1
|
Razzoli M, McGonigle S, Sahu BS, Rodriguez P, Svedberg D, Rao L, Ruocco C, Nisoli E, Vezzani B, Frontini A, Bartolomucci A. A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis. Adipocyte 2024; 13:2421745. [PMID: 39484996 PMCID: PMC11540092 DOI: 10.1080/21623945.2024.2421745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Brown adipocytes are defined based on a distinct morphology and genetic signature that includes, amongst others, the expression of the Purinergic 2 Receptor X5 (P2RX5). However, the role of P2RX5 in brown adipocyte and brown adipose tissue function is poorly characterized. In the present study, we conducted a metabolic characterization of P2RX5 knockout male mice; next, we characterized this purinergic pathway in a cell-autonomous context in brown adipocytes. We then tested the role of the P2RX5 receptor agonism in metabolic responses in vivo in conditions of minimal adaptive thermogenesis requirements. Our data show that loss of P2RX5 causes reduced brown adipocyte differentiation in vitro, and browning in vivo. Lastly, we unravel a previously unappreciated role for P2RX5 agonism to exert an anti-obesity effect in the presence of enhanced brown adipose tissue recruitment in male mice housed at thermoneutrality. Altogether, our data support a role for P2RX5 in mediating brown adipocyte differentiation and function that could be further targeted for benefits in the context of adipose tissue pathology and metabolic diseases.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Cellular and Molecular Neurosciences Division, DBT- National Brain Research Center, Manesar, Gurgaon, India
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Svedberg
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Loredana Rao
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Università degli Studi di Ancona, Ancona, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Bianca Vezzani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Università degli Studi di Ancona, Ancona, Italy
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Gutierrez MJ, Nino G, Restrepo-Gualteros S, Mondell E, Chorvinsky E, Bhattacharya S, Bera BS, Welham A, Hong X, Wang X. Purine degradation pathway metabolites at birth and the risk of lower respiratory tract infections in infancy. ERJ Open Res 2024; 10:00693-2023. [PMID: 38410704 PMCID: PMC10895431 DOI: 10.1183/23120541.00693-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 02/28/2024] Open
Abstract
Background Lower respiratory tract infections (LRTIs) are the leading cause of infant morbidity and mortality worldwide, and altered metabolite production is recognised as a critical factor in LRTI pathogenesis. Methods This study aimed to identify prenatal metabolic changes associated with LRTI risk in infancy, using liquid chromatography-mass spectrometry unbiased metabolomics analysis on cord blood from 810 full-term newborns. Results We identified 22 compounds linked to LRTIs in infancy, enriched for purine degradation pathway (PDP) metabolites. High cord blood PDP metabolites, including xanthine, hypoxanthine, xanthosine and inosine, were linked to reduced LRTI risk during infancy. Notably, a low xanthine to uric acid ratio at birth predicted a four-fold increased LRTI risk. Conclusion This study is the first to reveal that high cord blood PDP metabolites identify newborns at lower LRTI risk, stratifying disease risk at birth. Moreover, our results prompt further study on PDP enzymes as pharmacological targets to decrease LRTI morbidity and mortality for at-risk newborns.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, USA
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
- These authors contributed equally
| | - Sonia Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Division of Pediatric Pulmonology, Fundación Hospital Pediátrico La Misericordia (HOMI), Bogotá, Colombia
| | - Ethan Mondell
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Chorvinsky
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Bethlehem Solomon Bera
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Allison Welham
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
4
|
Azzari NA, Segars KL, Rapaka S, Kushimi L, Rich CB, Trinkaus-Randall V. Aberrations in Cell Signaling Quantified in Diabetic Murine Globes after Injury. Cells 2023; 13:26. [PMID: 38201230 PMCID: PMC10778404 DOI: 10.3390/cells13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The corneal epithelium is an avascular structure that has a unique wound healing mechanism, which allows for rapid wound closure without compromising vision. This wound healing mechanism is attenuated in diabetic patients, resulting in poor clinical outcomes and recurrent non-healing erosion. We investigated changes in cellular calcium signaling activity during the wound response in murine diabetic tissue using live cell imaging from both ex vivo and in vitro models. The calcium signaling propagation in diabetic cells was significantly decreased and displayed altered patterns compared to non-diabetic controls. Diabetic cells and tissue display distinct expression of the purinergic receptor, P2X7, which mediates the wound healing response. We speculate that alterations in P2X7 expression, interactions with other proteins, and calcium signaling activity significantly impact the wound healing response. This may explain aberrations in the diabetic wound response.
Collapse
Affiliation(s)
- Nicholas A. Azzari
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
| | - Kristen L. Segars
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
| | - Srikar Rapaka
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
| | - Landon Kushimi
- Department of Computer Science, Center for Computing and Data Sciences, Boston University, 665 Commonwealth Ave, Boston, MA 02115, USA;
| | - Celeste B. Rich
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| |
Collapse
|
5
|
Zhuang Y, Chai J, Abdelsattar MM, Fu Y, Zhang N. Transcriptomic and metabolomic insights into the roles of exogenous β-hydroxybutyrate acid for the development of rumen epithelium in young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:10-21. [PMID: 37746660 PMCID: PMC10514413 DOI: 10.1016/j.aninu.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 09/26/2023]
Abstract
Beta-hydroxybutyric acid (BHBA), as one of the main metabolic ketones in the rumen epithelium, plays critical roles in cellular growth and metabolism. The ketogenic capacity is associated with the maturation of rumen in young ruminants, and the exogenous BHBA in diet may promote the rumen development. However, the effects of exogenous BHBA on rumen remain unknown. This is the first study to investigate the mechanisms of BHBA on gene expression and metabolism of rumen epithelium using young goats as a model through multi-omics techniques. Thirty-two young goats were divided into control, low dose, middle dose, and high dose groups by supplementation of BHBA in starter (0, 3, 6, and 9 g/day, respectively). Results demonstrated the dietary of BHBA promoted the growth performance of young goats and increased width and length of the rumen papilla (P < 0.05). Hub genes in host transcriptome that were positively related to rumen characteristics and BHBA concentration were identified. Several upregulated hub genes including NDUFC1, NDUFB4, NDUFB10, NDUFA11 and NDUFA1 were enriched in the gene ontology (GO) pathway of nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) activity, while ATP5ME, ATP5PO and ATP5PF were associated with ATP synthesis. RT-PCR revealed the expression of genes (HMGCS2, BDH1, SLC16A3, etc.) associated with lipolysis increased significantly by BHBA supplementation (P < 0.05). Metabolomics indicated that some metabolites such as glucose, palmitic acid, cortisol and capric acid were also increased (P < 0.05). This study revealed that BHBA promoted rumen development through altering NADH balance and accelerating lipid metabolism, which provides a theoretical guidance for the strategies of gastrointestinal health and development of young ruminants.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mahmoud M. Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Yuze Fu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Galgaro BC, Beckenkamp LR, Naasani LIS, Wink MR. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Hum Cell 2023; 36:2247-2258. [PMID: 37535223 DOI: 10.1007/s13577-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have unique biological properties and play important functions, which make them attractive tools for cell-based therapies. The basic mechanisms of these cells are not fully understood. However, the adenosinergic pathway contributes to the main effects attributed to MSCs. Adenosine is a highly immunosuppressive molecule and exerts a central role in inflammation by neutralizing the proinflammatory ATP influence. This nucleoside is produced by purinergic signaling, an important physiological pathway for MSCs, which involves proliferation, migration, differentiation, and apoptosis. Therefore, in this study, we analyzed the extracellular AMP hydrolysis and consequent adenosine production, as well as the expression of CD73 and adenosine receptors on the cell surface of MSCs isolated from different human tissues: dermis (D-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). All cells confirmed their multipotent capacity by adipogenic, osteogenic, and chondrogenic differentiation, as well as the expression of cell surface markers including CD44 + , CD105 + , and CD90 + . All MSCs expressed similar levels of CD73 and CD26 without a statistical difference among the different tissues, whereas ADA expression was lower in AD-MSCs. In addition, A1R and A3R mRNA levels were higher in D-MSCs and AD-MSCs, respectively. Enzymatic assay showed that AD-MSCs have the highest hydrolysis rate of AMP, leading to increased amount of adenosine production. Moreover, despite all MSCs completely hydrolyze extracellular AMP generating adenosine, the pattern of nucleosides metabolism was different. Therefore, although MSCs share certain characteristics as the multilineage potential and immunophenotype, they show different adenosinergic profiles according to tissue origin.
Collapse
Affiliation(s)
- Bruna Campos Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liliana I Sous Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
7
|
Gou Z, Zhang H, Misbah C. Heterogeneous ATP patterns in microvascular networks. J R Soc Interface 2023; 20:20230186. [PMID: 37464803 PMCID: PMC10354495 DOI: 10.1098/rsif.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
ATP is not only an energy carrier but also serves as an important signalling molecule in many physiological processes. Abnormal ATP level in blood vessel is known to be related to several pathologies, such as inflammation, hypoxia and atherosclerosis. Using advanced numerical methods, we analysed ATP released by red blood cells (RBCs) and its degradation by endothelial cells (ECs) in a cat mesentery-inspired vascular network, accounting for RBC mutual interaction and interactions with vascular walls. Our analysis revealed a heterogeneous ATP distribution in the network, with higher concentrations in the cell-free layer, concentration peaks around bifurcations and heterogeneity among vessels of the same level. These patterns arise from the spatio-temporal organization of RBCs induced by the network geometry. It is further shown that an alteration of hematocrit and flow strength significantly affects ATP level as well as heterogeneity in the network. These findings constitute a first building block to elucidate the intricate nature of ATP patterns in vascular networks and the far reaching consequences for other biochemical signalling, such as calcium, by ECs.
Collapse
Affiliation(s)
- Zhe Gou
- CNRS, LIPhy, Université Grenoble Alpes, 38000 Grenoble, France
| | - Hengdi Zhang
- CNRS, LIPhy, Université Grenoble Alpes, 38000 Grenoble, France
- Shenzhen Sibionics Co. Ltd, Shenzhen, People’s Republic of China
| | - Chaouqi Misbah
- CNRS, LIPhy, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Ledderose S, Rodler S, Eismann L, Ledderose G, Rudelius M, Junger WG, Ledderose C. P2X1 and P2X7 Receptor Overexpression Is a Negative Predictor of Survival in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2023; 15:2321. [PMID: 37190249 PMCID: PMC10136747 DOI: 10.3390/cancers15082321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer is amongst the most common causes of cancer death worldwide. Muscle-invasive bladder cancer (MIBC) bears a particularly poor prognosis. Overexpression of purinergic P2X receptors (P2XRs) has been associated with worse outcome in several malignant tumors. Here, we investigated the role of P2XRs in bladder cancer cell proliferation in vitro and the prognostic value of P2XR expression in MIBC patients. Cell culture experiments with T24, RT4, and non-transformed TRT-HU-1 cells revealed a link between high ATP concentrations in the cell culture supernatants of bladder cell lines and a higher grade of malignancy. Furthermore, proliferation of highly malignant T24 bladder cancer cells depended on autocrine signaling through P2X receptors. P2X1R, P2X4R, and P2X7R expression was immunohistochemically analyzed in tumor specimens from 173 patients with MIBC. High P2X1R expression was associated with pathological parameters of disease progression and reduced survival time. High combined expression of P2X1R and P2X7R increased the risk of distant metastasis and was an independent negative predictor of overall and tumor-specific survival in multivariate analyses. Our results suggest that P2X1R/P2X7R expression scores are powerful negative prognostic markers in MIBC patients and that P2XR-mediated pathways are potential targets for novel therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Stephan Ledderose
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Severin Rodler
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Lennert Eismann
- Department of Urology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Georg Ledderose
- Department of Oto-Rhino-Laryngology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig Maximilian University, 80337 Munich, Germany
| | - Wolfgang G. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, University of California San Diego Health, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
10
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
11
|
das Neves GM, Kagami LP, Battastini AMO, Figueiró F, Eifler-Lima VL. Targeting ecto-5'-nucleotidase: A comprehensive review into small molecule inhibitors and expression modulators. Eur J Med Chem 2023; 247:115052. [PMID: 36599229 DOI: 10.1016/j.ejmech.2022.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The purinergic signaling has drawn attention from academia and more recently from pharmaceutical industries as a potential therapeutic route for cancer treatment, since ATP may act as chemotactic agent and possess in vitro antineoplastic activity. On the other way, adenosine, produced in extracellular medium by ecto-5'-NT, acts as immunosuppressor and is related to neoangiogenesis, vasculogenesis and evasion to the immune system. Consequently, inhibitors of ecto-5'-NT may prevent tumor progression, reducing adenosine concentrations, preventing escape from the host's immune system and slowing cancer's growth. This review aims to highlight important biochemical and structural features of ecto-5'NT, highlight its expression profile in normal and cancer cell lines detailing compounds which may act as expression regulators and to review the several classes of ecto-5'NT inhibitors developed in the past 12 years, in order to build a general structure-activity relationship model to guide further compound design.
Collapse
Affiliation(s)
- Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luciano Porto Kagami
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer (LIBC), Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
13
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Sikka P, Behl T, Chandel P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM. Scrutinizing the Therapeutic Promise of Purinergic Receptors Targeting Depression. Neurotox Res 2022; 40:1570-1585. [PMID: 35930172 DOI: 10.1007/s12640-022-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Antidepressant use has resulted in a variety of negative consequences, including permanent brain damage and erectile dysfunction. So, the purpose lies in developing something more productive with minimal side effects and consequently improved efficacy. A growing body of evidences indicated a remarkable purinergic signalling system, which helped in dealing with this complication. This has been found to be a powerful formula in dealing with psychiatric disorders. P1 (adenosine), P2X, and P2Y (ATP) are the receptors, involved in the pathology as well as exhibiting the therapeutic action by triggering the purinergic pathway. It was found that A2A and P2X7 receptors specifically were involved and recognized as possible targets for treating depression. Further, the development of biomarkers for the diagnosis of depression has also been attributed to accelerate the process. One such biomarker includes serum uric acid. Many clinical studies reveal the importance of antagonizing P2X7 and A2A receptors, for promising research in understanding the molecular premises of depression. However, further investigations are still needed to be done to open several unfolded mysteries for a better and safe upshot. The selective antagonists for A2A and P2X7 receptors may have antidepressant effects showing positive results, in agreement with non-clinical testing. In this review, efforts are being devoted to the targeted receptors in bringing out antidepressant effects with a possible link involving depression and defined purinergic signalling. Additionally, the overview of various receptors, including their functions and distribution, is being explored in a representative way along with the biomarkers involved.
Collapse
Affiliation(s)
- Priyanshi Sikka
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
15
|
Schaunaman N, Dimasuay KG, Cervantes D, Li L, Numata M, Kraft M, Chu HW. Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. J Innate Immun 2022; 15:67-77. [PMID: 35760043 PMCID: PMC10643888 DOI: 10.1159/000525315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
16
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Al-Ahmad MS, Yañez A, Al-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Maximiliano Gómez R, Gonzalez Diaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortego-Martell JA, Lesslar OJ, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part III: Management strategies in primary and cough-specialty care. Updates in COVID-19. World Allergy Organ J 2022; 15:100649. [PMID: 35600836 PMCID: PMC9117692 DOI: 10.1016/j.waojou.2022.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Chronic cough management necessitates a clear integrated care pathway approach. Primary care physicians initially encounter the majority of chronic cough patients, yet their role in proper management can prove challenging due to limited access to advanced diagnostic testing. A multidisciplinary approach involving otolaryngologists and chest physicians, allergists, and gastroenterologists, among others, is central to the optimal diagnosis and treatment of conditions which underly or worsen cough. These include infectious and inflammatory, upper and lower airway pathologies, or gastro-esophageal reflux. Despite the wide armamentarium of ancillary testing conducted in cough multidisciplinary care, such management can improve cough but seldom resolves it completely. This can be due partly to the limited data on the role of tests (eg, spirometry, exhaled nitric oxide), as well as classical pharmacotherapy conducted in multidisciplinary specialties for chronic cough. Other important factors include presence of multiple concomitant cough trigger mechanisms and the central neuronal complexity of chronic cough. Subsequent management conducted by cough specialists aims at control of cough refractory to prior interventions and includes cough-specific behavioral counseling and pharmacotherapy with neuromodulators, among others. Preliminary data on the role of neuromodulators in a proof-of-concept manner are encouraging but lack strong evidence on efficacy and safety. Objectives The World Allergy Organization (WAO)/Allergic Rhinitis and its Impact on Asthma (ARIA) Joint Committee on Chronic Cough reviewed the recent literature on management of chronic cough in primary, multidisciplinary, and cough-specialty care. Knowledge gaps in diagnostic testing, classical and neuromodulator pharmacotherapy, in addition to behavioral therapy of chronic cough were also analyzed. Outcomes This third part of the WAO/ARIA consensus on chronic cough suggests a management algorithm of chronic cough in an integrated care pathway approach. Insights into the inherent limitations of multidisciplinary cough diagnostic testing, efficacy and safety of currently available antitussive pharmacotherapy, or the recently recognized behavioral therapy, can significantly improve the standards of care in patients with chronic cough.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology – Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Ear, Nose and Throat Department, Dar Al Shifa Hospital, Hawally, Kuwait
| | - Samar A. Idriss
- Department of Otolaryngology – Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, Massachusetts, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | - Mona S. Al-Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Anahi Yañez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. Al-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. Gonzalez Diaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France university Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University & Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNC School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati, OH, USA
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
| | - Luciana K. Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine, Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
17
|
Jakova E, Moutaoufik MT, Lee JS, Babu M, Cayabyab FS. Adenosine A1 receptor ligands bind to α-synuclein: implications for α-synuclein misfolding and α-synucleinopathy in Parkinson's disease. Transl Neurodegener 2022; 11:9. [PMID: 35139916 PMCID: PMC8830172 DOI: 10.1186/s40035-022-00284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating α-synuclein (α-syn) aggregates in neurons and glial cells are the staples of many synucleinopathy disorders, such as Parkinson’s disease (PD). Since brain adenosine becomes greatly elevated in ageing brains and chronic adenosine A1 receptor (A1R) stimulation leads to neurodegeneration, we determined whether adenosine or A1R receptor ligands mimic the action of known compounds that promote α-syn aggregation (e.g., the amphetamine analogue 2-aminoindan) or inhibit α-syn aggregation (e.g., Rasagiline metabolite 1-aminoindan). In the present study, we determined whether adenosine, A1R receptor agonist N6-Cyclopentyladenosine (CPA) and antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) could directly interact with α-syn to modulate α-syn aggregation and neurodegeneration of dopaminergic neurons in the substantia nigra (SN). Methods Nanopore analysis and molecular docking were used to test the binding properties of CPA and DPCPX with α-syn in vitro. Sprague–Dawley rats were administered with 7-day intraperitoneal injections of the A1R ligands and 1- and 2-aminoindan, and levels of α-syn aggregation and neurodegeneration were examined in the SN pars compacta and hippocampal regions using confocal imaging and Western blotting. Results Using nanopore analysis, we showed that the A1R agonists (CPA and adenosine) interacted with the N-terminus of α-syn, similar to 2-aminoindan, which is expected to promote a “knot” conformation and α-syn misfolding. In contrast, the A1R antagonist DPCPX interacted with the N- and C-termini of α-syn, similar to 1-aminoindan, which is expected to promote a “loop” conformation that prevents α-syn misfolding. Molecular docking studies revealed that adenosine, CPA and 2-aminoindan interacted with the hydrophobic core of α-syn N-terminus, whereas DPCPX and 1-aminoindan showed direct binding to the N- and C-terminal hydrophobic pockets. Confocal imaging and Western blot analyses revealed that chronic treatments with CPA alone or in combination with 2-aminoindan increased α-syn expression/aggregation and neurodegeneration in both SN pars compacta and hippocampus. In contrast, DPCPX and 1-aminoindan attenuated the CPA-induced α-syn expression/aggregation and neurodegeneration in SN and hippocampus. Conclusions The results indicate that A1R agonists and drugs promoting a “knot” conformation of α-syn can cause α-synucleinopathy and increase neuronal degeneration, whereas A1R antagonists and drugs promoting a “loop” conformation of α-syn can be harnessed for possible neuroprotective therapies to decrease α-synucleinopathy in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00284-3.
Collapse
Affiliation(s)
- Elisabet Jakova
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohamed Taha Moutaoufik
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK, Canada
| | - Jeremy S Lee
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK, Canada
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
18
|
Maynard JP, Lu J, Vidal I, Hicks J, Mummert L, Ali T, Kempski R, Carter AM, Sosa RY, Peiffer LB, Joshu CE, Lotan TL, De Marzo AM, Sfanos KS. P2X4 purinergic receptors offer a therapeutic target for aggressive prostate cancer. J Pathol 2022; 256:149-163. [PMID: 34652816 PMCID: PMC8738159 DOI: 10.1002/path.5815] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023]
Abstract
Prostate cancer (PCa) remains a leading cause of cancer-related deaths in American men and treatment options for metastatic PCa are limited. There is a critical need to identify new mechanisms that contribute to PCa progression, that distinguish benign from lethal disease, and that have potential for therapeutic targeting. P2X4 belongs to the P2 purinergic receptor family that is commonly upregulated in cancer and is associated with poorer outcomes. We observed P2X4 protein expression primarily in epithelial cells of the prostate, a subset of CD66+ neutrophils, and most CD68+ macrophages. Our analysis of tissue microarrays representing 491 PCa cases demonstrated significantly elevated P2X4 expression in cancer- compared with benign-tissue spots, in prostatic intraepithelial neoplasia, and in PCa with ERG positivity or with PTEN loss. High-level P2X4 expression in benign tissues was likewise associated with the development of metastasis after radical prostatectomy. Treatment with the P2X4-specific agonist cytidine 5'-triphosphate (CTP) increased Transwell migration and invasion of PC3, DU145, and CWR22Rv1 PCa cells. The P2X4 antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) resulted in a dose-dependent decrease in viability of PC3, DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, BMPC1, and BMPC2 cells and decreased DU145 cell migration and invasion. Knockdown of P2X4 attenuated growth, migration, and invasion of PCa cells. Finally, knockdown of P2X4 in Myc-CaP cells resulted in significantly attenuated subcutaneous allograft growth in FVB/NJ mice. Collectively, these data strongly support a role for the P2X4 purinergic receptor in PCa aggressiveness and identify P2X4 as a candidate for therapeutic targeting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janielle P. Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Correspondence to: JP Maynard, Department of Pathology, Johns Hopkins University School of Medicine, 411 N. Caroline Street, Room B302, Baltimore, MD 21231, USA.
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Igor Vidal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jessica Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Luke Mummert
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tamirat Ali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan Kempski
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ayanna M. Carter
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rebecca Y. Sosa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lauren B. Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne E. Joshu
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Madaan P, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, Kaur S, Bhatia S, Al-Harrasi A, Abdellatif AAH, Ashraf GM, Abdel-Daim MM, Dailah HG, Anwer MK, Bungau S. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox Res 2022; 40:646-669. [DOI: 10.1007/s12640-022-00477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
|
20
|
Mesto N, Movassat J, Tourrel-Cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol (Lausanne) 2022; 13:1099152. [PMID: 37065173 PMCID: PMC10099247 DOI: 10.3389/fendo.2022.1099152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus is a metabolic disorder characterized by a chronic hyperglycemia due to an impaired insulin secretion and a decreased in peripheral insulin sensitivity. This disease is a major public health problem due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic approaches for the treatment of this pathology. One of the strategies would be through P2-type purinergic receptors pathway via ATP binding. In addition to its well-known role as an intracellular energy intermediary in numerous biochemical and physiological processes, ATP is also an important extracellular signaling molecule. ATP mediates its effects by binding and activating two classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14). These receptors are ubiquitously distributed and involved in numerous physiological processes in several tissues. The concept of purinergic signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also found to mediate various responses in the pancreas. Several studies have shown that P2 receptors are expressed in the endocrine pancreas, notably in β cells, where ATP could modulate their function but also their plasticity and thus play a physiological role in stimulating insulin secretion to face some metabolic demands. In this review, we provide a historical perspective and summarize current knowledge on P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity, which would be a promising novel therapeutic approach for the treatment of type 2 diabetes.
Collapse
|
21
|
Rouadi PW, Idriss SA, Bousquet J, Laidlaw TM, Azar CR, Sulaiman AL-Ahmad M, Yáñez A, AL-Nesf MAY, Nsouli TM, Bahna SL, Abou-Jaoude E, Zaitoun FH, Hadi UM, Hellings PW, Scadding GK, Smith PK, Morais-Almeida M, Gómez RM, González Díaz SN, Klimek L, Juvelekian GS, Riachy MA, Canonica GW, Peden D, Wong GW, Sublett J, Bernstein JA, Wang L, Tanno LK, Chikhladze M, Levin M, Chang YS, Martin BL, Caraballo L, Custovic A, Ortega-Martell JA, Jensen-Jarolim E, Ebisawa M, Fiocchi A, Ansotegui IJ. WAO-ARIA consensus on chronic cough - Part 1: Role of TRP channels in neurogenic inflammation of cough neuronal pathways. World Allergy Organ J 2021; 14:100617. [PMID: 34934475 PMCID: PMC8654622 DOI: 10.1016/j.waojou.2021.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cough features a complex peripheral and central neuronal network. The function of the chemosensitive and stretch (afferent) cough receptors is well described but partly understood. It is speculated that chronic cough reflects a neurogenic inflammation of the cough reflex, which becomes hypersensitive. This is mediated by neuromediators, cytokines, inflammatory cells, and a differential expression of neuronal (chemo/stretch) receptors, such as transient receptor potential (TRP) and purinergic P2X ion channels; yet the overall interaction of these mediators in neurogenic inflammation of cough pathways remains unclear. OBJECTIVES The World Allergy Organization/Allergic Rhinitis and its Impact on Asthma (WAO/ARIA) Joint Committee on Chronic Cough reviewed the current literature on neuroanatomy and pathophysiology of chronic cough. The role of TRP ion channels in pathogenic mechanisms of the hypersensitive cough reflex was also examined. OUTCOMES Chemoreceptors are better studied in cough neuronal pathways compared to stretch receptors, likely due to their anatomical overabundance in the respiratory tract, but also their distinctive functional properties. Central pathways are important in suppressive mechanisms and behavioral/affective aspects of chronic cough. Current evidence strongly suggests neurogenic inflammation induces a hypersensitive cough reflex marked by increased expression of neuromediators, mast cells, and eosinophils, among others. TRP ion channels, mainly TRP V1/A1, are important in the pathogenesis of chronic cough due to their role in mediating chemosensitivity to various endogenous and exogenous triggers, as well as a crosstalk between neurogenic and inflammatory pathways in cough-associated airways diseases.
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology - Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Lyon, France
| | - Jean Bousquet
- Hospital Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
- Macvia France, Montpellier France
- Université Montpellier, Montpellier, France
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Boston, MA, USA
| | - Cecilio R. Azar
- Department of Gastroenterology, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
- Department of Gastroenterology, Middle East Institute of Health (MEIH), Beirut, Lebanon
- Department of Gastroenterology, Clemenceau Medical Center (CMC), Beirut, Lebanon
| | | | - Anahí Yáñez
- INAER - Investigaciones en Alergia y Enfermedades Respiratorias, Buenos Aires, Argentina
| | - Maryam Ali Y. AL-Nesf
- Allergy and Immunology Section, Department of Medicine, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | | | - Sami L. Bahna
- Allergy & Immunology Section, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Fares H. Zaitoun
- Department of Allergy Otolaryngology, LAU-RIZK Medical Center, Beirut, Lebanon
| | - Usamah M. Hadi
- Clinical Professor Department of Otolaryngology Head and Neck Surgery, American University of Beirut, Lebanon
| | - Peter W. Hellings
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Allergy and Clinical Immunology, Leuven, Belgium
- University Hospitals Leuven, Department of Otorhinolaryngology, Leuven, Belgium
- University Hospital Ghent, Department of Otorhinolaryngology, Laboratory of Upper Airways Research, Ghent, Belgium
- Academic Medical Center, University of Amsterdam, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | - Peter K. Smith
- Clinical Medicine Griffith University, Southport Qld, 4215, Australia
| | | | | | - Sandra N. González Díaz
- Universidad Autónoma de Nuevo León, Hospital Universitario and Facultad de Medicina, Monterrey, Nuevo León, Mexico
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Georges S. Juvelekian
- Department of Pulmonary, Critical Care and Sleep Medicine at Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Moussa A. Riachy
- Department of Pulmonary and Critical Care, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Giorgio Walter Canonica
- Humanitas University, Personalized Medicine Asthma & Allergy Clinic-Humanitas Research Hospital-IRCCS-Milano Italy
| | - David Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Gary W.K. Wong
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China
| | - James Sublett
- Department of Pediatrics, Section of Allergy and Immunology, University of Louisville School of Medicine, 9800 Shelbyville Rd, Louisville, KY, USA
| | - Jonathan A. Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Immunology/Allergy Section, Cincinnati
| | - Lianglu Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Disease, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing 100730, China
| | - Luciana Kase Tanno
- Université Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA-11, INSERM University of Montpellier, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Manana Chikhladze
- Medical Faculty at Akaki Tsereteli State University, National Institute of Allergy, Asthma & Clinical Immunology, KuTaisi, Tskaltubo, Georgia
| | - Michael Levin
- Division of Paediatric Allergology, Department of Paediatrics, University of Cape Town, South Africa
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Bryan L. Martin
- Department of Otolaryngology, Division of Allergy & Immunology, The Ohio State University, Columbus, OH, USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena. Cartagena de Indias, Colombia
| | - Adnan Custovic
- National Heart and Lund Institute, Imperial College London, UK
| | | | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Austria
- The Interuniversity Messerli Research Institute, Medical University Vienna and Univ, of Veterinary Medicine Vienna, Austria
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology,National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Alessandro Fiocchi
- Translational Pediatric Research Area, Allergic Diseases Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Holy See
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| |
Collapse
|
22
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Juárez-Mercado AP, Chávez-Genaro R, Fiordelisio T, González-Gallardo A, Díaz-Muñoz M, Vázquez-Cuevas FG. Functional expression of P2Y2 receptors in mouse ovarian surface epithelium (OSE). Mol Reprod Dev 2021; 88:758-770. [PMID: 34694051 DOI: 10.1002/mrd.23545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Ovarian surface epithelium (OSE) is a cell monolayer surrounding the ovary; it is involved in the regulation of the ovulatory process and the genesis of ovarian carcinoma. However, intercellular messengers regulating signaling events, like proliferation in the OSE, have not been completely described. Purines have emerged as novel intercellular messengers in the ovary, in which expression of purinergic receptors has been reported in different cell types. In the present work, we described the functional expression of P2Y2 receptor (P2Y2R), a purinergic receptor widely associated with cell proliferation, in the OSE. The expression of P2Y2R by immunofluorescence and RT-PCR, and its functionality by Ca2+ recording was demonstrated in primary cultured OSE. Functional expression of P2Y2R was also exhibited in situ, by recording of intracellular Ca2+ release and detection of ERK phosphorylation after injection of a selective agonist into the ovarian bursa. Furthermore, P2Y2R activation with UTPγS, in situ, induced cell proliferation at 24 h, whereas continuous stimulation of P2Y2R during a complete estrous cycle significantly modified the size distribution of the follicular population. This is the first evidence of the functional expression of purinergic P2Y2R in the OSE and opens new perspectives on the roles played by purines in ovarian physiology.
Collapse
Affiliation(s)
- Ana Patricia Juárez-Mercado
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Rebeca Chávez-Genaro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Adriana González-Gallardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
24
|
Grimmer B, Krauszman A, Hu X, Kabir G, Connelly KA, Li M, Grune J, Madry C, Isakson BE, Kuebler WM. Pannexin 1-a novel regulator of acute hypoxic pulmonary vasoconstriction. Cardiovasc Res 2021; 118:2535-2547. [PMID: 34668529 DOI: 10.1093/cvr/cvab326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to alveolar hypoxia that diverts blood flow from poorly ventilated to better aerated lung areas to optimize ventilation-perfusion matching. Yet, the exact sensory and signaling mechanisms by which hypoxia triggers pulmonary vasoconstriction remain incompletely understood. Recently, ATP release via pannexin 1 (Panx1) and subsequent signaling via purinergic P2Y receptors has been identified as regulator of vasoconstriction in systemic arterioles. Here, we probed for the role of Panx1-mediated ATP release in HPV and chronic hypoxic pulmonary hypertension (PH). METHODS AND RESULTS Pharmacological inhibition of Panx1 by probenecid, spironolactone, the Panx1 specific inhibitory peptide (10Panx1) and genetic deletion of Panx1 specifically in smooth muscle attenuated HPV in isolated perfused mouse lungs. In pulmonary artery smooth muscle cells (PASMC), both spironolactone and 10Panx1 attenuated the increase in intracellular Ca2+ concentration ([Ca2+]i) in response to hypoxia. Yet, genetic deletion of Panx1 in either endothelial or smooth muscle cells did not prevent the development of PH in mice. Unexpectedly, ATP release in response to hypoxia was not detectable in PASMC, and inhibition of purinergic receptors or ATP degradation by ATPase failed to attenuate HPV. Rather, transient receptor potential vanilloid 4 (TRPV4) antagonism and Panx1 inhibition inhibited the hypoxia-induced [Ca2+]i increase in PASMC in an additive manner, suggesting that Panx1 regulates [Ca2+]i independently of the ATP-P2Y-TRPV4 pathway. In line with this notion, Panx1 overexpression increased the [Ca2+]i response to hypoxia in HeLa cells. CONCLUSION In the present study we identify Panx1 as novel regulator of HPV. Yet, the role of Panx1 in HPV was not attributable to ATP release and downstream signaling via P2Y receptors or TRPV4 activation, but relates to a role of Panx1 as direct or indirect modulator of the PASMC Ca2+ response to hypoxia. Panx1 did not affect the development of chronic hypoxic PH. TRANSLATIONAL PERSPECTIVE Hypoxic pulmonary vasoconstriction (HPV) optimizes lung ventilation-perfusion matching, but also contributes to pulmonary pathologies including high altitude pulmonary edema (HAPE) or chronic hypoxic pulmonary hypertension. Here, we demonstrate that pharmaceutical inhibition as well as genetic deletion of the hemichannel pannexin-1 (Panx1) in pulmonary artery smooth muscle cells attenuates the physiological HPV response. Panx1 deficiency did, however, not prevent the development of chronic hypoxic pulmonary hypertension in mice. Panx1 inhibitors such as the mineralocorticoid receptor antagonist spironolactone may thus present a putative strategy for the prevention or treatment of HAPE, yet not for chronic hypoxic lung disease.
Collapse
Affiliation(s)
- Benjamin Grimmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Adrienn Krauszman
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Xudong Hu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Mei Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jana Grune
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK).,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Physiology and Surgery, University of Toronto, ON, Canada
| |
Collapse
|
25
|
Leão Batista Simões J, Fornari Basso H, Cristine Kosvoski G, Gavioli J, Marafon F, Elias Assmann C, Barbosa Carvalho F, Dulce Bagatini M. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021; 100:108150. [PMID: 34537482 PMCID: PMC8435372 DOI: 10.1016/j.intimp.2021.108150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
The etiological agent of coronavirus disease (COVID-19) is the new member of the Coronaviridae family, a severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), responsible for the pandemic that is plaguing the world. The single-stranded RNA virus is capable of infecting the respiratory tract, by binding the spike (S) protein on its viral surface to receptors for the angiotensin II-converting enzyme (ACE2), highly expressed in the pulmonary tissue, enabling the interaction of the virus with alveolar epithelial cells promoting endocytosis and replication of viral material. The infection triggers the activation of the immune system, increased purinergic signaling, and the release of cytokines as a defense mechanism, but the response can become exaggerated and prompt the so-called “cytokine storm”, developing cases such as severe acute respiratory syndrome (SARS). This is characterized by fever, cough, and difficulty breathing, which can progress to pneumonia, failure of different organs and death. Thus, the present review aims to compile and correlate the mechanisms involved between the immune and purinergic systems with COVID-19, since the modulation of purinergic receptors, such as A2A, A2B, and P2X7 expressed by immune cells, seems to be effective as a promising therapy, to reduce the severity of the disease, as well as aid in the treatment of acute lung diseases and other cases of generalized inflammation.
Collapse
Affiliation(s)
| | | | | | - Jullye Gavioli
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charles Elias Assmann
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
26
|
Nocentini A, Capasso C, Supuran CT. Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present). Expert Opin Ther Pat 2021; 31:867-876. [PMID: 33909515 DOI: 10.1080/13543776.2021.1923694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Hydrolysis of AMP to adenosine and inorganic phosphate is catalyzed by 5´-ectonucleotidase, e5NT, alias CD73, a metalloenzyme incorporating two zinc ions at its active site. e5NT is involved in crucial physiological and pathological processes, such as immune ho meostasis, inflammation, and tumor progression. CD73 inhibitors belonging to the monoclonal antibodies (MAbs) and small molecules started to be considered as candidates for the immunotherapy of tumors. AREAS COVERED We review the drug design landscape in the scientific and patent literature on CD73 inhibitors from 2017 to the present. Small-molecule inhibitors were mostly discussed, although the MAbs are also considered. EXPERT OPINION Considerable advances have been reported in the design of nucleotide/nucleoside-based CD73 inhibitors, after the X-ray crystal structure of the enzyme in complex with the non-hydrolyzable ADP analog, adenosine (α,β)-methylene diphosphate (AMPCP), was reported. A large number of highly effective such inhibitors are now available, through modifications of the nucleobase, sugar and zinc-binding groups of the lead. Few classes of non-nucleotide inhibitors were also reported, including flavones, anthraquinone ssulfonates, and primary sulfonamides. A highly potent ssmall-molecule CD73 inhibitor, AB680, is presently in the early phase of clinical trials as immunotherapeutic agents against various types of cancer.
Collapse
Affiliation(s)
- Alessio Nocentini
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Università Degli Studi Di Firenze, Sesto Fiorentino (Florence), Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione Di Scienze Farmaceutiche E Nutraceutiche, Università Degli Studi Di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
27
|
Li F, Park TH, Sankin G, Gilchrist C, Liao D, Chan CU, Mao Z, Hoffman BD, Zhong P. Mechanically induced integrin ligation mediates intracellular calcium signaling with single pulsating cavitation bubbles. Am J Cancer Res 2021; 11:6090-6104. [PMID: 33897901 PMCID: PMC8058710 DOI: 10.7150/thno.56813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 11/05/2022] Open
Abstract
Therapeutic ultrasound or shockwave has shown its great potential to stimulate neural and muscle tissue, where cavitation microbubble induced Ca2+ signaling is believed to play an important role. However, the pertinent mechanisms are unknown, especially at the single-cell level. Particularly, it is still a major challenge to get a comprehensive understanding of the effect of potential mechanosensitive molecular players on the cellular responses, including mechanosensitive ion channels, purinergic signaling and integrin ligation by extracellular matrix. Methods: Here, laser-induced cavitation microbubble was used to stimulate individual HEK293T cells either genetically knocked out or expressing Piezo1 ion channels with different normalized bubble-cell distance. Ca2+ signaling and potential membrane poration were evaluated with a real-time fluorescence imaging system. Integrin-binding microbeads were attached to the apical surface of the cells at mild cavitation conditions, where the effect of Piezo1, P2X receptors and integrin ligation on single cell intracellular Ca2+ signaling was assessed. Results: Ca2+ responses were rare at normalized cell-bubble distances that avoided membrane poration, even with overexpression of Piezo1, but could be increased in frequency to 42% of cells by attaching integrin-binding beads. We identified key molecular players in the bead-enhanced Ca2+ response: increased integrin ligation by substrate ECM triggered ATP release and activation of P2X-but not Piezo1-ion channels. The resultant Ca2+ influx caused dynamic changes in cell spread area. Conclusion: This approach to safely eliciting a Ca2+ response with cavitation microbubbles and the uncovered mechanism by which increased integrin-ligation mediates ATP release and Ca2+ signaling will inform new strategies to stimulate tissues with ultrasound and shockwaves.
Collapse
|
28
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1063] [Impact Index Per Article: 354.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
30
|
Extracellular purines and bone homeostasis. Biochem Pharmacol 2021; 187:114425. [PMID: 33482152 DOI: 10.1016/j.bcp.2021.114425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Maintenance of a healthy skeleton is highly dependent on an intricate regulation of bone metabolism, as changes in the balance between bone formation and bone resorption leads to bone loss, bone fragility and ultimately bone fractures. During the last three decades it has become increasingly evident that physiological release of purines in the extracellular space is imperative for bone homeostasis and is orchestrated via the network of purinoceptors. Adenosine derivatives are released locally in the skeleton either by the bone forming osteoblasts or the bone degrading osteoclasts actioned directly by processes like mechanical loading and indirectly by systemic hormones. Adenosine derivatives directly affect the bone cells by their action on the membranal receptors or have co-stimulatory actions with bone active hormones such as parathyroid hormone or the gut hormones. Any deviations leading to increased levels of extracellular adenosine derivatives in the bone tissue such as in pathologic situations, trigger complex pathways with opposing effects on tissue health as presented by studies involving a range of model organisms. Pathological conditions where skeletal purinergic signaling is affected are following tissue injury like microdamage and macroscopic fractures; and during inflammatory processes where nucleotides and nucleosides play an important part in the pathophysiological skeletal response. Moreover, adenosine derivatives also play an important role in the interaction between malignant cells and bone cells in several types of cancers involving the skeleton, such as but not limited to multiple myeloma and bone osteolysis. Much knowledge has been gained over the last decades. The net- resulting phenotype of adenosine derivatives in bone (including the ratio of ATP to Adenosine) is highly dependent on CD39 and CD73 enzymes together with the expression and activity of the specific receptors. Thus, each component is important in the physiological and pathophysiological processes in bone. Promising perspectives await in the future in treating skeletal disorders with medications targeting the individual components of the purinergic signaling pathway.
Collapse
|
31
|
Purinergic Signaling Within the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:73-87. [PMID: 33123994 DOI: 10.1007/978-3-030-47189-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Accumulating studies have clearly demonstrated high concentrations of extracellular ATP (eATP) within the tumor microenvironment (TME). Implications of these findings are multifold as ATP-mediated purinergic signaling has been shown to mediate a variety of cancer-related processes, including cell migration, resistance to cytotoxic therapy, and immune regulation. Broad roles of ATP within the tumor microenvironment are linked to the abundance of ATP-regulated purinergic receptors on cancer and stromal and various immune cell types, as well as on the importance of ATP release and signaling in the regulation of multiple cellular processes. ATP release and downstream purinergic signaling are emerging as a central regulator of tumor growth and an important target for therapeutic intervention. In this chapter, we summarize the major roles of purinergic signaling in the tumor microenvironment with a specific focus on its critical roles in the induction of immunogenic cancer cell death and immune modulation.
Collapse
|
32
|
Abstract
Bipolar disorders are severe and have a high prevalence; despite this, the neurobiological mechanisms are far from being elucidated, and this limits the development of new treatments. Although the aetiology of bipolar disorders is not yet fully understood, it is accepted that the disorder(s) may result from the interaction between genetic factors that cause susceptibility and predisposing, precipitating and perpetuating environmental factors, such as stress and traumatic events. A pathophysiological formulation of the disease suggests that dysfunctions in intracellular biochemical cascades, oxidative stress and mitochondrial dysfunction impair the processes linked to neuronal plasticity, leading to cell damage and the consequent loss of brain tissue that has been identified in post-mortem and neuroimaging studies. The data we have reviewed suggests that peripheral biomarkers related to hormones, inflammation, oxidative stress and neurotrophins are altered in bipolar disorders, especially during acute mood episodes. Together, these changes have been associated with a systemic toxicity of the disease and the damage resulting from multiple episodes. Systemic toxicity related to recurrent episodes in bipolar disorder may influence brain anatomical changes associated with the progression of stress and neuroplasticity in bipolar disorder and the response to treatment.
Collapse
Affiliation(s)
- Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
33
|
Chandran N, Iyer M, Siama Z, Vellingiri B, Narayanasamy A. Purinergic signalling pathway: therapeutic target in ovarian cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The lack of early diagnostic tools and the development of chemoresistance have made ovarian cancer (OC) one of the deadliest gynaecological cancers. The tumour microenvironment is characterised by the extracellular release of high levels of ATP, which is followed by the activation of P1 adenosinergic and P2 purinergic signalling systems. The sequential hydrolysis of ATP by the ectonucleotidases CD39 and CD73 generates adenosine, which creates an immune suppressive microenvironment by inhibiting the T and NK cell responses via the A2A adenosine receptor.
Main body of the abstract
In OC, adenosine-induced pAMPK pathway leads to the inhibition of cell growth and proliferation, which offers new treatment options to prevent or overcome chemoresistance. The activation of P2Y12 and P2Y1 purinergic receptors expressed in the platelets promotes epithelial-mesenchymal transition (EMT). The inhibitors of these receptors will be the effective therapeutic targets in managing OC. Furthermore, research on these signalling systems indicates an expanding field of opportunities to specifically target the purinergic receptors for the treatment of OC.
Short conclusion
In this review, we have described the complex purinergic signalling mechanism involved in the development of OC and discussed the merits of targeting the components involved in the purinergic signalling pathway.
Collapse
|
34
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|
35
|
Human P2X7 Receptor Causes Cycle Arrest in RPMI-8226 Myeloma Cells to Alter the Interaction with Osteoblasts and Osteoclasts. Cells 2020; 9:cells9112341. [PMID: 33105696 PMCID: PMC7690412 DOI: 10.3390/cells9112341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a malignant expansion of plasma cells and aggressively affects bone health. We show that P2X7 receptor altered myeloma growth, which affects primary bone cells in vitro. Expression on six human myeloma cell lines confirmed the heterogeneity associated with P2X7 receptor. Pharmacology with 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) as agonist showed dose-dependent membranal pores on RPMI-8226 (p = 0.0027) and blockade with P2X7 receptor antagonists. Ca2+ influx with increasing doses of BzATP (p = 0.0040) was also inhibited with antagonists. Chronic P2X7 receptor activation reduced RPMI-8226 viability (p = 0.0208). No apoptosis or RPMI-8226 death was observed by annexin V/propidium iodide (PI) labeling and caspase-3 cleavage, respectively. However, bromodeoxyuridine (BrdU) labelling showed an accumulation of RPMI-8226 in the S phase of cell cycle progression (61.5%, p = 0.0114) with significant decline in G0/G1 (5.2%, p = 0.0086) and G2/M (23.5%, p = 0.0015) phases. As myeloma pathology depends on a positive and proximal interaction with bone, we show that P2X7 receptor on RPMI-8226 inhibited the myeloma-induced suppression on mineralization (p = 0.0286) and reversed the excessive osteoclastic resorption. Our results demonstrate a view of how myeloma cell growth is halted by P2X7 receptor and the consequences on myeloma–osteoblast and myeloma–osteoclast interaction in vitro.
Collapse
|
36
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
37
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
38
|
Cymer M, Brzezniakiewicz-Janus K, Bujko K, Thapa A, Ratajczak J, Anusz K, Tracz M, Jackowska-Tracz A, Ratajczak MZ, Adamiak M. Pannexin-1 channel "fuels" by releasing ATP from bone marrow cells a state of sterile inflammation required for optimal mobilization and homing of hematopoietic stem cells. Purinergic Signal 2020; 16:313-325. [PMID: 32533388 PMCID: PMC7524928 DOI: 10.1007/s11302-020-09706-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.
Collapse
Affiliation(s)
- Monika Cymer
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | | | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Krzysztof Anusz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Agnieszka Jackowska-Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Mariusz Z Ratajczak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, ul. Żwirki i Wigury 61, 02-091, Warsaw, Poland.
| |
Collapse
|
39
|
Tan M, Schaffalitzky de Muckadell OB, Jøergensen MT. Gene Expression Network Analysis of Precursor Lesions in Familial Pancreatic Cancer. J Pancreat Cancer 2020; 6:73-84. [PMID: 32783019 PMCID: PMC7415888 DOI: 10.1089/pancan.2020.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: High-grade pancreatic intraepithelial neoplasia (PanIN) are aggressive premalignant lesions, associated with risk of progression to pancreatic ductal adenocarcinoma (PDAC). A depiction of co-dysregulated gene activity in high-grade familial pancreatic cancer (FPC)-related PanIN lesions may characterize the molecular events during the progression from familial PanIN to PDAC. Materials and Methods: We performed weighted gene coexpression network analysis (WGCNA) to identify clusters of coexpressed genes associated with FPC-related PanIN lesions in 13 samples with PanIN-2/3 from FPC predisposed individuals, 6 samples with PDAC from sporadic pancreatic cancer (SPC) patients, and 4 samples of normal donor pancreatic tissue. Results: WGCNA identified seven differentially expressed gene (DEG) modules and two commonly expressed gene (CEG) modules with significant enrichment for Gene Ontology (GO) terms in FPC and SPC, including three upregulated (p < 5e-05) and four downregulated (p < 6e-04) gene modules in FPC compared to SPC. Among the DEG modules, the upregulated modules include 14 significant genes (p < 1e-06): ALOX12-AS1, BCL2L11, EHD4, C4B, BTN3A3, NDUFA11, RBM4B, MYOC, ZBTB47, TTTY15, NAPRT, LOC102606465, LOC100505711, and PTK2. The downregulated modules include 170 genes (p < 1e-06), among them 13 highly significant genes (p < 1e-10): COL10A1, SAMD9, PLPP4, COMP, POSTN, IGHV4-31, THBS2, MMP9, FNDC1, HOPX, TMEM200A, INHBA, and SULF1. The DEG modules are enriched for GO terms related to mitochondrial structure and adenosine triphosphate metabolic processes, extracellular structure and binding properties, humoral and complement mediated immune response, ligand-gated ion channel activity, and transmembrane receptor activity. Among the CEG modules, IL22RA1, DPEP1, and BCAT1 were found as highly connective hub genes associated with both FPC and SPC. Conclusion: FPC-related PanIN lesions exhibit a common molecular basis with SPC as shown by gene network activities and commonly expressed high-connectivity hub genes. The differential molecular pathology of FPC and SPC involves multiple coexpressed gene clusters enriched for GO terms including extracellular activities and mitochondrion function.
Collapse
Affiliation(s)
- Ming Tan
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Ove B. Schaffalitzky de Muckadell
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Jøergensen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
40
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
41
|
Simplicio CL, Purita J, Murrell W, Santos GS, dos Santos RG, Lana JFSD. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020; 11:S309-S318. [PMID: 32523286 PMCID: PMC7275282 DOI: 10.1016/j.jcot.2020.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Extracorporeal shockwave therapy (ESWT) is a popular non-invasive therapeutic modality in the medical field for the treatment of numerous musculoskeletal disorders. This technique first emerged around the 1980s as extracorporeal shockwave lithotripsy and has been studied since then for its application towards orthopedics and traumatology. ESWT works by the emission of acoustic waves (shockwaves) that carry energy and can propagate through tissues. Shockwaves can generate interstitial and extracellular responses, producing many beneficial effects such as: pain relief, vascularization, protein biosynthesis, cell proliferation, neuro and chondroprotection, and destruction of calcium deposits in musculoskeletal structures. The combination of these effects can lead to tissue regeneration and significant alleviation of pain, improving functional outcomes in injured tissue. Considering these facts, ESWT shows great potential as a useful regenerative medicine technique for the treatment of numerous musculoskeletal injuries.
Collapse
Affiliation(s)
| | - Joseph Purita
- Institute of Regenerative Medicine, 200 Glades Rd suite 1, Boca Raton, FL, United States
| | - William Murrell
- Emirates Integra Medical & Surgery Centre, Al Razi Bldg #64, Block F, Ground and 1st Floors, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Gabriel Silva Santos
- IOC – Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Avenida Presidente Kennedy, 1386 – 2nd Floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil,Corresponding author. IOC – Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Avenida Presidente Kennedy, 1386 – 2nd floor, Room #29 – Cidade Nova I, Indaiatuba, SP, 13334-170, Brazil.
| | - Rafael Gonzales dos Santos
- IOC – Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Avenida Presidente Kennedy, 1386 – 2nd Floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil
| | - José Fábio Santos Duarte Lana
- IOC – Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Avenida Presidente Kennedy, 1386 – 2nd Floor, Room #29 – Cidade Nova I, Indaiatuba, SP, Brazil
| |
Collapse
|
42
|
Duan H, Ni S, Yang S, Zhou Y, Zhang Y, Zhang S. Conservation of eATP perception throughout multicellular animal evolution: Identification and functional characterization of coral and amphioxus P2X7-like receptors and flounder P2X7 receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103641. [PMID: 32045589 DOI: 10.1016/j.dci.2020.103641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Perception of extracellular ATP (eATP), a common endogenous damage-associated molecular pattern, is through its receptor P2X7R. If eATP/P2X7R signaling is conserved throughout animal evolution is unknown. Moreover, little information is currently available regarding P2X7R in invertebrates. Here we demonstrated that the coral P2X7-like receptor, AdP2X7RL, the amphioxus P2X7-like receptor, BjP2X7RL and the flounder P2X7 receptor, PoP2X7R, shared common features characteristic of mammalian P2X7R, and their 3D structures displayed high resemblance to that of human P2X7R. Expression of Adp2x7rl, Bjp2x7rl and Pop2x7r was all subjected to the regulation by LPS and ATP. We also showed that AdP2X7RL, BjP2X7RL and PoP2X7R were distributed on the plasma membrane in AdP2X7RL-, BjP2X7RL- and PoP2X7R-expressing HEK cells, and had strong affinity to eATP. Importantly, the binding of AdP2X7RL, BjP2X7RL and PoP2X7R to eATP all induced similar downstream responses, including induction of cytokines (IL-1β, IL-6, IL-8 and CCL-2), enhancement of phagocytosis and activation of AKT/ERK-associated signaling pathway observed for mammalian P2X7R. Collectively, our results indicate for the first time that both coral and amphioxus P2X7RL as well as flounder P2X7R can interact with eATP, and induce events that trigger mammalian mechanisms, suggesting the high conservation of eATP perception throughout multicellular animal evolution.
Collapse
Affiliation(s)
- Huimin Duan
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shousheng Ni
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yang Zhou
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yu Zhang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Shicui Zhang
- Institute of Evolution and Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
43
|
Abstract
Purinergic signaling was proposed in 1972, after it was demonstrated that adenosine 5'-triphosphate (ATP) was a transmitter in nonadrenergic, noncholinergic inhibitory nerves supplying the guinea-pig taenia coli. Later, ATP was identified as an excitatory cotransmitter in sympathetic and parasympathetic nerves, and it is now apparent that ATP acts as a cotransmitter in most, if not all, nerves in both the peripheral nervous system and central nervous system (CNS). ATP acts as a short-term signaling molecule in neurotransmission, neuromodulation, and neurosecretion. It also has potent, long-term (trophic) roles in cell proliferation, differentiation, and death in development and regeneration. Receptors to purines and pyrimidines have been cloned and characterized: P1 adenosine receptors (with four subtypes), P2X ionotropic nucleotide receptors (seven subtypes) and P2Y metabotropic nucleotide receptors (eight subtypes). ATP is released from different cell types by mechanical deformation, and after release, it is rapidly broken down by ectonucleotidases. Purinergic receptors were expressed early in evolution and are widely distributed on many different nonneuronal cell types as well as neurons. Purinergic signaling is involved in embryonic development and in the activities of stem cells. There is a growing understanding about the pathophysiology of purinergic signaling and there are therapeutic developments for a variety of diseases, including stroke and thrombosis, osteoporosis, pain, chronic cough, kidney failure, bladder incontinence, cystic fibrosis, dry eye, cancer, and disorders of the CNS, including Alzheimer's, Parkinson's. and Huntington's disease, multiple sclerosis, epilepsy, migraine, and neuropsychiatric and mood disorders.
Collapse
|
44
|
Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.
Collapse
Affiliation(s)
- Sarah K Jahn
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
45
|
Bhattarai S, Pippel J, Scaletti E, Idris R, Freundlieb M, Rolshoven G, Renn C, Lee SY, Abdelrahman A, Zimmermann H, El-Tayeb A, Müller CE, Sträter N. 2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5'-nucleotidase (CD73) Inhibitors with Variable Binding Modes. J Med Chem 2020; 63:2941-2957. [PMID: 32045236 DOI: 10.1021/acs.jmedchem.9b01611] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,β-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Pippel
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Emma Scaletti
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Riham Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Marianne Freundlieb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, D-60438 Frankfurt am Main, Germany
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| |
Collapse
|
46
|
Lillis T, Veis A, Sakellaridis N, Tsirlis A, Dailiana Z. Effect of clopidogrel in bone healing-experimental study in rabbits. World J Orthop 2019; 10:434-445. [PMID: 31908992 PMCID: PMC6937425 DOI: 10.5312/wjo.v10.i12.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed drug for prevention of myocardial infarction and stroke in patients at risk. It inhibits thrombus formation via inhibition of the P2Y12 purinergic receptor on platelets, which is important in their activation by ADP. However, the P2Y12 receptor has also been found to be expressed in both osteoblasts and osteoclasts. Accumulated evidence suggests that purinergic receptors regulate important functions of bone turnover. Previous studies on the effect of clopidogrel on bone metabolism indicated potential harmful effects, but their results remain conflicting. Thus, clopidogrel treatment may affect bone healing, but it has not yet been studied. AIM To evaluate if continuous perioperative clopidogrel treatment has any negative effect on bone healing in the rabbit calvarial defect model. METHODS Sixteen male white New Zealand rabbits were randomly assigned in two groups: One group received daily 3 mg/kg of clopidogrel per os and the other group received the vehicle alone for a week prior to the surgical procedures; the treatments were continued for another 6 wk postoperatively. The surgical procedures included generation of two circular calvarial defects 11 mm in diameter in every animal. After the 6-wk period of healing, postmortem radiographic and histomorphometric evaluation of the defects was performed. RESULTS Both the surgical procedures and the postoperative period were uneventful and well tolerated by all the animals, without any surgical wound dehiscence, signs of infection or other complication. New bone was formed either inwards from the defect margins or in the central portion of the defect as separated bony islets. While defect healing was still incomplete in both groups, the clopidogrel group had significantly improved radiographic healing scores. Moreover, the histomorphometric analysis showed that bone regeneration (%) was 28.07 ± 7.7 for the clopidogrel group and 19.47 ± 4.9 for the control group, showing a statistically significant difference between them (P = 0.018). Statistically significant difference was also found in the defect bridging (%), i.e. 72.17 ± 21.2 for the clopidogrel group and 41.17 ± 8.5 for the control group, respectively (P = 0.004), whereas there was no statistical difference in bone tissue density between the groups. CONCLUSION Our results indicate that maintenance of perioperative clopidogrel treatment does not negatively affect bone healing but rather promotes it. Further research is needed in order to find useful applications of this finding.
Collapse
Affiliation(s)
- Theodoros Lillis
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Alexander Veis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Nikolaos Sakellaridis
- Department of Clinical Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Anastasios Tsirlis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Zoe Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
47
|
Silva-Ramos M, Silva I, Faria M, Ferreirinha F, Correia-de-Sá P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J Pharmacol Exp Ther 2019; 372:63-72. [PMID: 31636173 DOI: 10.1124/jpet.119.261610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,β-methylene ATP (30 μM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 μM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 μM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| |
Collapse
|
48
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
49
|
Hevia MJ, Castro P, Pinto K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutierrez F, López J, Barra M, De la Fuente-Ortega E, Bernal G, Coddou C. Differential Effects of Purinergic Signaling in Gastric Cancer-Derived Cells Through P2Y and P2X Receptors. Front Pharmacol 2019; 10:612. [PMID: 31249523 PMCID: PMC6584115 DOI: 10.3389/fphar.2019.00612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10–100 μM, but inhibiting at 300 μM ATP. On the other hand, 1–300 μM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.
Collapse
Affiliation(s)
- María José Hevia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Katherine Pinto
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | | | | | - Sebastián Ramírez-Rivera
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Juan Andrés Madariaga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | | | - Javier López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Marcelo Barra
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Hospital San Pablo, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Giuliano Bernal
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
50
|
Prionisti I, Bühler LH, Walker PR, Jolivet RB. Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Front Pharmacol 2019; 10:506. [PMID: 31231208 PMCID: PMC6560150 DOI: 10.3389/fphar.2019.00506] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of brain tumors, with a dismal prognosis. During the course of the disease, microglia and macrophages both infiltrate the tumor microenvironment and contribute considerably in glioma development. Thus, tumor-associated microglia and macrophages have recently emerged as potentially key therapeutic targets. Here, we review the physiology of microglia and their responses in brain cancer. We further discuss current treatment options for GBM using radiotherapy, and novel advances in our knowledge of microglia physiology, with emphasis on the recently discovered pathway that controls the baseline motility of microglia processes. We argue that the latter pathway is an interesting therapeutic avenue to pursue for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Ioanna Prionisti
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, Geneva, Switzerland
| | - Léo H. Bühler
- Division of Digestive and Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Paul R. Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals – University of Geneva, Geneva, Switzerland
| | - Renaud B. Jolivet
- Département de Physique Nucléaire et Corpusculaire (DPNC), University of Geneva, Geneva, Switzerland
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| |
Collapse
|