1
|
Yang W, Jin M, Gu Y, Zhao X, Zhu L, He S, Wang H, Ding X, Wang B, Jiang T, Xiao Y, Zhou G, Huang J, Zhang Y. Intracellular osteopontin potentiates the immunosuppressive activity of mesenchymal stromal cells. Stem Cell Res Ther 2024; 15:366. [PMID: 39407354 PMCID: PMC11475537 DOI: 10.1186/s13287-024-03979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Mesenchymal stromal cell (MSC)-based cell therapy is a promising approach for various inflammatory disorders based on their immunosuppressive capacity. Osteopontin (OPN) regulates several cellular functions including tissue repair, bone metabolism and immune reaction. However, the biological function of OPN in regulating the immunosuppressive capacity of MSCs remains elusive. OBJECTIVES This study aims to highlight the underlying mechanism of the proinflammatory cytokines affect the therapeutic ability of MSCs through OPN. METHODS MSCs in response to the proinflammatory cytokines were collected to determine the expression profile of OPN. In vitro T-cell proliferation assays and gene editing were performed to check the role and mechanisms of OPN in regulating the immunosuppressive capacity of MSCs. Inflammatory disease mouse models were established to evaluate the effect of OPN on improving MSC-based immunotherapy. RESULTS We observed that OPN, including its two isoforms iOPN and sOPN, was downregulated in MSCs upon proinflammatory cytokine stimulation. Interestingly, iOPN, but not sOPN, greatly enhanced the immunosuppressive activity of MSCs on T-cell proliferation and thus alleviated the inflammatory pathologies of hepatitis and colitis. Mechanistically, iOPN interacted with STAT1 and mediated its deubiquitination, thereby inducing the master immunosuppressive mediator inducible nitric oxide synthase (iNOS) in MSCs. In addition, iOPN expression was directly downregulated by activated STAT1, which formed a negative feedback loop to restrain MSC immunosuppressive capacity. CONCLUSION Our findings demonstrated that iOPN expression modulation in MSCs is a novel strategy to improve MSC-based immunotherapy.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jin
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Gu
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Zhao
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lingqiao Zhu
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Shan He
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hui Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Ding
- Gusu College, Nanjing Medical University, Nanjing, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tingwang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| | - Jiefang Huang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Gusu College, Nanjing Medical University, Nanjing, China.
| | - Yanyun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changshu Hospital of Nantong University, Changshu, China.
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Liu S, Hou P, Zhang W, Zuo M, Liu Z, Wang T, Zhou Y, Chen W, Feng C, Hu B, Fang J. Species variations in muscle stem cell-mediated immunosuppression on T cells. Sci Rep 2024; 14:23410. [PMID: 39379408 PMCID: PMC11461908 DOI: 10.1038/s41598-024-73684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Muscle stem cells (MuSCs) are effective in treating inflammatory diseases driven by overactive innate immune responses, such as colitis and acute lung injury, due to their immunomodulatory properties. However, their potential in treating diseases driven by adaptive immune responses is still uncertain. When primed with inflammatory cytokines, MuSCs strongly suppressed T cell activation and proliferation in vitro in co-culture with activated splenocytes or peripheral blood mononuclear cells. Systemic administration of MuSCs from both mice and humans alleviated pathologies in mice with concanavalin A-induced acute liver injury, characterized by hyperactivated T lymphocytes. Importantly, MuSCs showed significant species-specific differences in their immunoregulatory functions. In mouse MuSCs (mMuSCs), deletion or inhibition of inducible nitric oxide synthase (iNOS) reduced their immunosuppressive activity, and absence of iNOS negated their therapeutic effects in liver injury. Conversely, in human MuSCs (hMuSCs), knockdown or inhibition of indoleamine 2,3-dioxygenase (IDO) eliminated their immunosuppressive effects, and loss of IDO function rendered hMuSCs ineffective in treating liver injury in mice. These results reveal significant species-specific differences in the mechanisms by which MuSCs mediate T cell immunosuppression. Mouse MuSCs rely on iNOS, while human MuSCs depend on IDO expression. This highlights the need to consider species-specific responses when evaluating MuSCs' therapeutic potential in immune-related disorders.
Collapse
Affiliation(s)
- Shisong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Weijia Zhang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Muqiu Zuo
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhanhong Liu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Wang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yipeng Zhou
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Bo Hu
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Jiankai Fang
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
4
|
Murayama M, Chow SK, Lee ML, Young B, Ergul YS, Shinohara I, Susuki Y, Toya M, Gao Q, Goodman SB. The interactions of macrophages, lymphocytes, and mesenchymal stem cells during bone regeneration. Bone Joint Res 2024; 13:462-473. [PMID: 39237112 PMCID: PMC11377107 DOI: 10.1302/2046-3758.139.bjr-2024-0122.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes - the main cellular components in BMAC - interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.
Collapse
Affiliation(s)
- Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Max L Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Bill Young
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yasemin S Ergul
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
6
|
Liu F, Han R, Nie S, Cao Y, Zhang X, Gao F, Wang Z, Xing L, Ouyang Z, Sui L, Mi W, Wu X, Sun L, Hu M, Liu D. Metformin rejuvenates Nap1l2-impaired immunomodulation of bone marrow mesenchymal stem cells via metabolic reprogramming. Cell Prolif 2024; 57:e13612. [PMID: 38348888 PMCID: PMC11216924 DOI: 10.1111/cpr.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Ageing and cell senescence of mesenchymal stem cells (MSCs) limited their immunomodulation properties and therapeutic application. We previously reported that nucleosome assembly protein 1-like 2 (Nap1l2) contributes to MSCs senescence and osteogenic differentiation. Here, we sought to evaluate whether Nap1l2 impairs the immunomodulatory properties of MSCs and find a way to rescue the deficient properties. We demonstrated that metformin could rescue the impaired migration properties and T cell regulation properties of OE-Nap1l2 BMSCs. Moreover, metformin could improve the impaired therapeutic efficacy of OE-Nap1l2 BMSCs in the treatment of colitis and experimental autoimmune encephalomyelitis in mice. Mechanistically, metformin was capable of upregulating the activation of AMPK, synthesis of l-arginine and expression of inducible nitric oxide synthase in OE-Nap1l2 BMSCs, leading to an increasing level of nitric oxide. This study indicated that Nap1l2 negatively regulated the immunomodulatory properties of BMSCs and that the impaired functions could be rescued by metformin pretreatment via metabolic reprogramming. This strategy might serve as a practical therapeutic option to rescue impaired MSCs functions for further application.
Collapse
Affiliation(s)
- Fan Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Shaochen Nie
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Yuxin Cao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Xinming Zhang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Feng Gao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhengyang Wang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Liangyu Xing
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhaoguang Ouyang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Lei Sui
- Department of ProsthodonticsTianjin Medical University School of StomatologyTianjinChina
| | - Wenyi Mi
- Tianjin Institute of Immunology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of EducationTianjin Medical University General Hospital, Tianjin Medical UniversityTianjinChina
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Lu Sun
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
- Periodontal and Implant Microsurgery Academy (PiMA)University of Michigan School of DentistryAnn ArborMichiganUSA
| | - Meilin Hu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| |
Collapse
|
7
|
Niu X, Xu X, Xu C, Cheuk YC, Rong R. Recent Advances of MSCs in Renal IRI: From Injury to Renal Fibrosis. Bioengineering (Basel) 2024; 11:432. [PMID: 38790298 PMCID: PMC11117619 DOI: 10.3390/bioengineering11050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once thought to play a protective role after renal IRI. However, growing evidence suggests that MSCs have a two-sided nature. In spite of their protective role, in maladaptive situations, MSCs start to differentiate towards myofibroblasts, increasing the myofibroblast pool and promoting renal fibrosis. Following renal IRI, it has been observed that Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) and Renal Resident Mesenchymal Stem Cells (RR-MSCs) play important roles. This review presents evidence supporting their involvement, discusses their potential mechanisms of action, and suggests several new targets for future research.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
8
|
Makkar D, Gakhar D, Mishra V, Rakha A. Fine Tuning Mesenchymal Stromal Cells - Code For Mitigating Kidney Diseases. Stem Cell Rev Rep 2024; 20:738-754. [PMID: 38334884 DOI: 10.1007/s12015-024-10684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Kidney Disease (KD), has a high global prevalence and accounts for one of the most prominent causes of morbidity and mortality in the twenty-first century. Despite the advances in our understanding of its pathophysiology, the only available therapy options are dialysis and kidney transplantation. Mesenchymal stem cells (MSCs) have proven to be a viable choice for KD therapy due to their antiapoptotic, immunomodulatory, antioxidative, and pro-angiogenic activities. However, the low engraftment, low survival rate, diminished paracrine ability, and delayed delivery of MSCs are the major causes of the low clinical efficacy. A number of preconditioning regimens are being tested to increase the therapeutic capabilities of MSCs. In this review, we highlight the various strategies to prime MSCs and their protective effects in kidney diseases.
Collapse
Affiliation(s)
- Diksha Makkar
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Diksha Gakhar
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Vinod Mishra
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
9
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Fang X, Cui S, Lee H, Min JW, Lim SW, Oh EJ, Yang CW, Shin YJ, Chung BH. Combined Use of Tocilizumab and Mesenchymal Stem Cells Attenuate the Development of an Anti-HLA-A2.1 Antibody in a Highly Sensitized Mouse Model. Int J Mol Sci 2024; 25:1378. [PMID: 38338657 PMCID: PMC10855827 DOI: 10.3390/ijms25031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.
Collapse
Affiliation(s)
- Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Won Min
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Bucheon-si 14647, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Eun-Jee Oh
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
11
|
Luo C, Luo F, Che L, Zhang H, Zhao L, Zhang W, Man X, Bu Q, Luan H, Zhou B, Zhou H, Xu Y. Mesenchymal stem cells protect against sepsis-associated acute kidney injury by inducing Gal-9/Tim-3 to remodel immune homeostasis. Ren Fail 2023; 45:2187229. [PMID: 36883358 PMCID: PMC10013538 DOI: 10.1080/0886022x.2023.2187229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE The present study investigated the specific mechanism by which mesenchymal stem cells (MSCs) protect against sepsis-associated acute kidney injury (SA-AKI). METHODS Male C57BL/6 mice underwent cecal ligation and puncture surgery to induce sepsis and then received either normal IgG or MSCs (1 × 106 cells, intravenously) plus Gal-9 or soluble Tim-3 3 h after surgery. RESULTS After cecal ligation and puncture surgery, the mice injected with Gal-9 or MSCs plus Gal-9 had a higher survival rate than the mice in the IgG treatment group. Treatment with MSCs plus Gal-9 decreased serum creatinine and blood urea nitrogen levels, improved tubular function recovery, reduced IL-17 and RORγt levels and induced IL-10 and FOXP3 expression. Additionally, the Th17/Treg cell balance was altered. However, when soluble Tim-3 was used to block the Gal-9/Tim-3 pathway, the septic mice developed kidney injury and exhibited increased mortality. Treatment with MSCs plus soluble Tim-3 blunted the therapeutic effect of MSCs, inhibited the induction of Tregs, and suppressed the inhibition of differentiation into Th17 cells. CONCLUSION Treatment with MSCs significantly reversed the Th1/Th2 balance. Thus, the Gal-9/Tim-3 pathway may be an important mechanism of MSC-mediated protection against SA-AKI.
Collapse
Affiliation(s)
- Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Feng Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Quandong Bu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hong Luan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- CONTACT Yan Xu Department of Nephrology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266003, Shandong, People's Republic of China
| |
Collapse
|
12
|
Ji W, Wang W, Li P, Liu Y, Zhang B, Qi F. sFgl2 gene-modified MSCs regulate the differentiation of CD4 + T cells in the treatment of autoimmune hepatitis. Stem Cell Res Ther 2023; 14:316. [PMID: 37924141 PMCID: PMC10625288 DOI: 10.1186/s13287-023-03550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a T-cell-mediated autoimmune liver disease that can lead to liver injury and has a poor long-term prognosis. Mesenchymal stromal cells (MSCs) have immunosuppressive effects and can treat AIH. CD4+ T cells express the unique inhibitory Fcγ receptor (FcγRIIB), which is the only receptor for the immunosuppressive factor soluble fibrinogen-like protein 2 (sFgl2). This study aimed to examine the therapeutic effect of sFgl2 gene-modified MSCs (sFgl2-MSCs) on AIH. METHODS MSCs were obtained from the inguinal fat of mice and cocultured with CD4+ T cells sorted from mouse spleens. FcγRIIB expression on CD4+ T cells was determined by flow cytometry. sFgl2 expression in MSCs transfected with lentiviral vectors carrying the Fgl2 gene and a green fluorescent protein-encoding sequence was determined by enzyme-linked immunosorbent assay. The percentages of Th1 cells Th17 cells and regulatory T cells (Tregs) were determined by flow cytometry And the levels of p-SHP2 and p-SMAD2/3 were detected by Western blotting after the cells were cocultured with MSCs for 72 h. After locating MSCs by in vivo imaging Con A-induced experimental AIH mice were randomly divided into 4 groups and administered different treatments. After 24 h histopathological scores liver function and cytokine levels were examined and the proportions of CD4+ T cells CD8+ T cells Tregs Th17 cells and Th1 cells in the spleen and liver were determined by flow cytometry. In addition immunohistochemical staining was used to detect the liver infiltration of T-bet-, Foxp3- and RORγ-positive cells. RESULTS FcγRIIB expression on CD4+ T cells was upregulated after coculture with MSCs. After coculture with sFgl2-MSCs, the proportion of Tregs among CD4+ T cells increased, the proportion of Th17 and Th1 cells decreased, and the levels of p-SHP2 and p-SMAD2/3 increased. In vivo, sFgl2-MSCs significantly improved liver function, decreased liver necrosis area, decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 expression, increased IL-10 expression, reduced liver infiltration of CD4+ T and CD8+ T cells, increased the proportion of Tregs and reduced the proportions of Th17 and Th1 cells in mice. CONCLUSION By promoting Tregs differentiation and inhibiting Th17 and Th1 cell differentiation, sFgl2 gene-modified MSCs have a more powerful therapeutic effect on Con A-induced experimental AIH and may represent a strategy for the clinical treatment of AIH.
Collapse
Affiliation(s)
- Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiwei Wang
- Department of General Surgery, Tianjin Medical University Baodi Clinical College, Guangchuan Road, Baodi, Tianjin, 301800, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
13
|
Bidkhori HR, Farshchian M, Hasanzadeh H, Jafarzadeh Esfehani R, Alsadat Mahmoudian R, Moradi Marjaneh M, Rafatpanah H. Unraveling The Effects of DICER1 Overexpression on Immune-Related Genes Expression in Mesenchymal Stromal/Stem Cells: Insights for Therapeutic Applications. CELL JOURNAL 2023; 25:696-705. [PMID: 37865878 PMCID: PMC10591266 DOI: 10.22074/cellj.2023.1988987.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The immunoregulatory properties of mesenchymal stromal/stem cells (MSCs) bring a promise for the treatment of inflammatory diseases. However, their ability to suppress the immune system is unstable. To enhance their effectiveness against immune responses, it may be necessary to manipulate MSCs. Although some dsRNA transcripts come from invading viruses, the majority of dsRNA has an endogenous origin and is known as endo-siRNA. DICER1 is a ribonuclease protein that can generate small RNAs to modulate gene expression at the post-transcriptional level. We aimed to evaluate the expression of several immune-related genes at mRNA and protein levels in MSCs overexpressing DICER1 exogenously. MATERIALS AND METHODS In this comparative transcriptomic experimental study, the adipose-derived MSCs (Ad-MSCs) were transfected using the pCAGGS-Flag-hsDicer vector for the DICER1 overexpression. Following the RNA extraction, mRNA expression level of DICER1 and several inflammatory cytokines were examined. We performed a relative real-time polymerase chain reaction (PCR) assay and transcriptome analysis between two groups including DICER1- transfected MSCs and control MSCs. Moreover, media from the transfected MSCs were evaluated for various interferon response factors by ELISA. RESULTS The overexpression of DICER1 is associated with a significant increase in the mRNA expression level of COX-2, DDX-58, IFIH1, MYD88, RNase L, TLR3/4, and TDO2 genes and a downregulation of the TSG-6 gene in MSCs. Moreover, the expression levels of IL-1, 6, 8, 17, 18, CCL2, INF-γ, TGF-β, and TNF-α were higher in the DICER1-transfected MSCs group. CONCLUSION It seems that the ectopic expression of DICER1 in Ad-MSCs is linked to alterations in the expression level of immune-related genes. It is suggested that the manipulation of immune-related pathways in MSCs via the Dicer1 overexpression could facilitate the development of MSCs with distinct immunoregulatory phenotypes.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
| | - Reza Jafarzadeh Esfehani
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Liu T, Guo S, Ji Y, Zhu W. Role of cancer-educated mesenchymal stromal cells on tumor progression. Biomed Pharmacother 2023; 166:115405. [PMID: 37660642 DOI: 10.1016/j.biopha.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
The malignant tumor is the main cause of human deaths worldwide. Current therapies focusing on the tumor itself have achieved unprecedented benefits. Various pro-tumorigenic factors in the tumor microenvironment (TME) could abolish the effect of cancer therapy. Mesenchymal stromal cells (MSCs) are one of the substantial components in the tumor microenvironment, contributing to tumor progression. However, MSCs are not inherently tumor-promoting. Indeed, they acquire pro-tumorigenic properties under the education of the TME. We herein review how various elements in the TME including tumor cells, immune cells, pro-inflammatory factors, hypoxia, and extracellular matrix influence the biological characteristics of MSCs through complex interactions and demonstrate the underlying mechanisms. We also highlight the importance of tumor-associated mesenchymal stromal cells (TA-MSCs) in promoting tumor progression. Our review gives a new insight into the TA-MSCs as a potential tumor therapeutic target. It is anticipated that subverting MSCs education will facilitate the outbreak of therapeutic strategies against tumors.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Fang J, Hou P, Liu S, Zuo M, Liu Z, Chen W, Han Y, Li Y, Wang T, Feng C, Li P, Shao C, Shi Y. NAD + salvage governs the immunosuppressive capacity of mesenchymal stem cells. Cell Mol Immunol 2023; 20:1171-1185. [PMID: 37580400 PMCID: PMC10541442 DOI: 10.1038/s41423-023-01073-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) possess robust immunoregulatory functions and are promising therapeutics for inflammatory disorders. This capacity is not innate but is activated or 'licensed' by inflammatory cytokines. The licensing mechanism remains unclear. Here, we examined whether inflammatory cytokines metabolically reprogrammed MSCs to confer this immunoregulatory capacity. In response to stimulation by inflammatory cytokines, MSCs exhibited a dramatic increase in the consumption of glucose, which was accompanied by an enhanced use of nicotinamide adenine dinucleotide (NAD+) and increased expression of nicotinamide phosphoribosyltransferase (NAMPT), a central enzyme in the salvage pathway for NAD+ production. When NAD+ synthesis was blocked by inhibiting or depleting NAMPT, the immunosuppressive function of MSCs induced by inflammatory cytokines was greatly attenuated. Consequently, when NAD+ metabolism in MSCs was perturbed, their therapeutic benefit was decreased in mice suffering from inflammatory bowel disease and acute liver injury. Further analysis revealed that NAMPT-driven production of NAD+ was critical for the inflammatory cytokine-induced increase in glycolysis in MSCs. Furthermore, the increase in glycolysis led to succinate accumulation in the tricarboxylic acid cycle, which led to hypoxia-inducible factor 1α (HIF-1α) stabilization and subsequently increased the transcription of key glycolytic genes, thereby persistently maintaining glycolytic flux. This study demonstrated that unlike its proinflammatory role in immune cells, NAD+ metabolism governs the anti-inflammatory function of MSCs during inflammation.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
18
|
Huai Q, Zhu C, Zhang X, Dai H, Li X, Wang H. Mesenchymal stromal/stem cells and their extracellular vesicles in liver diseases: insights on their immunomodulatory roles and clinical applications. Cell Biosci 2023; 13:162. [PMID: 37670393 PMCID: PMC10478279 DOI: 10.1186/s13578-023-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver disease is a leading cause of mortality and morbidity that is rising globally. Liver dysfunctions are classified into acute and chronic diseases. Various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Up to now, liver transplantation could be the last resort for patients with end-stage liver disease. However, liver transplantation still faces unavoidable difficulties. Mesenchymal stromal/stem cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties can be effectively used for treating liver diseases but without the limitation that are associated with liver transplantation. In this review, we summarize and discuss recent advances in the characteristics of MSCs and the potential action mechanisms of MSCs-based cell therapies for liver diseases. We also draw attention to strategies to potentiate the therapeutic properties of MSCs through pre-treatments or gene modifications. Finally, we discuss progress toward clinical application of MSCs or their extracellular vesicles in liver diseases.
Collapse
Affiliation(s)
- Qian Huai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Cheng Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Yang X, Zong C, Feng C, Zhang C, Smirnov A, Sun G, Shao C, Zhang L, Hou X, Liu W, Meng Y, Zhang L, Shao C, Wei L, Melino G, Shi Y. Hippo Pathway Activation in Aged Mesenchymal Stem Cells Contributes to the Dysregulation of Hepatic Inflammation in Aged Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300424. [PMID: 37544916 PMCID: PMC10520691 DOI: 10.1002/advs.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Aging is always accompanied by chronic diseases which probably attribute to long-term chronic inflammation in the aging body. Whereas, the mechanism of chronic inflammation in aging body is still obscure. Mesenchymal stem cells (MSCs) are capable of local chemotaxis to sites of inflammation and play a powerful role in immune regulation. Whether degeneration of MSCs in the aging body is associated with unbalanced inflammation is still not clear. In this study, immunosuppressive properties of aged MSCs are found to be repressed. The impaired immunosuppressive function of aged MSCs is associated with lower expression of the Hippo effector Yes-associated protein 1 (YAP1) and its target gene signal transducer and activator of transcription 1 (STAT1). YAP1 regulates the transcription of STAT1 through binding with its promoter. In conclusion, a novel YAP1/STAT1 axis maintaining immunosuppressive function of MSCs is revealed and impairment of this signal pathway in aged MSCs probably resulted in higher inflammation in aged mice liver.
Collapse
Affiliation(s)
- Xue Yang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Artem Smirnov
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Gangqi Sun
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Changchun Shao
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Luyao Zhang
- Department of Clinical PharmacologyThe Second Hospital of Anhui Medical UniversityHefei230601China
| | - Xiaojuan Hou
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Yan Meng
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Liying Zhang
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy CenterThird Affiliated Hospital of Naval Medical UniversityShanghai200438China
- Department of immunology and metabolismNational Center for Liver CancerShanghai201805China
| | - Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome Tor VergataRome00133Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow UniversityInstitutes for Translational MedicineState Key Laboratory of Radiation Medicine and ProtectionKey Laboratory of Stem Cells and Medical Biomaterials of Jiangsu ProvinceMedical College of Soochow UniversitySoochow UniversitySuzhou215000China
| |
Collapse
|
20
|
Rosado-Galindo H, Domenech M. Substrate topographies modulate the secretory activity of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2023; 14:208. [PMID: 37605275 PMCID: PMC10441765 DOI: 10.1186/s13287-023-03450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability. METHODS The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24-48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology tool enrichGO from the clusterprofiler. One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combined P < 0.05 for at least three independent experiments. RESULTS Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs. CONCLUSIONS This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.
Collapse
Affiliation(s)
- Heizel Rosado-Galindo
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
| |
Collapse
|
21
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
22
|
Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol 2023; 20:558-569. [PMID: 36973490 PMCID: PMC10040934 DOI: 10.1038/s41423-023-00998-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely distributed in the body and play essential roles in tissue regeneration and homeostasis. MSCs can be isolated from discarded tissues, expanded in vitro and used as therapeutics for autoimmune diseases and other chronic disorders. MSCs promote tissue regeneration and homeostasis by primarily acting on immune cells. At least six different types of MSCs have been isolated from postnatal dental tissues and have remarkable immunomodulatory properties. Dental stem cells (DSCs) have been demonstrated to have therapeutic effects on several systemic inflammatory diseases. Conversely, MSCs derived from nondental tissues such as the umbilical cord exhibit great benefits in the management of periodontitis in preclinical studies. Here, we discuss the main therapeutic uses of MSCs/DSCs, their mechanisms, extrinsic inflammatory cues and the intrinsic metabolic circuitries that govern the immunomodulatory functions of MSCs/DSCs. Increased understanding of the mechanisms underpinning the immunomodulatory functions of MSCs/DSCs is expected to aid in the development of more potent and precise MSC/DSC-based therapeutics.
Collapse
Affiliation(s)
- Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China.
| |
Collapse
|
23
|
Lopes-Pacheco M, Rocco PRM. Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Front Pharmacol 2023; 14:1067422. [PMID: 37007034 PMCID: PMC10062457 DOI: 10.3389/fphar.2023.1067422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Respiratory diseases remain a major health concern worldwide because they subject patients to considerable financial and psychosocial burdens and result in a high rate of morbidity and mortality. Although significant progress has been made in understanding the underlying pathologic mechanisms of severe respiratory diseases, most therapies are supportive, aiming to mitigate symptoms and slow down their progressive course but cannot improve lung function or reverse tissue remodeling. Mesenchymal stromal cells (MSCs) are at the forefront of the regenerative medicine field due to their unique biomedical potential in promoting immunomodulation, anti-inflammatory, anti-apoptotic and antimicrobial activities, and tissue repair in various experimental models. However, despite several years of preclinical research on MSCs, therapeutic outcomes have fallen far short in early-stage clinical trials for respiratory diseases. This limited efficacy has been associated with several factors, such as reduced MSC homing, survival, and infusion in the late course of lung disease. Accordingly, genetic engineering and preconditioning methods have emerged as functional enhancement strategies to potentiate the therapeutic actions of MSCs and thus achieve better clinical outcomes. This narrative review describes various strategies that have been investigated in the experimental setting to functionally potentiate the therapeutic properties of MSCs for respiratory diseases. These include changes in culture conditions, exposure of MSCs to inflammatory environments, pharmacological agents or other substances, and genetic manipulation for enhanced and sustained expression of genes of interest. Future directions and challenges in efficiently translating MSC research into clinical practice are discussed.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Miquéias Lopes-Pacheco, ; Patricia R. M. Rocco,
| |
Collapse
|
24
|
Mesenchymal Stem Cells in Acquired Aplastic Anemia: The Spectrum from Basic to Clinical Utility. Int J Mol Sci 2023; 24:ijms24054464. [PMID: 36901900 PMCID: PMC10003043 DOI: 10.3390/ijms24054464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Aplastic anemia (AA), a rare but potentially life-threatening disease, is a paradigm of bone marrow failure syndromes characterized by pancytopenia in the peripheral blood and hypocellularity in the bone marrow. The pathophysiology of acquired idiopathic AA is quite complex. Mesenchymal stem cells (MSCs), an important component of the bone marrow, are crucial in providing the specialized microenvironment for hematopoiesis. MSC dysfunction may result in an insufficient bone marrow and may be associated with the development of AA. In this comprehensive review, we summarized the current understanding about the involvement of MSCs in the pathogenesis of acquired idiopathic AA, along with the clinical application of MSCs for patients with the disease. The pathophysiology of AA, the major properties of MSCs, and results of MSC therapy in preclinical animal models of AA are also described. Several important issues regarding the clinical use of MSCs are discussed finally. With evolving knowledge from basic studies and clinical applications, we anticipate that more patients with the disease can benefit from the therapeutic effects of MSCs in the near future.
Collapse
|
25
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
26
|
Di-Iacovo N, Pieroni S, Piobbico D, Castelli M, Scopetti D, Ferracchiato S, Della-Fazia MA, Servillo G. Liver Regeneration and Immunity: A Tale to Tell. Int J Mol Sci 2023; 24:1176. [PMID: 36674692 PMCID: PMC9864482 DOI: 10.3390/ijms24021176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Danilo Piobbico
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Damiano Scopetti
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Simona Ferracchiato
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
27
|
Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109475. [DOI: 10.1016/j.intimp.2022.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
28
|
Zhang L, Xiang J, Zhang F, Liu L, Hu C. MSCs can be a double-edged sword in tumorigenesis. Front Oncol 2022; 12:1047907. [PMID: 36439438 PMCID: PMC9685321 DOI: 10.3389/fonc.2022.1047907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 08/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used to treat various diseases including Alzheimer's disease and cancer. In particular, the immunomodulatory function of MSCs plays a major role in cancer therapy using stem cells. However, MSCs exert promotive and inhibitory effects on cancer. The immunomodulatory effects of MSCs in the tumor microenvironment (TME) are ambiguous, which is the primary reason for the different outcomes of MSCs therapies for tumors. This review discusses the use of MSCs in cancer immunotherapy and their immunomodulatory mechanisms in cancers.
Collapse
Affiliation(s)
- Lu Zhang
- Oncology Laboratory, Chongqing Key Laboratory of Translational Research for Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Junyu Xiang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Fang Zhang
- Oncology Laboratory, Chongqing Key Laboratory of Translational Research for Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Limei Liu
- Oncology Laboratory, Chongqing Key Laboratory of Translational Research for Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Chongling Hu
- Hematological Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
29
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
30
|
Lin J, Xie Z, Zhang Z, Li M, Ye G, Yu W, Li J, Ye F, Su Z, Che Y, Xu P, Zeng C, Wang P, Wu Y, Shen H. LncRNA MRF drives the regulatory function on monocyte recruitment and polarization through HNRNPD-MCP1 axis in mesenchymal stem cells. J Biomed Sci 2022; 29:73. [PMID: 36127734 PMCID: PMC9490984 DOI: 10.1186/s12929-022-00858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) exhibit two bidirectional immunomodulatory abilities: proinflammatory and anti-inflammatory regulatory effects. Long noncoding RNAs (lncRNAs) have important functions in the immune system. Previously, we performed high-throughput sequencing comparing lncRNA expression profiles between MSCs cocultured with or without CD14+ monocytes and screened out a new lncRNA termed lncRNA MCP1 regulatory factor (MRF). However, the mechanism of MRF in MSCs is still unknown. Methods MRF expression was quantified via qRT–PCR. RNA interference and lentiviruses were used to regulate MRF expression. The immunomodulatory effects of MSCs on monocytes were evaluated via monocyte migration and macrophage polarization assays. RNA pull-down and mass spectrometry were utilized to identify downstream factors of MRF. A dual-luciferase reporter assay was applied to analyze the transcription factors regulating MRF. qRT–PCR, western blotting and ELISAs were used to assess MCP1 expression. A human monocyte adoptive transfer mouse model was applied to verify the function of MRF in vivo. Results MRF was upregulated in MSCs during coculture with CD14+ monocytes. MRF increased monocyte recruitment by upregulating the expression of monocyte chemotactic protein (MCP1). Knockdown of MRF enhanced the regulatory effect of MSCs on restraining M1 polarization and facilitating M2 polarization. Mechanistically, MRF bound to the downstream protein heterogeneous nuclear ribonucleoprotein D (HNRNPD) to upregulate MCP1 expression, and the transcription factor interferon regulatory factor 1 (IRF1) activated MRF transcription early during coculture. The human monocyte adoptive transfer model showed that MRF downregulation in MSCs inhibited monocyte chemotaxis and enhanced the effects of MSCs to inhibit M1 macrophage polarization and promote M2 polarization in vivo. Conclusion We identified the new lncRNA MRF, which exhibits proinflammatory characteristics. MRF regulates the ability of MSCs to accelerate monocyte recruitment and modulate macrophage polarization through the HNRNPD-MCP1 axis and initiates the proinflammatory regulatory process in MSCs, suggesting that MRF is a potential target to improve the clinical effect of MSC-based therapy or correct MSC-related immunomodulatory dysfunction under pathological conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00858-3.
Collapse
Affiliation(s)
- Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Feng Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| |
Collapse
|
31
|
Cheng J, Feng Y, Feng X, Wu D, Lu X, Rao Z, Li C, Lin N, Jia C, Zhang Q. Improving the immunomodulatory function of mesenchymal stem cells by defined chemical approach. Front Immunol 2022; 13:1005426. [PMID: 36203584 PMCID: PMC9530344 DOI: 10.3389/fimmu.2022.1005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stem cell (MSC) is a potential therapeutic material that has self-renewal, multilineage differentiation, and immunomodulation properties. However, the biological function of MSCs may decline due to the influence of donor differences and the in vitro expansion environment, which hinders the advancement of MSC-based clinical therapy. Here, we investigated a method for improving the immunomodulatory function of MSCs with the help of small-molecule compounds, A-83-01, CHIR99021, and Y27632 (ACY). The results showed that small-molecule induced MSCs (SM-MSCs) could enhance their immunosuppressive effects on T cells and macrophages. In vivo studies showed that, in contrast to control MSCs (Ctrl-MSCs), SM-MSCs could inhibit the inflammatory response in mouse models of delayed hypersensitivity and acute peritonitis more effectively. In addition, SM-MSCs showed the stronger ability to inhibit the infiltration of pro-inflammatory T cells and macrophages. Thus, small-molecule compounds ACY could better promote the immunomodulatory effect of MSCs, indicating it could be a potential improving method in MSC culture.
Collapse
Affiliation(s)
- Jintao Cheng
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Lu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Rao
- Tangxia Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Li
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| |
Collapse
|
32
|
Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Lung Cancer. Int J Mol Sci 2022; 23:ijms231810933. [PMID: 36142846 PMCID: PMC9504879 DOI: 10.3390/ijms231810933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the significant progress made towards comprehending the deregulated signatures in lung cancer, these vary from study to study. We reanalyzed 25 studies from the Gene Expression Omnibus (GEO) to detect and annotate co-deregulated signatures in lung cancer and in single-gene or single-drug perturbation experiments. We aimed to decipher the networks that these co-deregulated genes (co-DEGs) form along with their upstream regulators. Differential expression and upstream regulators were computed using Characteristic Direction and Systems Biology tools, including GEO2Enrichr and X2K. Co-deregulated gene expression profiles were further validated across different molecular and immune subtypes in lung adenocarcinoma (TCGA-LUAD) and lung adenocarcinoma (TCGA-LUSC) datasets, as well as using immunohistochemistry data from the Human Protein Atlas, before being subjected to subsequent GO and KEGG enrichment analysis. The functional alterations of the co-upregulated genes in lung cancer were mostly related to immune response regulating the cell surface signaling pathway, in contrast to the co-downregulated genes, which were related to S-nitrosylation. Networks of hub proteins across the co-DEGs consisted of overlapping TFs (SOX2, MYC, KAT2A) and kinases (MAPK14, CSNK2A1 and CDKs). Furthermore, using Connectivity Map we highlighted putative repurposing drugs, including valproic acid, betonicine and astemizole. Similarly, we analyzed the co-DEG signatures in single-gene and single-drug perturbation experiments in lung cancer cell lines. In summary, we identified critical co-DEGs in lung cancer providing an innovative framework for their potential use in developing personalized therapeutic strategies.
Collapse
|
33
|
Go YY, Lee CM, Chae SW, Song JJ. Osteogenic Efficacy of Human Trophoblasts-Derived Conditioned Medium on Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms231710196. [PMID: 36077594 PMCID: PMC9456271 DOI: 10.3390/ijms231710196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Trophoblasts play an important role in the regulation of the development and function of the placenta. Our recent study demonstrated the skin regeneration capacity of trophoblast-derived extracellular vesicles (EV). Here, we aimed to determine the potential of trophoblast-derived conditioned medium (TB-CM) in enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). We found that TB-CM promoted the osteogenic differentiation of MSCs in a dose-dependent manner. Furthermore, it inhibited adipogenesis of MSCs. We also found that the primary trophoblast-derived conditioned medium (PTB-CM) significantly enhanced the proliferation and osteogenic differentiation of human MSCs. Our study demonstrated the regulatory mechanisms underlying the TB-CM-induced osteogenesis in MSCs. An upregulation of genes associated with cytokines/chemokines was observed. The treatment of MSCs with TB-CM stimulated osteogenesis by activating several biological processes, such as mitogen-activated protein kinase (MAPK) and bone morphogenetic protein 2 (BMP2) signaling. This study demonstrated the proliferative and osteogenic efficacies of the trophoblast-derived secretomes, suggesting their potential for use in clinical interventions for bone regeneration and treatment.
Collapse
Affiliation(s)
- Yoon-Young Go
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Chan-Mi Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology—Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-2626-3191; Fax: +82-2-2626-0475
| |
Collapse
|
34
|
Zhou C, Bai XY. Strategies for the induction of anti-inflammatory mesenchymal stem cells and their application in the treatment of immune-related nephropathy. Front Med (Lausanne) 2022; 9:891065. [PMID: 36059816 PMCID: PMC9437354 DOI: 10.3389/fmed.2022.891065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potent immunomodulatory functions. Animal studies and clinical trials have demonstrated that MSCs can inhibit immune/inflammatory response in tissues and have good therapeutic effects on a variety of immune-related diseases. However, MSCs currently used for treatment are a mixed, undefined, and heterogeneous cell population, resulting in inconsistent clinical treatment effects. MSCs have dual pro-inflammatory/anti-inflammatory regulatory functions in different environments. In different microenvironments, the immunomodulatory function of MSCs has plasticity; therefore, MSCs can transform into pro-inflammatory MSC1 or anti-inflammatory MSC2 phenotypes. There is an urgent need to elucidate the molecular mechanism that induces the phenotypic transition of MSCs to pro-inflammatory or anti-inflammatory MSCs and to develop technical strategies that can induce the transformation of MSCs to the anti-inflammatory MSC2 phenotype to provide a theoretical basis for the future clinical use of MSCs in the treatment of immune-related nephropathy. In this paper, we summarize the relevant strategies and mechanisms for inducing the transformation of MSCs into the anti-inflammatory MSC2 phenotype and enhancing the immunosuppressive function of MSCs.
Collapse
|
35
|
Zhang C, Liu H, Tan Y, Xu Y, Li Y, Tong S, Qiu S, Chen Q, Su Z, Tian D, Zhou W, Zhong C. MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol 2022; 13:865020. [PMID: 36119086 PMCID: PMC9472524 DOI: 10.3389/fimmu.2022.865020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
MS4A6A has been recognized as being associated with aging and the onset of neurodegenerative disease. However, the mechanisms of MS4A6A in glioma biology and prognosis are ill-defined. Here, we show that MS4A6A is upregulated in glioma tissues, resulting in unfavorable clinical outcomes and poor responses to adjuvant chemotherapy. Multivariate Cox regression analysis suggested that MS4A6A expression can act as a strong and independent predictor for glioma outcomes (CGGA1: HR: 1.765, p < 0.001; CGGA2: HR: 2.626, p < 0.001; TCGA: HR: 1.415, p < 0.001; Rembrandt: HR: 1.809, p < 0.001; Gravendeel: HR: 1.613, p < 0.001). A protein–protein interaction (PPI) network revealed that MS4A6A might be coexpressed with CD68, CD163, and macrophage-specific signatures. Enrichment analysis showed the innate immune response and inflammatory response to be markedly enriched in the high MS4A6A expression group. Additionally, single-cell RNA sequencing (scRNA-seq) analysis revealed distinctive expression features for MS4A6A in macrophages in the glioma immune microenvironment (GIME). Immunofluorescence staining confirmed colocalization of CD68/MS4A6A and CD163/MS4A6A in macrophages. Correlation analysis revealed that MS4A6A expression is positively related to the tumor mutation burden (TMB) of glioma, displaying the high potential of applying MS4A6A to evaluate responsiveness to immunotherapy. Altogether, our research indicates that MS4A6A upregulation may be used as a promising and effective indicator for adjuvant therapy and prognosis assessment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Jiaxing University, The First Affiliated Hospital, Jiaxing, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Wei Zhou
- Department of Anesthesia, Huzhou Central Hospital, Affiliated Central Hospital Huzhou Normal University, Huzhou, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Daofeng Tian, ; Chunlong Zhong, ; Wei Zhou,
| |
Collapse
|
36
|
Hernandez JC, Yeh DW, Marh J, Choi HY, Kim J, Chopra S, Ding L, Thornton M, Grubbs B, Makowka L, Sher L, Machida K. Activated and nonactivated MSCs increase survival in humanized mice after acute liver injury through alcohol binging. Hepatol Commun 2022; 6:1549-1560. [PMID: 35246968 PMCID: PMC9234635 DOI: 10.1002/hep4.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
The ability of the liver to regenerate after injury makes it an ideal organ to study for potential therapeutic interventions. Mesenchymal stem cells (MSCs) possess self-renewal and differentiation properties, as well as anti-inflammatory properties that make them an ideal candidate for therapy of acute liver injury. The primary aim of this study is to evaluate the potential for reversal of hepatic injury using human umbilical cord-derived MSCs. Secondary aims include comparison of various methods of administration as well as comparison of activated versus nonactivated human umbilical cord stem cells. To induce liver injury, humanized mice were fed high-cholesterol high-fat liquid diet with alcohol binge drinking. Mice were then treated with either umbilical cord MSCs, activated umbilical cord MSCs, or a placebo and followed for survival. Blood samples were obtained at the end of the binge drinking and at the time of death to measure alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Histology of all mouse livers was reported at time of death. Activated MSCs that were injected intravenously, intraperitoneally, or both routes had superior survival compared with nonactivated MSCs and with placebo-treated mice. AST and ALT levels were elevated in all mice before treatment and improved in the mice treated with stem cells. Conclusion: Activated stem cells resulted in marked improvement in survival and in recovery of hepatic chemistries. Activated umbilical cord MSCs should be considered an important area of investigation in acute liver injury.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Da-Wei Yeh
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joel Marh
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Hye Yeon Choi
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julia Kim
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Shefali Chopra
- Department of PathologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Li Ding
- Department of Population and PublicHealth Sciences University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Matthew Thornton
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Brendan Grubbs
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | | | - Linda Sher
- PrimeGenUS Inc.Santa AnaCaliforniaUSA.,Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Southern California Research Center for ALPD and CirrhosisLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Chen X, Zhao J, Herjan T, Hong L, Liao Y, Liu C, Vasu K, Wang H, Thompson A, Fox PL, Gastman BR, Li X, Li X. IL-17-induced HIF1α drives resistance to anti-PD-L1 via fibroblast-mediated immune exclusion. J Exp Med 2022; 219:e20210693. [PMID: 35389431 PMCID: PMC8996325 DOI: 10.1084/jem.20210693] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that intratumoral inflammation has an outsized influence on antitumor immunity. Here, we report that IL-17, a proinflammatory cytokine widely associated with poor prognosis in solid tumors, drives the therapeutic failure of anti-PD-L1. By timing the deletion of IL-17 signaling specifically in cancer-associated fibroblasts (CAFs) in late-stage tumors, we show that IL-17 signaling drives immune exclusion by activating a collagen deposition program in murine models of cutaneous squamous cell carcinoma (cSCC). Ablation of IL-17 signaling in CAFs increased the infiltration of cytotoxic T cells into the tumor mass and sensitized otherwise resistant cSCC to anti-PD-L1 treatment. Mechanistically, the collagen deposition program in CAFs was driven by IL-17-induced translation of HIF1α, which was mediated by direct binding of Act1, the adaptor protein of IL-17 receptor, to a stem-loop structure in the 3' untranslated region (UTR) in Hif1α mRNA. Disruption of Act1's binding to Hif1α mRNA abolished IL-17-induced collagen deposition and enhanced anti-PD-L1-mediated tumor regression.
Collapse
Affiliation(s)
- Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Lingzi Hong
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yun Liao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH
| | - Austin Thompson
- School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Brian R. Gastman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Dermatology, Cleveland Clinic, Cleveland, OH
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH
| | - Xiao Li
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH
- Department of Computer and Data Sciences, School of Engineering, Case Western Reserve University, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
38
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
39
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
40
|
Liu Y, Zhang Z, Wang B, Dong Y, Zhao C, Zhao Y, Zhang L, Liu X, Guo J, Chen Y, Zhou J, Yang T, Wang Y, Liu H, Wang S. Inflammation-Stimulated MSC-Derived Small Extracellular Vesicle miR-27b-3p Regulates Macrophages by Targeting CSF-1 to Promote Temporomandibular Joint Condylar Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107354. [PMID: 35277920 DOI: 10.1002/smll.202107354] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/05/2022] [Indexed: 05/10/2023]
Abstract
Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have been extensively studied in recent years. sEV contents change with the secreting cell state. When MSCs are exposed to an inflammatory environment, they release more functional growth factors, exosomes, and chemokines. Herein, MSCs are stimulated to alter sEV cargos and functions to regulate the inflammatory microenvironment and promote tissue regeneration. Sequencing of sEV miRNAs shows that certain RNAs conducive to cell function are upregulated. In this study, in vitro cell function experiments show that both inflammation-stimulated adipose-derived MSC (ADSC)-derived sEV (IAE) and normal ADSC-derived sEV (AE) promote cell proliferation; IAE also significantly improves cell migration. Regarding macrophage polarization regulation, IAE significantly promotes M2 macrophage differentiation. RNA-sequencing analysis indicates that high miR-27b-3p expression levels in IAE may regulate macrophages by targeting macrophage colony-stimulating factor-1 (CSF-1). In vivo, a rabbit temporomandibular joint (TMJ) condylar osteochondral defect model shows that both AE and IAE promote TMJ regeneration, with IAE having the most significant therapeutic effect. Therefore, the authors confirm that exposing MSCs to an inflammatory environment can feasibly enhance sEV functions and that modified sEVs achieve better therapeutic effects.
Collapse
Affiliation(s)
- Yufei Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiling Zhang
- Department of Occlusion and Temporomandibular Joint Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Congrui Zhao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanhong Zhao
- Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyue Guo
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuehua Chen
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Yang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanying Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Hao Liu
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
41
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
42
|
Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021; 11:biom11121873. [PMID: 34944517 PMCID: PMC8699107 DOI: 10.3390/biom11121873] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Arachidonic acid (AA) metabolism is critical in the initiation and resolution of inflammation. Prostaglandin E2 (PGE2) and leukotriene B4/D4/E4 (LTB4/LD4/LTE4), derived from AA, are involved in the initiation of inflammation and regulation of immune response, hematopoiesis, and M1 (pro-inflammatory) macrophage facilitation. Paradoxically, PGE2 suppresses interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and triggers the production of lipoxin A4 (LXA4) from AA to initiate inflammation resolution process and augment regeneration of tissues. LXA4 suppresses PGE2 and LTs' synthesis and action and facilitates M2 macrophage generation to resolve inflammation. AA inactivates enveloped viruses including SARS-CoV-2. Macrophages, NK cells, T cells, and other immunocytes release AA and other bioactive lipids to produce their anti-microbial actions. AA, PGE2, and LXA4 have cytoprotective actions, regulate nitric oxide generation, and are critical to maintain cell shape and control cell motility and phagocytosis, and inflammation, immunity, and anti-microbial actions. Hence, it is proposed that AA plays a crucial role in the pathobiology of ischemia/reperfusion injury, sepsis, COVID-19, and other critical illnesses, implying that its (AA) administration may be of significant benefit in the prevention and amelioration of these diseases.
Collapse
|
43
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
44
|
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13:1696-1713. [PMID: 34909118 PMCID: PMC8641017 DOI: 10.4252/wjsc.v13.i11.1696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration is a tightly regulated process that ensures proper repair and functionality after injury. The delicate balance between bone formation and resorption is governed by cytokines and signaling molecules released during the inflammatory response. Interleukin (IL)-17A, produced in the early phase of inflammation, influences the fate of osteoprogenitors. Due to their inherent capacity to differentiate into osteoblasts, mesenchymal stem/stromal cells (MSCs) contribute to bone healing and regeneration. This review presents an overview of IL-17A signaling and the leading cellular and molecular mechanisms by which it regulates the osteogenic differentiation of MSCs. The main findings demonstrating IL-17A’s influence on osteoblastogenesis are described. To this end, divergent information exists about the capacity of IL-17A to regulate MSCs’ osteogenic fate, depending on the tissue context and target cell type, along with contradictory findings in the same cell types. Therefore, we summarize the data showing both the pro-osteogenic and anti-osteogenic roles of IL-17, which may help in the understanding of IL-17A function in bone repair and regeneration.
Collapse
Affiliation(s)
- Jelena Krstić
- Gottfried Schatz Research Center, Medical University of Graz, Graz 8010, Austria
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11129, Serbia
| | - Sonja S Mojsilović
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, Belgrade 11129, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Chile 8370993, Chile
| |
Collapse
|
45
|
Yu N, Rakian A, Dean A, Van Dyke TE. Specialized Proresolving Mediators Facilitate the Immunomodulation of the Periodontal Ligament Stem Cells. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.701197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent investigations into the regulation of the inflammation in the periodontitis have revealed that chronic inflammatory diseases such as periodontitis are characterized by an imbalance in the proinflammatory and proresolution mediators and can be characterized by a failure of the resolution pathways in the late stages of the acute inflammatory response. The proresolution mediators, termed as specialized proresolving mediators (SPMs), comprise the lipoxins, resolvins, protectins, and maresins that are derived from the arachidonic acid or omega-3 polyunsaturated fatty acids. In the animal studies, treatment of the periodontitis with the topical SPMs return the inflammatory lesion to the homeostasis with the regeneration of all the components of the periodontal organ lost to the disease. In this article, the study investigates the immunomodulatory role of SPMs in the periodontal ligament stem cells (PDLSCs). Primary porcine PDLSCs (pPDLSCs) were stimulated with interleukin-1β (IL-1β) and interleukin-17 (IL-17) in vitro to simulate the periodontal inflammation in the presence or absence of SPMs. This study found that IL-1β and IL-17 synergistically activated the proinflammatory genes of pPDLSCs and altered the immune phenotype of pPDLSCs including the key signaling pathways. Addition of SPMs rescued the pPDLSCs phenotype and induced further production of the additional SPMs, which was reflected by upregulation of the requisite enzymes 12- and 15-lipoxygenase by pPDLSCs. This study interrogated the immunomodulatory actions of pPDLSCs on the monocytes/macrophages, focusing on the porcine CD14/CD16/CD163 markers by using flow cytometry. This study utilized the CD14+CD16+/CD14+CD16− ratio and CD163 on the monocytes/macrophages to differentiate between a proinflammation phenotype (lower ratio) and a resolution of the inflammation phenotype (higher ratio). This study also found that the conditioned medium from pPDLSCs treated with the cytokines and Maresin1 increased the CD14+CD16+/CD14+CD16− ratio and had the highest CD163 expression. This study concludes that in an inflammatory environment, pPDLSCs become proinflammatory and exert immunomodulatory functions. Maresin 1 resolves the inflammation by acting on pPDLSCs directly and by shifting the monocytes/macrophages phenotype to the proresolution dominance.
Collapse
|
46
|
Pan L, Liu C, Liu Q, Li Y, Du C, Kang X, Dong S, Zhou Z, Chen H, Liang X, Chu J, Xu Y, Zhang Q. Human Wharton's jelly-derived mesenchymal stem cells alleviate concanavalin A-induced fulminant hepatitis by repressing NF-κB signaling and glycolysis. Stem Cell Res Ther 2021; 12:496. [PMID: 34503553 PMCID: PMC8427901 DOI: 10.1186/s13287-021-02560-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Background Fulminant hepatitis is a severe life-threatening clinical condition with rapid progressive loss of liver function. It is characterized by massive activation and infiltration of immune cells into the liver and disturbance of inflammatory cytokine production. Mesenchymal stem cells (MSCs) showed potent immunomodulatory properties. Transplantation of MSCs is suggested as a promising therapeutic approach for a host of inflammatory conditions. Methods In the current study, a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model was used to investigate the effects of transplanting human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on fulminant hepatitis. Results We showed that hWJ-MSCs effectively alleviate fulminant hepatitis in mouse models, primarily through inhibiting T cell immunity. RNA sequencing of liver tissues and human T cells co-cultured with hWJ-MSCs showed that NF-κB signaling and glycolysis are two main pathways mediating the protective role of hWJ-MSCs on both Con A-induced hepatitis in vivo and T cell activation in vitro. Conclusion In summary, our data confirmed the potent therapeutic role of MSCs-derived from Wharton's jelly of human umbilical cord on Con A-induced fulminant hepatitis, and uncovered new mechanisms that glycolysis metabolic shift mediates suppression of T cell immunity by hWJ-MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02560-x.
Collapse
Affiliation(s)
- Lijie Pan
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhuowei Zhou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huaxin Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoqi Liang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiajie Chu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
47
|
Human Fallopian Tube - Derived Mesenchymal Stem Cells Inhibit Experimental Autoimmune Encephalomyelitis by Suppressing Th1/Th17 Activation and Migration to Central Nervous System. Stem Cell Rev Rep 2021; 18:609-625. [PMID: 34453694 DOI: 10.1007/s12015-021-10226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells comprise a natural reservoir of undifferentiated cells within adult tissues. Given their self-renewal, multipotency, regenerative potential and immunomodulatory properties, MSCs have been reported as a promising cell therapy for the treatment of different diseases, including neurodegenerative and autoimmune diseases. In this study, we investigated the immunomodulatory properties of human tubal mesenchymal stem cells (htMSCs) using the EAE model. htMSCs were able to suppress dendritic cells activation downregulating antigen presentation-related molecules, such as MHCII, CD80 and CD86, while impairing IFN-γ and IL-17 and increasing IL-10 and IL-4 secretion. It further correlated with milder disease scores when compared to the control group due to fewer leukocytes infiltrating the CNS, specially Th1 and Th17 lymphocytes, associated with increased IL-10 secreting Tr1 cells. Conversely, microglia were less activated and infiltrating mononuclear cells secreted higher levels of IL-4 and IL-10 and expressed reduced chemokine receptors as CCR4, CCR6 and CCR8. qPCR of the spinal cords revealed upregulation of indoleamine-2,3-dioxygenase (IDO) and brain derived neurotrophic factor (BDNF). Taken together, here evidenced the potential of htMSCs as an alternative for the treatment of inflammatory, autoimmune or neurodegenerative diseases.
Collapse
|
48
|
Labedz-Maslowska A, Szkaradek A, Mierzwinski T, Madeja Z, Zuba-Surma E. Processing and Ex Vivo Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells for the Development of an Advanced Therapy Medicinal Product for use in Humans. Cells 2021; 10:cells10081908. [PMID: 34440677 PMCID: PMC8392403 DOI: 10.3390/cells10081908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (A.S.); (Z.M.)
| | - Agnieszka Szkaradek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (A.S.); (Z.M.)
- Cell & Tissue Culture Laboratory, Jagiellonian Center of Innovation in Krakow, 30-384 Krakow, Poland;
| | - Tomasz Mierzwinski
- Cell & Tissue Culture Laboratory, Jagiellonian Center of Innovation in Krakow, 30-384 Krakow, Poland;
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (A.S.); (Z.M.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.L.-M.); (A.S.); (Z.M.)
- Correspondence: ; Tel.: +48-12-664-6180
| |
Collapse
|
49
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
50
|
Zhang J, Huang J, Gu Y, Xue M, Qian F, Wang B, Yang W, Yu H, Wang Q, Guo X, Ding X, Wang J, Jin M, Zhang Y. Inflammation-induced inhibition of chaperone-mediated autophagy maintains the immunosuppressive function of murine mesenchymal stromal cells. Cell Mol Immunol 2021; 18:1476-1488. [PMID: 31900460 PMCID: PMC8167126 DOI: 10.1038/s41423-019-0345-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Guo
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Xinyuan Ding
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jina Wang
- Department of Urology and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|