1
|
Hartman ML. Tipping the balance of cell death: alternative splicing as a source of MCL-1S in cancer. Cell Death Dis 2024; 15:917. [PMID: 39695189 DOI: 10.1038/s41419-024-07307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Apoptosis-regulating proteins from the B-cell lymphoma-2 (BCL-2) family are of continued interest as they represent promising targets for anti-cancer therapies. Myeloid cell leukemia-1 (MCL-1), which usually refers to the long isoform (MCL-1L) is frequently overexpressed in various types of cancer. However, MCL1 pre-mRNA can also undergo alternative splicing through exon skipping to yield the short isoform, MCL-1S. Regarding its structure and function, MCL-1S corresponds to BCL-2 homology domain 3 (BH3)-only pro-apoptotic proteins in contrast to the pro-survival role of MCL-1L. As cancer cells are usually characterized by the high MCL-1L:MCL-1S ratio, several studies revealed that overexpression of MCL-1S may constitute a new therapeutic approach in cancer and presumably overcome resistance to currently available drugs. Switching the balance towards high levels of MCL-1S is feasible by using inhibitors of alternative splicing-regulating proteins and strategies directly interfering with MCL1 pre-mRNA. Additionally, several compounds were shown to increase MCL-1S levels through unelucidated mechanisms, while diversely affecting the level of MCL-1L isoform. These mechanisms require detailed clarification as the balance between the long and short variants of MCL-1 can also contribute to mitochondrial hyperpolarization. In this respect, the role of MCL-1S in the regulation of apoptosis-unrelated events of the mitochondria physiology, including mitochondria fission and fusion also remains to be determined. In this review, the structure and function of MCL-1S isoform, and MCL-1S-targeting approaches are discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
2
|
Naro C, Ruta V, Sette C. Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer. Trends Mol Med 2024:S1471-4914(24)00308-3. [PMID: 39648052 DOI: 10.1016/j.molmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by dismal prognosis. Late diagnosis, resistance to chemotherapy, and lack of efficacious targeted therapies render PDAC almost untreatable. Dysregulation of splicing, the process that excises the introns from nascent transcripts, is emerging as a hallmark of PDAC and a possible vulnerability of this devastating cancer. Splicing factors are deregulated in PDAC and contribute to all steps of tumorigenesis, from inflammation-related early events to metastasis and acquisition of chemoresistance. At the same time, splicing dysregulation offers a therapeutic opportunity to target cancer-specific vulnerabilities. We discuss mounting evidence that splicing plays a key role in PDAC and the opportunities that this essential process offers for developing new targeted therapies.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy.
| |
Collapse
|
3
|
Cho N, Kim SY, Lee SG, Park C, Choi S, Kim EM, Kim KK. Alternative splicing of PBRM1 mediates resistance to PD-1 blockade therapy in renal cancer. EMBO J 2024; 43:5421-5444. [PMID: 39375538 PMCID: PMC11574163 DOI: 10.1038/s44318-024-00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Alternative pre-mRNA splicing (AS) is a biological process that results in proteomic diversity. However, implications of AS alterations in cancer remain poorly understood. Herein, we performed a comprehensive AS analysis in cancer driver gene transcripts across fifteen cancer types and found global alterations in inclusion rates of the PBAF SWI/SNF chromatin remodeling complex subunit Polybromo 1 (PBRM1) exon 27 (E27) in most types of cancer tissues compared with those in normal tissues. Further analysis confirmed that PBRM1 E27 is excluded by the direct binding of RBFOX2 to intronic UGCAUG elements. In addition, the E27-included PBRM1 isoform upregulated PD-L1 expression via enhanced PBAF complex recruitment to the PD-L1 promoter. PBRM1 wild-type patients with clear cell renal cell carcinoma were resistant to PD-1 blockade therapy when they expressed low RBFOX2 mRNA levels. Overall, our study suggests targeting of RBFOX2-mediated AS of PBRM1 as a potential therapeutic strategy for immune checkpoint blockade.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Eun-Mi Kim
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
5
|
Wang Q, Duan Y, Zan Z, Yang K, Wang J, Jia F, Tan Y, Wang H, Li L. The Study of SRSF1 Regulates Abnormal Alternative Splicing of BCL2L11 and the Role in Refractory Acute Myeloid Leukemia. Chemotherapy 2024; 69:224-236. [PMID: 38763139 DOI: 10.1159/000539414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing (AS) induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS Using strict splicing criteria, we globally screened for AS events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-h Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSION Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.
Collapse
Affiliation(s)
- Qirong Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yu Duan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China,
| | - Zhifang Zan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Kai Yang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jinjuan Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim SH, de Agrela Pinto C, Wu Y, Boons GJ, Pabst M, de Ridder D, Joo C. Full-length single-molecule protein fingerprinting. NATURE NANOTECHNOLOGY 2024; 19:652-659. [PMID: 38351230 DOI: 10.1038/s41565-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.
Collapse
Affiliation(s)
- Mike Filius
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Carlos de Lannoy
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zeshi Li
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sung Hyun Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Luo L, Xu J, Lu Q, Xia H, Huang Y, Zhang L, Xie L, Jiwa H, Liang S, Luo X, Luo J. Echinatin inhibits tumor growth and synergizes with chemotherapeutic agents against human bladder cancer cells by activating p38 and suppressing Wnt/β-catenin pathways. Genes Dis 2024; 11:1050-1065. [PMID: 37692489 PMCID: PMC10491917 DOI: 10.1016/j.gendis.2023.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system. Due to the poor prognosis and high mortality rate of the disease, it is urgent to develop new drugs with high efficacy and low toxicity to treat BC. Echinatin (Ecn) is a bioactive natural flavonoid oflicorice that has attracted special attention for its promising anti-tumor potential. Herein, we explored the inhibitory effects of Echinatin on BC cells and probed the possible molecular mechanism. We found that Ecnin vitro inhibited the proliferation, migration, and invasion, arrested the cell cycle at the G2/M phase, and promoted apoptosis in BC cells. Besides, Ecn had no notable cytotoxicity towards human normal cells. We subsequently confirmed that Ecn restrained xenograft tumor growth and metastasis of BC cells in vivo. Mechanistically, Ecn activated the p38 signaling pathway but inactivated the Wnt/β-catenin signaling pathway, while over-expression of β-catenin and the p38 inhibitor both attenuated the inhibitory effects of Ecn on BC cells. Remarkably, Ecn combined with cisplatin (DDP) or gemcitabine (Gem) had synergistic inhibitory effects on BC cells. In summary, our results validate that Ecn inhibits the tumor growth of human BC cells via p38 and Wnt/β-catenin signaling pathways. More meaningfully, our results suggest a potential strategy to enhance DDP- or Gem-induced inhibitory effects on BC cells by combining with Ecn.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Luo
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiuping Lu
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haichao Xia
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Xie
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shiqiong Liang
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated By the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Naro C, Antonioni A, Medici V, Caggiano C, Jolly A, de la Grange P, Bielli P, Paronetto MP, Sette C. Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer. J Exp Clin Cancer Res 2024; 43:58. [PMID: 38413979 PMCID: PMC10898177 DOI: 10.1186/s13046-024-02986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Ambra Antonioni
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | | | | | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
- University of Rome Foro Italico, 00135, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy.
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy.
| |
Collapse
|
9
|
Ruta V, Naro C, Pieraccioli M, Leccese A, Archibugi L, Cesari E, Panzeri V, Allgöwer C, Arcidiacono PG, Falconi M, Carbone C, Tortora G, Borrelli F, Attili F, Spada C, Quero G, Alfieri S, Doglioni C, Kleger A, Capurso G, Sette C. An alternative splicing signature defines the basal-like phenotype and predicts worse clinical outcome in pancreatic cancer. Cell Rep Med 2024; 5:101411. [PMID: 38325381 PMCID: PMC10897606 DOI: 10.1016/j.xcrm.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/19/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. PDAC presents with molecularly distinct subtypes, with the basal-like one being associated with enhanced chemoresistance. Splicing dysregulation contributes to PDAC; however, its involvement in subtype specification remains elusive. Herein, we uncover a subtype-specific splicing signature associated with prognosis in PDAC and the splicing factor Quaking (QKI) as a determinant of the basal-like signature. Single-cell sequencing analyses highlight QKI as a marker of the basal-like phenotype. QKI represses splicing events associated with the classical subtype while promoting basal-like events associated with shorter survival. QKI favors a plastic, quasi-mesenchymal phenotype that supports migration and chemoresistance in PDAC organoids and cell lines, and its expression is elevated in high-grade primary tumors and metastatic lesions. These studies identify a splicing signature that defines PDAC subtypes and indicate that QKI promotes an undifferentiated, plastic phenotype, which renders PDAC cells chemoresistant and adaptable to environmental changes.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | - Adriana Leccese
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Chantal Allgöwer
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Pancreas and Transplantation Surgical Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | | | - Giampaolo Tortora
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Medical Oncology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Fabia Attili
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Giuseppe Quero
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Sergio Alfieri
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; Gemelli Pancreatic Advanced Research Center (CRMPG), Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Division of Pathology, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy
| | - Alexander Kleger
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy.
| |
Collapse
|
10
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
11
|
Calderon A, Han C, Karma S, Wang E. Non-genetic mechanisms of drug resistance in acute leukemias. Trends Cancer 2024; 10:38-51. [PMID: 37839973 DOI: 10.1016/j.trecan.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Acute leukemia is characterized by clonal heterogeneity that contributes to poor drug responses in patients. Despite treatment advances, the occurrence of relapse remains a major barrier to achieving cures as current therapeutic approaches are inadequate to effectively prevent or overcome resistance. Given that only a few genetic mutations are associated with relapse in acute leukemia patients, there is a growing focus on 'non-genetic' mechanisms that affect the hallmarks of cancer to allow leukemic cells to survive post therapy. In this review, we provide an overview of the therapeutic landscape in acute leukemias. Importantly, we discuss non-genetic mechanisms exploited by leukemic cells to promote their survival after treatment. Last, we present current strategies to prevent or overcome drug resistance in this disease.
Collapse
Affiliation(s)
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sadik Karma
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
12
|
Hong J, Min S, Yoon G, Lim SB. SRSF7 downregulation induces cellular senescence through generation of MDM2 variants. Aging (Albany NY) 2023; 15:14591-14606. [PMID: 38159247 PMCID: PMC10781460 DOI: 10.18632/aging.205420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alternative splicing (AS) enables a pre-mRNA to generate different functional protein variants. The change in AS has been reported as an emerging contributor to cellular senescence and aging. However, it remains to be elucidated which senescent AS variants are generated in and regulate senescence. Here, we observed commonly down-regulated SRSF7 in senescent cells, using publicly available RNA-seq datasets of several in vitro senescence models. We further confirmed SRSF7 deregulation from our previous microarray datasets of time-series replicative senescence (RS) and oxidative stress-induced senescence (OSIS) of human diploid fibroblast (HDF). We validated the time-course changes of SRSF mRNA and protein levels, developing both RS and OSIS. SRSF knockdown in HDF was enough to induce senescence, accompanied by p53 protein stabilization and MDM2 variants formation. Interestingly, expression of MDM2 variants showed similar patterns of p53 expression in both RS and OSIS. Next, we identified MDM2-C as a key functional AS variant generated specifically by SRSF7 depletion. Finally, we validated that MDM2-C overexpression induced senescence of HDF. These results indicate that SRSF7 down-regulation plays a key role in p53-mediated senescence by regulating AS of MDM2, a key negative regulator of p53, implying its critical involvement in the entry into cell senescence.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Seongki Min
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
13
|
Verdile V, Palombo R, Ferrante G, Ferri A, Amadio S, Volonté C, Paronetto MP. Dysregulation of alternative splicing underlies synaptic defects in familial amyotrophic lateral sclerosis. Prog Neurobiol 2023; 231:102529. [PMID: 37739207 DOI: 10.1016/j.pneurobio.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles. A hallmark of ALS is the frequent nuclear loss and cytoplasmic accumulation of RNA binding proteins (RBPs) in motor neurons (MN), which leads to aberrant alternative splicing regulation. However, whether altered splicing patterns are also present in familial models of ALS without mutations in RBP-encoding genes has not been investigated yet. Herein, we found that altered splicing of synaptic genes is a common trait of familial ALS MNs. Similar deregulation was also observed in hSOD1G93A MN-like cells. In silico analysis identified the potential regulators of these pre-mRNAs, including the RBP Sam68. Immunofluorescence analysis and biochemical fractionation experiments revealed that Sam68 accumulates in the cytoplasmic insoluble ribonucleoprotein fraction of MN. Remarkably, the synaptic splicing events deregulated in ALS MNs were also affected in Sam68-/- spinal cords. Recombinant expression of Sam68 protein was sufficient to rescue these splicing changes in ALS hSOD1G93A MN-like cells. Hence, our study highlights an aberrant function of Sam68, which leads to splicing changes in synaptic genes and may contribute to the MN phenotype that characterizes ALS.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy; Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ramona Palombo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Gabriele Ferrante
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Alberto Ferri
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy; National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Susanna Amadio
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Cinzia Volonté
- Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy; National Research Council (CNR), Institute for Systems Analysis and Computer Science (IASI), Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy; Division of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|
14
|
Taylor K, Piasecka A, Kajdasz A, Brzęk A, Polay Espinoza M, Bourgeois CF, Jankowski A, Borowiak M, Raczyńska KD, Sznajder ŁJ, Sobczak K. Modulatory role of RNA helicases in MBNL-dependent alternative splicing regulation. Cell Mol Life Sci 2023; 80:335. [PMID: 37882878 PMCID: PMC10602967 DOI: 10.1007/s00018-023-04927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.
Collapse
Affiliation(s)
- Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Agnieszka Piasecka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Brzęk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Micaela Polay Espinoza
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Artur Jankowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Małgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Katarzyna D Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
15
|
Rodriguez Gallo MC, Uhrig RG. Phosphorylation mediated regulation of RNA splicing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1249057. [PMID: 37780493 PMCID: PMC10539000 DOI: 10.3389/fpls.2023.1249057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
For the past two decades, the study of alternative splicing (AS) and its involvement in plant development and stress response has grown in popularity. Only recently however, has the focus shifted to the study of how AS regulation (or lack-thereof) affects downstream mRNA and protein landscapes and how these AS regulatory events impact plant development and stress tolerance. In humans, protein phosphorylation represents one of the predominant mechanisms by which AS is regulated and thus the protein kinases governing these phosphorylation events are of interest for further study. Large-scale phosphoproteomic studies in plants have consistently found that RNA splicing-related proteins are extensively phosphorylated, however, the signaling pathways involved in AS regulation have not been resolved. In this mini-review, we summarize our current knowledge of the three major splicing-related protein kinase families in plants that are suggested to mediate AS phospho-regulation and draw comparisons to their metazoan orthologs. We also summarize and contextualize the phosphorylation events identified as occurring on splicing-related protein families to illustrate the high degree to which splicing-related proteins are modified, placing a new focus on elucidating the impacts of AS at the protein and PTM-level.
Collapse
Affiliation(s)
| | - R. Glen Uhrig
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- University of Alberta, Department of Biochemistry, Edmonton, AB, Canada
| |
Collapse
|
16
|
Das S, Mallick D, Sarkar S, Billington N, Sellers JR, Jana SS. A brain specific alternatively spliced isoform of nonmuscle myosin IIA lacks its mechanoenzymatic activities. J Biol Chem 2023; 299:105143. [PMID: 37562567 PMCID: PMC10480317 DOI: 10.1016/j.jbc.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.
Collapse
Affiliation(s)
- Samprita Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Sourav Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
17
|
Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov 2023; 13:1678-1695. [PMID: 37098965 PMCID: PMC10330071 DOI: 10.1158/2159-8290.cd-22-1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A. Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
18
|
Popli P, Chadchan SB, Dias M, Deng X, Gunderson SJ, Jimenez P, Yalamanchili H, Kommagani R. SF3B1-dependent alternative splicing is critical for maintaining endometrial homeostasis and the establishment of pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541590. [PMID: 37292891 PMCID: PMC10245700 DOI: 10.1101/2023.05.20.541590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The remarkable potential of human endometrium to undergo spontaneous remodeling is shaped by controlled spatiotemporal gene expression patterns. Although hormone-driven transcription shown to govern these patterns, the post-transcriptional processing of these mRNA transcripts, including the mRNA splicing in the endometrium is not studied yet. Here, we report that the splicing factor, SF3B1 is central in driving alternative splicing (AS) events that are vital for physiological responses of the endometrium. We show that loss of SF3B1 splicing activity impairs stromal cell decidualization as well as embryo implantation. Transcriptomic analysis revealed that SF3B1 depletion decidualizing stromal cells led to differential mRNA splicing. Specifically, a significant upregulation in mutually exclusive AS events (MXEs) with SF3B1 loss resulted in the generation of aberrant transcripts. Further, we found that some of these candidate genes phenocopy SF3B1 function in decidualization. Importantly, we identify progesterone as a potential upstream regulator of SF3B1-mediated functions in endometrium possibly via maintaining its persistently high levels, in coordination with deubiquitinating enzymes. Collectively, our data suggest that SF3B1-driven alternative splicing plays a critical role in mediating the endometrial-specific transcriptional paradigms. Thus, the identification of novel mRNA variants associated with successful pregnancy establishment may help to develop new strategies to diagnose or prevent early pregnancy loss.
Collapse
|
19
|
Liu M, Zhang S, Zhou H, Hu X, Li J, Fu B, Wei M, Huang H, Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023; 13:2616-2631. [PMID: 37215575 PMCID: PMC10196821 DOI: 10.7150/thno.83920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Alternative splicing (AS) is a common and conserved process in eukaryotic gene regulation. It occurs in approximately 95% of multi-exon genes, greatly enriching the complexity and diversity of mRNAs and proteins. Recent studies have found that in addition to coding RNAs, non-coding RNAs (ncRNAs) are also inextricably linked with AS. Multiple different types of ncRNAs are generated by AS of precursor long non-coding (pre-lncRNAs) or precursor messenger RNAs (pre-mRNAs). Furthermore, ncRNAs, as a novel class of regulators, can participate in AS regulation by interacting with the cis-acting elements or trans-acting factors. Several studies have implicated abnormal expression of ncRNAs and ncRNA-related AS events in the initiation, progression, and therapy resistance in various types of cancers. Therefore, owing to their roles in mediating drug resistance, ncRNAs, AS-related factors and AS-related novel antigens may serve as promising therapeutic targets in cancer treatment. In this review, we summarize the interaction between ncRNAs and AS processes, emphasizing their great influences on cancer, especially on chemoresistance, and highlighting their potential values in clinical treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Subo Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Jianing Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P. R. China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P. R. China
| |
Collapse
|
20
|
Zafarullah M, Li J, Tseng E, Tassone F. Structure and Alternative Splicing of the Antisense FMR1 (ASFMR1) Gene. Mol Neurobiol 2023; 60:2051-2061. [PMID: 36598648 PMCID: PMC10461537 DOI: 10.1007/s12035-022-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by an expansion of 55-200 CGG repeats (premutation) in the 5'-UTR of the FMR1 gene. Bidirectional transcription at FMR1 locus has been demonstrated and specific alternative splicing of the Antisense FMR1 (ASFMR1) gene has been proposed to have a contributing role in the pathogenesis of FXTAS. The structure of ASFMR1 gene is still uncharacterized and it is currently unknown how many isoforms of the gene are expressed and at what level in premutation carriers (PM) and if they may contribute to the premutation pathology. In this study, we characterized the ASFMR1 gene structure and the transcriptional landscape by using PacBio SMRT sequencing with target enrichment (IDT customized probe panel). We identified 45 ASFMR1 isoforms ranging in sizes from 523 bp to 6 Kb, spanning approximately 59 kb of genomic DNA. Multiplexing and sequencing of six human brain samples from PM samples and normal control (HC) were carried out on the PacBio Sequel platform. We validated the presence of these isoforms by qRT-PCR and Sanger sequencing and characterized the acceptor and donor splicing site consensus sequences. Consistent with previous studies conducted in other tissue types, we found a high expression of ASFMR1 isoform Iso131bp in brain samples of PM as compared to HC, while no differences in expression levels were observed for the newly identified isoforms IsoAS1 and IsoAS2. We investigated the role of the splicing regulatory protein Sam68 which we did not observe in the alternative splicing of the ASFMR1 gene. Our study provides a useful insight into the structure of ASFMR1 gene and transcriptional landscape along with the expression pattern of various newly identified novel isoforms and on their potential role in premutation pathology.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, 95616, USA
| | | | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
21
|
Cosi I, Moccia A, Pescucci C, Munagala U, Di Giorgio S, Sineo I, Conticello SG, Notaro R, De Angioletti M. Identification and characterization of novel ETV4 splice variants in prostate cancer. Sci Rep 2023; 13:5267. [PMID: 37002241 PMCID: PMC10066307 DOI: 10.1038/s41598-023-29484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
ETV4, one of ETS proteins overexpressed in prostate cancer, promotes migration, invasion, and proliferation in prostate cells. This study identifies a series of previously unknown ETV4 alternatively spliced transcripts in human prostate cell lines. Their expression has been validated using several unbiased techniques, including Nanopore sequencing. Most of these transcripts originate from an in-frame exon skipping and, thus, are expected to be translated into ETV4 protein isoforms. Functional analysis of the most abundant among these isoforms shows that they still bear an activity, namely a reduced ability to promote proliferation and a residual ability to regulate the transcription of ETV4 target genes. Alternatively spliced genes are common in cancer cells: an analysis of the TCGA dataset confirms the abundance of these novel ETV4 transcripts in prostate tumors, in contrast to peritumoral tissues. Since none of their translated isoforms have acquired a higher oncogenic potential, such abundance is likely to reflect the tumor deranged splicing machinery. However, it is also possible that their interaction with the canonical variants may contribute to the biology and the clinics of prostate cancer. Further investigations are needed to elucidate the biological role of these ETV4 transcripts and of their putative isoforms.
Collapse
Affiliation(s)
- Irene Cosi
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- ICCOM - National Research Council, Sesto Fiorentino, Florence, Italy
| | - Annalisa Moccia
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Chiara Pescucci
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Uday Munagala
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Salvatore Di Giorgio
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Irene Sineo
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- IFC - National Research Council, Pisa, Italy
| | - Rosario Notaro
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- IFC - National Research Council, Pisa, Italy
| | - Maria De Angioletti
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy.
- ICCOM - National Research Council, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
22
|
Achour C, Bhattarai DP, Groza P, Román ÁC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 2023; 42:911-925. [PMID: 36725888 PMCID: PMC10020087 DOI: 10.1038/s41388-023-02602-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.
Collapse
Affiliation(s)
- Cyrinne Achour
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Ángel-Carlos Román
- Department of Molecular Biology and Genetics, University of Extremadura, 06071, Badajoz, Spain.
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
23
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
24
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Cardenas-Sosa MA, Echavarria R. Sigma-1 Receptor Signaling: In Search of New Therapeutic Alternatives for Cardiovascular and Renal Diseases. Int J Mol Sci 2023; 24:ijms24031997. [PMID: 36768323 PMCID: PMC9916216 DOI: 10.3390/ijms24031997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Miguel Alejandro Cardenas-Sosa
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONACYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
26
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
27
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Shaw TI, Zhao B, Li Y, Wang H, Wang L, Manley B, Stewart PA, Karolak A. Multi-omics approach to identifying isoform variants as therapeutic targets in cancer patients. Front Oncol 2022; 12:1051487. [PMID: 36505834 PMCID: PMC9730332 DOI: 10.3389/fonc.2022.1051487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-specific alternatively spliced events (ASE) play a role in cancer pathogenesis and can be targeted by immunotherapy, oligonucleotide therapy, and small molecule inhibition. However, identifying actionable ASE targets remains challenging due to the uncertainty of its protein product, structure impact, and proteoform (protein isoform) function. Here we argue that an integrated multi-omics profiling strategy can overcome these challenges, allowing us to mine this untapped source of targets for therapeutic development. In this review, we will provide an overview of current multi-omics strategies in characterizing ASEs by utilizing the transcriptome, proteome, and state-of-art algorithms for protein structure prediction. We will discuss limitations and knowledge gaps associated with each technology and informatics analytics. Finally, we will discuss future directions that will enable the full integration of multi-omics data for ASE target discovery.
Collapse
Affiliation(s)
- Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,*Correspondence: Timothy I. Shaw,
| | - Bi Zhao
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Aleksandra Karolak
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
29
|
Isaac R, Vinik Y, Mikl M, Nadav-Eliyahu S, Shatz-Azoulay H, Yaakobi A, DeForest N, Majithia AR, Webster NJ, Shav-Tal Y, Elhanany E, Zick Y. A seven-transmembrane protein-TM7SF3, resides in nuclear speckles and regulates alternative splicing. iScience 2022; 25:105270. [PMID: 36304109 PMCID: PMC9593240 DOI: 10.1016/j.isci.2022.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
The seven-transmembrane superfamily member 3 protein (TM7SF3) is a p53-regulated homeostatic factor that attenuates cellular stress and the unfolded protein response. Here we show that TM7SF3 localizes to nuclear speckles; eukaryotic nuclear bodies enriched in splicing factors. This unexpected location for a trans -membranal protein enables formation of stable complexes between TM7SF3 and pre-mRNA splicing factors including DHX15, LARP7, HNRNPU, RBM14, and HNRNPK. Indeed, TM7SF3 regulates alternative splicing of >330 genes, mainly at the 3'end of introns by directly modulating the activity of splicing factors such as HNRNPK. These effects are observed both in cell lines and primary human pancreatic islets. Accordingly, silencing of TM7SF3 results in differential expression of 1465 genes (about 7% of the human genome); with 844 and 621 genes being up- or down-regulated, respectively. Our findings implicate TM7SF3, as a resident protein of nuclear speckles and suggest a role for seven-transmembrane proteins as regulators of alternative splicing.
Collapse
Affiliation(s)
- Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin Mikl
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Biology, University of Haifa, Haifa, Israel
| | - Shani Nadav-Eliyahu
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Yaakobi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natalie DeForest
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Amit R. Majithia
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J.G. Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eytan Elhanany
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Lee AQ, Konishi H, Duong C, Yoshida S, Davis RR, Van Dyke JE, Ijiri M, McLaughlin B, Kim K, Li Y, Beckett L, Nitin N, McPherson JD, Tepper CG, Satake N. A distinct subpopulation of leukemia initiating cells in acute precursor B lymphoblastic leukemia: quiescent phenotype and unique transcriptomic profile. Front Oncol 2022; 12:972323. [PMID: 36212452 PMCID: PMC9533407 DOI: 10.3389/fonc.2022.972323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 μm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival.
Collapse
Affiliation(s)
- Alex Q. Lee
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Hiroaki Konishi
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Connie Duong
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Sakiko Yoshida
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Ryan R. Davis
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Jonathan E. Van Dyke
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Masami Ijiri
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Bridget McLaughlin
- Flow Cytometry Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Yueju Li
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Laurel Beckett
- Department of Public Health Sciences, Division of Biostatistics, University of California (UC) Davis, Davis, CA, United States
| | - Nitin Nitin
- Departments of Food Science & Technology and Biological & Agricultural Engineering, University of California (UC) Davis, Davis, CA, United States
| | - John D. McPherson
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| | - Clifford G. Tepper
- Genomics Shared Resource, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| | - Noriko Satake
- Department of Pediatrics, University of California (UC) Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Noriko Satake, ; Clifford G. Tepper,
| |
Collapse
|
31
|
Alternative c-MYC mRNA Transcripts as an Additional Tool for c-Myc2 and c-MycS Production in BL60 Tumors. Biomolecules 2022; 12:biom12060836. [PMID: 35740961 PMCID: PMC9221284 DOI: 10.3390/biom12060836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
While studying c-Myc protein expression in several Burkitt lymphoma cell lines and in lymph nodes from a mouse model bearing a translocated c-MYC gene from the human BL line IARC-BL60, we surprisingly discovered a complex electrophoretic profile. Indeed, the BL60 cell line carrying the t(8;22) c-MYC translocation exhibits a simple pattern, with a single c-Myc2 isoform. Analysis of the c-MYC transcripts expressed by tumor lymph nodes in the mouse λc-MYC (Avy/a) showed for the first time five transcripts that are associated with t(8;22) c-MYC translocation. The five transcripts were correlated with the production of c-Myc2 and c-MycS, and loss of c-Myc1. The contribution of these transcripts to the oncogenic activation of the t(8;22) c-MYC is discussed.
Collapse
|
32
|
Wang X, Pei J, Xiong L, Guo S, Cao M, Kang Y, Bao P, Wu X, Chu M, Liang C, Yan P, Guo X. Identification of the TSSK4 Alternative Spliceosomes and Analysis of the Function of the TSSK4 Protein in Yak (Bos grunniens). Animals (Basel) 2022; 12:ani12111380. [PMID: 35681843 PMCID: PMC9179852 DOI: 10.3390/ani12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
In mammals, the testis-specific serine/threonine kinase (TSSK) is essential for spermatogenesis and male fertility. TSSK4 belongs to the family of the testis-specific serine/threonine-protein kinase (TSSK), with a crucial role in spermatogenesis. This study aimed to analyze the variable spliceosome of the TSSK4 gene in the yak for understanding the regulatory function of the TSSK4 spliceosome in yak testis development using PCR amplification and cloning techniques. The GST pull-down was used for pulling down the protein interacting with TSSK4, and then the protein interacting with TSSK4 was identified using LC–MS/MS. The results of the PCR amplification demonstrated multiple bands of the TSSK4 gene in the yak. The cloning and sequencing yielded a total of six alternative spliceosomes, which included only two alternative spliceosomes before sexual maturity and four alternative spliceosomes after sexual maturity. The sub-cells of the alternative spliceosomes were found to localize in the nucleus before sexual maturity and in the cytoplasm after sexual maturity. The LC–MS/MS analysis of the alternative spliceosome with the highest expression after sexual maturity yielded a total of 223 interacting proteins. The enrichment analysis of the 223 interacting proteins revealed these proteins participate in biological processes, cell composition, and molecular functions. The KEGG analysis indicated that the TSSK4-interacting protein participates in the estrogen signaling pathways, tight junctions, endoplasmic reticulum protein processing, and other signaling pathways. This study cloned the six alternative spliceosomes of the TSSK4 gene laying the foundation for studying the function of each spliceosome in the future.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-1899-3037-854
| |
Collapse
|
33
|
Malhan D, Basti A, Relógio A. Transcriptome analysis of clock disrupted cancer cells reveals differential alternative splicing of cancer hallmarks genes. NPJ Syst Biol Appl 2022; 8:17. [PMID: 35552415 PMCID: PMC9098426 DOI: 10.1038/s41540-022-00225-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence points towards a regulatory role of the circadian clock in alternative splicing (AS). Whether alterations in core-clock components may contribute to differential AS events is largely unknown. To address this, we carried out a computational analysis on recently generated time-series RNA-seq datasets from three core-clock knockout (KO) genes (ARNTL, NR1D1, PER2) and WT of a colorectal cancer (CRC) cell line, and time-series RNA-seq datasets for additional CRC and Hodgkin’s lymphoma (HL) cells, murine WT, Arntl KO, and Nr1d1/2 KO, and murine SCN WT tissue. The deletion of individual core-clock genes resulted in the loss of circadian expression in crucial spliceosome components such as SF3A1 (in ARNTLKO), SNW1 (in NR1D1KO), and HNRNPC (in PER2KO), which led to a differential pattern of KO-specific AS events. All HCT116KO cells showed a rhythmicity loss of a crucial spliceosome gene U2AF1, which was also not rhythmic in higher progression stage CRC and HL cancer cells. AS analysis revealed an increase in alternative first exon events specific to PER2 and NR1D1 KO in HCT116 cells, and a KO-specific change in expression and rhythmicity pattern of AS transcripts related to cancer hallmarks genes including FGFR2 in HCT116_ARNTLKO, CD44 in HCT116_NR1D1KO, and MET in HCT116_PER2KO. KO-specific changes in rhythmic properties of known spliced variants of these genes (e.g. FGFR2 IIIb/FGFR2 IIIc) correlated with epithelial-mesenchymal-transition signalling. Altogether, our bioinformatic analysis highlights a role for the circadian clock in the regulation of AS, and reveals a potential impact of clock disruption in aberrant splicing in cancer hallmark genes.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Alireza Basti
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany. .,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany. .,Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
| |
Collapse
|
34
|
Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP, Sette C. Functional Interaction Between the Oncogenic Kinase NEK2 and Sam68 Promotes a Splicing Program Involved in Migration and Invasion in Triple-Negative Breast Cancer. Front Oncol 2022; 12:880654. [PMID: 35530315 PMCID: PMC9068942 DOI: 10.3389/fonc.2022.880654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
35
|
Holland DO, Gotea V, Fedkenheuer K, Jaiswal SK, Baugher C, Tan H, Fedkenheuer M, Elnitski L. Characterization and clustering of kinase isoform expression in metastatic melanoma. PLoS Comput Biol 2022; 18:e1010065. [PMID: 35560144 PMCID: PMC9132324 DOI: 10.1371/journal.pcbi.1010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase's downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer.
Collapse
Affiliation(s)
- David O. Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K. Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Baugher
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Fedkenheuer
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
37
|
Verdile V, Svetoni F, La Rosa P, Ferrante G, Cesari E, Sette C, Paronetto M. EWS splicing regulation contributes to balancing Foxp1 isoforms required for neuronal differentiation. Nucleic Acids Res 2022; 50:3362-3378. [PMID: 35253879 PMCID: PMC8989529 DOI: 10.1093/nar/gkac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is a key regulatory process underlying the amplification of genomic information and the expansion of proteomic diversity, particularly in brain. Here, we identify the Ewing sarcoma protein (EWS) as a new player of alternative splicing regulation during neuronal differentiation. Knockdown of EWS in neuronal progenitor cells leads to premature differentiation. Transcriptome profiling of EWS-depleted cells revealed global changes in splicing regulation. Bioinformatic analyses and biochemical experiments demonstrated that EWS regulates alternative exons in a position-dependent fashion. Notably, several EWS-regulated splicing events are physiologically modulated during neuronal differentiation and EWS depletion in neuronal precursors anticipates the splicing-pattern of mature neurons. Among other targets, we found that EWS controls the alternative splicing of the forkhead family transcription factor FOXP1, a pivotal transcriptional regulator of neuronal differentiation, possibly contributing to the switch of gene expression underlying the neuronal differentiation program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Francesca Svetoni
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Piergiorgio La Rosa
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
38
|
Gallego-Paez LM, Mauer J. DJExpress: An Integrated Application for Differential Splicing Analysis and Visualization. FRONTIERS IN BIOINFORMATICS 2022; 2:786898. [PMID: 36304260 PMCID: PMC9580925 DOI: 10.3389/fbinf.2022.786898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented understanding of transcriptome complexity in health and disease. However, despite the availability of countless bioinformatic pipelines for transcriptome-wide splicing analysis, the use of these tools is often limited to expert bioinformaticians. The need for high computational power, combined with computational outputs that are complicated to visualize and interpret present obstacles to the broader research community. Here we introduce DJExpress, an R package for differential expression analysis of transcriptomic features and expression-trait associations. To determine gene-level differential junction usage as well as associations between junction expression and molecular/clinical features, DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on an average laptop computer and provides a set of interactive and intuitive visualization formats. In contrast to most existing pipelines, DJExpress can handle both annotated and de novo identified splice junctions, thereby allowing the quantification of novel splice events. Moreover, DJExpress offers a web-compatible graphical interface allowing the analysis of user-provided data as well as the visualization of splice events within our custom database of differential junction expression in cancer (DJEC DB). DJEC DB includes not only healthy and tumor tissue junction expression data from TCGA and GTEx repositories but also cancer cell line data from the DepMap project. The integration of DepMap functional genomics data sets allows association of junction expression with molecular features such as gene dependencies and drug response profiles. This facilitates identification of cancer cell models for specific splicing alterations that can then be used for functional characterization in the lab. Thus, DJExpress represents a powerful and user-friendly tool for exploration of alternative splicing alterations in RNA-seq data, including multi-level data integration of alternative splicing signatures in healthy tissue, tumors and cancer cell lines.
Collapse
Affiliation(s)
| | - Jan Mauer
- *Correspondence: Lina Marcela Gallego-Paez, ; Jan Mauer,
| |
Collapse
|
39
|
Hetz R, Beeler E, Janoczkin A, Kiers S, Li L, Willard BB, Razzaque MS, He P. Excessive Inorganic Phosphate Burden Perturbed Intracellular Signaling: Quantitative Proteomics and Phosphoproteomics Analyses. Front Nutr 2022; 8:765391. [PMID: 35096927 PMCID: PMC8795896 DOI: 10.3389/fnut.2021.765391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for the human body which exerts adverse health effects in excess and deficit. High Pi-mediated cytotoxicity has been shown to induce systemic organ damage, though the underlying molecular mechanisms are poorly understood. In this study, we employed proteomics and phosphoproteomics to analyze Pi-mediated changes in protein abundance and phosphorylation. Bioinformatic analyses and literature review revealed that the altered proteins and phosphorylation were enriched in signaling pathways and diverse biological processes. Western blot analysis confirms the extensive change in protein level and phosphorylation in key effectors that modulate pre-mRNA alternative splicing. Global proteome and phospho-profiling provide a bird-eye view of excessive Pi-rewired cell signaling networks, which deepens our understanding of the molecular mechanisms of phosphate toxicity.
Collapse
Affiliation(s)
- Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Erik Beeler
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Alexis Janoczkin
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Spencer Kiers
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ling Li
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Belinda B Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
40
|
Yue C, Zhao T, Zhang S, Liu Y, Zheng G, Zhang Y. Comprehensive characterization of 11 prognostic alternative splicing events in ovarian cancer interacted with the immune microenvironment. Sci Rep 2022; 12:980. [PMID: 35046435 PMCID: PMC8770494 DOI: 10.1038/s41598-021-03836-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing (AS) events play a crucial role in the tumorigenesis and progression of cancer. Transcriptome data and Percent Spliced In (PSI) values of ovarian cancer patients were downloaded from TCGA database and TCGA SpliceSeq. Totally we identified 1472 AS events that were associated with survival of ovarian serous cystadenocarcinoma (OC) and exon skipping (ES) was the most important type. Univariate and multivariate Cox regression analysis were performed to identify survival-associated AS events and developed the prognostic model based on 11-AS events. The immune cells and different response to cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) blockers in low-risk and high-risk group of OC patients were analyzed. Ten kinds of immune cells were found up-regulated in low-risk group. Activated B cell, natural killer T cell, natural killer cell and regulatory T cell were associated with survival of OC. The patients in low-risk group had good response to CTLA-4 and PD-1 blockers treatment. Moreover, a regulatory network was established according to the correlation between AS events and splicing factors (SFs). The present study provided valuable insights into the underlying mechanisms of OC. AS events that were correlated with the immune system might be potential therapeutic targets.
Collapse
Affiliation(s)
- Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
41
|
Niño CA, Scotto di Perrotolo R, Polo S. Recurrent Spliceosome Mutations in Cancer: Mechanisms and Consequences of Aberrant Splice Site Selection. Cancers (Basel) 2022; 14:281. [PMID: 35053445 PMCID: PMC8773931 DOI: 10.3390/cancers14020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Splicing alterations have been widely documented in tumors where the proliferation and dissemination of cancer cells is supported by the expression of aberrant isoform variants. Splicing is catalyzed by the spliceosome, a ribonucleoprotein complex that orchestrates the complex process of intron removal and exon ligation. In recent years, recurrent hotspot mutations in the spliceosome components U1 snRNA, SF3B1, and U2AF1 have been identified across different tumor types. Such mutations in principle are highly detrimental for cells as all three spliceosome components are crucial for accurate splice site selection: the U1 snRNA is essential for 5′ splice site recognition, and SF3B1 and U2AF1 are important for 3′ splice site selection. Nonetheless, they appear to be selected to promote specific types of cancers. Here, we review the current molecular understanding of these mutations in cancer, focusing on how they influence splice site selection and impact on cancer development.
Collapse
Affiliation(s)
- Carlos A. Niño
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy;
| | | | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy;
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
42
|
Öther-Gee Pohl S, Myant KB. Alternative RNA splicing in tumour heterogeneity, plasticity and therapy. Dis Model Mech 2022; 15:dmm049233. [PMID: 35014671 PMCID: PMC8764416 DOI: 10.1242/dmm.049233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a process by which a single gene is able to encode multiple different protein isoforms. It is regulated by the inclusion or exclusion of introns and exons that are joined in different patterns prior to protein translation, thus enabling transcriptomic and proteomic diversity. It is now widely accepted that alternative splicing is dysregulated across nearly all cancer types. This widespread dysregulation means that nearly all cellular processes are affected - these include processes synonymous with the hallmarks of cancer - evasion of apoptosis, tissue invasion and metastasis, altered cellular metabolism, genome instability and drug resistance. Emerging evidence indicates that the dysregulation of alternative splicing also promotes a permissive environment for increased tumour heterogeneity and cellular plasticity. These are fundamental regulators of a patient's response to therapy. In this Review, we introduce the mechanisms of alternative splicing and the role of aberrant splicing in cancer, with particular focus on newfound evidence of alternative splicing promoting tumour heterogeneity, cellular plasticity and altered metabolism. We discuss recent in vivo models generated to study alternative splicing and the importance of these for understanding complex tumourigenic processes. Finally, we review the effects of alternative splicing on immune evasion, cell death and genome instability, and how targeting these might enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | - Kevin B. Myant
- Cancer Research UK Edinburgh Centre, Institute of Genetics of Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
43
|
Zhao J, Feng H, Zhu D, Lin Y. MultiTrans: An Algorithm for Path Extraction Through Mixed Integer Linear Programming for Transcriptome Assembly. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:48-56. [PMID: 34033544 DOI: 10.1109/tcbb.2021.3083277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in RNA-seq technology have made identification of expressed genes affordable, and thus boosting repaid development of transcriptomic studies. Transcriptome assembly, reconstructing all expressed transcripts from RNA-seq reads, is an essential step to understand genes, proteins, and cell functions. Transcriptome assembly remains a challenging problem due to complications in splicing variants, expression levels, uneven coverage and sequencing errors. Here, we formulate the transcriptome assembly problem as path extraction on splicing graphs (or assembly graphs), and propose a novel algorithm MultiTrans for path extraction using mixed integer linear programming. MultiTrans is able to take into consideration coverage constraints on vertices and edges, the number of paths and the paired-end information simultaneously. We benchmarked MultiTrans against two state-of-the-art transcriptome assemblers, TransLiG and rnaSPAdes. Experimental results show that MultiTrans generates more accurate transcripts compared to TransLiG (using the same splicing graphs) and rnaSPAdes (using the same assembly graphs). MultiTrans is freely available at https://github.com/jzbio/MultiTrans.
Collapse
|
44
|
Naro C, De Musso M, Delle Monache F, Panzeri V, de la Grange P, Sette C. The oncogenic kinase NEK2 regulates an RBFOX2-dependent pro-mesenchymal splicing program in triple-negative breast cancer cells. J Exp Clin Cancer Res 2021; 40:397. [PMID: 34930366 PMCID: PMC8686545 DOI: 10.1186/s13046-021-02210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesca Delle Monache
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
45
|
Stephenson M, Nip KM, HafezQorani S, Gagalova KK, Yang C, Warren RL, Birol I. RNA-Scoop: interactive visualization of transcripts in single-cell transcriptomes. NAR Genom Bioinform 2021; 3:lqab105. [PMID: 34859209 PMCID: PMC8633890 DOI: 10.1093/nargab/lqab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022] Open
Abstract
Recent advances in single-cell RNA sequencing technologies have made detection of transcripts in single cells possible. The level of resolution provided by these technologies can be used to study changes in transcript usage across cell populations and help investigate new biology. Here, we introduce RNA-Scoop, an interactive cell cluster and transcriptome visualization tool to analyze transcript usage across cell categories and clusters. The tool allows users to examine differential transcript expression across clusters and investigate how usage of specific transcript expression mechanisms varies across cell groups.
Collapse
Affiliation(s)
- Maria Stephenson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Computer Science Co-op Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - Saber HafezQorani
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - Chen Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
46
|
Manet E, Polvèche H, Mure F, Mrozek-Gorska P, Roisné-Hamelin F, Hammerschmidt W, Auboeuf D, Gruffat H. Modulation of alternative splicing during early infection of human primary B lymphocytes with Epstein-Barr virus (EBV): a novel function for the viral EBNA-LP protein. Nucleic Acids Res 2021; 49:10657-10676. [PMID: 34530456 PMCID: PMC8501971 DOI: 10.1093/nar/gkab787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus associated with human cancers worldwide. Ex vivo, the virus efficiently infects resting human B lymphocytes and induces their continuous proliferation. This process is accompanied by a global reprogramming of cellular gene transcription. However, very little is known on the impact of EBV infection on the regulation of alternative splicing, a pivotal mechanism that plays an essential role in cell fate determination and is often deregulated in cancer. In this study, we have developed a systematic time-resolved analysis of cellular mRNA splice variant expression during EBV infection of resting B lymphocytes. Our results reveal that major modifications of alternative splice variant expression appear as early as day 1 post-infection and suggest that splicing regulation provides—besides transcription—an additional mechanism of gene expression regulation at the onset of B cell activation and proliferation. We also report a role for the viral proteins, EBNA2 and EBNA-LP, in the modulation of specific alternative splicing events and reveal a previously unknown function for EBNA-LP—together with the RBM4 splicing factor—in the alternative splicing regulation of two important modulators of cell proliferation and apoptosis respectively, NUMB and BCL-X.
Collapse
Affiliation(s)
- Evelyne Manet
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | | | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | - Florian Roisné-Hamelin
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377 Munich, Germany
| | | | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Univ Lyon, Université Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon F-69007, France
| |
Collapse
|
47
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
48
|
Thompson CM, Cannon A, West S, Ghersi D, Atri P, Bhatia R, Smith L, Rachagani S, Wichman C, Kumar S, Batra SK. Mucin Expression and Splicing Determine Novel Subtypes and Patient Mortality in Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2021; 27:6787-6799. [PMID: 34615717 DOI: 10.1158/1078-0432.ccr-21-1591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy demonstrating aberrant and progressive expression of mucins. The contribution of individual mucins has been extensively investigated in PDAC; however, comprehensive mucin profiling including splice variants in PDAC tumors has not been reported. EXPERIMENTAL DESIGN Using publicly available RNA sequencing (RNA-seq) datasets, we assess the expression of mucin family members and their splice variants (SV) in PDAC tumor samples for the first time. Mucin SVs that are correlated with PDAC patient survival are validated in a cohort of patient tumor samples. Further, we use computational methods to derive novel pancreatic tumor subtypes using mucin expression signatures and their associated activated pathways. RESULTS Principal component analysis identified four novel mucin-based PDAC subtypes. Pathway analysis implicated specific biological signatures for each subtype, labeled (i) immune activated, (ii) progressive, (iii) pancreatitis-initiated, and (iv) anti-inflammatory/PanIN-initiated. Assessing mucin SVs, significantly longer survival is observed with higher expression of 4 MUC1 and 1 MUC13 SVs, whereas patients expressing 2 MUC4 and 1 MUC16 SVs had shorter survival. Using a whole-transcriptome correlation, a three-gene panel, including ESRP2, PTK6, and MAGEH1, is designated to assess PDAC tumor sample cellularity by PCR. One MUC4 SV and one MUC13 SV are quantified in a separate PDAC patient cohort, and their effects on survival are experimentally validated. CONCLUSIONS Altogether, we demonstrate the unique expression pattern of mucins, four mucin-based PDAC subtypes, and the contribution of MUC1, MUC4, and MUC16 SVs in PDAC patient survival.
Collapse
Affiliation(s)
- Christopher M Thompson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andrew Cannon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sean West
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska, Omaha, Nebraska
| | - Dario Ghersi
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska, Omaha, Nebraska
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lynette Smith
- Department of Biostatistics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Satyayanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher Wichman
- Department of Biostatistics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
49
|
Luo Y, Li Y, Ge P, Zhang K, Liu H, Jiang N. QKI-Regulated Alternative Splicing Events in Cervical Cancer: Pivotal Mechanism and Potential Therapeutic Strategy. DNA Cell Biol 2021; 40:1261-1277. [PMID: 34551268 DOI: 10.1089/dna.2021.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
QKI is a vital regulator in RNA splicing and maturation, but its role in cervical cancer (CC) is little known. In this study, we found that QKI is decreased in human CC, and overexpression of QKI inhibits HeLa cell proliferation and promotes the apoptosis of cancer cells. We identified hundreds of endogenous QKI-regulated alternative splicing events (ASEs) and differentially expressed genes (DEGs) in QKI-overexpressed HeLa cells by RNA-seq and selectively validated their expression by quantitative reverse-transcription polymerase chain reaction. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that QKI-regulated ASEs and DEGs were closely related to cancer, apoptosis, and transcriptional regulatory functions. In short, QKI may affect the occurrence and development of CC by regulating gene expression through AS.
Collapse
Affiliation(s)
- Yalan Luo
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kaina Zhang
- Department of Gynecology and Obstetrics, Central Hospital of Zhuanghe City, Zhuanghe, China
| | - Huanhuan Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|