1
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Guo Z, Zhu J, Yin J, Miao P. Zeolitic imidazolate framework-8 encapsulating carbon nanodots and silver nanoparticles for fluorescent detection of H 2O 2 and glucose. J Colloid Interface Sci 2023; 643:385-392. [PMID: 37080045 DOI: 10.1016/j.jcis.2023.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In this study, a novel fluorescent biosensor is developed for the detection of H2O2 and glucose based on Zeolitic Imidazolate Framework-8 (ZIF-8) nanocomposites. ZIF-8 encapsulating carbon nanodot (CD) exhibits bright fluorescence emission. After further loading of AgNP, the fluorescence is quenched, which is mainly based on the excited electron transfer from CD to AgNP. Besides, the excitation wavelength of CD falls within the adsorption range of AgNP, which leads to efficient inhibition of the excitation energy. The as-prepared AgNP-CD-ZIF-8 nanocomposites can be utilized as a highly sensitive platform for the analysis of H2O2 and glucose. In the presence of glucose, H2O2 can be generated by the catalysis of glucose oxidase (GOD), which induces the etching of AgNP and subsequent recovery of CD-ZIF-8 fluorescence. This "turn on" biosensor can be applied for facile and convenient quantification of H2O2. It can also be further extended to detect glucose in real samples after combining specific catalytic effect of GOD. The analytical performances are excellent, which demonstrates great potential for practical utility.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Jinwen Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jian Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
4
|
Pfefferlé M, Dubach IL, Buzzi RM, Dürst E, Schulthess-Lutz N, Baselgia L, Hansen K, Imhof L, Koernig S, Le Roy D, Roger T, Humar R, Schaer DJ, Vallelian F. Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity. J Immunother Cancer 2023; 11:e005718. [PMID: 36593065 PMCID: PMC9809320 DOI: 10.1136/jitc-2022-005718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sandra Koernig
- CSL Ltd., Research, Bio21 Institute, Parkville, Victoria, Australia
| | | | | | - Rok Humar
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
5
|
Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140:1837-1844. [PMID: 35660854 PMCID: PMC10653008 DOI: 10.1182/blood.2022015596] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
- Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Jeon JP, Han SW, Kim TY, Lim SH, Youn DH, Rhim JK, Park JJ, Ahn JH, Kim HC, Yang J. Association of Haptoglobin Phenotypes with Outcomes in Patients with Spontaneous Intracerebral Hemorrhage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071001. [PMID: 35888091 PMCID: PMC9318044 DOI: 10.3390/life12071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Object. We aimed to investigate the association of Haptoglobin (Hp) phenotypes with perihematomal edema (PHE) and neurological outcomes after intracerebral hemorrhage (ICH). Methods. This prospective multicenter study enrolled patients that suffered ICH from March 2017 to February 2020. Hp phenotypes were determined using Western blotting; relative α1 intensity was calculated in patients with Hp2-1. A multivariable logistic regression analysis was then conducted to identify risk factors for increased relative PHE at 96 h and 3-month poor outcomes. Results. In total, 120 patients were ultimately enrolled: Hp1-1 (n = 15, 12.5%); Hp2-1 (n = 51, 42.5%); and Hp2-2 (n = 54, 45.0%). Hp phenotype was significantly associated with PHE (p = 0.028). With Hp1-1 as a reference value, Hp2-2 significantly increased the likelihood of increased rPHE (OR = 6.294, 95% CI: 1.283–30.881), while Hp2-1 did not (OR = 2.843, 95% CI: 0.566–14.284). Poor outcomes were found to be closely associated with hematoma volume at admission (OR = 1.057, 95% CI: 1.015–1.101) and surgical treatment (OR = 5.340, 95% CI: 1.665–17.122) but not Hp phenotypes (p = 0.190). Further, a high level of relative α1 intensity was identified to be significantly associated with decreased rPHE (OR = 0.020, 95% CI: 0.001–0.358). However, the relative α1 intensity was not associated with poor outcomes (OR = 0.057, 95% CI: 0.001–11.790). Conclusions: ICH patients with Hp2-2 exhibited a higher likelihood of increased rPHE than those with Hp1-1. Higher relative α1 intensities were identified to be closely associated with rPHE in patients with Hp2-1.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju 63243, Korea;
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Korea;
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon 24289, Korea;
| | - Heung Cheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Jinseo Yang
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Korea;
- Correspondence:
| |
Collapse
|
7
|
GOx/Hb Cascade Oxidized Crosslinking of Silk Fibroin for Tissue-Responsive Wound Repair. Gels 2022; 8:gels8010056. [PMID: 35049591 PMCID: PMC8774987 DOI: 10.3390/gels8010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Promising wound dressings can achieve rapid soft-tissue filling while refactoring the biochemical and biophysical microenvironment to recruit endogenous cells, facilitating tissue healing, integration, and regeneration. In this study, a tissue biomolecule-responsive hydrogel matrix, employing natural silk fibroin (SF) as a functional biopolymer and haemoglobin (Hb) as a peroxidase-like biocatalyst, was fabricated through cascade enzymatic crosslinking. The hydrogels possessed mechanical tunability and displayed adjustable gelation times. A tyrosine unit on SF stabilised the structure of Hb during the cascade oxidation process; thus, the immobilized Hb in SF hydrogels exhibited higher biocatalytic efficiency than the free enzyme system, which provided a continuously antioxidative system. The regulation of the dual enzyme ratio endowed the hydrogels with favourable biocompatibility, biodegradability, and adhesion strength. These multifunctional hydrogels provided a three-dimensional porous extracellular matrix-like microenvironment for promoting cell adhesion and proliferation. A rat model with a full-thickness skin defect revealed accelerated wound regeneration via collagen deposition, re-epithelialisation and revascularisation. Enzyme-loaded hydrogels are an attractive and high-safety biofilling material with the potential for wound healing, tissue regeneration, and haemostasis.
Collapse
|
8
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
9
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
10
|
Ferryl Hemoglobin and Heme Induce A 1-Microglobulin in Hemorrhaged Atherosclerotic Lesions with Inhibitory Function against Hemoglobin and Lipid Oxidation. Int J Mol Sci 2021; 22:ijms22136668. [PMID: 34206377 PMCID: PMC8268598 DOI: 10.3390/ijms22136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.
Collapse
|
11
|
Meegan JE, Bastarache JA, Ware LB. Toxic effects of cell-free hemoglobin on the microvascular endothelium: implications for pulmonary and nonpulmonary organ dysfunction. Am J Physiol Lung Cell Mol Physiol 2021; 321:L429-L439. [PMID: 34009034 DOI: 10.1152/ajplung.00018.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levels of circulating cell-free hemoglobin are elevated during hemolytic and inflammatory diseases and contribute to organ dysfunction and severity of illness. Though several studies have investigated the contribution of hemoglobin to tissue injury, the precise signaling mechanisms of hemoglobin-mediated endothelial dysfunction in the lung and other organs are not yet completely understood. The purpose of this review is to highlight the knowledge gained thus far and the need for further investigation regarding hemoglobin-mediated endothelial inflammation and injury to develop novel therapeutic strategies targeting the damaging effects of cell-free hemoglobin.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
de la Rubia Ortí JE, Platero JL, Benlloch M, Franco-Martinez L, Tvarijonaviciute A, Escribá-Alepuz J, Sancho-Castillo S. Role of Haptoglobin as a Marker of Muscular Improvement in Patients with Multiple Sclerosis after Administration of Epigallocatechin Gallate and Increase of Beta-Hydroxybutyrate in the Blood: A Pilot Study. Biomolecules 2021; 11:biom11050617. [PMID: 33919169 PMCID: PMC8143085 DOI: 10.3390/biom11050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report on the role of haptoglobin (Hp), whose expression depends on the synthesis of interleukin 6 (IL-6), related to the pathogenesis of multiple sclerosis (MS), as a possible marker of muscle improvement achieved after treatment with the polyphenol epigallocatechin gallate (EGCG) and an increase in the ketone body beta-hydroxybutyrate (BHB) in the blood. After 4 months of intervention with 27 MS patients, we observed that Hp does not significantly increase, alongside a significant decrease in IL-6 and a significant increase in muscle percentage. At the same time, Hp synthesis is considerably and positively correlated with IL-6 both before and after treatment; while this correlation occurs significantly reversed with muscle percentage before treatment, no correlation is evident after the intervention. These results seem to indicate that Hp could be a marker of muscle status and could be a diagnosis tool after therapeutic intervention in MS patients.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
| | - Jose Luis Platero
- Doctoral Degree School, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
- Correspondence: ; Tel.: +34-963637412
| | - Lorena Franco-Martinez
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (A.T.)
| | - Jesús Escribá-Alepuz
- Neurophysiology Department, Sagunto University Hospital, 46520 Valencia, Spain;
- Institute of Sleep Medicine, 46021 Valencia, Spain
| | - Sandra Sancho-Castillo
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
| |
Collapse
|
13
|
Pfefferlé M, Ingoglia G, Schaer CA, Yalamanoglu A, Buzzi R, Dubach IL, Tan G, López-Cano EY, Schulthess N, Hansen K, Humar R, Schaer DJ, Vallelian F. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J Clin Invest 2021; 130:5576-5590. [PMID: 32663195 DOI: 10.1172/jci137282] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
During hemolysis, macrophages in the liver phagocytose damaged erythrocytes to prevent the toxic effects of cell-free hemoglobin and heme. It remains unclear how this homeostatic process modulates phagocyte functions in inflammatory diseases. Using a genetic mouse model of spherocytosis and single-cell RNA sequencing, we found that erythrophagocytosis skewed liver macrophages into an antiinflammatory phenotype that we defined as MarcohiHmoxhiMHC class IIlo erythrophagocytes. This phenotype transformation profoundly mitigated disease expression in a model of an anti-CD40-induced hyperinflammatory syndrome with necrotic hepatitis and in a nonalcoholic steatohepatitis model, representing 2 macrophage-driven sterile inflammatory diseases. We reproduced the antiinflammatory erythrophagocyte transformation in vitro by heme exposure of mouse and human macrophages, yielding a distinctive transcriptional signature that segregated heme-polarized from M1- and M2-polarized cells. Mapping transposase-accessible chromatin in single cells by sequencing defined the transcription factor NFE2L2/NRF2 as a critical driver of erythrophagocytes, and Nfe2l2/Nrf2 deficiency restored heme-suppressed inflammation. Our findings point to a pathway that regulates macrophage functions to link erythrocyte homeostasis with innate immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ge Tan
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Emilio Y López-Cano
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Joseph P, Umbright CM, Roberts JR, Cumpston JL, Orandle MS, McKinney WG, Sager TM. Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats. Inhal Toxicol 2021; 33:66-80. [PMID: 33602020 PMCID: PMC10442725 DOI: 10.1080/08958378.2021.1884320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS Rats were exposed to air or CNC (20 mg/m3, six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jared L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
15
|
Lwanira CN, Kironde F, Swedberg G. Haptoglobin gene diversity and incidence of uncomplicated malaria among children in Iganga, Uganda. Malar J 2020; 19:435. [PMID: 33243242 PMCID: PMC7690179 DOI: 10.1186/s12936-020-03515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/19/2020] [Indexed: 11/15/2022] Open
Abstract
Background Haptoglobin (Hp) is an acute phase protein that takes part in systemic regulation of haem during Plasmodium falciparum infections. Numerous genotypes of haptoglobin have been reported in malaria endemic populations. In this study, the relationship between haptoglobin genotypes and incidence of uncomplicated malaria in a cohort of children living in a malaria-endemic area of Uganda was determined. Methods This is an extension of a longitudinal study comprising of 423 children aged between six months and nine years, who were actively followed up for one year. Malaria episodes occurring in the cohort children were detected and the affected children treated with national policy drug regimen. Haptoglobin genotypes were determined by an allele-specific PCR method and their frequencies were calculated. A multivariate negative binomial regression model was used to estimate the impact of haptoglobin genotypes on incidence of uncomplicated malaria in the children’s cohort. In all statistical tests, a P–value of < 0.05 was considered as significant. Results The prevalence of the Hp 1–1, Hp 2–1 and Hp 2–2 genotypes in the children’s cohort was 41%, 36.2% and 22.9%, respectively. The overall frequency for the Hp 1 allele was 59%, while Hp 2 allele occurred at a frequency of 41%. After adjustment of incidence rates for age, insecticide treated bed net (ITN) use and malaria history, the incidence of uncomplicated malaria for children carrying the Hp 2–2 genotype and those with the Hp 2–1 genotype was statistically similar (P = 0.41). Also, no difference in the incidence of uncomplicated malaria was observed between children carrying the Hp 1–1 genotype and those having the Hp 2–1 genotype (P = 0.84) or between Hp 2–2 Vs Hp 1–1 genotypes (P = 0.50). Conclusions This study showed that the Hp 1–1 and Hp 2–1 genotypes each occur in nearly 4 in 10 children and the Hp 2–2 genotype occurs in 2 of every 10 children. No association with incidence of uncomplicated malaria was found. Additional studies of influence of haptoglobin genotypes on P. falciparum malaria severity are needed to understand the role of these genotypes in malarial protection.
Collapse
Affiliation(s)
- Catherine N Lwanira
- School of Biomedical Sciences, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda. .,Department of Biochemistry, Uganda Christian University School of Medicine, PO BOX 4, Mukono, Uganda.
| | - Fred Kironde
- School of Biomedical Sciences, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda.,Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda (IUIU), Kampala Campus, Uganda
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
DeSouza-Vieira T, Iniguez E, Serafim TD, de Castro W, Karmakar S, Disotuar MM, Cecilio P, Lacsina JR, Meneses C, Nagata BM, Cardoso S, Sonenshine DE, Moore IN, Borges VM, Dey R, Soares MP, Nakhasi HL, Oliveira F, Valenzuela JG, Kamhawi S. Heme Oxygenase-1 Induction by Blood-Feeding Arthropods Controls Skin Inflammation and Promotes Disease Tolerance. Cell Rep 2020; 33:108317. [PMID: 33113362 DOI: 10.1016/j.celrep.2020.108317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Hematophagous vectors lacerate host skin and capillaries to acquire a blood meal, resulting in leakage of red blood cells (RBCs) and inflammation. Here, we show that heme oxygenase-1 (HO-1), a pleiotropic cytoprotective isoenzyme that mitigates heme-mediated tissue damage, is induced after bites of sand flies, mosquitoes, and ticks. Further, we demonstrate that erythrophagocytosis by macrophages, including a skin-residing CD163+CD91+ professional iron-recycling subpopulation, produces HO-1 after bites. Importantly, we establish that global deletion or transient inhibition of HO-1 in mice increases inflammation and pathology following Leishmania-infected sand fly bites without affecting parasite number, whereas CO, an end product of the HO-1 enzymatic reaction, suppresses skin inflammation. This indicates that HO-1 induction by blood-feeding sand flies promotes tolerance to Leishmania infection. Collectively, our data demonstrate that HO-1 induction through erythrophagocytosis is a universal mechanism that regulates skin inflammation following blood feeding by arthropods, thus promoting early-stage disease tolerance to vector-borne pathogens.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Waldionê de Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Subir Karmakar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Maria M Disotuar
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Pedro Cecilio
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joshua R Lacsina
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Lisboa 2780-156, Portugal
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Valeria M Borges
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Miguel P Soares
- Instituto Gulbenkian de Ciência, Oeiras, Lisboa 2780-156, Portugal
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
17
|
Alasmari F, Alsanea S, Masood A, Alhazzani K, Alanazi IO, Musambil M, Alfadda AA, Alshammari MA, Alasmari AF, Benabdelkamel H. Serum proteomic profiling of patients with amphetamine use disorder. Drug Alcohol Depend 2020; 214:108157. [PMID: 32652378 DOI: 10.1016/j.drugalcdep.2020.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Amphetamine use disorder has been recently classified as an epidemic condition. Amphetamine use/abuse has been associated with several neurological and inflammatory effects. However, the exact mechanism involved in these effects warrants further investigation. The aim of this study was to determine any alterations in the serum proteome of individuals classified as patients with amphetamine use disorder compared to that of control subjects. METHODS An untargeted proteomic approach employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was used to identify the patterns of differentially expressed proteins. Serum samples were collected from 20 individuals (males) including 10 subjects with amphetamine use disorder and 10 healthy controls for the present study. RESULTS The analysis revealed 78 proteins with a significant difference in protein abundance between the amphetamine-addicted subjects and controls. Among them, 71 proteins were upregulated while 7 proteins remained downregulated in the amphetamine-addicted group. These proteins were further analyzed by ingenuity pathway analysis (IPA) to investigate their correlation with other biomarkers. IPA revealed the correlation of altered proteins with mitogen-activated protein kinase (MAP2K1/K2), p38MAPK, protein kinase-B (PKB; Akt), extracellular signal-regulated kinase (ERK1/2), and nuclear factor-κB signaling pathways. Importantly, these pathways are highly involved in neurological diseases, inflammatory responses, and cellular compromise. CONCLUSIONS Our data suggest that the changes in the levels of serum proteins between amphetamine and control groups might affect cellular compromise, inflammatory response, and neurological diseases.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim O Alanazi
- The National Center of Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
18
|
Sovira N, Lubis M, Wahidiyat PA, Suyatna FD, Gatot D, Bardosono S, Sadikin M. Effects of α-tocopherol on hemolysis and oxidative stress markers on red blood cells in β-thalassemia major. Clin Exp Pediatr 2020; 63:314-320. [PMID: 32668823 PMCID: PMC7402984 DOI: 10.3345/cep.2019.00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The accumulation of unpaired α-globin chains in patients with β-thalassemia major may clinically create ineffective erythropoiesis, hemolysis, and chronic anemia. Multiple blood transfusions and iron overload cause cellular oxidative damage. However, α-tocopherol, an antioxidant, is a potent scavenger of lipid radicals in the membranes of red blood cells (RBCs) of patients with β-thalassemia major. PURPOSE To evaluate the effects of α-tocopherol on hemolysis and oxidative stress markers on the RBC membranes of patients with β-thalassemia major. METHODS Forty subjects included in this randomized controlled trial were allocated to the placebo and α-tocopherol groups. Doses of α-tocopherol were based on Institute of Medicine recommendations: 4-8 years old, 200 mg/day; 9-13 years old, 400 mg/day; 14-18 years old, 600 mg/day. Hemolysis, oxidative stress, and antioxidant variables were evaluated before and after 4-week α-tocopherol or placebo treatment, performed before blood transfusions. RESULTS Significant enhancements in plasma haptoglobin were noted in the α-tocopherol group (3.01 mg/dL; range, 0.60-42.42 mg/dL; P=0.021). However, there was no significant intergroup difference in osmotic fragility test results; hemopexin, malondialdehyde, reduced glutathione (GSH), or oxidized glutathione (GSSG) levels; or GSH/GSSG ratio. CONCLUSION Use of α-tocopherol could indirectly improve hemolysis and haptoglobin levels. However, it played no significant role in oxidative stress or as an endogen antioxidant marker in β-thalassemia major.
Collapse
Affiliation(s)
- Nora Sovira
- Division of Pediatric Emergency & Intensive Care, Department of Pediatrics, Faculty of Medicine, University of Syiah Kualal/Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Munar Lubis
- Division of Pediatric Emergency & Intensive Care, Department of Pediatrics, Faculty of Medicine, University of Sumatera Utara/University of Sumatera Utara Hospital, Medan, Indonesia
| | - Pustika Amalia Wahidiyat
- Division of Hematology Oncology, Department of Pediatrics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Franciscus D Suyatna
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Djajadiman Gatot
- Division of Hematology Oncology, Department of Pediatrics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Saptawati Bardosono
- Department of Nutrition, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Mohammad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
19
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
20
|
Hugelshofer M, Buzzi RM, Schaer CA, Richter H, Akeret K, Anagnostakou V, Mahmoudi L, Vaccani R, Vallelian F, Deuel JW, Kronen PW, Kulcsar Z, Regli L, Baek JH, Pires IS, Palmer AF, Dennler M, Humar R, Buehler PW, Kircher PR, Keller E, Schaer DJ. Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. J Clin Invest 2020; 129:5219-5235. [PMID: 31454333 DOI: 10.1172/jci130630] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.
Collapse
Affiliation(s)
- Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Raphael M Buzzi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Henning Richter
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Vania Anagnostakou
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Leila Mahmoudi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Raphael Vaccani
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Peter W Kronen
- Veterinary Anaesthesia Services - International, Winterthur, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jin Hyen Baek
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick R Kircher
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurointensive Care Unit, University Hospital of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Fritze M, Costantini D, Fickel J, Wehner D, Czirják GÁ, Voigt CC. Immune response of hibernating European bats to a fungal challenge. Biol Open 2019; 8:bio.046078. [PMID: 31649120 PMCID: PMC6826279 DOI: 10.1242/bio.046078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunological responses of hibernating mammals are suppressed at low body temperatures, a possible explanation for the devastating effect of the white-nose syndrome on hibernating North American bats. However, European bats seem to cope well with the fungal causative agent of the disease. To better understand the immune response of hibernating bats, especially against fungal pathogens, we challenged European greater mouse-eared bats (Myotis myotis) by inoculating the fungal antigen zymosan. We monitored torpor patterns, immune gene expressions, different aspects of the acute phase response and plasma oxidative status markers, and compared them with sham-injected control animals at 30 min, 48 h and 96 h after inoculation. Torpor patterns, body temperatures, body masses, white blood cell counts, expression of immune genes, reactive oxygen metabolites and non-enzymatic antioxidant capacity did not differ between groups during the experiment. However, zymosan injected bats had significantly higher levels of haptoglobin than the control animals. Our results indicate that hibernating greater mouse-eared bats mount an inflammatory response to a fungal challenge, with only mild to negligible consequences for the energy budget of hibernation. Our study gives a first hint that hibernating European bats may have evolved a hibernation-adjusted immune response in order to balance the trade-off between competent pathogen elimination and a prudent energy-saving regime. Summary: Our experimental immunological study on European bats provides new information on the functionality of the immune system in hibernation. For this we challenged bats with a fungal antigen and measured different immunological parameters.
Collapse
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany .,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - David Costantini
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Unité Physiologie moléculaire et adaptation (PhyMA), Muséum National d'Histoire Naturelle, CNRS; CP32, 57 rue Cuvier 75005 Paris, France
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Dana Wehner
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.,Institute of Biology, Free University of Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
22
|
Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S. Blood-Related Toxicity after Traumatic Brain Injury: Potential Targets for Neuroprotection. Mol Neurobiol 2019; 57:159-178. [PMID: 31617072 DOI: 10.1007/s12035-019-01766-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Emergency visits, hospitalizations, and deaths due to traumatic brain injury (TBI) have increased significantly over the past few decades. While the primary early brain trauma is highly deleterious to the brain, the secondary injury post-TBI is postulated to significantly impact mortality. The presence of blood, particularly hemoglobin, and its breakdown products and key binding proteins and receptors modulating their clearance may contribute significantly to toxicity. Heme, hemin, and iron, for example, cause membrane lipid peroxidation, generate reactive oxygen species, and sensitize cells to noxious stimuli resulting in edema, cell death, and increased morbidity and mortality. A wide range of other mechanisms such as the immune system play pivotal roles in mediating secondary injury. Effective scavenging of all of these pro-oxidant and pro-inflammatory metabolites as well as controlling maladaptive immune responses is essential for limiting toxicity and secondary injury. Hemoglobin metabolism is mediated by key molecules such as haptoglobin, heme oxygenase, hemopexin, and ferritin. Genetic variability and dysfunction affecting these pathways (e.g., haptoglobin and heme oxygenase expression) have been implicated in the difference in susceptibility of individual patients to toxicity and may be target pathways for potential therapeutic interventions in TBI. Ongoing collaborative efforts are required to decipher the complexities of blood-related toxicity in TBI with an overarching goal of providing effective treatment options to all patients with TBI.
Collapse
Affiliation(s)
- Steven A Robicsek
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurosurgery, Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ayon Bhattacharya
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.,Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Ferenc Rabai
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Krunal Shukla
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
24
|
Griffiths S, Clark J, Adamides AA, Ziogas J. The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature. Neurosurg Rev 2019; 43:1273-1288. [PMID: 31493061 DOI: 10.1007/s10143-019-01169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023]
Abstract
Delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a major cause of mortality and morbidity. The pathophysiology of DCI after aSAH is thought to involve toxic mediators released from lysis of red blood cells within the subarachnoid space, including free haemoglobin and haem. Haptoglobin and hemopexin are endogenously produced acute phase proteins that are involved in the clearance of these toxic mediators. The aim of this review is to investigate the pathophysiological mechanisms involved in DCI and the role of both endogenous as well as exogenously administered haptoglobin and hemopexin in the prevention of DCI.
Collapse
Affiliation(s)
- Sean Griffiths
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia. .,Western Hospital, 160 Gordon St, Footscray, 3011, Australia.
| | - Jeremy Clark
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - Alexios A Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
25
|
Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:270. [PMID: 31355237 DOI: 10.21037/atm.2019.05.41] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exercise-induced hemolysis can be conventionally defined as rupture and destruction of erythrocytes during physical exercise. The currently available epidemiologic information attests that a substantial degree of exercise-induced hemolysis is commonplace after short-, medium-, long- and ultra-long distance running, as reflected by significant decrease of serum or plasma haptoglobin and significant increase of plasma concentration (or overall blood content) of free hemoglobin. This paraphysiological intravascular hemolysis is typically mild (average variations of hemolysis biomarkers are usually comprised between 1.2- and 1.8-fold), almost self-limiting (completely resolving within 24-48 hours), with severity depending on athlete population, analytical technique used for detecting intravascular hemolysis, as well as on number, frequency and intensity of ground contacts, but not on running technique. Additional lines of evidence support the notion that both osmotic fragility and membrane structure of erythrocytes are considerably modified during endurance exercise. This fact goes hand in hand with findings that erythrocyte lifespan in runners is approximately 40% shorter than in sedentary controls. Direct mechanical injury caused by forceful ground contacts, repeated muscle contractile activity or vasoconstriction in internal organs are three potential sources of exercise-induced hemolysis, whilst metabolic abnormalities developing while exercising (e.g., hyperthermia, dehydration, hypotonic shock, hypoxia, lactic acidosis, shear stress, oxidative damage, proteolysis, increased concentration of catecholamines and lysolecithin) may actively contribute to trigger, accelerate or amplify this phenomenon. Although no systematic evidence is available, it seems also reasonable to hypothesize that patients bearing erythrocyte disorders may be particularly vulnerable to developing exercise-induced hemolysis.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
26
|
Svistunenko DA, Manole A. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? J Biomed Res 2019; 34:281-291. [PMID: 32475850 PMCID: PMC7386409 DOI: 10.7555/jbr.33.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the difficulties in creating a blood substitute on the basis of human haemoglobin (Hb) is the toxic nature of Hb when it is outside the safe environment of the red blood cells. The plasma protein haptoglobin (Hp) takes care of the Hb physiologically leaked into the plasma – it binds Hb and makes it much less toxic while retaining the Hb's high oxygen transporting capacity. We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that the protein bound radical induced by H2O2 in Hb and Hp-Hb complex is formed on the same tyrosine residue(s), but, in the complex, the radical is found in a more hydrophobic environment and decays slower than in unbound Hb, thus mitigating its oxidative capacity. The data obtained in this study might set new directions in engineering blood substitutes for transfusion that would have the oxygen transporting efficiency typical of Hb, but which would be non-toxic.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Biomedical EPR Facility, School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Kosmachevskaya OV, Topunov AF. Alternate and Additional Functions of Erythrocyte Hemoglobin. BIOCHEMISTRY (MOSCOW) 2019; 83:1575-1593. [PMID: 30878032 DOI: 10.1134/s0006297918120155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses pleiotropic effects of erythrocytic hemoglobin (Hb) and their significance for human health. Hemoglobin is mostly known as an oxygen carrier, but its biochemical functions are not limited to this. The following aspects of Hb functioning are examined: (i) catalytic functions of the heme component (nitrite reductase, NO dioxygenase, monooxygenase, alkylhydroperoxidase) and of the apoprotein (esterase, lipoxygenase); (ii) participation in nitric oxide metabolism; (iii) formation of membrane-bound Hb and its role in the regulation of erythrocyte metabolism; (iv) physiological functions of Hb catabolic products (iron, CO, bilirubin, peptides). Special attention is given to Hb participation in signal transduction in erythrocytes. The relationships between various erythrocyte metabolic parameters, such as oxygen status, ATP formation, pH regulation, redox balance, and state of the cytoskeleton are discussed with regard to Hb. Hb polyfunctionality can be considered as a manifestation of the principle of biochemical economy.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
28
|
Nyakundi BB, Tóth A, Balogh E, Nagy B, Erdei J, Ryffel B, Paragh G, Cordero MD, Jeney V. Oxidized hemoglobin forms contribute to NLRP3 inflammasome-driven IL-1β production upon intravascular hemolysis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:464-475. [PMID: 30389578 DOI: 10.1016/j.bbadis.2018.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Damage associated molecular patterns (DAMPs) are released form red blood cells (RBCs) during intravascular hemolysis (IVH). Extracellular heme, with its pro-oxidant, pro-inflammatory and cytotoxic effects, is sensed by innate immune cells through pattern recognition receptors such as toll-like receptor 4 and nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3), while free availability of heme is strictly controlled. Here we investigated the involvement of different hemoglobin (Hb) forms in hemolysis-associated inflammatory responses. We found that after IVH most of the extracellular heme molecules are localized in oxidized Hb forms. IVH was associated with caspase-1 activation and formation of mature IL-1β in plasma and in the liver of C57BL/6 mice. We showed that ferrylHb (FHb) induces active IL-1β production in LPS-primed macrophages in vitro and triggered intraperitoneal recruitment of neutrophils and monocytes, caspase-1 activation and active IL-1β formation in the liver of C57BL/6 mice. NLRP3 deficiency provided a survival advantage upon IVH, without influencing the extent of RBC lysis or the accumulation of oxidized Hb forms. However, both hemolysis-induced and FHb-induced pro-inflammatory responses were largely attenuated in Nlrp3-/- mice. Taken together, FHb is a potent trigger of NLRP3 activation and production of IL-1β in vitro and in vivo, suggesting that FHb may contribute to hemolysis-induced inflammation. Identification of RBC-derived DAMPs might allow us to develop new therapeutic approaches for hemolytic diseases.
Collapse
Affiliation(s)
- Benard Bogonko Nyakundi
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Erdei
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, The National Center for Scientific Research, Orleans, France; Institute of Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - György Paragh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mario D Cordero
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Granada, Spain
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2018; 234:2067-2082. [DOI: 10.1002/jcp.27181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Taru Aggarwal
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | - Ridhima Wadhwa
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | | | - Kanishka Sharma
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Varsha Rani
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Pawan K. Maurya
- Amity Institute of Biotechnology, Amity UniversityNoida India
- Amity Education GroupOakdale, Long Island (Suffolk) New York
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of PsychiatryFederal University of São PauloSão Paulo Brazil
| |
Collapse
|
30
|
Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers. Biosci Rep 2018; 38:BSR20180370. [PMID: 29802155 PMCID: PMC6028758 DOI: 10.1042/bsr20180370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing, in part due to the intrinsic oxidative toxicity of Hb. The most common HBOC starting material is adult human or bovine Hb. However, it has been suggested that fetal Hb may offer advantages due to decreased oxidative reactivity. Large-scale manufacturing of HBOC will likely and ultimately require recombinant sources of human proteins. We, therefore, directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) Hb. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity, there are advantages and disadvantages to the use of rHbA or rHbF as the basis for an effective HBOC.
Collapse
|
31
|
Tabib A, Hindi I, Karbian N, Zelig O, Falach B, Mevorach D. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59. Thromb Res 2018; 168:67-77. [PMID: 29929138 DOI: 10.1016/j.thromres.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. METHODS Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. FINDINGS 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. INTERPRETATION Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Issam Hindi
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Zelig
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batla Falach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
32
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
33
|
Wang Q, Zhang R, You G, Hu J, Li P, Wang Y, Zhang J, Wu Y, Zhao L, Zhou H. Influence of polydopamine-mediated surface modification on oxygen-release capacity of haemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:484-492. [DOI: 10.1080/21691401.2018.1459636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quan Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ruirui Zhang
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jilin Hu
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Penglong Li
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yan Wu
- National Centre for Nanoscience and Technology, Beijing, People’s Republic of China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Qi D, Li Q, Chen C, Wang X. Ferulic acid modification enhances the anti-oxidation activity of natural Hb in vitro. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [DOI: 10.1080/21691401.2018.1448987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Donglai Qi
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, P. R. China
| | - Qian Li
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, P. R. China
| | - Chen Chen
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, P. R. China
| | - Xiang Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, P. R. China
| |
Collapse
|
35
|
Zhang Z, Xiao Z, Deng B, Liu X, Liu W, Nie H, Li X, Chen Z, Yang D, Duan R. Therapeutic Efficacy of Methazolamide Against Intermittent Hypoxia-Induced Excessive Erythrocytosis in Rats. High Alt Med Biol 2018; 19:69-80. [DOI: 10.1089/ham.2017.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Zhiqing Zhang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhonghai Xiao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Bingnan Deng
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Wei Liu
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Hongjing Nie
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Xi Li
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Danfeng Yang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Ruifeng Duan
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| |
Collapse
|
36
|
Indices of insulin resistance and glucotoxicity are not associated with bipolar disorder or major depressive disorder, but are differently associated with inflammatory, oxidative and nitrosative biomarkers. J Affect Disord 2017; 222:185-194. [PMID: 28710952 DOI: 10.1016/j.jad.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Insulin resistance (IR) is a key factor in diabetes mellitus, metabolic syndrome (MetS) and obesity and may occur in mood disorders and tobacco use disorder (TUD), where disturbances of immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways are important shared pathophysiological pathways. METHODS This study aimed to a) examine IR and β-cell function as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity and β cell function (HOMA-B) and glucotoxicity (conceptualized as increased glucose levels versus lowered HOMA-B values) in 74 participants with major depressive disorder (MDD) and bipolar disorder, with and or without MetS and TUD, versus 46 healthy controls, and b) whether IR is associated with IO&NS biomarkers, including nitric oxide metabolites (NOx), lipid hydroperoxides (LOOH), plasma advanced oxidation protein products (AOPP), C-reactive protein (CRP), haptoglobin (Hp) and uric acid. RESULTS Mood disorders are not associated with changes in IR or glucotoxicity, although the number of mood episodes may increase IR. 47.8% of the variance in HOMA-IR is explained by AOPP and body mass index (BMI, both positively) and NOx, Hp and TUD (all inversely). 43.2% of the variance in HOMA-B is explained by NOx, Hp and age (all inversely associated) and higher BMI and sex. The glucotoxic index is strongly associated with NOx, Hp and BMI (positively), male gender and lower education. LIMITATIONS This is a cross-sectional study and therefore we cannot draw firm conclusions on causal associations. CONCLUSIONS Activated IO&NS pathways (especially increased Hp and NOx) increase glucotoxicity and exert very complex effects modulating IR. Mood disorders are not associated with increased IR.
Collapse
|
37
|
Tabib A, Karbian N, Mevorach D. Demyelination, strokes, and eculizumab: Lessons from the congenital CD59 gene mutations. Mol Immunol 2017. [PMID: 28622911 DOI: 10.1016/j.molimm.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurological symptoms of patients with p.Cys89Tyr mutation in the CD59 gene include recurrent peripheral neuropathy resembling Guillain-Barré syndrome, characterized by sensory-motor demyelinating neuropathy with secondary axonal damage and moderate enhancement of the nerve roots on spine MRI, together with recurrent strokes and retinal involvement. Three additional mutations in CD59, leading to loss of function, have been described, and overall, 12/12 (100%) of patients with any mutation presented with neurological symptoms; 11/12 (92%) patients presented with recurrent peripheral neuropathy, 6/12 (50%) with recurrent strokes, and 1/12 (8%) with retinal involvement. We review the possible thrombophilic profile associated with the mutations. In these patients, excessive intravascular hemolysis saturates scavenger mechanisms resulting in free hemoglobin in plasma that irreversibly reacts with nitric oxide to form nitrate and methemoglobin, leading to arterial thrombosis. CD59 loss of function is also one of the major thrombophilic mechanisms in patients with paroxysmal nocturnal hemoglobinuria. We then describe the relationship with demyelination. The lack of CD59 allows uncontrolled complement amplification following low-level spontaneous-, viral-, or post viral-induced complement activation, resulting in severe demyelination in the peripheral nervous system. It is interesting, and certainly encouraging, that after 3 years, following 4 patients with Cys89Tyr mutations who are treated with eculizumab, no strokes occurred and non-permanent neurological insults underwent resolution without any new neurological exacerbations.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
38
|
Wang Q, Zhang R, Lu M, You G, Wang Y, Chen G, Zhao C, Wang Z, Song X, Wu Y, Zhao L, Zhou H. Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties. Biomacromolecules 2017; 18:1333-1341. [PMID: 28323418 DOI: 10.1021/acs.biomac.7b00077] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative side reaction is one of the major factors hindering the development of hemoglobin-based oxygen carriers (HBOCs). To avoid the oxidative toxicity, we designed and synthesized polydopamine-coated hemoglobin (Hb-PDA) nanoparticles via simple one-step assemblage without any toxic reagent. Hb-PDA nanoparticles showed oxidative protection of Hb by inhibiting the generation of methemoglobin (MetHb) and ferryl (Fe IV) Hb, as well as excellent antioxidant properties by scavenging free radicals and reactive oxygen species (ROS). Interestingly, the scavenging rate of Hb-PDA nanoparticles for ABTS+ radical is at most 89%, while for DPPH radical it reaches 49%. In addition, Hb-PDA efficiently reduced the intracellular H2O2-induced ROS generation. Moreover, Hb-PDA nanoparticles exhibited high oxygen affinity, low effect on blood constituents, and low cytotoxicity. The results indicate that polydopamine-coated hemoglobin might be a promising approach for constructing novel oxygen carriers with the capacity to reduce oxidative side reaction.
Collapse
Affiliation(s)
- Quan Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Ruirui Zhang
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China.,Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences , 100190 Beijing, People's Republic of China
| | - Mingzi Lu
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Guoxing You
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Ying Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Gan Chen
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Caiyan Zhao
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China
| | - Zhen Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Xiang Song
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Yan Wu
- National Center for Nanoscience and Technology , 100190 Beijing, People's Republic of China
| | - Lian Zhao
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| | - Hong Zhou
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, 100039 Beijing, People's Republic of China
| |
Collapse
|
39
|
Hunt R, Yalamanoglu A, Tumlin J, Schiller T, Baek JH, Wu A, Fogo AB, Yang H, Wong E, Miller P, Buehler PW, Kimchi-Sarfaty C. A mechanistic investigation of thrombotic microangiopathy associated with IV abuse of Opana ER. Blood 2017; 129:896-905. [PMID: 27864296 PMCID: PMC5314814 DOI: 10.1182/blood-2016-08-736579] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
Since 2012, a number of case reports have described the occurrence of thrombotic microangiopathy (TMA) following IV abuse of extended-release oxymorphone hydrochloride (Opana ER), an oral opioid for long-term treatment of chronic pain. Here, we present unique clinical features of 3 patients and investigate IV exposure to the tablet's inert ingredients as a possible causal mechanism. Guinea pigs were used as an animal model to understand the hematopathologic and nephrotoxic potential of the inert ingredient mixture (termed here as PEO+) which primarily contains high-molecular-weight polyethylene oxide (HMW PEO). Microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury were found in a group of 3 patients following recent injection of adulterated extended-release oxymorphone tablets. Varying degrees of cardiac involvement and retinal ischemia occurred, with TMA evident on kidney biopsy. A TMA-like state also developed in guinea pigs IV administered PEO+. Acute tubular and glomerular renal injury was accompanied by nonheme iron deposition and hypoxia-inducible factor-1α upregulation in the renal cortex. Similar outcomes were observed following dosing with HMW PEO alone. IV exposure to the inert ingredients in reformulated extended-release oxymorphone can elicit TMA. Although prescription opioid abuse shows geographic variation, all physicians should be highly inquisitive of IV drug abuse when presented with cases of TMA.
Collapse
Affiliation(s)
- Ryan Hunt
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies and
| | - Ayla Yalamanoglu
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - James Tumlin
- Department of Internal Medicine, University of Tennessee College of Medicine at Chattanooga, Chattanooga, TN
| | - Tal Schiller
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies and
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Andrew Wu
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies and
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Edward Wong
- Department of Pediatrics and
- Department of Pathology, George Washington School of Medicine and Health Sciences, Washington, DC
- Department of Coagulation, Quest Diagnostics/Nichols Institute, Chantilly, VA; and
| | - Peter Miller
- Section on Hematology and Oncology, Department of Internal Medicine
- Section on Pulmonary, Critical Care, Allergy and Immunology, and
- Section on Critical Care Medicine, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Paul W Buehler
- Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies and
| |
Collapse
|
40
|
Gillrie MR, Ho M. Dynamic interactions of Plasmodium spp. with vascular endothelium. Tissue Barriers 2017; 5:e1268667. [PMID: 28452684 PMCID: PMC5362994 DOI: 10.1080/21688370.2016.1268667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Plasmodial species are protozoan parasites that infect erythrocytes. As such, they are in close contact with microvascular endothelium for most of the life cycle in the mammalian host. The host-parasite interactions of this stage of the infection are responsible for the clinical manifestations of the disease that range from a mild febrile illness to severe and frequently fatal syndromes such as cerebral malaria and multi-organ failure. Plasmodium falciparum, the causative agent of the most severe form of malaria, is particularly predisposed to modulating endothelial function through either direct adhesion to endothelial receptor molecules, or by releasing potent host and parasite products that can stimulate endothelial activation and/or disrupt barrier function. In this review, we provide a critical analysis of the current clinical and laboratory evidence for endothelial dysfunction during severe P. falciparum malaria. Future investigations using state-of-the-art technologies such as mass cytometry and organs-on-chips to further delineate parasite-endothelial cell interactions are also discussed.
Collapse
Affiliation(s)
- Mark R. Gillrie
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Salifu H, Wilson NO, Liu M, Dickinson-Copeland C, Yatich N, Keenan J, Turpin C, Jolly P, Gyasi R, Adjei AA, Stiles JK. Iron Supplementation Alters Heme and Heme Oxygenase 1 (HO-1) Levels In Pregnant Women in Ghana. SOJ MICROBIOLOGY & INFECTIOUS DISEASES 2016; 4. [PMID: 28124024 DOI: 10.15226/sojmid/4/2/00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Iron supplementation is recommended for pregnant women to meet their iron requirement for a healthy pregnancy. The benefits and risks of universal iron supplementation during pregnancy in malaria endemic countries are currently being debated. As part of a broader study that focused on the effect of heme/HO-1 on pregnancy outcomes in malaria in pregnancy, we determined the association between iron supplementation and free heme levels in blood of pregnant women with and without malaria in Ghana. We hypothesized that pregnant women with malaria who took iron supplements will have higher levels of Heme/HO-1 than those who did not take iron supplements. METHODS A total of 337 women were recruited for this study. Blood samples were collected for malaria diagnosis and heme/HO-1 measurement. Quantification of heme was done using a heme colorimetric assay kit and HO-1 levels were performed using Enzyme-Linked Immunosorbent Assay (ELISA) on plasma samples. RESULTS Malaria positive iron supplemented women, in their third trimester, had significantly higher median levels of heme 59.3(43.1 - 60.4) than non-malaria iron supplemented women 35.7(33.0 - 62.2), p = 0.026. Also, malaria positive iron supplemented women had significant higher median levels of HO-16.2(IQR 4.9 - 8.1) than pregnant women who did not take iron supplements 2.9 (IQR 2.1 - 3.8), p = <0.001. CONCLUSION Although iron supplementation may be highly beneficial and improve pregnancy outcomes for iron deficient or anemic mothers, it is also likely that iron supplementation for pregnant women who are not iron deficient may put this group of women at risk for adverse pregnancy outcomes. Findings from this study sheds light on the effect of iron supplementation on malaria derived heme in pregnancy, which may inform how iron supplementation is recommended for pregnant women who are not iron deficient.
Collapse
Affiliation(s)
- Hassana Salifu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | - Nana O Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| | | | - Nelly Yatich
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - John Keenan
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Cornelius Turpin
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Pauline Jolly
- University of Alabama, Birmingham Alabama, Department of Epidemiology
| | - Richard Gyasi
- University of Ghana Medical School, Department of Pathology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Andrew A Adjei
- University of Ghana Medical School, Department of Pathology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine
| |
Collapse
|
42
|
Skaria T, Burgener J, Bachli E, Schoedon G. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling. PLoS One 2016; 11:e0156002. [PMID: 27214384 PMCID: PMC4877093 DOI: 10.1371/journal.pone.0156002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Microvascular leakage due to endothelial barrier dysfunction is a prominent feature of T helper 2 (Th2) cytokine mediated allergic inflammation. Interleukin-4 (IL-4) is a potent Th2 cytokine, known to impair the barrier function of endothelial cells. However, the effectors mediating IL-4 induced cytoskeleton remodeling and consequent endothelial barrier dysfunction remain poorly defined. Here we have used whole genome transcriptome profiling and gene ontology analyses to identify the genes and processes regulated by IL-4 signaling in human coronary artery endothelial cells (HCAEC). The study revealed Wnt5A as an effector that can mediate actin cytoskeleton remodeling in IL-4 activated HCAEC through the regulation of LIM kinase (LIMK) and Cofilin (CFL). Following IL-4 treatment, LIMK and CFL were phosphorylated, thereby indicating the possibility of actin stress fiber formation. Imaging of actin showed the formation of stress fibers in IL-4 treated live HCAEC. Stress fiber formation was notably decreased in the presence of Wnt inhibitory factor 1 (WIF1). Non-invasive impedance measurements demonstrated that IL-4 increased the permeability and impaired the barrier function of HCAEC monolayers. Silencing Wnt5A significantly reduced permeability and improved the barrier function of HCAEC monolayers upon IL-4 treatment. Our study identifies Wnt5A as a novel marker of IL-4 activated vascular endothelium and demonstrates a critical role for Wnt5A in mediating IL-4 induced endothelial barrier dysfunction. Wnt5A could be a potential therapeutic target for reducing microvascular leakage and edema formation in Th2 driven inflammatory diseases.
Collapse
Affiliation(s)
- Tom Skaria
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Julia Burgener
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Esther Bachli
- Department of Medicine, Uster Hospital, Uster, Switzerland
| | - Gabriele Schoedon
- Inflammation Research Unit, Department of Medicine, Division of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Skaria T, Bachli E, Schoedon G. Wnt5A/Ryk signaling critically affects barrier function in human vascular endothelial cells. Cell Adh Migr 2016; 11:24-38. [PMID: 27159116 DOI: 10.1080/19336918.2016.1178449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Satisfactory therapeutic strategies for septic shock are still missing. Previously we found elevated levels of Wnt5A in patients with severe sepsis and septic shock. Wnt5A is released by activated macrophages but knowledge of its effects in the vascular system remains scant. Here we investigate the response of human coronary artery endothelial cells (HCAEC) to Wnt5A. We used a genome-wide differential expression approach to define novel targets regulated by Wnt5A. Gene ontology analysis of expression profiles revealed clusters of genes involved in actin cytoskeleton remodeling as the predominant targets of Wnt5A. Wnt5A targeted Rho-associated protein serine/threonine kinase (ROCK), leading to phosphorylation of LIM kinase-2 (LIMK2) and inactivation of the actin depolymerization factor cofilin-1 (CFL1). Functional experiments recording cytoskeletal rearrangements in living cells showed that Wnt5A enhanced stress fiber formation as a consequence of reduced actin depolymerization. The antagonist Wnt inhibitory factor 1 (WIF1) that specifically interferes with the WIF domain of Ryk receptors prevented actin polymerization. Wnt5A disrupted β-catenin and VE-cadherin adherens junctions forming inter-endothelial gaps. Functional experiments targeting the endothelial monolayer integrity and live recording of trans-endothelial resistance revealed enhanced permeability of Wnt5A-treated HCAEC. Ryk silencing completely prevented Wnt5A-induced endothelial hyperpermeability. Wnt5A decreased wound healing capacity of HCAEC monolayers; this was restored by the ROCK inhibitor Y-27632. Here we show that Wnt5A acts on the vascular endothelium causing enhanced permeability through Ryk interaction and downstream ROCK/LIMK2/CFL1 signaling. Wnt5A/Ryk signaling might provide novel therapeutic strategies to prevent capillary leakage in systemic inflammation and septic shock.
Collapse
Affiliation(s)
- Tom Skaria
- a Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich , Zürich , Switzerland
| | - Esther Bachli
- b Department of Medicine , Uster Hospital , Uster , Switzerland
| | - Gabriele Schoedon
- a Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich , Zürich , Switzerland
| |
Collapse
|
44
|
Inheritance of the Bantu/Benin haplotype causes less severe hemolytic and oxidative stress in sickle cell anemia patients treated with hydroxycarbamide. J Hum Genet 2016; 61:605-11. [PMID: 26961071 DOI: 10.1038/jhg.2016.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
Beta S-globin gene cluster haplotypes (β(S)-haplotypes) can modulate the response to hydroxycarbamide (HC) treatment in sickle cell anemia (SCA) patients. In Brazil, the most common haplotypes are Bantu and Benin, and both confer a poor prognosis for patients when untreated with HC. We evaluated oxidative and hemolytic biomarkers in 48 SCA patients undergoing HC treatment separated in three subgroups: Bantu/Bantu, Bantu/Benin and Benin/Benin haplotype. On the basis of reduced haptoglobin (HP) levels, patients with Bantu/Bantu haplotypes had 3.0% higher hemolysis degree when compared with those with Bantu/Benin haplotypes (P=0.01). The Benin/Benin patients had 53.6% greater lipid peroxidation index than the Bantu/Bantu patients (P=0.01) because of evaluated thiobarbituric acid reactive species levels. The Bantu/Benin subgroup had intermediate levels of hemolytic and oxidative stress markers compared with the homozygous subgroups. Through strict inclusion criteria adopted, as well as consolidated and well-described hemolytic and the oxidative parameters evaluated, we suggest a haplotype-interaction response to HC treatment mediated by a 'balance' between the genetic factors of each haplotype studied.
Collapse
|
45
|
Luna C, Alique M, Navalmoral E, Noci MV, Bohorquez-Magro L, Carracedo J, Ramírez R. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage. Clin Interv Aging 2016; 11:225-36. [PMID: 27042026 PMCID: PMC4780186 DOI: 10.2147/cia.s91453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.
Collapse
Affiliation(s)
- Carlos Luna
- Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Matilde Alique
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| | - Estefanía Navalmoral
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| | | | | | - Julia Carracedo
- Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Rafael Ramírez
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
46
|
Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis 2016; 7:e2064. [PMID: 26794659 PMCID: PMC4816175 DOI: 10.1038/cddis.2015.392] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
Intravascular hemolysis can result in hemoglobinuria with acute kidney injury. In this study we systematically explored two in vivo animal models and a related cell culture system to identify hemoglobinuria-triggered damage pathways. In models of stored blood transfusion and hemoglobin (Hb) exposure in guinea pigs and beagle dogs we found that hemoglobinuria led to intrarenal conversion of ferrous Hb(Fe2+) to ferric Hb(Fe3+), accumulation of free heme and Hb-cross-linking products, enhanced 4-hydroxynonenal reactivity in renal tissue, and acute tubule injury. These changes were associated in guinea pigs with activation of a renal cortex gene expression signature indicative of oxidative stress and activation of the unfolded protein response (UPR). Tubule cells of hemolytic animals demonstrated enhanced protein expression of heme oxygenase and heat shock protein and enhanced expression of acute kidney injury-related neutrophil gelatinase-associated lipocalin. These adverse changes were completely prevented by haptoglobin treatment. The in vivo findings were extrapolated to a MS-based proteome analysis of SILAC-labeled renal epithelial cells that were exposed to free heme within a concentration range estimate of renal tubule heme exposure. These experiments confirmed that free heme is a likely trigger of tubule barrier deregulation and oxidative cell damage and reinforced the hypothesis that uncontrolled free heme could trigger the UPR as an important pathway of renal injury during hemoglobinuria.
Collapse
|
47
|
Deuel JW, Vallelian F, Schaer CA, Puglia M, Buehler PW, Schaer DJ. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic Biol Med 2015; 89:931-43. [PMID: 26475040 DOI: 10.1016/j.freeradbiomed.2015.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/31/2015] [Accepted: 09/20/2015] [Indexed: 11/19/2022]
Abstract
Free hemoglobin (Hb) triggered vascular damage occurs in many hemolytic diseases, such as sickle cell disease, with an unmet need for specific therapeutic interventions. Based on clinical observations the Hb and heme scavenger proteins haptoglobin (Hp) and hemopexin (Hx) have been characterized as a sequential defense system with Hp as the primary protector and Hx as a backup when all Hp is depleted during more severe intravascular hemolysis. In this study we present a mechanistic rationale for this paradigm based on a combined biochemical and cell biological approach directed at understanding the unique roles of Hp and Hx in Hb detoxification. Using a novel in vitro model of Hb triggered endothelial damage, which recapitulates the well-characterized pathophysiologic sequence of oxyHb(Fe(2+)) transformation to ferric Hb(Fe(3+)), free heme transfer from ferric Hb(Fe(3+)) to lipoprotein and subsequent oxidative reactions in the lipophilic phase. The accumulation of toxic lipid peroxidation products liberated during oxidation reactions ultimately lead to endothelial damage characterized by a specific gene expression pattern with reduced cellular ATP and monolayer disintegration. Quantitative analysis of key chemical and biological parameters allowed us to precisely define the mechanisms and concentrations required for Hp and Hx to prevent this toxicity. In the case of Hp we defined an exponential relationship between Hp availability relative to oxyHb(Fe(2+)) and related protective activity. This exponential relationship demonstrates that large Hp quantities are required to prevent Hb toxicity. In contrast, the linear relationship between Hx concentration and protection defines a highly efficient backup scavenger system during conditions of large excess of free oxyHb(Fe(2+)) that occurs when all Hp is consumed. The diverse protective function of Hp and Hx in this model can be explained by the different target specificities of the two proteins.
Collapse
Affiliation(s)
- Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University Hospital of Zurich, Switzerland
| | - Christian A Schaer
- Division of Internal Medicine, University Hospital of Zurich, Switzerland
| | - Michele Puglia
- Division of Internal Medicine, University Hospital of Zurich, Switzerland; Functional Genomics Center, University of Zurich, Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich, Switzerland.
| |
Collapse
|
48
|
Vallelian F, Garcia-Rubio I, Puglia M, Kahraman A, Deuel JW, Engelsberger WR, Mason RP, Buehler PW, Schaer DJ. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex. Free Radic Biol Med 2015; 85:259-68. [PMID: 25933590 DOI: 10.1016/j.freeradbiomed.2015.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein.
Collapse
Affiliation(s)
| | - Ines Garcia-Rubio
- Laboratory of Physical Chemistry, ETH Zürich, Switzerland; Centro Universitario de la Defensa, carretera de Huesca, Zaragoza, Spain
| | - Michele Puglia
- Division of Internal Medicine, University Hospital, Zurich, Switzerland; Functional Genomics Center, University of Zurich, Switzerland
| | - Abdullah Kahraman
- Institute of Molecular Life Sciences, University of Zurich, Switzerland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital, Zurich, Switzerland
| | | | - Ronald P Mason
- Laboratory of Toxicology & Pharmacology, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Paul W Buehler
- Center of Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Switzerland.
| |
Collapse
|
49
|
Seim I, Ma S, Zhou X, Gerashchenko MV, Lee SG, Suydam R, George JC, Bickham JW, Gladyshev VN. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging (Albany NY) 2015; 6:879-99. [PMID: 25411232 PMCID: PMC4247388 DOI: 10.18632/aging.100699] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases.
Collapse
Affiliation(s)
- Inge Seim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, AK 99723, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Barrow, AK 99723, USA
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Liu XF, Yu JQ, Dalan R, Liu AQ, Luo KQ. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis. Integr Biol (Camb) 2014; 6:511-22. [PMID: 24643402 DOI: 10.1039/c3ib40265g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients compared to healthy volunteers. This hemodynamic lab-on-a-chip system can serve as a high throughput platform to assess the risk of vascular complications of DM patients and to determine the effects of therapeutics or other interventions on EC apoptosis.
Collapse
Affiliation(s)
- X F Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457.
| | | | | | | | | |
Collapse
|