progenitor cell culture system. Here we show that ubiquitin-specific protease 50 (USP50) levels are increased during erythropoiesis. USP50 mRNA levels are significantly increased on day 3 and protein levels are elevated on day 9 of erythroid differentiation. Coimmunoprecipitation and proteomics analyses reveal that Ku70, a DNA-binding protein, is associated with USP50. Overexpression of USP50 has no effect on Ku70 mRNA levels, while it reduces Ku70 protein levels by promoting Ku70 degradation, suggesting that USP50 may indirectly regulate Ku70 protein stability. USP50 protein is also not stable. USP50 protein degradation is independent of the proteasomal and the lysosomal degradation systems. This study suggests that DUBs like USP50 may regulate protein stability during erythropoiesis; however, more investigation is warranted.
Collapse
Affiliation(s)
- Junting Cai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Medical School, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerie Schrott
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant Bullock
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Matsuyama S, Palmer J, Bates A, Poventud-Fuentes I, Wong K, Ngo J, Matsuyama M. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med (Maywood) 2017; 241:1265-71. [PMID: 27302174 DOI: 10.1177/1535370216654587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their progenitor cells).
Collapse
Affiliation(s)
- Shigemi Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - James Palmer
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Adam Bates
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | | | - Kelvin Wong
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Justine Ngo
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Mieko Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| |
Collapse
|
13
|
Bouley J, Saad L, Grall R, Schellenbauer A, Biard D, Paget V, Morel-Altmeyer S, Guipaud O, Chambon C, Salles B, Maloum K, Merle-Béral H, Chevillard S, Delic J. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget 2016; 6:27980-8000. [PMID: 26337656 PMCID: PMC4695039 DOI: 10.18632/oncotarget.4735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.
Collapse
Affiliation(s)
- Julien Bouley
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Spectrométrie de Masse, Stallergens, 92160 Antony, France
| | - Lina Saad
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Denis Biard
- Institut de Maladies Emergentes et des Thérapies Innovantes (iMETI), Service d'Etude des Prions et des Infections Atypiques (SEPIA), CEA, 92265 Fontenay aux Roses, France
| | - Vincent Paget
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Sandrine Morel-Altmeyer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Olivier Guipaud
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Radiopathologie et de Thérapies Expérimentales, Institut de Radioprotection et de Sureté Nucléaire (IRSN), 92265 Fontenay aux Roses, France
| | - Christophe Chambon
- Service de Spectrométrie de Masse, INRA Theix, 63122 St Genès Champanelle, France
| | - Bernard Salles
- UMR 1331 TOXALIM, INRA/INP/UPS, F-31027 Toulouse, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France
| | - Hélène Merle-Béral
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France.,Université Pierre et Marie Curie, Paris VI, INSERM, UMR-S 872, Programmed Cell Death and Physiopathology of Tumor Cells, Centre de Recherche des Cordeliers 75000 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Jozo Delic
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| |
Collapse
|
14
|
Gassman NR, Coskun E, Jaruga P, Dizdaroglu M, Wilson SH. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1241-52. [PMID: 27082013 PMCID: PMC4977032 DOI: 10.1289/ehp237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). OBJECTIVES We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. METHODS Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. RESULTS We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. CONCLUSION These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the cellular microenvironment that may promote survival. CITATION Gassman NR, Coskun E, Jaruga P, Dizdaroglu M, Wilson SH. 2016. Combined effects of high-dose bisphenol A and oxidizing agent (KBrO3) on cellular microenvironment, gene expression, and chromatin structure of Ku70-deficient mouse embryonic fibroblasts. Environ Health Perspect 124:1241-1252; http://dx.doi.org/10.1289/EHP237.
Collapse
Affiliation(s)
- Natalie R. Gassman
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erdem Coskun
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Samuel H. Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to S.H. Wilson, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-12233 USA. Telephone: (919) 541-4701. E-mail:
| |
Collapse
|
15
|
Canfield K, Wells W, Geradts J, Kinlaw WB, Cheng C, Kurokawa M. Inverse association between MDM2 and HUWE1 protein expression levels in human breast cancer and liposarcoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2016; 9:6342-6349. [PMID: 29375730 PMCID: PMC5782804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitin E3 ligase MDM2 is best known for its ability to suppress the tumor suppressor p53. However, MDM2 also targets other proteins for proteasomal degradation and accumulating evidence strongly suggests p53-independent roles of MDM2 in cancer. We previously reported that MDM2 promotes degradation of another ubiquitin E3 ligase HUWE1 by ubiquitination, particularly, which confers HER2+ breast cancer cells resistance to the HER2 inhibitor lapatinib. However, it remains unclear whether such a mechanism can operate in other cell types, independently of HER2 inhibitors. Moreover, in vivo evidence that supports HUWE1 degradation by MDM2 is missing. In the current study, we performed immunohistochemistry (IHC) to analyze expression levels of MDM2 and HUWE1 in normal organs, two breast cancer cohorts (A, n = 137 and B, n = 27), and a liposarcoma cohort (n = 45). Our results show that HUWE1 is ubiquitously expressed in healthy organs, where the oncoprotein MDM2 is undetectable. Likewise, in the majority of breast cancers regardless of their subtypes, MDM2 is below detectable levels, while HUWE1 is highly expressed. In contrast, in a subset of liposarcoma that is characterized by MDM2 overexpression, only 40% of these showed detectable HUWE1 protein. Importantly, despite the inverse association between MDM2 and HUWE1 protein levels, gene expression analysis in independent datasets revealed no such correlation at the mRNA level. Our results demonstrate the first in vivo evidence to support the hypothesis of MDM2-mediated HUWE1 degradation, which may help to understand the regulation of HUWE1 as well as p53-independent roles of MDM2.
Collapse
Affiliation(s)
- Kaleigh Canfield
- Department of Molecular and Systems Biology, Geisel School of
Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Wendy Wells
- Department of Pathology, Geisel School of Medicine at Dartmouth,
Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Joseph Geradts
- Department of Pathology, Duke University Medical Center, Durham, NC
27710, USA
| | - William B Kinlaw
- Department of Medicine, Geisel School of Medicine at Dartmouth,
Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of
Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of
Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| |
Collapse
|
16
|
Iuchi K, Yagura T. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis. Exp Cell Res 2016; 342:135-44. [PMID: 26976509 DOI: 10.1016/j.yexcr.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan.
| | - Tatsuo Yagura
- Department of Bioscience, Faculty of Science and Technology, Kwansei Gakuin University, 2-1 Gakuin, Sanda-shi, Hyogo-ken 669-1337, Japan
| |
Collapse
|
17
|
Ngo J, Matsuyama M, Kim C, Poventud-Fuentes I, Bates A, Siedlak SL, Lee HG, Doughman YQ, Watanabe M, Liner A, Hoit B, Voelkel N, Gerson S, Hasty P, Matsuyama S. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis 2015; 6:e1706. [PMID: 25811803 PMCID: PMC4385910 DOI: 10.1038/cddis.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/13/2023]
Abstract
Ku70 (Lupus Ku autoantigen p70) is essential in nonhomologous end joining DNA double-strand break repair, and ku70−/− mice age prematurely because of increased genomic instability and DNA damage responses. Previously, we found that Ku70 also inhibits Bax, a key mediator of apoptosis. We hypothesized that Bax-mediated apoptosis would be enhanced in the absence of Ku70 and contribute to premature death observed in ku70−/− mice. Here, we show that ku70−/−bax+/− and ku70−/−bax−/− mice have better survival, especially in females, than ku70−/− mice, even though Bax deficiency did not decrease the incidence of lymphoma observed in a Ku70-null background. Moreover, we found that ku70−/− mice develop lung diseases, like emphysema and pulmonary arterial (PA) occlusion, by 3 months of age. These lung abnormalities can trigger secondary health problems such as heart failure that may account for the poor survival of ku70−/− mice. Importantly, Bax deficiency appeared to delay the development of emphysema. This study suggests that enhanced Bax activity exacerbates the negative impact of Ku70 deletion. Furthermore, the underlying mechanisms of emphysema and pulmonary hypertension due to PA occlusion are not well understood, and therefore ku70−/− and Bax-deficient ku70−/− mice may be useful models to study these diseases.
Collapse
Affiliation(s)
- J Ngo
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Matsuyama
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - C Kim
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - I Poventud-Fuentes
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Bates
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - S L Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H-G Lee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Y Q Doughman
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Watanabe
- 1] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Liner
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - B Hoit
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Pulmonary Obstructive Research, Virginia Commonwealth University, Richmond, VA, USA
| | - S Gerson
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Matsuyama
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts. PLoS One 2015; 10:e0118819. [PMID: 25693136 PMCID: PMC4334494 DOI: 10.1371/journal.pone.0118819] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/16/2015] [Indexed: 12/02/2022] Open
Abstract
Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.
Collapse
|
19
|
Liu H, Tang X, Gong L. Mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor: New endoplasmic reticulum stress response proteins. Eur J Pharmacol 2015; 750:118-22. [PMID: 25637781 DOI: 10.1016/j.ejphar.2015.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/09/2014] [Accepted: 01/07/2015] [Indexed: 01/21/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are a novel evolutionary conserved neurotrophic factor (NTF) family. There are two distinct domains in MANF and CDNF 3-dimentional structure, N-terminal saposin-like domain and C-terminal SAP-domain, which suggest their unique mode of action. Although identified for their neurotrophic activity, recent studies have shown MANF and CDNF can protect cells during endoplasmic reticulum (ER) stress. This review summarizes the unique structure and related potential protective role for cells during ER stress of MANF and CDNF.
Collapse
Affiliation(s)
- Hao Liu
- Yuhuangding Hospital, Yantai, Shandong Province, PR China
| | - Xiaolei Tang
- Taishan Medical College, Taian, Shandong Province, PR China
| | - Lei Gong
- Yuhuangding Hospital, Yantai, Shandong Province, PR China.
| |
Collapse
|
20
|
Liu J, Li J, Yang Y, Wang X, Zhang Z, Zhang L. Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus. Neural Regen Res 2014; 9:727-34. [PMID: 25206880 PMCID: PMC4146268 DOI: 10.4103/1673-5374.131577] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 11/26/2022] Open
Abstract
Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/reperfusion area, and decrease the number of apoptotic neurons. However, the anti-apoptotic mechanism of Ku70 remains unclear. In this study, fastigial nucleus stimulation was given to rats 24, 48, and 72 hours before cerebral ischemia/reperfusion injury. Results from the electrical stimulation group revealed that rats exhibited a reduction in brain infarct size, a significant increase in the expression of Ku70 in cerebral ischemia/reperfusion regions, and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Double immunofluorescence staining revealed no co-localization of Ku70 with TUNEL-positive cells. However, Ku70 partly co-localized with Bax protein in the cytoplasm of rats with cerebral ischemia/reperfusion injury. These findings suggest an involvement of Ku70 with Bax in the cytoplasm of rats exposed to electrical stimulation of the cerebellar fastigial nucleus, and may thus provide an understanding into the anti-apoptotic activity of Ku70 in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jingli Liu
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jingpin Li
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yi Yang
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoling Wang
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhaoxia Zhang
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Zhang
- Department of Neurology, the First Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
21
|
Wang B, Xie M, Li R, Owonikoko TK, Ramalingam SS, Khuri FR, Curran WJ, Wang Y, Deng X. Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis. Cell Death Differ 2014; 21:1160-9. [PMID: 24769731 DOI: 10.1038/cdd.2014.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/12/2023] Open
Abstract
Mcl-1 is a unique antiapoptotic Bcl2 family member with a short half-life due to its rapid turnover through ubiquitination. We discovered that Ku70, a DNA double-strand break repair protein, functions as a deubiquitinase to stabilize Mcl-1. Ku70 knockout in mouse embryonic fibroblast (MEF) cells or depletion from human lung cancer H1299 cells leads to the accumulation of polyubiquitinated Mcl-1 and a reduction in its half-life and protein expression. Conversely, expression of exogenous Ku70 in Ku70(-/-) MEF cells restores Mcl-1 expression. Subcellular fractionation indicates that Ku70 extensively colocalizes with Mcl-1 in mitochondria, endoplasmic reticulum and nucleus in H1299 cells. Ku70 directly interacts with Mcl-1 via its C terminus (that is, aa 536-609), which is required and sufficient for deubiquitination and stabilization of Mcl-1, leading to suppression of apoptosis. Purified Ku70 protein directly deubiquitinates Mcl-1 by removing K48-linked polyubiquitin chains. Ku70 knockdown not only promotes Mcl-1 turnover but also enhances antitumor efficacy of the BH3-mimetic ABT-737 in human lung cancer xenografts. These findings identify Ku70 as a novel Mcl-1 deubiquitinase that could be a potential target for cancer therapy by manipulating Mcl-1 deubiquitination.
Collapse
Affiliation(s)
- B Wang
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - M Xie
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - R Li
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - T K Owonikoko
- Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - S S Ramalingam
- Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - F R Khuri
- Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - W J Curran
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Y Wang
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - X Deng
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 2014; 114:368-78. [PMID: 24436432 DOI: 10.1161/circresaha.113.300536] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol (3,4,5)-triphosphate. This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase, 3-phosphoinositide-dependent protein kinase 1, in the cell membrane. Recent studies have shown that sirtuin isoforms, silent information regulator (SIRT) 1, SIRT3, and SIRT6, play an essential role in the regulation of Akt activation. Although SIRT1 deacetylates Akt to promote phosphatidylinositol (3,4,5)-triphosphate binding and activation, SIRT3 controls reactive oxygen species-mediated Akt activation, and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes such as cellular growth, angiogenesis, apoptosis, autophagy, and aging, which are involved in the initiation and progression of several diseases.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- From Center of Cardiac Cell Biology and Therapeutics, Committee on Molecular Medicine, University of Chicago, Chicago, IL
| | | | | |
Collapse
|
23
|
Jeannot V, Busser B, Brambilla E, Wislez M, Robin B, Cadranel J, Coll JL, Hurbin A. The PI3K/AKT pathway promotes gefitinib resistance in mutant KRAS lung adenocarcinoma by a deacetylase-dependent mechanism. Int J Cancer 2013; 134:2560-71. [PMID: 24374738 DOI: 10.1002/ijc.28594] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
Abstract
To select the appropriate patients for treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), it is important to gain a better understanding of the intracellular pathways leading to EGFR-TKI resistance, which is a common problem in patients with lung cancer. We recently reported that mutant KRAS adenocarcinoma is resistant to gefitinib as a result of amphiregulin and insulin-like growth factor-1 receptor overexpression. This resistance leads to inhibition of Ku70 acetylation, thus enhancing the BAX/Ku70 interaction and preventing apoptosis. Here, we determined the intracellular pathways involved in gefitinib resistance in lung cancers and explored the impact of their inhibition. We analyzed the activation of the phosphatidyl inositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) pathway in lung tumors. The activation of AKT was associated with disease progression in tumors with wild-type EGFR from patients treated with gefitinib (phase II clinical trial IFCT0401). The administration of IGF1R-TKI or amphiregulin-directed shRNA decreased AKT signaling and restored gefitinib sensitivity in mutant KRAS cells. The combination of PI3K/AKT inhibition with gefitinib restored apoptosis via Ku70 downregulation and BAX release from Ku70. Deacetylase inhibitors, which decreased the BAX/Ku70 interaction, inhibited AKT signaling and induced gefitinib-dependent apoptosis. The PI3K/AKT pathway is thus a major pathway contributing to gefitinib resistance in lung tumors with KRAS mutation, through the regulation of the BAX/Ku70 interaction. This finding suggests that combined treatments could improve the outcomes for this subset of lung cancer patients, who have a poor prognosis.
Collapse
Affiliation(s)
- Victor Jeannot
- INSERM U823, Grenoble, France; University UJF Grenoble 1, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fåhraeus R, Olivares-Illana V. MDM2's social network. Oncogene 2013; 33:4365-76. [PMID: 24096477 DOI: 10.1038/onc.2013.410] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 12/22/2022]
Abstract
MDM2 is considered a hub protein due to its capacity to interact with a large number of different partners of which p53 is most well described. MDM2 is an E3 ubiquitin ligase, and many, but not all, of its interactions relate directly to this activity, such as substrates, adaptors or bridges, promoters, inhibitors or complementary factors. Some interactions serve regulatory functions that in response to cellular stresses control the localisation and functions of MDM2 including protein kinases, ribosomal proteins and proteases. Moreover, interactions with nucleotides serve other functions such as mRNA to regulate protein synthesis and DNA to control transcription. To perform such a pleiotropic panorama of different functions, MDM2 is subjected to a multitude of post-translational modifications and is expressed in different isoforms. The large and diverse interactome is made possible due to the plasticity of MDM2 and in this review we have listed the MDM2 interactions until now and we will discuss how this multifaceted protein can interact with such a variety of substrates to provide a key intermediary role in different signalling pathways.
Collapse
Affiliation(s)
- R Fåhraeus
- Cibles Therapeutiques, Equipe Labellisée Ligue Contre le Cancer, INSERM Unité 940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris, France
| | - V Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava, Zona Universitaria, San Luis Potosí, México
| |
Collapse
|
25
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
26
|
Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ 2012; 20:558-66. [PMID: 23238568 DOI: 10.1038/cdd.2012.153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The current paradigm states that the Akt signaling pathway phosphorylates the human oncoprotein mouse double minute 2 (MDM2), leading to its nuclear translocation and degradation of the tumor suppressor p53. Here we report a novel Akt signaling pathway elicited by MDM2. Upregulation of endogenous MDM2 promotes, whereas its downregulation diminishes, Akt phosphorylation irrespective of p53 status. MDM2 requires phosphatidylinositol (PI)3-kinase activity for enhancing Akt phosphorylation and upregulates this activity by repressing transcription of the regulatory subunit p85 of PI3-kinase. MDM2 interacts with the repressor element-1 silencing transcription factor (REST), a tumor suppressor that functions by downregulating PI3-kinase activity and Akt phosphorylation, prevents localization of REST on the p85 promoter and represses p85 expression. The deletion mutant of MDM2 capable of upregulating Akt phosphorylation represses p85 expression and interferes with localization of REST on the p85 promoter, whereas the deletion mutant of MDM2 that does not increase Akt phosphorylation cannot perform these functions. Silencing of REST abrogates the ability of MDM2 to upregulate Akt phosphorylation and downregulate p85 expression, implicating the ability of MDM2 to interact with REST in its ability to inhibit p85 expression and activate Akt phosphorylation. Inhibition of MDM2-mediated Akt phosphorylation with an Akt-phosphorylation-specific inhibitor abrogates its ability to improve cell survival. Consistently, the Akt phosphorylation function of MDM2 was required for its ability to improve cell survival after treatment with a chemotherapeutic drug. Our report not only unravels a novel signaling pathway that contributes to cell survival but also implicates a p53-independent transcription regulatory function of MDM2 in Akt signaling.
Collapse
|
27
|
Abstract
The alteration of tumorigenic pathways leading to cancer is a degenerative disease process typically involving inactivation of tumor suppressor proteins and hyperactivation of oncogenes. One such oncogenic protein product is the murine double-minute 2, or Mdm2. While, Mdm2 has been primarily associated as the negative regulator of the p53 tumor suppressor protein there are many p53-independent roles demonstrated for this oncogene. DNA damage and chemotherapeutic agents are known to activate Mdm2 and DNA repair pathways. There are five primary DNA repair pathways involved in the maintenance of genomic integrity: Nucleotide excision repair (NER), Base excision repair (BER), Mismatch repair (MMR), Non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we will briefly describe these pathways and also delineate the functional interaction of Mdm2 with multiple DNA repair proteins. We will illustrate the importance of these interactions with Mdm2 and discuss how this is important for tumor progression, cellular proliferation in cancer.
Collapse
|
28
|
Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy 2012; 8:236-51. [PMID: 22240589 DOI: 10.4161/auto.8.2.18600] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy regulates cell survival and cell death upon various cellular stresses, yet the molecular signaling events involved are not well defined. Here, we established the function of a proteolytic Cyclin E fragment (p18-CycE) in DNA damage-induced autophagy, apoptosis, and senescence. p18-CycE was identified in hematopoietic cells undergoing DNA damage-induced apoptosis. In epithelial cells exposed to DNA damage, chronic but not transient expression of p18-CycE leads to higher turnover of LC3 I/II and increased emergence of autophagosomes and autolysosomes. Levels of p18-CycE, which was generated by proteolytic cleavage of endogenous Cyclin E, were greatly increased by chloroquine and correlated with LC 3II conversion. Preventing p18-CycE genesis blocked conversion of LC3 I to LC3 II. Upon DNA damage, cytoplasmic ataxia-telangiectasia-mutated (ATM) was phosphorylated in p18-CycE-expressing cells resulting in sustained activation of the adenosine-mono-phosphate-dependent kinase (AMPK). These lead to sustained activation of mammalian autophagy-initiating kinase ULK1, which was abrogated upon inhibiting ATM and AMPK phosphorylation. Moreover, p18-CycE was degraded via autophagy followed by induction of senescence. Both autophagy and senescence were prevented by inhibiting autophagy, which leads to increased apoptosis in p18-CycE-expressing cells by stabilizing p18-CycE expression. Senescence was further associated with cytoplasmic co-localization and degradation of p18-CycE and Ku70. In brief, chronic p18-CycE expression-induced autophagy leads to clearance of p18-CycE following DNA damage and induction of senescence. Autophagy inhibition stabilized the cytoplasmic p18-CycE-Ku70 complex leading to apoptosis. Thus, our findings define how chronic apoptotic stress and DNA damage initiate autophagy and regulate cell survival through senescence and/or apoptosis.
Collapse
Affiliation(s)
- Kamini Singh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|
29
|
Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol 2011; 32:76-87. [PMID: 22037767 DOI: 10.1128/mcb.05661-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ku heterodimer (Ku70/Ku80) is a main component of the nonhomologous end-joining (NHEJ) pathway that repairs DNA double-strand breaks (DSBs). Ku binds the broken DNA end and recruits other proteins to facilitate the processing and ligation of the broken end. While Ku interacts with many proteins involved in DNA damage/repair-related functions, few interactions have been mapped to the N-terminal von Willebrand A (vWA) domain, a predicted protein interaction domain. The mutagenesis of Ku70 vWA domain S155/D156 unexpectedly increased cell survival following ionizing radiation (IR) treatment. DNA repair appeared unaffected, but defects in the activation of apoptosis and alterations in the DNA damage signaling response were identified. In particular, Ku70 S155A/D156A affected the IR-induced transcriptional response of several activating transcription factor 2 (ATF2)-regulated genes involved in apoptosis regulation. ATF2 phosphorylation and recruitment to DNA damage-induced foci was increased in Ku70-deficient cells, suggesting that Ku represses ATF2 activation. Ku70 S155A/D156A substitutions further enhanced this repression. S155A substitution alone was sufficient to confer enhanced survival, whereas alteration to a phosphomimetic residue (S155D) reversed this effect, suggesting that S155 is a phosphorylation site. Thus, these findings infer that Ku links signals from the DNA repair machinery to DNA damage signaling regulators that control apoptotic pathways.
Collapse
|
30
|
Chen TA, Wang JL, Hung SW, Chu CL, Cheng YC, Liang SM. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production. PLoS One 2011; 6:e23317. [PMID: 21826248 PMCID: PMC3149645 DOI: 10.1371/journal.pone.0023317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide. Methodology/Principal Findings Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC50 values in the range of 0.1–0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. Conclusions/Significance The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.
Collapse
Affiliation(s)
- Tai-An Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Ling Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shao-Wen Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chiao-Li Chu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Chih Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Cell-Penetrating Penta-Peptides (CPP5s): Measurement of Cell Entry and Protein-Transduction Activity. Pharmaceuticals (Basel) 2010; 3:3594-3613. [PMID: 21359136 PMCID: PMC3045100 DOI: 10.3390/ph3123594] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously, we developed cell-penetrating penta-peptides (CPP5s). In the present study, VPTLK and KLPVM, two representative CPP5s, were used to characterize the cell-penetration and protein-transduction activities of these small molecules. Various inhibitors of endocytosis and pinocytosis (chlorpromazine, cytochalasin D, Filipin III, amiloride, methyl-β-cyclodextrin, and nocodazole) were tested. Only cytochalasin D showed suppression of CPP5 entry, though the effect was partial. In addition, CPP5s were able to enter a proteoglycan-deficient CHO cell line. These results suggest that pinocytosis and endocytosis may play only a minor role in the cell entry of CPP5s. By mass spectrometry, we determined that the intracellular concentration of VPTLK ranged from 20 nM to 6.0 μM when the cells were cultured in medium containing 1 μM – 1.6 mM VPTLK. To determine the protein-transduction activity of CPP5s, the Tex-LoxP EG cell line, which has a Cre-inducible green fluorescent protein (GFP) gene, was used. VPTLK and KLPVM were added to the N-terminus of Cre, and these fusion proteins were added to the culture medium of Tex-LoxP EG cells. Both VPTLK-Cre and KLPVM-Cre were able to turn on GFP expression in these cells, suggesting that CPP5s have protein-transduction activity. Since CPP5s have very low cytotoxic activity, even at a concentration of 1.6 mM in the medium, CPP5s could be utilized as a new tool for drug delivery into cells.
Collapse
|
32
|
Wahdan-Alaswad RS, Song K, Krebs TL, Shola DTN, Gomez JA, Matsuyama S, Danielpour D. Insulin-like growth factor I suppresses bone morphogenetic protein signaling in prostate cancer cells by activating mTOR signaling. Cancer Res 2010; 70:9106-17. [PMID: 21062988 DOI: 10.1158/0008-5472.can-10-1119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin-like growth factor (IGF) I and bone morphogenetic proteins (BMP) are critical regulators of prostate tumor cell growth. In this report, we offer evidence that a critical support of IGF-I in prostate cancer is mediated by its ability to suppress BMP4-induced apoptosis and Smad-mediated gene expression. Suppression of BMP4 signaling by IGF-I was reversed by chemical inhibitors of phosphoinositide 3-kinase (PI3K), Akt, or mTOR; by enforced expression of wild-type PTEN or dominant-negative PI3K; or by small hairpin RNA-mediated silencing of mTORC1/2 subunits Raptor or Rictor. Similarly, IGF-I suppressed BMP4-induced transcription of the Id1, Id2, and Id3 genes that are crucially involved in prostate tumor progression through PI3K-dependent and mTORC1/2-dependent mechanisms. Immunohistochemical analysis of non-malignant and malignant prostate tissues offered in vivo support for our model that IGF-I-mediated activation of mTOR suppresses phosphorylation of the BMP-activated Smad transcription factors. Our results offer the first evidence that IGF-I signaling through mTORC1/2 is a key homeostatic regulator of BMP4 function in prostate epithelial cells, acting at two levels to repress both the proapoptotic and pro-oncogenic signals of BMP-activated Smads. We suggest that deregulation of this homeostatic control may be pivotal to the development and progression of prostate cancer, providing important implications and new potential targets for the therapeutic intervention of this malignancy.
Collapse
Affiliation(s)
- Reema S Wahdan-Alaswad
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Department of Pharmacology, Case Western Reserve University, and Department of Urology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hellman M, Arumäe U, Yu LY, Lindholm P, Peränen J, Saarma M, Permi P. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem 2010; 286:2675-80. [PMID: 21047780 DOI: 10.1074/jbc.m110.146738] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects neurons and repairs the Parkinson disease-like symptoms in a rat 6-hydroxydopamine model. We show a three-dimensional solution structure of human MANF that differs drastically from other neurotrophic factors. Remarkably, the C-terminal domain of MANF (C-MANF) is homologous to the SAP domain of Ku70, a well known inhibitor of proapoptotic Bax (Bcl-2-associated X protein). Cellular studies confirm that MANF and C-MANF protect neurons intracellularly as efficiently as Ku70.
Collapse
Affiliation(s)
- Maarit Hellman
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM. Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 2010; 10:319-31. [PMID: 20370686 DOI: 10.2174/156800910791190229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/09/2010] [Indexed: 01/22/2023]
Abstract
The present study is the first to show in pancreatic cancer (PC) the growth inhibition and apoptosis by novel MDM2 inhibitors (MI-319 & 219) through reactivation of p53 pathway. Our results highlight two new secondary targets of MDM2 inhibitor 'SIRT1' and Ku70. SIRT1 which has a role in ageing and cancer and is known to regulate p53 signaling through acetylation. Ku70 is a key component of non-homologous end joining machinery in the DNA damage pathway and is known to regulate apoptosis by blocking Bax entry into mitochondria. Growth inhibition and apoptosis by MI-219, MI-319 was accompanied by increase in levels of p53 along with p21(WAF1) and the proapoptotic Puma. SiRNA against p21(WAF1) abrogated the growth inhibition of PC cells confirming p21(WAF1) as a key player downstream of activated p53. Immunoprecipitation-western blot analysis revealed reduced association of MDM2-p53 interaction in drug exposed PC cells. In combination studies, the inhibitors synergistically augmented anti-tumor effects of therapeutic drug gemcitabine both in terms of cell growth inhibition as well as apoptosis. Surface plasmon resonance studies confirmed strong binding between MI-319 and Ku70 (K(D) 170 nM). Western blot revealed suppression of SIRT1 and Ku70 with simultaneous upregulation of acetyl-p53 (Lys379) and Bax. Co-Immunoprecipitation studies confirmed that MI-319 could disrupt Ku70-Bax and SIRT1-Bax interaction. Further, using wt-p53 xenograft of Capan-2, we found that oral administration of MI-319 at 300 mg/kg for 14 days resulted in significant tumor growth inhibition without any observed toxicity to the animals. No tumor inhibition was found in mut-p53 BxPC-3 xenografts. In light of our results, the inhibitors of MDM2 warrant clinical investigation as new agents for PC treatment.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lagadec C, Romon R, Tastet C, Meignan S, Com E, Page A, Bidaux G, Hondermarck H, Le Bourhis X. Ku86 is important for TrkA overexpression-induced breast cancer cell invasion. Proteomics Clin Appl 2010; 4:580-90. [PMID: 21137076 DOI: 10.1002/prca.200900148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/07/2009] [Accepted: 11/08/2009] [Indexed: 11/08/2022]
Abstract
PURPOSE We have recently shown that breast tumors express high levels of TrkA compared with normal breast tissues, with TrkA overexpression enhancing breast cancer cell invasion in vitro and metastasis in animal models. In this study, we tried to identify molecules involved in TrkA overexpression-mediated biological effects in breast cancer cells. EXPERIMENTAL DESIGN We used a proteomic-based approach to identify proteins involved in TrkA overexpression-stimulated invasion of MDA-MB-231 breast cancer cells. Proteins from control and TrkA overexpressing cells were separated using a cup-loading two-dimensional electrophoresis system before MALDI and LC-MS/MS mass spectrometry analysis. RESULTS Among several putative regulated proteins, Ku86 was found increased in TrkA overexpressing cells. Moreover, Ku86 was co-immunoprecipitated with TrkA, suggesting the interaction of these two proteins in TrkA overexpressing cells. Interestingly, inhibition with small-interfering RNA and neutralizing antibodies showed that Ku86 was required for TrkA-stimulated cell invasion. CONCLUSIONS AND CLINICAL RELEVANCE These data allowed the identification of Ku86 as a new player involved in metastasis in breast cancer cells. Our findings suggest that TrkA and its down stream signaling pathways should be regarded as potential new targets for the development of future breast cancer therapy.
Collapse
Affiliation(s)
- Chann Lagadec
- Signalisation des facteurs de croissance dans le cancer du sein. Proteomique fonctionnelle, Université Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | |
Collapse
|