1
|
Aroujo J, Parker H, Boari A, Mason E, Otakpor MU, Betancourt T, Kornienko A, Ciavatta ML, Carbone M, Evidente A, Taube JH, Romo D. Derivatization of ophiobolin A and cytotoxicity toward breast and glioblastoma cancer stem cells: Varying the ketone and unsaturated aldehyde moieties. Bioorg Med Chem Lett 2025; 120:130112. [PMID: 39880174 DOI: 10.1016/j.bmcl.2025.130112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
To gain further insights into the importance of the unsaturated 1,4-ketoaldehyde moiety of ophiobolin A (OpA) for the potency and selectivity observed toward cancer stem cells, several derivatives were synthesized through controlled reduction and oxidations of the unsaturated aldehyde and ketone moieties. Structure elucidation of these new OpA derivatives was achieved through detailed NMR studies and comparison to OpA and known isolated congeners possessing variations in these regions. The relative stereochemistry of the newly generated stereocenters was determined by coupling constants in conjunction with conformational analyses (DFT) of the synthetic derivatives. The cytotoxicity of these derivatives was studied against breast cancer and glioblastoma cell lines possessing stem-cell like properties. In addition, the comparative activity toward HMLE and HMLE-TWIST mammary epithelial cells was studied, with the latter cell line representing an epithelial mesenchymal transition positive (EMT+) cell line.
Collapse
Affiliation(s)
- Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States
| | - Haleigh Parker
- Department of Biology, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Evan Mason
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States
| | - Mackenzie U Otakpor
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., TX 78666, United States
| | - Tania Betancourt
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., TX 78666, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., TX 78666, United States.
| | - Maria Letizia Ciavatta
- Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Joseph H Taube
- Department of Biology, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States.
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States.
| |
Collapse
|
2
|
Rolver MG, Camacho-Roda J, Dai Y, Flinck M, Ialchina R, Hindkær J, Dyhr RT, Bodilsen AN, Prasad NS, Baldan J, Yao J, Sandelin A, Arnes L, Pedersen SF. Tumor microenvironment acidosis favors pancreatic cancer stem cell properties and in vivo metastasis. iScience 2025; 28:111956. [PMID: 40083719 PMCID: PMC11904601 DOI: 10.1016/j.isci.2025.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
The acidic tumor microenvironment (TME) favors cancer aggressiveness via incompletely understood pathways. Here, we asked whether adaptation to environmental acidosis (pH 6.5) selects for human pancreatic cancer stem cell (CSC) properties. RNA sequencing (RNA-seq) of acid-adapted (AA) Panc-1 cells revealed CSC pathway enrichment and upregulation of CSC markers. AA Panc-1 cells exhibited classical CSC characteristics including increased aldehyde dehydrogenase (ALDH) activity and β-catenin activity. Panc-1, PaTu8988s, and MiaPaCa-2 cells all exhibited increased pancreatosphere-forming efficiency after acid adaptation but differed in CSC marker expression and did not exhibit typical flow cytometric CSC populations. However, single-nucleus sequencing revealed the acid adaptation-induced emergence of Panc-1 cell subpopulations with clear CSC characteristics. In orthotopic mouse tumors, AA Panc-1 cells exhibited enhanced aggressiveness, liver and lung metastasis, compared to controls. Collectively, our work suggests that acid adaptation enriches for pancreatic CSC phenotypes with unusual traits via several trajectories, providing new insight into how acidic microenvironments favor cancer aggressiveness.
Collapse
Affiliation(s)
- Michala G. Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Juan Camacho-Roda
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yifan Dai
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Julie Hindkær
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor T. Dyhr
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - August N. Bodilsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nanditha S. Prasad
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Baldan
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stine F. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Xu Z, Liu R, Ke H, Xu F, Yang P, Zhang W, Zhan Y, Zhao Z, Xiao F. ATP6V1D drives hepatocellular carcinoma stemness and progression via both lysosome acidification-dependent and -independent mechanisms. Autophagy 2025; 21:513-529. [PMID: 39316516 PMCID: PMC11849949 DOI: 10.1080/15548627.2024.2406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Metabolic reprogramming is pivotal in cancer stem cell (CSC) self-renewal. However, the intricate regulatory mechanisms governing the crosstalk between metabolic reprogramming and liver CSCs remain elusive. Here, using a metabolic CRISPR-Cas9 knockout screen, we identify ATP6V1D, a subunit of the vacuolar-type H+-translocating ATPase (V-ATPase), as a key metabolic regulator of hepatocellular carcinoma (HCC) stemness. Elevated ATP6V1D expression correlates with poor clinical outcomes in HCC patients. ATP6V1D knockdown inhibits HCC stemness and malignant progression both in vitro and in vivo. Mechanistically, ATP6V1D enhances HCC stemness and progression by maintaining macroautophagic/autophagic flux. Specifically, ATP6V1D not only promotes lysosomal acidification, but also enhances the interaction between CHMP4B and IST1 to foster ESCRT-III complex assembly, thereby facilitating autophagosome-lysosome fusion to maintain autophagic flux. Moreover, silencing CHMP4B or IST1 attenuates HCC stemness and progression. Notably, low-dose bafilomycin A1 targeting the V-ATPase complex shows promise as a potential therapeutic strategy for HCC. In conclusion, our study highlights the critical role of ATP6V1D in driving HCC stemness and progression via the autophagy-lysosomal pathway, providing novel therapeutic targets and approaches for HCC treatment.Abbreviations: 3-MA: 3-methyladenine; ANT: adjacent normal liver tissues; ATP6V1D: ATPase H+ transporting V1 subunit D; BafA1: bafilomycin A1; CHMP: charged multivesicular body protein; co-IP: co-immunoprecipitation; CSC: cancer stem cell; ESCRT: endosomal sorting complex required for transport; HCC: hepatocellular carcinoma; IF: immunofluorescence; IHC: immunohistochemical; LCSCs: liver cancer stem cells; qRT-PCR: quantitative real time PCR; V-ATPase: vacuolar-type H+- translocating ATPase; WB: western blot.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Ruiyang Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Haoying Ke
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Fuyuan Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Weiyu Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yi Zhan
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Zhiju Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- State Key Laboratory of Anti-Infective Drug Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Kashi Guangdong Institute of Science and Technology, The First People’s Hospital of Kashi, Kashi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
6
|
Sánchez-Castillo A, Savelkouls KG, Baldini A, Hounjet J, Sonveaux P, Verstraete P, De Keersmaecker K, Dewaele B, Björkblom B, Melin B, Wu WY, Sjöberg RL, Rouschop KMA, Broen MPG, Vooijs M, Kampen KR. Sertraline/chloroquine combination therapy to target hypoxic and immunosuppressive serine/glycine synthesis-dependent glioblastomas. Oncogenesis 2024; 13:39. [PMID: 39537592 PMCID: PMC11561346 DOI: 10.1038/s41389-024-00540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma. Primary glioblastoma cells overexpressing PSPH and PSPHV116I showed an increased clonogenic capacity, cell proliferation, and migration, supported by elevated nucleotide synthesis and utilization of reductive NAD(P). We previously identified sertraline as an inhibitor of ser/gly synthesis and explored its efficacy at suboptimal dosages in combination with the clinically pretested chloroquine to target ser/glyhigh glioblastoma models. Interestingly, ser/glyhigh glioblastomas, including PSPHamp and PSPHV116I, displayed selective synergistic inhibition of proliferation in response to combination therapy. PSPH knockdown severely affected ser/glyhigh glioblastoma clonogenicity and proliferation, while simultaneously increasing its sensitivity to chloroquine treatment. Metabolite landscaping revealed that sertraline/chloroquine combination treatment blocks NADH and ATP generation and restricts nucleotide synthesis, thereby inhibiting glioblastoma proliferation. Our previous studies highlight ser/glyhigh cancer cell modulation of its microenvironment at the level of immune suppression. To this end, high PSPH expression predicts poor immune checkpoint therapy responses in glioblastoma patients. Interestingly, we show that PSPH amplifications in glioblastoma facilitate the expression of immune suppressor galectin-1, which can be inhibited by sertraline treatment. Collectively, we revealed that ser/glyhigh glioblastomas are characterized by enhanced clonogenicity, migration, and suppression of the immune system, which could be tackled using combined sertraline/chloroquine treatment, revealing novel therapeutic opportunities for this subgroup of GBM patients.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Alessandra Baldini
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
| | - Paulien Verstraete
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, Laboratory for Genetics of Malignant Disorders, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | | | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Wendy Y Wu
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Kasper M A Rouschop
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Martijn P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, GROW School for Oncology and Reproduction, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
7
|
Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A, Pedersen SF. Mimicking and analyzing the tumor microenvironment. CELL REPORTS METHODS 2024; 4:100866. [PMID: 39353424 PMCID: PMC11573787 DOI: 10.1016/j.crmeth.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The tumor microenvironment (TME) is increasingly appreciated to play a decisive role in cancer development and response to therapy in all solid tumors. Hypoxia, acidosis, high interstitial pressure, nutrient-poor conditions, and high cellular heterogeneity of the TME arise from interactions between cancer cells and their environment. These properties, in turn, play key roles in the aggressiveness and therapy resistance of the disease, through complex reciprocal interactions between the cancer cell genotype and phenotype, and the physicochemical and cellular environment. Understanding this complexity requires the combination of sophisticated cancer models and high-resolution analysis tools. Models must allow both control and analysis of cellular and acellular TME properties, and analyses must be able to capture the complexity at high depth and spatial resolution. Here, we review the advantages and limitations of key models and methods in order to guide further TME research and outline future challenges.
Collapse
Affiliation(s)
- Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yan-Fang Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eliana Goncalves-Alves
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
10
|
Levesque IR. Editorial for "pH Mapping of Gliomas Using Quantitative Chemical Exchange Saturation Transfer MRI: Quasi-Steady-State, Spillover-, and MT-Corrected Omega Plot Analysis". J Magn Reson Imaging 2024; 60:1456-1457. [PMID: 38243679 DOI: 10.1002/jmri.29254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Affiliation(s)
- Ives R Levesque
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
12
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
13
|
Maslivetc VA, Nabiul Hasan M, Boari A, Zejnelovski A, Evidente A, Sun D, Kornienko A. Ophiobolin A derivatives with enhanced activities under tumor-relevant acidic conditions. Bioorg Med Chem Lett 2024; 110:129863. [PMID: 38942129 PMCID: PMC11646455 DOI: 10.1016/j.bmcl.2024.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.
Collapse
Affiliation(s)
- Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Arben Zejnelovski
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA; Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA.
| |
Collapse
|
14
|
Bua S, Nocentini A, Bonardi A, Palma G, Ciampi G, Giliberti A, Iannelli F, Bruzzese F, Supuran CT, de Nigris F. Harnessing Nitric Oxide-Donating Benzofuroxans for Targeted Inhibition of Carbonic Anhydrase IX in Cancer. J Med Chem 2024; 67:15892-15907. [PMID: 39207927 DOI: 10.1021/acs.jmedchem.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe here the design and antitumor evaluation of benzofuroxan-based nitric oxide (NO)-donor hybrid derivatives targeting human carbonic anhydrases (hCAs) IX and XII. The most effective compounds, 27 and 28, demonstrated potent dual action, exhibiting low nanomolar inhibition constants against hCA IX and significant NO release. Notably, compound 27 showed significant antiproliferative effects against various cancer cell lines, particularly renal carcinoma A-498 cells. In these cells, it significantly reduced the expression of CA IX and iron-regulatory proteins, inducing apoptosis via mitochondrial caspase activity and ferroptosis pathways, as evidenced by increases in ROS, nitrite, and down-regulated expression of ferritin-encoding genes. In three-dimensional tumor models, compound 27 effectively reduced spheroid size and viability. In vivo toxicity studies in mice indicated that the compounds were well-tolerated, with no significant alterations in kidney function. These findings underscore the potential of benzofuroxan-based CA inhibitors for further preclinical evaluations as therapeutic agents targeting renal cell carcinoma.
Collapse
Affiliation(s)
- Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Giuseppe Palma
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Giulia Ciampi
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Angela Giliberti
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Napoli 80131, Italy
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli 80131, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Sesto Fiorentino, Firenze Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli″, Napoli 80138, Italy
| |
Collapse
|
15
|
Balboni A, D'Angelo C, Collura N, Brusco S, Di Berardino C, Targa A, Massoti B, Mastrangelo E, Milani M, Seneci P, Broccoli V, Muzio L, Galli R, Menegon A. Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth. Sci Rep 2024; 14:20421. [PMID: 39227705 PMCID: PMC11372124 DOI: 10.1038/s41598-024-71623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Andrea Balboni
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Camilla D'Angelo
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Nicoletta Collura
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- Electrophysiology Unit, Axxam S.P.A., Via Meucci 3, Bresso, 20091, Milan, Italy
| | - Claudia Di Berardino
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Altea Targa
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Beatrice Massoti
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | | | | | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Luca Muzio
- INsPE, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy.
| |
Collapse
|
16
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
17
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
19
|
Cazzato G, Ingravallo G, Ribatti D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers (Basel) 2024; 16:1794. [PMID: 38791873 PMCID: PMC11120419 DOI: 10.3390/cancers16101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
20
|
Auxillos J, Crouigneau R, Li YF, Dai Y, Stigliani A, Tavernaro I, Resch-Genger U, Sandelin A, Marie R, Pedersen SF. Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes. SCIENCE ADVANCES 2024; 10:eadn3448. [PMID: 38701211 PMCID: PMC11068013 DOI: 10.1126/sciadv.adn3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology.
Collapse
Affiliation(s)
- Jamie Auxillos
- Section for Computational and RNA biology, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Yan-Fang Li
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yifan Dai
- Section for Computational and RNA biology, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA biology, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Isabella Tavernaro
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung, Richard-Willstaetter Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung, Richard-Willstaetter Str. 11, 12489, Berlin, Germany
| | - Albin Sandelin
- Section for Computational and RNA biology, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stine F. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Harada M, Kotani H, Iida Y, Tanino R, Minami T, Komohara Y, Yoshikawa K, Uemura H. Hypoxia-related carbonic anhydrase 9 induces serpinB9 expression in cancer cells and apoptosis in T cells via acidosis. Cancer Sci 2024; 115:1405-1416. [PMID: 38413363 PMCID: PMC11093193 DOI: 10.1111/cas.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
Hypoxia is a common feature of solid tumors. However, the impact of hypoxia on immune cells within tumor environments remains underexplored. Carbonic anhydrase 9 (CA9) is a hypoxia-responsive tumor-associated enzyme. We previously noted that regardless of human CA9 (hCA9) expression, hCA9-expressing mouse renal cell carcinoma RENCA (RENCA/hCA9) presented as a "cold" tumor in syngeneic aged mice. This study delves into the mechanisms behind this observation. Gene microarray analyses showed that RENCA/hCA9 cells exhibited elevated mouse serpinB9, an inhibitor of granzyme B, relative to RENCA cells. Corroborating this, RENCA/hCA9 cells displayed heightened resistance to antigen-specific cytotoxic T cells compared with RENCA cells. Notably, siRNA-mediated serpinB9 knockdown reclaimed this sensitivity. In vivo tests showed that serpinB9 inhibitor administration slowed RENCA tumor growth, but this effect was reduced in RENCA/hCA9 tumors, even with adjunctive immune checkpoint blockade therapy. Further, inducing hypoxia or introducing the mouse CA9 gene upregulated serpinB9 expression, and siRNA-mediated knockdown of the mouse CA9 gene inhibited the hypoxia-induced induction of serpinB9 in the original RENCA cells. Supernatants from RENCA/hCA9 cultures had lower pH than those from RENCA, suggesting acidosis. This acidity enhanced serpinB9 expression and T cell apoptosis. Moreover, coculturing with RENCA/hCA9 cells more actively prompted T cell apoptosis than with RENCA cells. Collectively, these findings suggest hypoxia-associated CA9 not only boosts serpinB9 in cancer cells but also synergistically intensifies T cell apoptosis via acidosis, characterizing RENCA/hCA9 tumors as "cold."
Collapse
Affiliation(s)
- Mamoru Harada
- Department of ImmunologyShimane University Faculty of MedicineShimaneJapan
| | - Hitoshi Kotani
- Department of ImmunologyShimane University Faculty of MedicineShimaneJapan
| | - Yuichi Iida
- Department of ImmunologyShimane University Faculty of MedicineShimaneJapan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal MedicineShimane University Faculty of MedicineShimaneJapan
| | - Takafumi Minami
- Department of UrologyKindai University Faculty of MedicineOsakaJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical ScienceKumamoto UniversityKumamotoJapan
| | | | - Hirotsugu Uemura
- Department of UrologyKindai University Faculty of MedicineOsakaJapan
| |
Collapse
|
22
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
23
|
Bose A, Datta S, Mandal R, Ray U, Dhar R. Increased heterogeneity in expression of genes associated with cancer progression and drug resistance. Transl Oncol 2024; 41:101879. [PMID: 38262110 PMCID: PMC10832509 DOI: 10.1016/j.tranon.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
Fluctuations in the number of regulatory molecules and differences in timings of molecular events can generate variation in gene expression among genetically identical cells in the same environmental condition. This variation, termed as expression noise, can create differences in metabolic state and cellular functions, leading to phenotypic heterogeneity. Expression noise and phenotypic heterogeneity have been recognized as important contributors to intra-tumor heterogeneity, and have been associated with cancer growth, progression, and therapy resistance. However, how expression noise changes with cancer progression in actual cancer patients has remained poorly explored. Such an analysis, through identification of genes with increasing expression noise, can provide valuable insights into generation of intra-tumor heterogeneity, and could have important implications for understanding immune-suppression, drug tolerance and therapy resistance. In this work, we performed a genome-wide identification of changes in gene expression noise with cancer progression using single-cell RNA-seq data of lung adenocarcinoma patients at different stages of cancer. We identified 37 genes in epithelial cells that showed an increasing noise trend with cancer progression, many of which were also associated with cancer growth, EMT and therapy resistance. We found that expression of several of these genes was positively associated with expression of mitochondrial genes, suggesting an important role of mitochondria in generation of heterogeneity. In addition, we uncovered substantial differences in sample-specific noise profiles which could have implications for personalized prognosis and treatment.
Collapse
Affiliation(s)
- Anwesha Bose
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Subhasis Datta
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Rakesh Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Upasana Ray
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India.
| |
Collapse
|
24
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
25
|
Pazin WM, Miranda RR, Toledo KA, Kjeldsen F, Constantino CJL, Brewer JR. pH-Dependence Cytotoxicity Evaluation of Artepillin C against Tumor Cells. Life (Basel) 2023; 13:2186. [PMID: 38004326 PMCID: PMC10672498 DOI: 10.3390/life13112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brazilian green propolis is a well-known product that is consumed globally. Its major component, Artepillin C, showed potential as an antitumor product. This study explored the impact of Artepillin C on fibroblast and glioblastoma cell lines, used as healthy and very aggressive tumor cell lines, respectively. The focus of the study was to evaluate the pH-dependence of Artepillin C cytotoxicity, since tumor cells are known to have a more acidic extracellular microenvironment compared to healthy cells, and Artepillin C was shown to become more lipophilic at lower pH values. Investigations into the pH-dependency of Artepillin C (6.0-7.4), through viability assays and live cell imaging, revealed compelling insights. At pH 6.0, MTT assays showed the pronounced cytotoxic effects of Artepillin C, yielding a notable reduction in cell viability to less than 12% among glioblastoma cells following a 24 h exposure to 100 µM of Artepillin C. Concurrently, LDH assays indicated significant membrane damage, affecting approximately 50% of the total cells under the same conditions. Our Laurdan GP analysis suggests that Artepillin C induces autophagy, and notably, provokes a lipid membrane packing effect, contributing to cell death. These combined results affirm the selective cytotoxicity of Artepillin C within the acidic tumor microenvironment, emphasizing its potential as an effective antitumor agent. Furthermore, our findings suggest that Artepillin C holds promise for potential applications in the realm of anticancer therapies given its pH-dependence cytotoxicity.
Collapse
Affiliation(s)
- Wallance M. Pazin
- Department of Physics and Meteorology, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Renata R. Miranda
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Karina A. Toledo
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil;
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Carlos J. L. Constantino
- Department of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| |
Collapse
|
26
|
Jaraíz-Rodríguez M, Del Prado L, Balsa E. Metabolic remodeling in astrocytes: Paving the path to brain tumor development. Neurobiol Dis 2023; 188:106327. [PMID: 37839712 DOI: 10.1016/j.nbd.2023.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
The brain is a highly metabolic organ, composed of multiple cell classes, that controls crucial functions of the body. Although neurons have traditionally been the main protagonist, astrocytes have gained significant attention over the last decade. In this regard, astrocytes are a type of glial cells that have recently emerged as critical regulators of central nervous system (CNS) function and play a significant role in maintaining brain energy metabolism. However, in certain scenarios, astrocyte behavior can go awry, which poses a significant threat to brain integrity and function. This is definitively the case for mutations that turn normal astrocytes and astrocytic precursors into gliomas, an aggressive type of brain tumor. In addition, healthy astrocytes can interact with tumor cells, becoming part of the tumor microenvironment and influencing disease progression. In this review, we discuss the recent evidence suggesting that disturbed metabolism in astrocytes can contribute to the development and progression of fatal human diseases such as cancer. Emphasis is placed on detailing the molecular bases and metabolic pathways of this disease and highlighting unique metabolic vulnerabilities that can potentially be exploited to develop successful therapeutic opportunities.
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lucia Del Prado
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Eduardo Balsa
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
27
|
Lyukmanova EN, Zaigraev MM, Kulbatskii DS, Isaev AB, Kukushkin ID, Bychkov ML, Shulepko MA, Chugunov AO, Kirpichnikov MP. Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells. Toxins (Basel) 2023; 15:612. [PMID: 37888643 PMCID: PMC10610865 DOI: 10.3390/toxins15100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| | - Maxim M. Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | | | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
28
|
Strowd R, Ellingson B, Raymond C, Yao J, Wen PY, Ahluwalia M, Piotrowski A, Desai A, Clarke JL, Lieberman FS, Desideri S, Nabors LB, Ye X, Grossman S. Activity of a first-in-class oral HIF2-alpha inhibitor, PT2385, in patients with first recurrence of glioblastoma. J Neurooncol 2023; 165:101-112. [PMID: 37864646 PMCID: PMC10863646 DOI: 10.1007/s11060-023-04456-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Hypoxia inducible factor 2-alpha (HIF2α) mediates cellular responses to hypoxia and is over-expressed in glioblastoma (GBM). PT2385 is an oral HIF2α inhibitor with in vivo activity against GBM. METHODS A two-stage single-arm open-label phase II study of adults with GBM at first recurrence following chemoradiation with measurable disease was conducted through the Adult Brain Tumor Consortium. PT2385 was administered at the phase II dose (800 mg b.i.d.). The primary outcome was objective radiographic response (ORR = complete response + partial response, CR + PR); secondary outcomes were safety, overall survival (OS), and progression free survival (PFS). Exploratory objectives included pharmacokinetics (day 15 Cmin), pharmacodynamics (erythropoietin, vascular endothelial growth factor), and pH-weighted amine- chemical exchange saturation transfer (CEST) MRI to quantify tumor acidity at baseline and explore associations with drug response. Stage 1 enrolled 24 patients with early stoppage for ≤ 1 ORR. RESULTS Of the 24 enrolled patients, median age was 62.1 (38.7-76.7) years, median KPS 80, MGMT promoter was methylated in 46% of tumors. PT2385 was well tolerated. Grade ≥ 3 drug-related adverse events were hypoxia (n = 2), hyponatremia (2), lymphopenia (1), anemia (1), and hyperglycemia (1). No objective radiographic responses were observed; median PFS was 1.8 months (95% CI 1.6-2.5) and OS was 7.7 months (95% CI 4.9-12.6). Drug exposure varied widely and did not differ by corticosteroid use (p = 0.12), antiepileptics (p = 0.09), or sex (p = 0.37). Patients with high systemic exposure had significantly longer PFS (6.7 vs 1.8 months, p = 0.009). Baseline acidity by pH-weighted CEST MRI correlated significantly with treatment duration (R2 = 0.49, p = 0.017). Non-enhancing infiltrative disease with high acidity gave rise to recurrence. CONCLUSIONS PT2385 monotherapy had limited activity in first recurrent GBM. Drug exposure was variable. Signals of activity were observed in GBM patients with high systemic exposure and acidic lesions on CEST imaging. A second-generation HIF2α inhibitor is being studied.
Collapse
Affiliation(s)
- Roy Strowd
- Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston Salem, NC, 27104, USA.
| | | | | | - Jingwen Yao
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Arati Desai
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - L Burt Nabors
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Stuart Grossman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
29
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
30
|
Wang Q, Cao H, Hou X, Wang D, Wang Z, Shang Y, Zhang S, Liu J, Ren C, Liu J. Cancer Stem-Like Cells-Oriented Surface Self-Assembly to Conquer Radioresistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302916. [PMID: 37288841 DOI: 10.1002/adma.202302916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Cancer stem-like cells (CSCs), capable of indefinite self-renewal and differentiation, are considered to be the root cause of tumor radiotherapy (RT) resistance. However, the CSCs-targeted therapy still remains to be a great challenge because they are commonly located in the deep tumor making drugs hard to approach, and their hypoxic and acidic niche can further aggravate radioresistance. Herein, based on the finding that hypoxic CSCs highly express carbonic anhydrase IX (CAIX) on the cell membrane, a CAIX-targeted induced in situ self-assembly system on the surface of CSC is reported to overcome hypoxic CSC-mediated radioresistance. Via the sequential processes of "monomer release-target accumulation-surface self-assembly", the constructed peptide-based drug delivery system (CA-Pt) exhibits the advantages of deep penetration, amplified CAIX inhibition, and enhanced cellular uptake, which greatly relieves the hypoxic and acidic microenvironment to promote the hypoxic CSC differentiation and combines with platinum to boost the RT-inducing DNA damage. In both lung cancer tumor mouse and zebrafish embryo models, CA-Pt treatment can effectively assist RT in suppressing tumor growth and preventing tumor invasion and metastasis. This study uses a surface-induced self-assembly strategy to differentiate hypoxic CSCs, which may provide a universal treatment strategy for overcoming tumor radioresistance.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zhilong Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Shang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Shuqin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
31
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
32
|
Rabiee S, Hoveizi E, Barati M, Salehzadeh A, Joghataei MT, Tavakol S. Cancer cells same as zombies reprogram normal cells via the secreted microenvironment. PLoS One 2023; 18:e0288003. [PMID: 37506087 PMCID: PMC10381049 DOI: 10.1371/journal.pone.0288003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results. Cell metabolic activity is deviated in a direction other than the Krebs cycle by acidic media The mitochondrial metabolic activity of all groups was enhanced over time, except for acidic media. Unlike the highest amount of ROS in conditioned media, its level decreased to the level of acidic media in the combination group. Furthermore, cells were deviated towards autophagy, rather than apoptosis, by the addition of acidic media to the conditioned media, unlike the conditioned media. Global DNA methylation analysis revealed significantly higher DNA hypomethylation in acidic media than in normal and combination media. Not only were cells treated with conditioned media rescued by acidic media, but also DNA hypomethylation and apoptosis in the combination group were decreased through epigenetic modifications. The acidic and conditioned media produced by cancer cells can remotely activate malignant signaling pathways, much like zombies, which can cause metabolic and epigenetic changes in normal cells.
Collapse
Affiliation(s)
- Shadi Rabiee
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
34
|
Di Molfetta D, Cannone S, Greco MR, Caroppo R, Piccapane F, Carvalho TMA, Altamura C, Saltarella I, Tavares Valente D, Desaphy JF, Reshkin SJ, Cardone RA. ECM Composition Differentially Regulates Intracellular and Extracellular pH in Normal and Cancer Pancreatic Duct Epithelial Cells. Int J Mol Sci 2023; 24:10632. [PMID: 37445810 DOI: 10.3390/ijms241310632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.
Collapse
Affiliation(s)
- Daria Di Molfetta
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Stefania Cannone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Piccapane
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Diana Tavares Valente
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jean Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
35
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
36
|
Cho NS, Hagiwara A, Yao J, Nathanson DA, Prins RM, Wang C, Raymond C, Desousa BR, Divakaruni A, Morrow DH, Nghiemphu PL, Lai A, Liau LM, Everson RG, Salamon N, Pope WB, Cloughesy TF, Ellingson BM. Amine-weighted chemical exchange saturation transfer magnetic resonance imaging in brain tumors. NMR IN BIOMEDICINE 2023; 36:e4785. [PMID: 35704275 DOI: 10.1002/nbm.4785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 05/23/2023]
Abstract
Amine-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is particularly valuable as an amine- and pH-sensitive imaging technique in brain tumors, targeting the intrinsically high concentration of amino acids with exchangeable amine protons and reduced extracellular pH in brain tumors. Amine-weighted CEST MRI contrast is dependent on the glioma genotype, likely related to differences in degree of malignancy and metabolic behavior. Amine-weighted CEST MRI may provide complementary value to anatomic imaging in conventional and exploratory therapies in brain tumors, including chemoradiation, antiangiogenic therapies, and immunotherapies. Continual improvement and clinical testing of amine-weighted CEST MRI has the potential to greatly impact patients with brain tumors by understanding vulnerabilities in the tumor microenvironment that may be therapeutically exploited.
Collapse
Affiliation(s)
- Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Danielle H Morrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
37
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
38
|
Eatmann AI, Hamouda E, Hamouda H, Farouk HK, Jobran AWM, Omar AA, Madeeh AK, Al-Dardery NM, Elnoamany S, Abd-Elnasser EG, Koraiem AM, Ahmed AA, Abouzid M, Karaźniewicz-Łada M. Potential Use of Thalidomide in Glioblastoma Treatment: An Updated Brief Overview. Metabolites 2023; 13:metabo13040543. [PMID: 37110201 PMCID: PMC10146416 DOI: 10.3390/metabo13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. Thalidomide is a vascular endothelial growth factor inhibitor that demonstrates antiangiogenic activity, and may provide additive or synergistic anti-tumor effects when co-administered with other antiangiogenic medications. This study is a comprehensive review that highlights the potential benefits of using thalidomide, in combination with other medications, to treat glioblastoma and its associated inflammatory conditions. Additionally, the review examines the mechanism of action of thalidomide in different types of tumors, which may be beneficial in treating glioblastoma. To our knowledge, a similar study has not been conducted. We found that thalidomide, when used in combination with other medications, has been shown to produce better outcomes in several conditions or symptoms, such as myelodysplastic syndromes, multiple myeloma, Crohn's disease, colorectal cancer, renal failure carcinoma, breast cancer, glioblastoma, and hepatocellular carcinoma. However, challenges may persist for newly diagnosed or previously treated patients, with moderate side effects being reported, particularly with the various mechanisms of action observed for thalidomide. Therefore, thalidomide, used alone, may not receive significant attention for use in treating glioblastoma in the future. Conducting further research by replicating current studies that show improved outcomes when thalidomide is combined with other medications, using larger sample sizes, different demographic groups and ethnicities, and implementing enhanced therapeutic protocol management, may benefit these patients. A meta-analysis of the combinations of thalidomide with other medications in treating glioblastoma is also needed to investigate its potential benefits further.
Collapse
Affiliation(s)
- Ahmed Ismail Eatmann
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland
| | - Esraa Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | - Heba Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | - Afnan W M Jobran
- Faculty of Medicine, Al Quds University, Jerusalem P.O. Box 51000, Palestine
| | - Abdallah A Omar
- Department of Pharmaceutical Services and Sciences, Children's Cancer Hospital Egypt (CCHE-57357), Cairo 11617, Egypt
| | | | | | - Salma Elnoamany
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | | | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Mohamed Abouzid
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
39
|
Vaidya M, Sreerama S, Gonzalez-Vega M, Smith J, Field M, Sugaya K. Coculture with Neural Stem Cells May Shift the Transcription Profile of Glioblastoma Multiforme towards Cancer-Specific Stemness. Int J Mol Sci 2023; 24:ijms24043242. [PMID: 36834653 PMCID: PMC9962301 DOI: 10.3390/ijms24043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.e., NSCs modify cancer cells by conferring them with cancer-specific stemness, or NSCs themselves are transformed into CSCs due to the tumor environment created by cancer cells. To test the theories and to investigate the transcriptional regulation of the genes involved in CSC formation, we cocultured NSC and GBM cell lines together. Where genes related to cancer stemness, drug efflux, and DNA modification were upregulated in GBM, they were downregulated in NSCs upon coculture. These results indicate that cancer cells shift the transcriptional profile towards stemness and drug resistance in the presence of NSCs. Concurrently, GBM triggers NSCs differentiation. Because the cell lines were separated by a membrane (0.4 µm pore size) to prevent direct contact between GBM and NSCs, cell-secreted signaling molecules and extracellular vesicles (EVs) are likely involved in reciprocal communication between NSCs and GBM, causing transcription modification. Understanding the mechanism of CSC creation will aid in the identification of precise molecular targets within the CSCs to exterminate them, which, in turn, will increase the efficacy of chemo-radiation treatment.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Maxine Gonzalez-Vega
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
40
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
41
|
Sloan AE, Nock CJ, Ye X, Buerki R, Chang S, Lesser G, Norden A, Cloughesy T, Olson J, Kerstetter-Fogle A, Rich J, Fisher J, Desideri S, Takebe N, Timmer W, Grossman S, Prados M. ABTC-0904: targeting glioma stem cells in GBM: a phase 0/II study of hedgehog pathway inhibitor GDC-0449. J Neurooncol 2023; 161:33-43. [PMID: 36581779 PMCID: PMC11197851 DOI: 10.1007/s11060-022-04193-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Gliomagenesis and resistance of glioblastoma (GBM) are believed to be mediated by glioma stem cells (GSC). Evidence suggests that SHH signaling promotes GSC proliferation and self-renewal. METHODS ABTC-0904 was a two-arm, multicenter phase 0/II study of GDC-0449, an oral inhibitor of Smoothened (SMO) in patients undergoing resection for recurrent GBM. All patients (Arms I and II) had surgery and received drug post-operatively. Only patients in Arm I received drug prior to surgery. The primary objective was to determine 6-month progression free survival (PFS-6). Secondary endpoints include median PFS (mPFS) and overall survival (mOS), response rate, and toxicity. Correlative studies included bioanalysis of GDC-0449, and inhibition of SHH signaling, GSC proliferation and self-renewal. RESULTS Forty-one patients were enrolled. Pharmacokinetics of GDC-0449 in plasma demonstrated levels within expected therapeutic range in 75% of patients. The proportion of tumorcells producing CD133+ neurospheres, neurosphere proliferation, self-renewal, and expression of the SHh downstream signaling was significantly decreased in Arm I following GDC-0449 treatment (p < 0.005; p < 0.001 respectively) compared to Arm II (no drug pre-op). Treatment was well tolerated. There were no objective responders in either arm. Overall PFS-6 was 2.4% (95% CI 0.9-11.1%). Median PFS was 2.3 months (95% CI 1.9-2.6) and mOS was 7.8 months (95% CI 5.4-10.1). CONCLUSIONS GDC-0449 was well tolerated, reached tumor, and inhibited CD133+ neurosphere formation, but had little clinical efficacy as a single agent in rGBM. This suggests growth and maintenance of rGBM is not solely dependent on the SHH pathway thus targeting SMO may require combined approaches.
Collapse
Affiliation(s)
- Andrew E Sloan
- Chief of Neuroscience, Piedmont Healthcare, Atlanta, USA.
| | - Charles J Nock
- Department of Medicine, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Xiaobu Ye
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Buerki
- Department of Neurology, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Glenn Lesser
- Department of Radiation Oncology, Wake Forest University, Wake Forest, NC, USA
| | - Andrew Norden
- Department of Medicine, Dana Farber Cancer Institute, Boston, MA, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | | | - Jeremy Rich
- Department of Neurology and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joy Fisher
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Serena Desideri
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Naoko Takebe
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - Stuart Grossman
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Prados
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
GC S, Tuy K, Rickenbacker L, Jones R, Chakraborty A, Miller CR, Beierle EA, Hanumanthu VS, Tran AN, Mobley JA, Bellis SL, Hjelmeland AB. α2,6 Sialylation mediated by ST6GAL1 promotes glioblastoma growth. JCI Insight 2022; 7:e158799. [PMID: 36345944 PMCID: PMC9675560 DOI: 10.1172/jci.insight.158799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. β-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor β (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.
Collapse
Affiliation(s)
- Sajina GC
- Department of Cell, Developmental and Integrative Biology
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology
| | | | - Robert Jones
- Department of Cell, Developmental and Integrative Biology
| | | | | | | | | | | | - James A. Mobley
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
43
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
44
|
Larionova TD, Bastola S, Aksinina TE, Anufrieva KS, Wang J, Shender VO, Andreev DE, Kovalenko TF, Arapidi GP, Shnaider PV, Kazakova AN, Latyshev YA, Tatarskiy VV, Shtil AA, Moreau P, Giraud F, Li C, Wang Y, Rubtsova MP, Dontsova OA, Condro M, Ellingson BM, Shakhparonov MI, Kornblum HI, Nakano I, Pavlyukov MS. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat Cell Biol 2022; 24:1541-1557. [PMID: 36192632 PMCID: PMC10026424 DOI: 10.1038/s41556-022-00994-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.
Collapse
Affiliation(s)
- Tatyana D Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tatiana E Aksinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Jia Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Dmitriy E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Yaroslav A Latyshev
- N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pascale Moreau
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Francis Giraud
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yichan Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Michael Condro
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute of Hokuto, Hokkaido, Japan.
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
45
|
Shen Y, Hu M, Li W, Chen Y, Xu Y, Sun L, Liu D, Chen S, Gu Y, Ma Y, Chen X. Delivery of DNA octahedra enhanced by focused ultrasound with microbubbles for glioma therapy. J Control Release 2022; 350:158-174. [PMID: 35981634 DOI: 10.1016/j.jconrel.2022.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
DNA nanostructures, with good biosafety, highly programmable assembly, flexible modification, and precise control, are tailored as drug carriers to deliver therapeutic agents for cancer therapy. However, they face considerable challenges regarding their delivery into the brain, mainly due to the blood-brain barrier (BBB). By controlling the acoustic parameters, focused ultrasound combined with microbubbles (FUS/MB) can temporarily, noninvasively, and reproducibly open the BBB in a localized region. We investigated the delivery outcome of pH-responsive DNA octahedra loading Epirubicin (Epr@DNA-Octa) via FUS/MB and its therapeutic efficiency in a mouse model bearing intracranial glioma xenograft. Using FUS/MB to locally disrupt the BBB or the blood-tumor barrier (BTB) and systemic administration of Epr@DNA-Octa (Epr@DNA-Octa + FUS/MB) (2 mg/kg of loaded Epr), we achieved an Epr concentration of 292.3 ± 10.1 ng/g tissue in glioma, a 4.4-fold increase compared to unsonicated animals (p < 0.001). The in vitro findings indicated that Epr released from DNA strands accumulated in lysosomes and induced enhanced cytotoxicity compared to free Epr. Further two-photon intravital imaging of spatiotemporal patterns of the DNA-Octa leakage revealed that the FUS/MB treatment enhanced DNA-Octa delivery across several physiological barriers at microscopic level, including the first extravasation across the BBB/BTB and then deep penetration into the glioma center and engulfment of DNA-Octa into the tumor cell body. Longitudinal in vivo bioluminescence imaging and histological analysis indicated that the intracranial glioma progression in nude mice treated with Epr@DNA-Octa + FUS/MB was effectively retarded compared to other groups. The beneficial effect on survival was most significant in the Epr@DNA-Octa + FUS/MB group, with a 50% increase in median survival and a 73% increase in the maximum survival compared to control animals. Our work demonstrates the potential viability of FUS/MB as an alternative strategy for glioma delivery of anticancer drugs using DNA nanostructures as the drug delivery platform for brain cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China
| | - Mengni Hu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China
| | - Wen Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China
| | - Yiluo Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China
| | - Litao Sun
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Dongzhe Liu
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen 518071, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
46
|
Zhang W, Shi Y, Li H, Yu M, Zhao J, Chen H, Kong M. In situ injectable nano-complexed hydrogel based on chitosan/dextran for combining tumor therapy via hypoxia alleviation and TAMs polarity regulation. Carbohydr Polym 2022; 288:119418. [PMID: 35450661 DOI: 10.1016/j.carbpol.2022.119418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022]
|
47
|
Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10061308. [PMID: 35740330 PMCID: PMC9220281 DOI: 10.3390/biomedicines10061308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.
Collapse
|
48
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
49
|
Purine Synthesis Inhibitor L-Alanosine Impairs Mitochondrial Function and Stemness of Brain Tumor Initiating Cells. Biomedicines 2022; 10:biomedicines10040751. [PMID: 35453502 PMCID: PMC9025092 DOI: 10.3390/biomedicines10040751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer exhibiting high levels of drug resistance, a feature partially imparted by tumor cell stemness. Recent work shows that homozygous MTAP deletion, a genetic alteration occurring in about half of all GBMs, promotes stemness in GBM cells. Exploiting MTAP loss-conferred deficiency in purine salvage, we demonstrate that purine blockade via treatment with L-Alanosine (ALA), an inhibitor of de novo purine synthesis, attenuates stemness of MTAP-deficient GBM cells. This ALA-induced reduction in stemness is mediated in part by compromised mitochondrial function, highlighted by ALA-induced elimination of mitochondrial spare respiratory capacity. Notably, these effects of ALA are apparent even when the treatment was transient and with a low dose. Finally, in agreement with diminished stemness and compromised mitochondrial function, we show that ALA sensitizes GBM cells to temozolomide (TMZ) in vitro and in an orthotopic GBM model. Collectively, these results identify purine supply as an essential component in maintaining mitochondrial function in GBM cells and highlight a critical role of mitochondrial function in sustaining GBM stemness. We propose that purine synthesis inhibition can be beneficial in combination with the standard of care for MTAP-deficient GBMs, and that it may be feasible to achieve this benefit without inflicting major toxicity.
Collapse
|
50
|
Qian D, Qian C, Ye B, Xu M, Wu D, Li J, Li D, Yu B, Tao Y. Development and Validation of a Novel Stemness-Index-Related Long Noncoding RNA Signature for Breast Cancer Based on Weighted Gene Co-Expression Network Analysis. Front Genet 2022; 13:760514. [PMID: 35273635 PMCID: PMC8902307 DOI: 10.3389/fgene.2022.760514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is a major leading cause of woman deaths worldwide. Increasing evidence has revealed that stemness features are related to the prognosis and progression of tumors. Nevertheless, the roles of stemness-index-related long noncoding RNAs (lncRNAs) in BC remain unclear. Methods: Differentially expressed stemness-index-related lncRNAs between BC and normal samples in The Cancer Genome Atlas database were screened based on weighted gene co-expression network analysis and differential analysis. Univariate Cox and least absolute shrinkage and selection operator regression analyses were performed to identify prognostic lncRNAs and construct a stemness-index-related lncRNA signature. Time-dependent receiver operating characteristic curves were plotted to evaluate the predictive capability of the stemness-index-related lncRNA signature. Moreover, correlation analysis and functional enrichment analyses were conducted to investigate the stemness-index-related lncRNA signature-related biological function. Finally, a quantitative real-time polymerase chain reaction was used to detect the expression levels of lncRNAs. Results: A total of 73 differentially expressed stemness-index-related lncRNAs were identified. Next, FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were used to construct a stemness-index-related lncRNA signature, and receiver operating characteristic curves indicated that stemness-index-related lncRNA signature could predict the prognosis of BC well. Moreover, functional enrichment analysis suggested that differentially expressed genes between the high-risk group and low-risk group were mainly involved in immune-related biological processes and pathways. Furthermore, functional enrichment analysis of lncRNA-related protein-coding genes revealed that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were associated with neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling pathway, and cGMP-PKG signaling pathway. Finally, quantitative real-time polymerase chain reaction revealed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the potential diagnostic biomarkers of BC. Conclusion: The stemness-index-related lncRNA signature based on FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could be used as an independent predictor for the survival of BC, and FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the diagnostic markers of BC.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Cheng Qian
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, China
| | - Buyun Ye
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Xu
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Danping Wu
- Department of Breast Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jialu Li
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Dong Li
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Bin Yu
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Yijing Tao
- Department of Cardiology, Changshu Hospital Affiliated to Soochow University, Changshu, China
| |
Collapse
|