1
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
2
|
Zhao J, Rui L, Ouyang W, Hao Y, Liu Y, Tang J, Ding Z, Teng Z, Liu X, Zhu H, Ding Z. Cardiac commitment driven by MyoD expression in pericardial stem cells. Front Cell Dev Biol 2024; 12:1369091. [PMID: 38601082 PMCID: PMC11004306 DOI: 10.3389/fcell.2024.1369091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
Cellular therapy holds immense promise to remuscularize the damaged myocardium but is practically hindered by limited allogeneic sources of cardiac-committed cells that engraft stably in the recipient heart after transplantation. Here, we demonstrate that the pericardial tissue harbors myogenic stem cells (pSCs) that are activated in response to inflammatory signaling after myocardial infarction (MI). The pSCs derived from the MI rats (MI-pSCs) show in vivo and in vitro cardiac commitment characterized by cardiac-specific Tnnt2 expression and formation of rhythmic contraction in culture. Bulk RNA-seq analysis reveals significant upregulation of a panel of genes related to cardiac/myogenic differentiation, paracrine factors, and extracellular matrix in the activated pSCs compared to the control pSCs (Sham-pSCs). Notably, we define MyoD as a key factor that governs the process of cardiac commitment, as siRNA-mediated MyoD gene silencing results in a significant reduction of myogenic potential. Injection of the cardiac-committed cells into the infarcted rat heart leads to long-term survival and stable engraftment in the recipient myocardium. Therefore, these findings point to pericardial myogenic progenitors as an attractive candidate for cardiac cell-based therapy to remuscularize the damaged myocardium.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Limei Rui
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Weili Ouyang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yingcai Hao
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Yusong Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Jianfeng Tang
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zheheng Ding
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute Neuro and Sensory Physiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Xueqing Liu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Hongtao Zhu
- Department of Cardiology, The People’s Hospital of Danyang Affiliated to Nantong University, Danyang, China
| | - Zhaoping Ding
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
4
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
5
|
Schwarzkopf L, Büttner P, Scholtyssek K, Schröter T, Hiller R, Hindricks G, Bollmann A, Laufs U, Ueberham L. C-kit pos cells in the human left atrial appendage. Heliyon 2023; 9:e21268. [PMID: 37954289 PMCID: PMC10637945 DOI: 10.1016/j.heliyon.2023.e21268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Subpopulations of myocardial c-kitpos cells have the ability to stimulate regeneration in ischemic heart disease by paracrine effects. The left atrial appendage (LAA), which is easy accessible during cardiac surgery, may represent a perfect source for c-kitpos cell extraction for autologous cell therapies in the living human. So far, frequency and distribution of c-kitpos cells in LAA are unknown. Methods LAAs of patients who underwent cardiac surgery due to coronary artery disease (coronary artery bypass graft, CABG), valvular heart disease or both and of two body donors were examined. Tissue was fixed in 4 % paraformaldehyde, embedded in paraffin, dissected in consecutive sections and stained for c-kitpos cells. In parallel, grade of fibrosis, amount of fat per section and cells positive for mast cell tryptase were examined. Results We collected 27 LAAs (37.0 % female, mean left ventricular ejection fraction 50.4 %, 63.0 % persistent atrial fibrillation (AF)). Most of the patients underwent combined CABG and valve surgery (51.9 %). C-kitpos cells were detected in 3 different regions: A) Attached to the epicardial fat layer, B) close to vascular structures and C) between cardiomyocytes. C-kitpos cells ranged from 0.05 c-kitpos cells per mm2 to 67.5 c-kitpos cells per mm2. We found no association between number of c-kitpos cells and type of AF, amount of fibrosis or amount of fat. Up to 72 % of c-kitpos cells also showed a positive staining for mast cell tryptase. Conclusion C-kitpos cells are frequent in LAAs of cardiovascular patients with a rather homogenous distribution throughout the LAA. The LAA can therefore be considered as a source for extraction of a reasonable quantity of autologous cardiac progenitor cells in the living human patient.
Collapse
Affiliation(s)
- Lea Schwarzkopf
- St. Elisabeth-Krankenhaus Leipzig, Department of Anaesthesiology, Leipzig, Germany
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
| | - Petra Büttner
- Heart Center Leipzig at University of Leipzig, Department of Cardiology, Leipzig, Germany
| | - Karl Scholtyssek
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
| | - Thomas Schröter
- Heart Center Leipzig at University of Leipzig, Department of Cardiac Surgery, Leipzig, Germany
| | - Ruth Hiller
- Insitut für Pathologie, University of Leipzig Medical Center, Leipzig, Germany
| | - Gerhard Hindricks
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
| | - Andreas Bollmann
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University of Leipzig Medical Center, Leipzig, Germany
| | - Laura Ueberham
- German Heart Center Berlin, Department of Electrophysiology, Berlin, Germany
- Leipzig Heart Institute, Leipzig, Germany
- Klinik und Poliklinik für Kardiologie, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
6
|
Dergilev K, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Parfyonova Y. Urokinase-Type Plasminogen Activator Receptor Regulates Prosurvival and Angiogenic Properties of Cardiac Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15554. [PMID: 37958542 PMCID: PMC10650341 DOI: 10.3390/ijms242115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Konstantin Dergilev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Zoya Tsokolaeva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia
| | - Yulia Goltseva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Irina Beloglazova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Elizaveta Ratner
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
| | - Yelena Parfyonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia; (K.D.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
7
|
Torella D, Cianflone E. Science Is a Self-Correcting Discipline: Revisiting the Biological Potential of Adult Cardiac Progenitors. Tex Heart Inst J 2023; 50:e238241. [PMID: 37859618 PMCID: PMC10658147 DOI: 10.14503/thij-23-8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
8
|
Shen Y, Kim IM, Tang Y. Uncovering the Heterogeneity of Cardiac Lin-KIT+ Cells: A scRNA-seq Study on the Identification of Subpopulations. Stem Cells 2023; 41:958-970. [PMID: 37539750 PMCID: PMC11009691 DOI: 10.1093/stmcls/sxad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Yaoliang Tang
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Scalise M, Marino F, Salerno L, Amato N, Quercia C, Siracusa C, Filardo A, Chiefalo A, Pagano L, Misdea G, Salerno N, De Angelis A, Urbanek K, Viglietto G, Torella D, Cianflone E. Adult Multipotent Cardiac Progenitor-Derived Spheroids: A Reproducible Model of In Vitro Cardiomyocyte Commitment and Specification. Cells 2023; 12:1793. [PMID: 37443827 PMCID: PMC10341123 DOI: 10.3390/cells12131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Three-dimensional cell culture systems hold great promise for bridging the gap between in vitro cell-based model systems and small animal models to study tissue biology and disease. Among 3D cell culture systems, stem-cell-derived spheroids have attracted significant interest as a strategy to better mimic in vivo conditions. Cardiac stem cell/progenitor (CSC)-derived spheroids (CSs) provide a relevant platform for cardiac regeneration. METHODS We compared three different cell culture scaffold-free systems, (i) ultra-low attachment plates, (ii) hanging drops (both requiring a 2D/3D switch), and (iii) agarose micro-molds (entirely 3D), for CSC-derived CS formation and their cardiomyocyte commitment in vitro. RESULTS The switch from a 2D to a 3D culture microenvironment per se guides cell plasticity and myogenic differentiation within CS and is necessary for robust cardiomyocyte differentiation. On the contrary, 2D monolayer CSC cultures show a significant reduced cardiomyocyte differentiation potential compared to 3D CS culture. Forced aggregation into spheroids using hanging drop improves CS myogenic differentiation when compared to ultra-low attachment plates. Performing CS formation and myogenic differentiation exclusively in 3D culture using agarose micro-molds maximizes the cardiomyocyte yield. CONCLUSIONS A 3D culture system instructs CS myogenic differentiation, thus representing a valid model that can be used to study adult cardiac regenerative biology.
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nunzia Amato
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Claudia Quercia
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Loredana Pagano
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| | - Giuseppe Misdea
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121 Naples, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.S.); (F.M.); (L.S.); (A.C.); (G.M.); (N.S.); (G.V.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.A.); (C.Q.); (C.S.); (A.F.); (L.P.)
| |
Collapse
|
10
|
Mongelli A, Panunzi S, Nesta M, Gottardi Zamperla M, Atlante S, Barbi V, Mongiardini V, Ferraro F, De Martino S, Cis L, Re A, Maltese S, Bachetti T, La Rovere MT, Martelli F, Pesce M, Nanni S, Massetti M, Pontecorvi A, Farsetti A, Gaetano C. Distinguishable DNA methylation defines a cardiac-specific epigenetic clock. Clin Epigenetics 2023; 15:53. [PMID: 36991505 PMCID: PMC10053964 DOI: 10.1186/s13148-023-01467-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The present study investigates whether epigenetic differences emerge in the heart of patients undergoing cardiac surgery for an aortic valvular replacement (AVR) or coronary artery bypass graft (CABG). An algorithm is also established to determine how the pathophysiological condition might influence the human biological cardiac age. RESULTS Blood samples and cardiac auricles were collected from patients who underwent cardiac procedures: 94 AVR and 289 CABG. The CpGs from three independent blood-derived biological clocks were selected to design a new blood- and the first cardiac-specific clocks. Specifically, 31 CpGs from six age-related genes, ELOVL2, EDARADD, ITGA2B, ASPA, PDE4C, and FHL2, were used to construct the tissue-tailored clocks. The best-fitting variables were combined to define new cardiac- and blood-tailored clocks validated through neural network analysis and elastic regression. In addition, telomere length (TL) was measured by qPCR. These new methods revealed a similarity between chronological and biological age in the blood and heart; the average TL was significantly higher in the heart than in the blood. In addition, the cardiac clock discriminated well between AVR and CABG and was sensitive to cardiovascular risk factors such as obesity and smoking. Moreover, the cardiac-specific clock identified an AVR patient's subgroup whose accelerated bioage correlated with the altered ventricular parameters, including left ventricular diastolic and systolic volume. CONCLUSION This study reports on applying a method to evaluate the cardiac biological age revealing epigenetic features that separate subgroups of AVR and CABG.
Collapse
Affiliation(s)
- A Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, 8952, Schlieren, Switzerland
| | - S Panunzi
- National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - M Nesta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - M Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - S Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Mongiardini
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F Ferraro
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S De Martino
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - L Cis
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Re
- National Research Council (CNR)-IASI, 00185, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S Maltese
- National Research Council (CNR)-IRIB, 90146, Palermo, Italy
| | - T Bachetti
- Direzione Scientifica Centrale ICS Maugeri IRCCS, Pavia, Italy
| | - M T La Rovere
- Dipartimento di Cardiologia ICS Maugeri and Direzione Scientifica ICS Maugeri Montescano IRCCS, Pavia, Italy
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - M Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - S Nanni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - M Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Pontecorvi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Farsetti
- National Research Council (CNR)-IASI, 00185, Rome, Italy.
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Zhou P, Yu SN, Zhang HF, Wang YL, Tao P, Tan YZ, Wang HJ. c-kit +VEGFR-2 + Mesenchymal Stem Cells Differentiate into Cardiovascular Cells and Repair Infarcted Myocardium after Transplantation. Stem Cell Rev Rep 2023; 19:230-247. [PMID: 35962935 PMCID: PMC9823054 DOI: 10.1007/s12015-022-10430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 01/29/2023]
Abstract
Resent study suggests that c-kit+ cells in bone marrow-derived MSCs may differentiate toward cardiamyocytes. However, the properties of c-kit+ MSCs remain unclear. This study isolated c-kit+VEGFR-2+ cells from rat bone marrow-derived MSCs, and assessed potential of c-kit+VEGFR-2+ MSCs to differentiate towards cardiovascular cells and their efficiency of repairing the infarcted myocardium after transplantation. Gene expression profile of the cells was analyzed with RNA-sequencing. Potential of differentiation of the cells was determined after induction. Rat models of myocardial infarction were established by ligation of the left anterior descending coronary artery. The cells were treated with hypoxia and serum deprivation for four hours before transplantation. Improvement of cardiac function and repair of the infarcted myocardium were assessed at four weeks after transplantation. Gene expression profile revealed that c-kit+VEGFR-2+ MSCs expressed most smooth muscle-specific and myocardium-specific genes, while expression of endothelium-specific genes was upregulated significantly. After induction with VEGF or TGF-β for two weeks, the cells expressed CD31 and α-SMA respectively. At three weeks, BMP-2-induced cells expressed cTnT. After transplantation of the cells, cardiac function was improved, scar size of the infarcted myocardium was decreased, and angiogenesis and myocardial regeneration were enhanced significantly. Moreover, paracrine in the myocardium was increased after transplantation. These results suggest that c-kit+VEGFR-2+ MSCs have a potential of differentiation towards cardiovascular cells. Transplantation of c-kit+VEGFR-2+ MSCs is effective for repair of the infarcted myocardium. c-kit+VEGFR-2+ MSCs may be a reliable source for cell therapy of ischaemic diseases.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Hai-Feng Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Ping Tao
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
12
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
13
|
Salerno N, Marino F, Scalise M, Salerno L, Molinaro C, Filardo A, Chiefalo A, Panuccio G, De Angelis A, Urbanek K, Torella D, Cianflone E. Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice. Mech Ageing Dev 2022; 208:111740. [PMID: 36150603 DOI: 10.1016/j.mad.2022.111740] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are predominantly an aging disease. Important sex-specific differences exist and the mechanism(s) by which this sex-by-age interaction influences CVD development and progression remains elusive. Accordingly, it is still unknown whether cell senescence, a main feature of cardiac male aging, is a significant feature also of the female aged mouse heart and whether senolytics, senescence-clearing compounds, promote myocardial repair and regeneration after myocardial infarction (MI) in aged female mice. To this aim, the combination of two senolytics, dasatinib and quercetin (D+Q) or just their vehicle was administered to 22-24 months old C57BL/6 female mice after MI. D+Q improved global left ventricle function and myocardial performance after MI whereby female cardiac aging is characterized by accumulation of cardiac senescent cells that are further increased by MI. Despite their terminal differentiation nature, also cardiomyocytes acquire a senescent phenotype with age in females. D+Q removed senescent cardiac non-myocyte and myocyte cells ameliorating cardiac remodeling and regeneration. Senolytics removed aged dysfunctional cardiac stem/progenitor cells (CSCs), relieving healthy CSCs with normal proliferative and cardiomyogenic differentiation potential. In conclusions, cardiac senescent cells accumulate in the aged female hearts. Removing senescent cells is a key therapeutic target for efficient repair of the aged female heart.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Andrea Filardo
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 88121, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.
| |
Collapse
|
14
|
Bonavida V, Ghassemi K, Ung G, Inouye K, Thankam FG, Agrawal DK. Novel Approaches to Program Cells to Differentiate into Cardiomyocytes in Myocardial Regeneration. Rev Cardiovasc Med 2022; 23:392. [PMID: 39076655 PMCID: PMC11270456 DOI: 10.31083/j.rcm2312392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/31/2024] Open
Abstract
With heart failure (HF) being one of the leading causes of hospitalization and death worldwide, multiple stem cell therapies have been attempted to accelerate the regeneration of the infarct zone. Versatile strategies have emerged to establish the cell candidates of cardiomyocyte lineage for regenerative cardiology. This article illustrates critical insights into the emerging technologies, current approaches, and translational promises on the programming of diverse cell types for cardiac regeneration.
Collapse
Affiliation(s)
- Victor Bonavida
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kaitlyn Ghassemi
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Gwendolyn Ung
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Keiko Inouye
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|
16
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
17
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
18
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
19
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
21
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
22
|
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Sci Rep 2022; 12:10132. [PMID: 35710779 PMCID: PMC9203790 DOI: 10.1038/s41598-022-13203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase inhibitors improve cancer survival but their cardiotoxicity requires investigation. We investigated these inhibitors’ effects on human cardiac progenitor cells in vitro and rat heart in vivo. We applied imatinib, sunitinib or sorafenib to human cardiac progenitor cells, assessing cell viability, proliferation, stemness, differentiation, growth factor production and second messengers. Alongside, sunitinib effects were assessed in vivo. Inhibitors decreased (p < 0.05) cell viability, at levels equivalent to ‘peak’ (24 h; imatinib: 91.5 ± 0.9%; sunitinib: 83.9 ± 1.8%; sorafenib: 75.0 ± 1.6%) and ‘trough’ (7 days; imatinib: 62.3 ± 6.2%; sunitinib: 86.2 ± 3.5%) clinical plasma levels, compared to control (100% viability). Reduced (p < 0.05) cell cycle activity was seen with imatinib (29.3 ± 4.3% cells in S/G2/M-phases; 50.3 ± 5.1% in control). Expression of PECAM-1, Nkx2.5, Wnt2, linked with cell differentiation, were decreased (p < 0.05) 2, 2 and 6-fold, respectively. Expression of HGF, p38 and Akt1 in cells was reduced (p < 0.05) by sunitinib. Second messenger (p38 and Akt1) blockade affected progenitor cell phenotype, reducing c-kit and growth factor (HGF, EGF) expression. Sunitinib for 9 days (40 mg/kg, i.p.) in adult rats reduced (p < 0.05) cardiac ejection fraction (68 ± 2% vs. baseline (83 ± 1%) and control (84 ± 4%)) and reduced progenitor cell numbers. Receptor tyrosine kinase inhibitors reduce cardiac progenitor cell survival, proliferation, differentiation and reparative growth factor expression.
Collapse
|
23
|
Pogontke C, Guadix JA, Sánchez-Tévar AM, Muñoz-Chápuli R, Ruiz-Villalba A, Pérez-Pomares JM. Dynamic Epicardial Contribution to Cardiac Interstitial c-Kit and Sca1 Cellular Fractions. Front Cell Dev Biol 2022; 10:864765. [PMID: 35706902 PMCID: PMC9189417 DOI: 10.3389/fcell.2022.864765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The cardiac interstitial cellular fraction is composed of multiple cell types. Some of these cells are known to express some well-known stem cell markers such as c-Kit and Sca1, but they are no longer accepted to be true cardiac stem cells. Although their existence in the cardiac interstitium has not been disputed, their dynamic throughout development, specific embryonic origin, and potential heterogeneity remain unknown. In this study, we hypothesized that both c-KitPOS and Sca1POS cardiac interstitial cell (CIC) subpopulations are related to the Wilms’ tumor 1 (Wt1) epicardial lineage. Methods: In this study, we have used genetic cell lineage tracing methods, immunohistochemistry, and FACS techniques to characterize cardiac c-KitPOS and Sca1POS cells. Results: Our data show that approximately 50% of cardiac c-KitPOS cells are derived from the Wt1-lineage at E15.5. This subpopulation decreased along with embryonic development, disappearing from P7 onwards. We found that a large proportion of cardiac c-KitPOS cells express specific markers strongly suggesting they are blood-borne cells. On the contrary, the percentage of Sca1POS cells within the Wt1-lineage increases postnatally. In accordance with these findings, 90% of adult epicardial-derived endothelial cells and 60% of mEFSK4POS cardiac fibroblasts expressed Sca1. Conclusion: Our study revealed a minor contribution of the Wt1-epicardial lineage to c-KitPOS CIC from embryonic stages to adulthood. Remarkably, a major part of the adult epicardial-derived cell fraction is enriched in Sca1, suggesting that this subpopulation of CICs is heterogeneous from their embryonic origin. The study of this heterogeneity can be instrumental to the development of diagnostic and prognostic tests for the evaluation of cardiac homeostasis and cardiac interstitium response to pathologic stimuli.
Collapse
Affiliation(s)
- C. Pogontke
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto Malagueño de Biomedicina (IBIMA)-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - J. A. Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto Malagueño de Biomedicina (IBIMA)-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - A. M. Sánchez-Tévar
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto Malagueño de Biomedicina (IBIMA)-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - R. Muñoz-Chápuli
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - A. Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto Malagueño de Biomedicina (IBIMA)-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
- *Correspondence: A. Ruiz-Villalba, ; J. M. Pérez-Pomares,
| | - J. M. Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto Malagueño de Biomedicina (IBIMA)-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
- *Correspondence: A. Ruiz-Villalba, ; J. M. Pérez-Pomares,
| |
Collapse
|
24
|
Marino F, Scalise M, Salerno N, Salerno L, Molinaro C, Cappetta D, Torella M, Greco M, Foti D, Sasso FC, Mastroroberto P, De Angelis A, Ellison-Hughes GM, Sampaolesi M, Rota M, Rossi F, Urbanek K, Nadal-Ginard B, Torella D, Cianflone E. Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes 2022; 71:1081-1098. [PMID: 35108360 PMCID: PMC9490451 DOI: 10.2337/db21-0536] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) affects the biology of multipotent cardiac stem/progenitor cells (CSCs) and adult myocardial regeneration. We assessed the hypothesis that senescence and senescence-associated secretory phenotype (SASP) are main mechanisms of cardiac degenerative defect in DM. Accordingly, we tested whether ablation of senescent CSCs would rescue the cardiac regenerative/reparative defect imposed by DM. We obtained cardiac tissue from nonaged (50- to 64-year-old) patients with type 2 diabetes mellitus (T2DM) and without DM (NDM) and postinfarct cardiomyopathy undergoing cardiac surgery. A higher reactive oxygen species production in T2DM was associated with an increased number of senescent/dysfunctional T2DM-human CSCs (hCSCs) with reduced proliferation, clonogenesis/spherogenesis, and myogenic differentiation versus NDM-hCSCs in vitro. T2DM-hCSCs showed a defined pathologic SASP. A combination of two senolytics, dasatinib (D) and quercetin (Q), cleared senescent T2DM-hCSCs in vitro, restoring their expansion and myogenic differentiation capacities. In a T2DM model in young mice, diabetic status per se (independently of ischemia and age) caused CSC senescence coupled with myocardial pathologic remodeling and cardiac dysfunction. D + Q treatment efficiently eliminated senescent cells, rescuing CSC function, which resulted in functional myocardial repair/regeneration, improving cardiac function in murine DM. In conclusion, DM hampers CSC biology, inhibiting CSCs' regenerative potential through the induction of cellular senescence and SASP independently from aging. Senolytics clear senescence, abrogating the SASP and restoring a fully proliferative/differentiation-competent hCSC pool in T2DM with normalization of cardiac function.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Michele Torella
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Ferdinando C. Sasso
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, U.K
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
- Department of Physiology, New York Medical College, Valhalla, NY
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| |
Collapse
|
25
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
26
|
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022; 11:1089. [PMID: 35406653 PMCID: PMC8997723 DOI: 10.3390/cells11071089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (Y.L.); (J.S.)
| |
Collapse
|
27
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
28
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022; 14:1-40. [PMID: 35126826 PMCID: PMC8788183 DOI: 10.4252/wjsc.v14.i1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases’ morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
29
|
Mehanna RA, Essawy MM, Barkat MA, Awaad AK, Thabet EH, Hamed HA, Elkafrawy H, Khalil NA, Sallam A, Kholief MA, Ibrahim SS, Mourad GM. Cardiac stem cells: Current knowledge and future prospects. World J Stem Cells 2022. [PMID: 35126826 DOI: 10.4252/wjsc.v14.i1.1]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa M Essawy
- Oral Pathology Department, Faculty of Dentistry/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Mona A Barkat
- Human Anatomy and Embryology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Heba A Hamed
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Hagar Elkafrawy
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Nehal A Khalil
- Medical Biochemistry Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Marwa A Kholief
- Forensic Medicine and Clinical toxicology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ghada M Mourad
- Histology and Cell Biology Department/Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
30
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
31
|
Stem Cell Studies in Cardiovascular Biology and Medicine: A Possible Key Role of Macrophages. BIOLOGY 2022; 11:biology11010122. [PMID: 35053119 PMCID: PMC8773242 DOI: 10.3390/biology11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Stem cells are used in cardiovascular biology and biomedicine and this field of research is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells (ESCs) in that they can differentiate into somatic cells. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells that have been used for cardiac regeneration. Recent studies have indicated that exosomes and vesicles from BMSCs and ASCs can be used in regenerative medicine and diagnostics. Chemokines and exosomes can contribute to the communication between inflammatory cells and stem cells to differentiate stem cells into the cell types required for tissue regeneration or repair. In this review, we address these issues based on our research and previous publications. Abstract Stem cells are used in cardiovascular biology and biomedicine, and research in this field is expanding. Two types of stem cells have been used in research: induced pluripotent and somatic stem cells. Stem cell research in cardiovascular medicine has developed rapidly following the discovery of different types of stem cells. Induced pluripotent stem cells (iPSCs) possess potent differentiation ability, unlike somatic stem cells, and have been postulated for a long time. However, differentiating into adult-type mature and functional cardiac myocytes (CMs) remains difficult. Bone marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells used for cardiac regeneration. Among somatic stem cells, bone marrow stem/stromal cells (BMSCs) were the first to be discovered and are relatively well-characterized. BMSCs were once thought to have differentiation ability in infarcted areas of the heart, but it has been identified that paracrine cytokines and micro-RNAs derived from BMSCs contributed to that effect. Moreover, vesicles and exosomes from these cells have similar effects and are effective in cardiac repair. The molecular signature of exosomes can also be used for diagnostics because exosomes have the characteristics of their origin cells. Cardiac stem cells (CSCs) differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells, and supply cardiomyocytes during myocardial infarction by differentiating into newly formed cardiomyocytes. Stem cell niches and inflammatory cells play important roles in stem cell regulation and the recovery of damaged tissues. In particular, chemokines can contribute to the communication between inflammatory cells and stem cells. In this review, we present the current status of this exciting and promising research field.
Collapse
|
32
|
Albericio G, Aguilar S, Torán JL, Yañez R, López JA, Vázquez J, Mora C, Bernad A. Comparative proteomic analysis of nuclear and cytoplasmic compartments in human cardiac progenitor cells. Sci Rep 2022; 12:146. [PMID: 34997006 PMCID: PMC8742012 DOI: 10.1038/s41598-021-03956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Susana Aguilar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jose Luis Torán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n. Ciudad Universitaria, 28040, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Av Complutense, 40, 28040, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Juan Antonio López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carmen Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
33
|
From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int J Mol Sci 2021; 22:ijms222413180. [PMID: 34947977 PMCID: PMC8708686 DOI: 10.3390/ijms222413180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.
Collapse
|
34
|
MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2021; 229:153701. [PMID: 34872024 DOI: 10.1016/j.prp.2021.153701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Treating cardiovascular diseases with cardiac stem cells (CSCs) is a valid treatment among various stem cell-based therapies. With supplying the physiological need for cardiovascular cells as their main function, under pathological circumstances, CSCs can also reproduce the myocardial cells. Although studies have identified many of CSCs' functions, our knowledge of molecular pathways that regulate these functions is not complete enough. Either physiological or pathological studies have shown, stem cells proliferation and differentiation could be regulated by microRNAs (miRNAs). How miRNAs regulate CSC behavior is an interesting area of research that can help us study and control the function of these cells in vitro; an achievement that may be beneficial for patients with cardiovascular diseases. The secretome of stem and progenitor cells has been studied and it has been determined that exosomes are the main source of their secretion which are very small vesicles at the nanoscale and originate from endosomes, which are secreted into the extracellular space and act as key signaling organelles in intercellular communication. Mesenchymal stem cells, cardiac-derived progenitor cells, embryonic stem cells, induced pluripotent stem cells (iPSCs), and iPSC-derived cardiomyocytes release exosomes that have been shown to have cardioprotective, immunomodulatory, and reparative effects. Herein, we summarize the regulation roles of miRNAs and exosomes in cardiac stem cells.
Collapse
|
35
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
36
|
Prat-Vidal C, Crisóstomo V, Moscoso I, Báez-Díaz C, Blanco-Blázquez V, Gómez-Mauricio G, Albericio G, Aguilar S, Fernández-Santos ME, Fernández-Avilés F, Sánchez-Margallo FM, Bayes-Genis A, Bernad A. Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells 2021; 10:cells10102571. [PMID: 34685551 PMCID: PMC8534140 DOI: 10.3390/cells10102571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.
Collapse
Affiliation(s)
- Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (C.P.-V.); (A.B.-G.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Verónica Crisóstomo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Isabel Moscoso
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela and Health Research Institute, University Clinical Hospital of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Claudia Báez-Díaz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Virginia Blanco-Blázquez
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | | | - Guillermo Albericio
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
| | - Susana Aguilar
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
| | - María-Eugenia Fernández-Santos
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Laboratorio Investigación Traslacional en Cardiología (LITC), Unidad de Producción Celular-GMP (UPC-GMP), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), TERCEL, 28007 Madrid, Spain
| | - Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Laboratorio Investigación Traslacional en Cardiología (LITC), Unidad de Producción Celular-GMP (UPC-GMP), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), TERCEL, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Francisco M. Sánchez-Margallo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Jesús Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain;
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (C.P.-V.); (A.B.-G.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.C.); (I.M.); (C.B.-D.); (V.B.-B.); (M.-E.F.-S.); (F.F.-A.); (F.M.S.-M.)
- Cardiology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Bernad
- Immunology and Oncology Department, National Center for Biotechnology, 28049 Madrid, Spain; (G.A.); (S.A.)
- Correspondence: ; Tel.: +34-915-855-424
| |
Collapse
|
37
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
38
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
39
|
Nadal-Ginard B, Cianflone E, Torella D. The baby and the bath water: adult cardiac stem cells revisited. Eur Heart J 2021; 42:3814-3816. [PMID: 34151977 DOI: 10.1093/eurheartj/ehab335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Graecia University, Campus "S. Venuta", Viale Europa, Loc.Germaneto, Catanzaro 88100, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Campus "S. Venuta", Viale Europa, Loc.Germaneto, Catanzaro 88100, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Campus "S. Venuta", Viale Europa, Loc.Germaneto, Catanzaro 88100, Italy
| |
Collapse
|
40
|
Xing S, Tian JZ, Yang SH, Huang XT, Ding YF, Lu QY, Yang JS, Yang WJ. Setd4 controlled quiescent c-Kit + cells contribute to cardiac neovascularization of capillaries beyond activation. Sci Rep 2021; 11:11603. [PMID: 34079011 PMCID: PMC8172824 DOI: 10.1038/s41598-021-91105-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels in the adult mammal exist in a highly organized and stable state. In the ischemic heart, limited expansion capacity of the myocardial vascular bed cannot satisfy demands for oxygen supply and the myocardium eventually undergoes irreversible damage. The predominant contribution of endogenous c-Kit+ cells is understood to be in the development and homeostasis of cardiac endothelial cells, which suggests potential for their targeting in treatments for cardiac ischemic injury. Quiescent cells in other tissues are known to contribute to the long-term maintenance of a cell pool, preserve proliferation capacity and, upon activation, facilitate tissue homeostasis and regeneration in response to tissue injury. Here, we present evidence of a Setd4-expressing quiescent c-Kit+ cell population in the adult mouse heart originating from embryonic stages. Conditional knock-out of Setd4 in c-Kit-CreERT2;Setd4f/f;Rosa26TdTomato mice induced an increase in vascular endothelial cells of capillaries in both neonatal and adult mice. We show that Setd4 regulates quiescence of c-Kit+ cells by the PI3K-Akt-mTOR signaling pathway via H4K20me3 catalysis. In myocardial infarction injured mice, Setd4 knock-out resulted in attenuated cardiomyocyte apoptosis, decreased infarction size and improved cardiac function. Lineage tracing in Setd4-Cre;Rosa26mT/mG mice showed that Setd4+ cells contribute to each cardiac lineage. Overall, Setd4 epigenetically controls c-Kit+ cell quiescence in the adult heart by facilitating heterochromatin formation via H4K20me3. Beyond activation, endogenous quiescent c-Kit+ cells were able to improve cardiac function in myocardial infarction injured mice via the neovascularization of capillaries.
Collapse
Affiliation(s)
- Sheng Xing
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Ze Tian
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Hua Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ting Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Fu Ding
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Yun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life, Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Scalise M, Torella M, Marino F, Ravo M, Giurato G, Vicinanza C, Cianflone E, Mancuso T, Aquila I, Salerno L, Nassa G, Agosti V, De Angelis A, Urbanek K, Berrino L, Veltri P, Paolino D, Mastroroberto P, De Feo M, Viglietto G, Weisz A, Nadal-Ginard B, Ellison-Hughes GM, Torella D. Atrial myxomas arise from multipotent cardiac stem cells. Eur Heart J 2021; 41:4332-4345. [PMID: 32330934 PMCID: PMC7735815 DOI: 10.1093/eurheartj/ehaa156] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. Methods and results Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft’s in immunodeficient NOD/SCID mice. Conclusion Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease. ![]()
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania "L. Vanvitelli", Via Leonardo Bianchi, 80131 Naples, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Ravo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Carla Vicinanza
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Teresa Mancuso
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Iolanda Aquila
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Nassa
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy.,Department of Experimental Medicine, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Pierangelo Veltri
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania "L. Vanvitelli", Via Leonardo Bianchi, 80131 Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Bernardo Nadal-Ginard
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Georgina M Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, Guys Campus - Great Maze Pond rd, SE1 1UL London, UK
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
42
|
Proteomic and Glyco(proteo)mic tools in the profiling of cardiac progenitors and pluripotent stem cell derived cardiomyocytes: Accelerating translation into therapy. Biotechnol Adv 2021; 49:107755. [PMID: 33895330 DOI: 10.1016/j.biotechadv.2021.107755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 03/15/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Research in stem cells paved the way to an enormous amount of knowledge, increasing expectations on cardio regenerative therapeutic approaches in clinic. While the first generation of clinical trials using cell-based therapies in the heart were performed with bone marrow and adipose tissue derived mesenchymal stem cells, second generation cell therapies moved towards the use of cardiac-committed cell populations, including cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes. Despite all these progresses, translating the aptitudes of R&D and pre-clinical data into effective clinical treatments is still highly challenging, partially due to the demanding regulatory and safety concerns but also because of the lack of knowledge on the regenerative mechanisms of action of these therapeutic products. Thus, the need of analytical methodologies that enable a complete characterization of such complex products and a deep understanding of their therapeutic effects, at the cell and molecular level, is imperative to overcome the hurdles of these advanced therapies. Omics technologies, such as proteomics and glyco(proteo)mics workflows based on state of the art mass-spectrometry, have prompted some major breakthroughs, providing novel data on cell biology and a detailed assessment of cell based-products applied in cardiac regeneration strategies. These advanced 'omics approaches, focused on the profiling of protein and glycan signatures are excelling the identification and characterization of cell populations under study, namely unveiling pluripotency and differentiation markers, as well as paracrine mechanisms and signaling cascades involved in cardiac repair. The leading knowledge generated is supporting a more rational therapy design and the rethinking of challenges in Advanced Therapy Medicinal Products development. Herein, we review the most recent methodologies used in the fields of proteomics, glycoproteomics and glycomics and discuss their impact on the study of cardiac progenitor cells and pluripotent stem cell derived cardiomyocytes biology. How these discoveries will impact the speed up of novel therapies for cardiovascular diseases is also addressed.
Collapse
|
43
|
Yan C, Xu Z, Huang W. Cellular Senescence Affects Cardiac Regeneration and Repair in Ischemic Heart Disease. Aging Dis 2021; 12:552-569. [PMID: 33815882 PMCID: PMC7990367 DOI: 10.14336/ad.2020.0811] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023] Open
Abstract
Ischemic heart disease (IHD) is defined as a syndrome of ischemic cardiomyopathy. Myogenesis and angiogenesis in the ischemic myocardium are important for cardiomyocyte (CM) survival, improving cardiac function and decreasing the progression of heart failure after IHD. Cellular senescence is a state of permanent irreversible cell cycle arrest caused by stress that results in a decline in cellular functions, such as proliferation, migration, homing, and differentiation. In addition, senescent cells produce the senescence-associated secretory phenotype (SASP), which affects the tissue microenvironment and surrounding cells by secreting proinflammatory cytokines, chemokines, growth factors, and extracellular matrix degradation proteins. The accumulation of cardiovascular-related senescent cells, including vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), CMs and progenitor cells, is an important risk factor of cardiovascular diseases, such as vascular aging, atherosclerotic plaque formation, myocardial infarction (MI) and ventricular remodeling. This review summarizes the processes of angiogenesis, myogenesis and cellular senescence after IHD. In addition, this review focuses on the relationship between cellular senescence and cardiovascular disease and the mechanism of cellular senescence. Finally, we discuss a potential therapeutic strategy for MI targeting senescent cells.
Collapse
Affiliation(s)
- Chi Yan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| | - Zhimeng Xu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China.
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi, China.
- Department of Cardiology, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China.
| |
Collapse
|
44
|
Xu AA, Shapero KS, Geibig JA, Ma HWK, Jones AR, Hanna M, Pitts DR, Hillas E, Firpo MA, Peattie RA. Histologic evaluation of therapeutic responses in ischemic myocardium elicited by dual growth factor delivery from composite glycosaminoglycan hydrogels. Acta Histochem 2021; 123:151699. [PMID: 33662819 DOI: 10.1016/j.acthis.2021.151699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
In this project, the ability of dual growth factor-preloaded, silk-reinforced, composite hyaluronic acid-based hydrogels to elicit advantageous histologic responses when secured to ischemic myocardium was evaluated in vivo. Reinforced hydrogels containing both Vascular Endothelial Growth Factor (VEGF) and Platelet-derived Growth Factor (PDGF) were prepared by crosslinking chemically modified hyaluronic acid and heparin with poly(ethylene glycol)-diacrylate around a reinforcing silk mesh. Composite patches were sutured to the ventricular surface of ischemic myocardium in Sprague-Dawley rats, and the resulting angiogenic response was followed for 28 days. The gross appearance of treated hearts showed significantly reduced ischemic area and fibrous deposition compared to untreated control hearts. Histologic evaluation showed growth factor delivery to restore myofiber orientation to pre-surgical levels and to significantly increase elicited microvessel density and maturity by day 28 in infarcted myocardial tissue (p < 0.05). In addition, growth factor delivery reduced cell apoptosis and decreased the density of elicited mast cells and both CD68+ and anti-inflammatory CD163+ macrophages. These findings suggest that HA-based, dual growth factor-loaded hydrogels can successfully induce a series of beneficial responses in ischemic myocardium, and offer the potential for therapeutic improvement of ischemic myocardial remodeling.
Collapse
Affiliation(s)
- Alexander A Xu
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Kayle S Shapero
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Jared A Geibig
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Hsiang-Wei K Ma
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Alex R Jones
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Marina Hanna
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Daniel R Pitts
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Elaine Hillas
- Department of Surgery, School of Medicine, The University of Utah, 30 N., 1930 E., Salt Lake City, UT, 84132, USA
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, The University of Utah, 30 N., 1930 E., Salt Lake City, UT, 84132, USA
| | - Robert A Peattie
- Department of Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
45
|
Cruz-Samperio R, Jordan M, Perriman A. Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Transl Med 2021; 10:855-866. [PMID: 33660953 PMCID: PMC8133336 DOI: 10.1002/sctm.20-0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post‐MI. Unfortunately, the efficacy of CTs is somewhat limited by their poor long‐term viability, homing, and engraftment to the myocardium. In response, a range of novel SC‐based technologies are in development to provide additional cellular modalities, bringing CTs a step closer to the clinic. In this review, the current landscape of emerging CTs and their augmentation strategies for the treatment post‐MI are discussed. In doing so, we highlight recent advances in cell membrane reengineering via genetic modifications, recombinant protein immobilization, and the utilization of soft biomimetic scaffold interfaces.
Collapse
Affiliation(s)
| | - Millie Jordan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
46
|
Lee JW, Lee CS, Ryu YR, Lee J, Son H, Cho HJ, Kim HS. Lysophosphatidic Acid Receptor 4 Is Transiently Expressed during Cardiac Differentiation and Critical for Repair of the Damaged Heart. Mol Ther 2021; 29:1151-1163. [PMID: 33160074 PMCID: PMC7934582 DOI: 10.1016/j.ymthe.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/05/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3−7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Rim Ryu
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Jai Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
47
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
48
|
Hassanpour M, Aghamohamadzade N, Cheraghi O, Heidarzadeh M, Nouri M. Current status of cardiac regenerative medicine; An update on point of view to cell therapy application. J Cardiovasc Thorac Res 2021; 12:256-268. [PMID: 33510874 PMCID: PMC7828760 DOI: 10.34172/jcvtr.2020.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Because of the economic and social burden of acute myocardial infarction and its chronic consequences in surviving patients, understanding the pathophysiology of myocardial infarction injury is a major priority for cardiovascular research. MI is defined as cardiomyocytes death caused by an ischemic that resulted from the apoptosis, necrosis, necroptosis, and autophagy. The phases of normal repair following MI including inflammatory, proliferation, and maturation. Normal repair is slow and inefficient generally so that other treatments are required. Because of difficulties, outcomes, and backwashes of traditional therapies including coronary artery bypass grafting, balloon angioplasty, heart transplantation, and artificial heart operations, the novel strategy in the treatment of MI, cell therapy, was newly emerged. In cell therapy, a new population of cells has created that substitute with damaged cells. Different types of stem cell and progenitor cells have been shown to improve cardiac function through various mechanisms, including the formation of new myocytes, endothelial cells, and vascular smooth muscle cells. Bone marrow- and/or adipose tissue-derived mesenchymal stem cells, embryonic stem cells, autologous skeletal myoblasts, induced pluripotent stem cells, endothelial progenitor cells, cardiac progenitor cells and cardiac pericytes considered as a source for cell therapy. In this study, we focused on the point of view of the cell sources.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Omid Cheraghi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
50
|
Geles K, Palumbo D, Sellitto A, Giurato G, Cianflone E, Marino F, Torella D, Mirici Cappa V, Nassa G, Tarallo R, Weisz A, Rizzo F. WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data. F1000Res 2021; 10:1. [PMID: 34316353 PMCID: PMC8276195 DOI: 10.12688/f1000research.27868.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Current bioinformatics workflows for PIWI-interacting RNA (piRNA) analysis focus primarily on germline-derived piRNAs and piRNA-clusters. Frequently, they suffer from outdated piRNA databases, questionable quantification methods, and lack of reproducibility. Often, pipelines specific to miRNA analysis are used for the piRNA research
in silico. Furthermore, the absence of a well-established database for piRNA annotation, as for miRNA, leads to uniformity issues between studies and generates confusion for data analysts and biologists. For these reasons, we have developed WIND (
Workflow for p
IRNAs a
Nd beyon
D), a bioinformatics workflow that addresses the crucial issue of piRNA annotation, thereby allowing a reliable analysis of small RNA sequencing data for the identification of piRNAs and other small non-coding RNAs (sncRNAs) that in the past have been incorrectly classified as piRNAs. WIND allows the creation of a comprehensive annotation track of sncRNAs combining information available in RNAcentral, with piRNA sequences from piRNABank, the first database dedicated to piRNA annotation. WIND was built with Docker containers for reproducibility and integrates widely used bioinformatics tools for sequence alignment and quantification. In addition, it includes Bioconductor packages for exploratory data and differential expression analysis. Moreover, WIND implements a "dual" approach for the evaluation of sncRNAs expression level quantifying the aligned reads to the annotated genome and carrying out an alignment-free transcript quantification using reads mapped to the transcriptome. Therefore, a broader range of piRNAs can be annotated, improving their quantification and easing the subsequent downstream analysis. WIND performance has been tested with several small RNA-seq datasets, demonstrating how our approach can be a useful and comprehensive resource to analyse piRNAs and other classes of sncRNAs.
Collapse
Affiliation(s)
- Konstantinos Geles
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Clinical Research and Innovation, Clinica Montevergine S.p.A., Mercogliano, Mercogliano, 83013, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Valeria Mirici Cappa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno (SA), 84081, Italy.,Genomix4Life, via S. Allende 43/L, Baronissi, Salerno (SA), 84081, Italy.,CRGS (Genome Research Center for Health), University of Salerno Campus of Medicine, Baronissi, Salerno (SA), 84081, Italy
| |
Collapse
|