1
|
Biggi AFB, Silvestre RN, Tirapelle MC, de Azevedo JTC, García HDM, Henrique Dos Santos M, de Lima SCG, de Souza LEB, Covas DT, Malmegrim KCR, Figueiredo ML, Picanço-Castro V. IL-27-engineered CAR.19-NK-92 cells exhibit enhanced therapeutic efficacy. Cytotherapy 2024; 26:1320-1330. [PMID: 38970613 DOI: 10.1016/j.jcyt.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 07/08/2024]
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Alison Felipe Bordini Biggi
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mariane Cariati Tirapelle
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Julia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Matheus Henrique Dos Santos
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sarah Caroline Gomes de Lima
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Dimas Tadeu Covas
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Virginia Picanço-Castro
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
3
|
He Y, Yang D, Lin X, Zhang J, Cheng R, Cao L, Yang L, Zhang M, Shi X, Jin X, Sun H, Sun H, Zang J, Li Y, Ma J, Nie H. Neoadjuvant immunochemotherapy improves clinical outcomes of patients with esophageal cancer by mediating anti-tumor immunity of CD8+ T (Tc1) and CD16+ NK cells. Front Immunol 2024; 15:1412693. [PMID: 39076970 PMCID: PMC11284045 DOI: 10.3389/fimmu.2024.1412693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Background Esophageal cancer (ESCA) is one of the most common tumors in the world, and treatment using neoadjuvant therapy (NT) based on radiotherapy and/or chemotherapy has still unsatisfactory results. Neoadjuvant immunochemotherapy (NICT) has also become an effective treatment strategy nowadays. However, its impact on the tumor microenvironment (TME) and regulatory mechanisms on T cells and NK cells needs to be further elucidated. Methods A total of 279 cases of ESCA who underwent surgery alone [non-neoadjuvant therapy (NONE)], neoadjuvant chemotherapy (NCT), and NICT were collected, and their therapeutic effect and survival period were compared. Further, RNA sequencing combined with biological information was used to analyze the expression of immune-related genes. Immunohistochemistry, immunofluorescence, and quantitative real-time PCR (qRT-PCR) were used to verify the activation and infiltration status of CD8+ T and CD16+ NK cells, as well as the function and regulatory pathway of killing tumor cells. Results Patients with ESCA in the NICT group showed better clinical response, median survival, and 2-year survival rates (p < 0.05) compared with the NCT group. Our RNA sequencing data revealed that NICT could promote the expression of immune-related genes. The infiltration and activation of immune cells centered with CD8+ T cells were significantly enhanced. CD8+ T cells activated by PD-1 inhibitors secreted more IFN-γ and cytotoxic effector factor cells through the transcription factor of EOMES and TBX21. At the same time, activated CD8+ T cells mediated the CD16+ NK cell activation and secreted more IFN-γ to kill ESCA cells. In addition, the immunofluorescence co-staining results showed that more CD276+ tumor cells and CD16+ NK cells were existed in pre-NCT and pre-NICT group. However, CD276+ tumor cells were reduced significantly in the post-NICT group, while they still appeared in the post-NCT group, which means that CD16+ NK cells can recognize and kill CD276+ tumor cells after immune checkpoint blocker (ICB) treatment. Conclusion NICT can improve the therapeutic effect and survival period of resectable ESCA patients. NICT could promote the expression of immune-related genes and activate CD8+ T and CD16+ NK cells to secrete more IFN-γ to kill ESCA cells. It provides a theoretical basis and clinical evidence for its potential as an NT strategy in ESCA.
Collapse
Affiliation(s)
- Yunlong He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jinfeng Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Rui Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resource and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Liangyu Cao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Mengmeng Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinyue Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Handi Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haoxiu Sun
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingyu Zang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Yado S, Dassa B, Zoabi R, Reich-Zeliger S, Friedman N, Geiger B. Molecular mechanisms underlying the modulation of T-cell proliferation and cytotoxicity by immobilized CCL21 and ICAM1. J Immunother Cancer 2024; 12:e009011. [PMID: 38866588 PMCID: PMC11177851 DOI: 10.1136/jitc-2024-009011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Sofi Yado
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rawan Zoabi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Duquette D, Harmon C, Zaborowski A, Michelet X, O'Farrelly C, Winter D, Koay HF, Lynch L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:633-647. [PMID: 37449888 DOI: 10.4049/jimmunol.2300083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.
Collapse
Affiliation(s)
- Danielle Duquette
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cathal Harmon
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Xavier Michelet
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des Winter
- St. Vincent's University Hospital, Dublin, Ireland
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Austria
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Cuesta LM, Verna A, Pérez S. Modulation of granzymes mRNA expression in neural tissue of BoAHV-1 and BoAHV-5-infected cattle. Vet Immunol Immunopathol 2023; 260:110610. [PMID: 37196596 DOI: 10.1016/j.vetimm.2023.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Bovine alphaherpesviruses (BoAHV)-1 and 5 are neurotropic viruses of cattle which differ in their neuropathogenic potential. BoAHV-5 is responsible for non-suppurative meningoencephalitis in calves while BoAHV-1 can occasionally cause encephalitis. Granzymes (GZMs) are serine-proteases that participate in CD8+ T cells-mediated killing of virally-infected cells upon release through perforin (PFN)-formed pores in the cell membrane. Recently, six GZMs have been identified in cattle (A, B, K, H, M and O). However, their expression in bovine tissues has not been evaluated. In this study, the mRNA expression levels of PFN and GZMs A, B, K, H and M in the nervous system of calves experimentally-inoculated with BoAHV-1 or BoAHV-5 were analyzed at the three distinct stages of the infectious cycle of alphaherpesviruses: acute infection, latency and reactivation. This is the first report describing the expression of GZMs in bovine neural tissue and the first analysis of GZM expression in the context of bovine alphaherpesviruses neuropathogenesis. The findings revealed that PFN and GZM K are upregulated during BoAHV-1 or BoAHV-5 acute infection. In contrast to BoAHV-1, during BoAHV-5 latency a significant up-regulation of PFN, GZM K and GZM H was detected. PFN and GZM A, K and H expression was also up-regulated during BoAHV-5 reactivation. Therefore, a distinct pattern of PFN and GZM expression is evident along the infectious cycle of each alphaherpesvirus and this might contribute to the differences in BoAHV-1 and BoAHV-5 neuropathogenesis.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, Tandil 7000, Argentina
| | - Andrea Verna
- Área de Producción Animal, Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta Nacional 226 km 73,5, Balcarce, 7620 Buenos Aires, Argentina
| | - Sandra Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, Tandil 7000, Argentina.
| |
Collapse
|
8
|
ALK fusion NSCLC oncogenes promote survival and inhibit NK cell responses via SERPINB4 expression. Proc Natl Acad Sci U S A 2023; 120:e2216479120. [PMID: 36791109 PMCID: PMC9974509 DOI: 10.1073/pnas.2216479120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion variants in Non-Small Cell Lung Cancer (NSCLC) consist of numerous dimerizing fusion partners. Retrospective investigations suggest that treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs dependent on the fusion variant present in the patient tumor. Therefore, understanding the oncogenic signaling networks driven by different ALK fusion variants is important. To do this, we developed controlled inducible cell models expressing either Echinoderm Microtubule Associated Protein Like 4 (EML4)-ALK-V1, EML4-ALK-V3, Kinesin Family Member 5B (KIF5B)-ALK, or TRK-fused gene (TFG)-ALK and investigated their transcriptomic and proteomic responses to ALK activity modulation together with patient-derived ALK-positive NSCLC cell lines. This allowed identification of both common and isoform-specific responses downstream of these four ALK fusions. An inflammatory signature that included upregulation of the Serpin B4 serine protease inhibitor was observed in both ALK fusion inducible and patient-derived cells. We show that Signal transducer and activator of transcription 3 (STAT3), Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP1) are major transcriptional regulators of SERPINB4 downstream of ALK fusions. Upregulation of SERPINB4 promotes survival and inhibits natural killer cell-mediated cytotoxicity, which has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.
Collapse
|
9
|
Zhou Y, Zhu J, Gu M, Gu K. Prognosis and Characterization of Microenvironment in Cervical Cancer Influenced by Fatty Acid Metabolism-Related Genes. JOURNAL OF ONCOLOGY 2023; 2023:6851036. [PMID: 36936374 PMCID: PMC10017219 DOI: 10.1155/2023/6851036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 03/21/2023]
Abstract
Increasing evidence suggests that diverse activation patterns of metabolic signalling pathways may lead to molecular diversity of cervical cancer (CC). But rare research focuses on the alternation of fatty acid metabolism (FAM) in CC. Therefore, we constructed and compared models based on the expression of FAM-related genes from the Cancer Genome Atlas by different machine learning algorithms. The most reliable model was built with 14 significant genes by LASSO-Cox regression, and the CC cohort was divided into low-/high-risk groups by the median of risk score. Then, a feasible nomogram was established and validated by C-index, calibration curve, net benefit, and decision curve analysis. Furthermore, the hub genes among differential expression genes were identified and the post-transcriptional and translational regulation networks were characterized. Moreover, the somatic mutation and copy number variation landscapes were depicted. Importantly, the specific mutation drivers and signatures of the FAM phenotypes were excavated. As a result, the high-risk samples were featured by activated de novo fatty acid synthesis, epithelial to mesenchymal transition, angiogenesis, and chronic inflammation response, which might be caused by mutations of oncogenic driver genes in RTK/RAS, PI3K, and NOTCH signalling pathways. Besides the hyperactivity of cytidine deaminase and deficiency of mismatch repair, the mutations of POLE might be partially responsible for the mutations in the high-risk group. Next, the antigenome including the neoantigen and cancer germline antigens was estimated. The decreasing expression of a series of cancer germline antigens was identified to be related to reduction of CD8 T cell infiltration in the high-risk group. Then, the comprehensive evaluation of connotations between the tumour microenvironment and FAM phenotypes demonstrated that the increasing risk score was related to the suppressive immune microenvironment. Finally, the prediction of therapy targets revealed that the patients with high risk might be sensitive to the RAF inhibitor AZ628. Our findings provide a novel insight for personalized treatment in CC.
Collapse
Affiliation(s)
- Yanjun Zhou
- 1Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Jiahao Zhu
- 2Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
| | - Mengxuan Gu
- 3Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Ke Gu
- 1Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
10
|
Ryu J, Fu Z, Akula S, Olsson AK, Hellman L. Extended cleavage specificity of a Chinese alligator granzyme B homologue, a strict Glu-ase in contrast to the mammalian Asp-ases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104324. [PMID: 34826501 DOI: 10.1016/j.dci.2021.104324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Granzyme B (GzmB) is primarily expressed by mammalian cytotoxic T cells and serves as one of the key components in the defense against viral infection by the induction of apoptosis in virus infected cells. By direct cell to cell contact and delivery into target cells by perforin, cytotoxic T cells activate apoptosis through the action of GzmB by both caspase-dependent and -independent pathways. In search for early ancestors of GzmB we have in the current study identified and characterized a GzmB homologue from a reptile, the Chinese alligator. This enzyme is encoded from the same locus as the mammalian counterparts, the chymase locus. Phage display analysis of the cleavage specificity of the recombinant alligator enzyme (named MCP1A-like) shows that it is a relatively strict Glu-ase, with strong preference for glutamic acid in the P1 position of a substrate. The majority of mammalian GzmB:s are, in marked contrast to the alligator enzyme, relatively strict Asp-ases. The alligator enzyme also showed strong preference for Ala, Pro and Gly in the P2 position and Val in the P3 position indicating that it has a narrow specificity, similar to the mammalian counterparts. Analysis of the three amino acids forming the substrate binding pocket (S1 pocket) in three amphibian homologues to MCP1A-like, from the frogs Xenopus laevis and Xenopus tropicalis, shows that these amphibian enzymes have similar substrate binding pocket as their mammalian counterparts. This finding, together with the apparent lack of GzmB homologs in fish, indicates that the ancestor of GzmB did appear with the amphibians at the base of tetrapod evolution. This study is a first step in a larger effort to understand the evolutionary processes involved in shaping anti-viral immunity in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
11
|
Hanna GJ, Villa A, Mistry N, Jia Y, Quinn CT, Turner MM, Felt KD, Pfaff K, Haddad RI, Uppaluri R, Rodig SJ, Woo SB, Egloff AM, Hodi FS. Comprehensive Immunoprofiling of High-Risk Oral Proliferative and Localized Leukoplakia. CANCER RESEARCH COMMUNICATIONS 2021; 1:30-40. [PMID: 36860910 PMCID: PMC9973379 DOI: 10.1158/2767-9764.crc-21-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Oral leukoplakia is common and may, in some cases, progress to carcinoma. Proliferative leukoplakia is a progressive, often multifocal subtype with a high rate of malignant transformation compared with the more common localized leukoplakia. We hypothesized that the immune microenvironment and gene expression patterns would be distinct for proliferative leukoplakia compared with localized leukoplakia. We summarize key clinicopathologic features among proliferative leukoplakia and localized leukoplakia and compare cancer-free survival (CFS) between subgroups. We analyze immunologic gene expression profiling in proliferative leukoplakia and localized leukoplakia tissue samples (NanoString PanCancer Immune Oncology Profiling). We integrate immune cell activation and spatial distribution patterns in tissue samples using multiplexed immunofluorescence and digital image capture to further define proliferative leukoplakia and localized leukoplakia. Among N = 58 patients (proliferative leukoplakia, n = 29; localized leukoplakia, n = 29), only the clinical diagnosis of proliferative leukoplakia was associated with significantly decreased CFS (HR, 11.25; P < 0.01; 5-year CFS 46.8% and 83.6% among patients with proliferative leukoplakia and localized leukoplakia, respectively). CD8+ T cells and T regulatory (Treg) were more abundant among proliferative leukoplakia samples (P < 0.01) regardless of degree of epithelial dysplasia, and often colocalized to the dysplasia-stromal interface. Gene set analysis identified granzyme M as the most differentially expressed gene favoring the proliferative leukoplakia subgroup (log2 fold change, 1.93; P adj < 0.001). Programmed death ligand 1 (PD-L1) was comparatively overexpressed among proliferative leukoplakia samples, with higher (>5) PD-L1 scores predicting worse CFS (P adj < 0.01). Proliferative leukoplakia predicts a high rate of malignant transformation within 5 years of diagnosis. A prominent CD8+ T-cell and Treg signature along with relative PD-L1 overexpression compared with localized leukoplakia provides strong rationale for PD-1/PD-L1 axis blockade using preventative immunotherapy. Significance This is the first in-depth profiling effort to immunologically characterize high-risk proliferative leukoplakia as compared with the more common localized leukoplakia. We observed a notable cytotoxic T-cell and Treg signature with relative overexpression of PD-L1 in high-risk proliferative leukoplakia providing a strong preclinical rationale for investigating PD-1/PD-L1 axis blockade in this disease as preventative immunotherapy.
Collapse
Affiliation(s)
- Glenn J. Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: Glenn J. Hanna, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Dana Building, Room 2-140, Boston, MA 02215. Phone: 617-632-3090; Fax: 617-632-4448; E-mail:
| | - Alessandro Villa
- Oral Medicine Clinic, University of California San Francisco School of Dentistry, San Francisco, California
| | - Nikhil Mistry
- Division of Oral Medicine and Dentistry, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yonghui Jia
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Charles T. Quinn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Madison M. Turner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen D. Felt
- ImmunoProfile, Brigham & Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen Pfaff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert I. Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Brigham & Women's Hospital, Boston, Massachusetts
| | - Scott J. Rodig
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts.,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sook-Bin Woo
- Division of Oral Medicine and Dentistry, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Ann Marie Egloff
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
12
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
13
|
Dekker FA, Rüdiger SGD. The Mitochondrial Hsp90 TRAP1 and Alzheimer's Disease. Front Mol Biosci 2021; 8:697913. [PMID: 34222342 PMCID: PMC8249562 DOI: 10.3389/fmolb.2021.697913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common form of dementia, characterised by intra- and extracellular protein aggregation. In AD, the cellular protein quality control (PQC) system is derailed and fails to prevent the formation of these aggregates. Especially the mitochondrial paralogue of the conserved Hsp90 chaperone class, tumour necrosis factor receptor-associated protein 1 (TRAP1), is strongly downregulated in AD, more than other major PQC factors. Here, we review molecular mechanism and cellular function of TRAP1 and subsequently discuss possible links to AD. TRAP1 is an interesting paradigm for the Hsp90 family, as it chaperones proteins with vital cellular function, despite not being regulated by any of the co-chaperones that drive its cytosolic paralogues. TRAP1 encloses late folding intermediates in a non-active state. Thereby, it is involved in the assembly of the electron transport chain, and it favours the switch from oxidative phosphorylation to glycolysis. Another key function is that it ensures mitochondrial integrity by regulating the mitochondrial pore opening through Cyclophilin D. While it is still unclear whether TRAP1 itself is a driver or a passenger in AD, it might be a guide to identify key factors initiating neurodegeneration.
Collapse
Affiliation(s)
- Françoise A Dekker
- Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.,Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
García-Laorden MI, Hoogendijk AJ, Wiewel MA, van Vught LA, Schultz MJ, Bovenschen N, de Vos AF, van der Poll T. Intracellular expression of granzymes A, B, K and M in blood lymphocyte subsets of critically ill patients with or without sepsis. Clin Exp Immunol 2021; 205:222-231. [PMID: 33866542 PMCID: PMC8274148 DOI: 10.1111/cei.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a complex syndrome related to an infection-induced exaggerated inflammatory response, which is associated with a high mortality. Granzymes (Gzm) are proteases mainly found in cytotoxic lymphocytes that not only have a role in target cell death, but also as mediators of infection and inflammation. In this study we sought to analyse the intracellular expression of GzmA, B, M and K by flow cytometry in diverse blood lymphocyte populations from 22 sepsis patients, 12 non-infected intensive care unit (ICU) patients and 32 healthy controls. Additionally, we measured GzmA and B plasma levels. Both groups of patients presented decreased percentage of natural killer (NK) cells expressing GzmA, B and M relative to healthy controls, while sepsis patients showed an increased proportion of CD8+ T cells expressing GzmB compared to controls. Expression of GzmK remained relatively unaltered between groups. Extracellular levels of GzmB were increased in non-infected ICU patients relative to sepsis patients and healthy controls. Our results show differential alterations in intracellular expression of Gzm in sepsis patients and non-infected critically ill patients compared to healthy individuals depending on the lymphocyte population and on the Gzm.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Arie J Hoogendijk
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryse A Wiewel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Niels Bovenschen
- Department of Pathology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
16
|
Araúzo-Bravo MJ, Delic D, Gerovska D, Wunderlich F. Protective Vaccination Reshapes Hepatic Response to Blood-Stage Malaria of Genes Preferentially Expressed by NK Cells. Vaccines (Basel) 2020; 8:vaccines8040677. [PMID: 33202767 PMCID: PMC7712122 DOI: 10.3390/vaccines8040677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
The role of natural killer (NK) cells in the liver as first-line post infectionem (p.i.) effectors against blood-stage malaria and their responsiveness to protective vaccination is poorly understood. Here, we investigate the effect of vaccination on NK cell-associated genes induced in the liver by blood-stage malaria of Plasmodium chabaudi. Female Balb/c mice were vaccinated at weeks 3 and 1 before being infected with 106P. chabaudi-parasitized erythrocytes. Genes preferentially expressed by NK cells were investigated in livers of vaccination-protected and non-protected mice on days 0, 1, 4, 8, and 11 p.i. using microarrays, qRT-PCR, and chromosome landscape analysis. Blood-stage malaria induces expression of specific genes in the liver at different phases of infection, i.e., Itga1 in expanding liver-resident NK (lrNK) cells, Itga2 in immigrating conventional NK (cNK) cells; Eomes and Tbx21 encoding transcription factors; Ncr1, Tnfsf10, Prf1, Gzma, Gzmb, Gzmc, Gzmm, and Gzmk encoding cytolytic effectors; natural killer gene complex (NKC)-localized genes encoding the NK cell receptors KLRG1, KLRK1, KLRAs1, 2, 5, 7, KLRD1, KLRC1, KLRC3, as well as the three receptors KLRB1A, KLRB1C, KLRB1F and their potential ligands CLEC2D and CLEC2I. Vaccination enhances this malaria-induced expression of genes, but impairs Gzmm expression, accelerates decline of Tnfsf10 and Clec2d expression, whereas it accelerates increased expression of Clec2i, taking a very similar time course as that of genes encoding plasma membrane proteins of erythroblasts, whose malaria-induced extramedullary generation in the liver is known to be accelerated by vaccination. Collectively, vaccination reshapes the response of the liver NK cell compartment to blood-stage malaria. Particularly, the malaria-induced expansion of lrNK cells peaking on day 4 p.i. is highly significantly (p < 0.0001) reduced by enhanced immigration of peripheral cNK cells, and KLRB1F:CLEC2I interactions between NK cells and erythroid cells facilitate extramedullary erythroblastosis in the liver, thus critically contributing to vaccination-induced survival of otherwise lethal blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (M.J.A.-B.); (D.D.); Tel.: +34-943006108 (M.J.A.-B.); +49-735154143839 (D.D.)
| | - Denis Delic
- Boeringer Ingelheim Pharma, 88400 Biberach, Germany
- Correspondence: (M.J.A.-B.); (D.D.); Tel.: +34-943006108 (M.J.A.-B.); +49-735154143839 (D.D.)
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| |
Collapse
|
17
|
Dual Host-Intracellular Parasite Transcriptome of Enucleated Cells Hosting Leishmania amazonensis: Control of Half-Life of Host Cell Transcripts by the Parasite. Infect Immun 2020; 88:IAI.00261-20. [PMID: 32817329 DOI: 10.1128/iai.00261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Enucleated cells or cytoplasts (cells whose nucleus is removed in vitro) represent an unexplored biological model for intracellular infection studies due to the abrupt interruption of nuclear processing and new RNA synthesis by the host cell in response to pathogen entry. Using enucleated fibroblasts hosting the protozoan parasite Leishmania amazonensis, we demonstrate that parasite multiplication and biogenesis of large parasitophorous vacuoles in which parasites multiply are independent of the host cell nucleus. Dual RNA sequencing of both host cytoplast and intracellular parasite transcripts identified host transcripts that are more preserved or degraded upon interaction with parasites and also parasite genes that are differentially expressed when hosted by nucleated or enucleated cells. Cytoplasts are suitable host cells, which persist in culture for more than 72 h and display functional enrichment of transcripts related to mitochondrial functions and mRNA translation. Crosstalk between nucleated host de novo gene expression in response to intracellular parasitism and the parasite gene expression to counteract or benefit from these host responses induces a parasite transcriptional profile favoring parasite multiplication and aerobic respiration, and a host-parasite transcriptional landscape enriched in host cell metabolic functions related to NAD, fatty acid, and glycolytic metabolism. Conversely, interruption of host nucleus-parasite cross talk by infection of enucleated cells generates a host-parasite transcriptional landscape in which cytoplast transcripts are enriched in phagolysosome-related pathway, prosurvival, and SerpinB-mediated immunomodulation. In addition, predictive in silico analyses indicated that parasite transcript products secreted within cytoplasts interact with host transcript products conserving the host V-ATPase proton translocation function and glutamine/proline metabolism. The collective evidence indicates parasite-mediated control of host cell transcripts half-life that is beneficial to parasite intracellular multiplication and escape from host immune responses. These findings will contribute to improved drug targeting and serve as database for L. amazonensis-host cell interactions.
Collapse
|
18
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
19
|
Shan L, Li S, Meeldijk J, Blijenberg B, Hendriks A, van Boxtel KJWM, van den Berg SPH, Groves IJ, Potts M, Svrlanska A, Stamminger T, Wills MR, Bovenschen N. Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner. PLoS Pathog 2020; 16:e1008426. [PMID: 32282833 PMCID: PMC7179929 DOI: 10.1371/journal.ppat.1008426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/23/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection. Human cytomegalovirus (HCMV) is the leading viral cause of congenital defects, can trigger disease in immune-compromised patients, and plays roles in cancer development. Cytotoxic lymphocytes kill HCMV-infected cells via releasing a set of five cytotoxic serine proteases called granzymes. However, the killing capacity of cytotoxic cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we show that cytotoxic lymphocytes can also use granzymes to inhibit HCMV replication in absence of cell death. All five granzymes cleave and inactivate both viral immediate-early (IE1/2) proteins, which are essential players for initiating HCMV infection. Our data support the model that cytotoxic cells employ granzymes to dampen HCMV replication prior to accumulation of sufficient hits to kill the infected cell.
Collapse
Affiliation(s)
- Liling Shan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shuang Li
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernadet Blijenberg
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Astrid Hendriks
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Ian J. Groves
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Potts
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adriana Svrlanska
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncol 2019; 76:34-41. [PMID: 29290284 DOI: 10.1016/j.oraloncology.2017.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/12/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine the effects of oral cancer-derived exosomes (OCEXs) on natural killer (NK) cells and to explore the underlying mechanism. MATERIALS AND METHODS OCEXs were isolated from the cell culture supernatant of oral cancer (OC) cells using ultrafiltration and affinity chromatography and were identified using electron microscopy, nanoparticle tracking analysis (NTA) and immunoblotting. The effects of OCEXs on NK cells were analyzed using laser scanning confocal microscopy and several functional assays of NK cells. To explore the mechanism of their effects, antibody array, protein mass spectrometry and RNA interference were adopted. RESULTS The particles isolated from the OC cells were identified as exosomes with satisfactory morphology, concentration and purity. The OCEXs were internalized by NK cells and then promoted the biological functions of NK cells, including proliferation, release of perforin and granzyme M and cytotoxicity. Furthermore, OCEXs increased the expression of interferon regulatory factor 3 (IRF-3) and its phosphorylation, which drove the expression of the type I interferon (IFN) gene and the chemokine (C-X-C motif) ligand (CXCL) genes, thereby promoting the functions of NK cells. In addition, NF-κB-activating kinase-associated protein 1 (NAP1), an upstream activator of IRF-3, was enriched in OCEXs, and treatment with OCEXs increased the expression of NAP1 in NK cells. Importantly, NAP1-depleted OCEXs obtained from OC cells had a dramatically weakened influence on NK cells. CONCLUSION Our findings reveal a previously unrecognized function of exosomal NAP1 derived from OC cells in enhancing the cytotoxicity of NK cells via the IRF-3 pathway.
Collapse
|
21
|
Lobaina Y, Perera Y. Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy. Infect Disord Drug Targets 2019; 19:2-16. [PMID: 29589547 DOI: 10.2174/1871526518666180327124412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle. RESULTS This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models. CONCLUSION As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.
Collapse
Affiliation(s)
- Yadira Lobaina
- Therapeutic Hepatitis B Vaccine Group, Vaccine Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| | - Yasser Perera
- Molecular Oncology Group, Pharmaceuticals Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| |
Collapse
|
22
|
Mao FY, Zhao YL, Lv YP, Teng YS, Kong H, Liu YG, Wu XL, Hao CJ, Chen W, Duan MB, Han B, Ma Q, Wang TT, Peng LS, Zhang JY, Cheng P, Su CY, Fu XL, Zou QM, Guo G, Guo XL, Zhuang Y. CD45 +CD33 lowCD11b dim myeloid-derived suppressor cells suppress CD8 + T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death Dis 2018; 9:763. [PMID: 29988030 PMCID: PMC6037756 DOI: 10.1038/s41419-018-0803-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a prominent component of the pro-tumoral response. The phenotype of and mechanisms used by MDSCs is heterogeneous and requires more precise characterization in gastric cancer (GC) patients. Here, we have identified a novel subset of CD45+CD33lowCD11bdim MDSCs in the peripheral blood of GC patients compared to healthy individuals. CD45+CD33lowCD11bdim MDSCs morphologically resembled neutrophils and expressed high levels of the neutrophil marker CD66b. Circulating CD45+CD33lowCD11bdim MDSCs effectively suppressed CD8+ T cells activity through the inhibition of CD8+ T cell proliferation and interferon-γ (IFN-γ) and granzyme B (GrB) production. The proportion of CD45+CD33lowCD11bdim MDSCs also negatively correlated with the proportion of IFN-γ+CD8+ T cell in the peripheral blood of GC patients. GC patient serum-derived IL-6 and IL-8 activated and induced CD45+CD33lowCD11bdim MDSCs to express arginase I via the PI3K-AKT signaling pathway. This pathway contributed to CD8+ T cell suppression as it was partially rescued by the blockade of the IL-6/IL-8-arginase I axis. Peripheral blood CD45+CD33lowCD11bdim MDSCs, as well as IL-6, IL-8, and arginase I serum levels, positively correlated with GC progression and negatively correlated with overall patient survival. Altogether, our results highlight that a subset of neutrophilic CD45+CD33lowCD11bdim MDSCs is functionally immunosuppressive and activated via the IL-6/IL-8-arginase I axis in GC patients.
Collapse
Affiliation(s)
- Fang-Yuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yong-Sheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hui Kong
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao-Long Wu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chuan-Jie Hao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mu-Bing Duan
- La Trobe Institute of Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bin Han
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Qiang Ma
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Ting-Ting Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin-Yu Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chong-Yu Su
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Long Fu
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Gang Guo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao-Lan Guo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.
| |
Collapse
|
23
|
Bulitta B, Zuschratter W, Bernal I, Bruder D, Klawonn F, von Bergen M, Garritsen HSP, Jänsch L. Proteomic definition of human mucosal-associated invariant T cells determines their unique molecular effector phenotype. Eur J Immunol 2018; 48:1336-1349. [PMID: 29749611 DOI: 10.1002/eji.201747398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/10/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
Mucosal-associated invariant T cells (MAIT) constitute the most abundant anti-bacterial CD8+ T-cell population in humans. MR1/TCR-activated MAIT cells were reported to organize cytotoxic and innate-like responses but knowledge about their molecular effector phenotype is still fragmentary. Here, we have examined the functional inventory of human MAIT cells (CD3+ Vα7.2+ CD161+ ) in comparison with those from conventional non-MAIT CD8+ T cells (cCD8+ ) and NK cells. Quantitative mass spectrometry characterized 5500 proteins of primary MAIT cells and identified 160 and 135 proteins that discriminate them from cCD8+ T cells and NK cells donor-independently. Most notably, MAIT cells showed a unique exocytosis machinery in parallel to a proinflammatory granzyme profile with high levels of the granzymes A, K, and M. Furthermore, 24 proteins were identified with highest abundances in MAIT cells, including CD26, CD98, and L-amino-oxidase (LAAO). Among those, expression of granzyme K and CD98 were validated as MAIT-specific with respect to non-MAIT CD8+ effector subsets and LAAO was found to be recruited together with granzymes, perforin, and CD107a at the immunological synapse of activated MAIT cells. In conclusion, this study complements knowledge on the molecular effector phenotype of MAIT cells and suggest novel immune regulatory functions as part of their cytotoxic responses.
Collapse
Affiliation(s)
- Björn Bulitta
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Werner Zuschratter
- Special Lab Electron and Laserscanning Microscopy, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Isabel Bernal
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, University Hospital Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital Magdeburg, Magdeburg, Germany.,Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Henrikus Stephanus Paulus Garritsen
- Institute for Clinical Transfusion Medicine, Städtisches Klinikum Braunschweig, Braunschweig, Germany.,Fraunhofer Institute for Surface Engineering and Thin Films, Braunschweig, Germany
| | - Lothar Jänsch
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
24
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
25
|
Akinrinmade OA, Chetty S, Daramola AK, Islam MU, Thepen T, Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines 2017; 5:biomedicines5030056. [PMID: 28895912 PMCID: PMC5618314 DOI: 10.3390/biomedicines5030056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
To date, no curative therapy is available for the treatment of most chronic inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, or autoimmune disorders. Current treatments require a lifetime supply for patients to alleviate clinical symptoms and are unable to stop the course of disease. In contrast, a new series of immunotherapeutic agents targeting the Fc γ receptor I (CD64) have emerged and demonstrated significant clinical potential to actually resolving chronic inflammation driven by M1-type dysregulated macrophages. This subpopulation plays a key role in the initiation and maintenance of a series of chronic diseases. The novel recombinant M1-specific immunotherapeutics offer the prospect of highly effective treatment strategies as they have been shown to selectively eliminate the disease-causing macrophage subpopulations. In this review, we provide a detailed summary of the data generated, together with the advantages and the clinical potential of CD64-based targeted therapies for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Olusiji A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Shivan Chetty
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Adebukola K Daramola
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Mukit-Ul Islam
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| | - Theo Thepen
- Institute for Transfusion Medicine and Immunohematology and Blood Bank. University Hospital Magdeburg A.ö.R, 39120 Magdeburg, Germany.
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
26
|
Bioluminescent reporters to monitor killer cell-mediated delivery of granzymes inside target cells. Blood 2015; 126:2893-5. [PMID: 26567157 DOI: 10.1182/blood-2015-07-657841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
|
28
|
Wensink AC, Hack CE, Bovenschen N. Granzymes regulate proinflammatory cytokine responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:491-7. [PMID: 25556251 DOI: 10.4049/jimmunol.1401214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Granzymes (Grs) are serine proteases mainly produced by cytotoxic lymphocytes and are traditionally considered to cause apoptosis in tumor cells and virally infected cells. However, the cytotoxicity of several Grs is currently being debated, and additional, predominantly extracellular, functions of Grs in inflammation are emerging. Extracellular soluble Grs are elevated in the circulation of patients with autoimmune diseases and infections. Additionally, Grs are expressed by several types of immune cells other than cytotoxic lymphocytes. Recent research has revealed novel immunomodulatory functions of Grs. In this review, we provide a comprehensive overview on the role of Grs in inflammation, highlighting their role in cytokine induction and processing.
Collapse
Affiliation(s)
- Annette C Wensink
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|