1
|
Kokkali M, Karali K, Thanou E, Papadopoulou MA, Zota I, Tsimpolis A, Efstathopoulos P, Calogeropoulou T, Li KW, Sidiropoulou K, Gravanis A, Charalampopoulos I. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease. Mol Psychiatry 2024:10.1038/s41380-024-02833-w. [PMID: 39587294 DOI: 10.1038/s41380-024-02833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit. Neurotrophic factors consist major regulatory molecules and their decline in AD is considered as an important cause of disease onset and progression. Novel pharmacological approaches are targeting the downstream pathways controlled by neurotrophins, such as nerve growth factor (NGF) receptors, TrkA and p75NTR, which enhance hippocampal neurogenic capacity and neuroprotective mechanisms, and potentially counteract the neurotoxic effects of amyloid deposition. BNN27 is a non-toxic, newly developed 17-spiro-steroid analog, penetrating the blood-brain-barrier (BBB) and mimicking the neuroprotective effects of NGF, acting as selective activator of its receptors, both TrkA and p75NTR, thus promoting survival of various neuronal cell types. Our present research aims at determining whether and which aspects of the AD-related pathology, BNN27 is able to alleviate, exploring the cellular and molecular AD components and link these changes with improvements in the cognitive performance of an animal AD model, the 5xFAD mice. Our results clearly indicate that BNN27 administration significantly reduced amyloid-β load in whole brain of the animals, enhanced adult hippocampal neurogenesis, restored cholinergic function and synaptogenesis, reducing inflammatory activation and leading to significant restoration of cognitive functions. BNN27 may represent a new lead multimodal molecule with neuroprotective, neurogenic and anti-neuroinflammatory actions for developing druggable anti-Alzheimeric agents. Proteomics data are available via ProteomeXchange with the identifier PXD044699.
Collapse
Affiliation(s)
- Maria Kokkali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Evangelia Thanou
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maria Anna Papadopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioanna Zota
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, 71003, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece.
| |
Collapse
|
2
|
Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discov Today 2024; 29:104156. [PMID: 39233307 DOI: 10.1016/j.drudis.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, play an essential role in the survival of neurons. However, incorporating better features can increase their therapeutic efficacy in neurodegenerative diseases (NDs). Peptidomimetics, which mimic these neurotrophins, show potential for treating NDs. This study emphasizes the use of peptidomimetics from neurotrophins for treating NDs and their benefits. By improving bioavailability and stability, these molecules can completely transform the therapy for NDs. This in-depth review guides researchers and pharmaceutical developers, providing insight into the changing field of neurodegenerative medicine.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rosy Mahato
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asis Bala
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Gollamudi J, Karkoska KA, Gbotosho OT, Zou W, Hyacinth HI, Teitelbaum SL. A bone to pick-cellular and molecular mechanisms of bone pain in sickle cell disease. FRONTIERS IN PAIN RESEARCH 2024; 4:1302014. [PMID: 38239327 PMCID: PMC10794347 DOI: 10.3389/fpain.2023.1302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
The bone is one of the most commonly affected organs in sickle cell disease (SCD). Repeated ischemia, oxidative stress and inflammation within the bone is largely responsible for promoting bone pain. As more individuals with SCD survive into adulthood, they are likely to experience a synergistic impact of both aging and SCD on their bone health. As bone health deteriorates, bone pain will likely exacerbate. Recent mechanistic and observational studies emphasize an intricate relationship between bone remodeling and the peripheral nervous system. Under pathological conditions, abnormal bone remodeling plays a key role in the propagation of bone pain. In this review, we first summarize mechanisms and burden of select bone complications in SCD. We then discuss processes that contribute to pathological bone pain that have been described in both SCD as well as non-sickle cell animal models. We emphasize the role of bone-nervous system interactions and pitfalls when designing new therapies especially for the sickle cell population. Lastly, we also discuss future basic and translational research in addressing questions about the complex role of stress erythropoiesis and inflammation in the development of SCD bone complications, which may lead to promising therapies and reduce morbidity in this vulnerable population.
Collapse
Affiliation(s)
- Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wei Zou
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Neurotrophin mimetics and tropomyosin kinase receptors: a futuristic pharmacological tool for Parkinson's. Neurol Sci 2023:10.1007/s10072-023-06684-1. [PMID: 36870001 DOI: 10.1007/s10072-023-06684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Parkinson's disease is a complex age-related progressive dopaminergic neurodegenerative disease consistently viewed as a disorder of movement and is characterized by its cardinal motor symptoms. While the motor symptoms and its clinical manifestations are attributed to the nigral dopaminergic neuronal death and basal ganglia dysfunction, studies have subsequently proven that the non-dopaminergic neurons in various brain regions are also additionally involved with the disease progression. Thus, it is now well accepted that the involvement of various neurotransmitters and other ligands accounts for the non-motor symptoms (NMS) associated with the Parkinson's disease. Consequently, this has demonstrated to possess remarkable clinical concerns to the patients in terms of various disability, such impaired to compromised quality of life and increased risk of morbidity and mortality. Currently, available pharmacological, non-pharmacological, and surgical therapeutic strategies neither prevent, arrest, nor reverse the nigral dopaminergic neurodegeneration. Thus, there is an imminent medical necessity to increase patient's quality of life and survival, which in turn decreases the incidence and prevalence of the NMS. The current research article reviews the potential direct involvement of neurotrophin and its mimetics to target and modulate neurotrophin-mediated signal transduction pathways to enlighten a new and novel therapeutic strategy along with the pre-existing treatments for Parkinson's disease and other neurological/neurodegenerative disorders which are associated with the downregulation of neurotrophins.
Collapse
|
5
|
Volkova AA, Povarnina PY, Nikiforov DM, Gudasheva TA, Seredenin SB. Comparative Study of the Mnemotropic Activity of Dimeric Dipeptide Mimetics of Individual NGF and BDNF Loops Using a New-Object Recognition Test in Rats. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Gohil K, Kazmi MZH, Williams FJ. Structure-activity relationship and bioactivity studies of neurotrophic trans-banglene. Org Biomol Chem 2022; 20:2187-2193. [PMID: 35229853 DOI: 10.1039/d2ob00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synthesis and bioactivity of neurotrophic banglenes and derivatives is described, establishing a structure-activity relationship which enables future mechanistic studies. Neuritogenesis assays indicate that (-) trans-banglene is the active enantiomer. Assays performed with and without NGF protein suggest that neurotrophic activity and potentiation of NGF activity by (-) trans-banglene might be distinct unassociated processes. Interestingly, (-) trans-banglene potentiation of NGF-induced neuritogenesis is unaffected by the presence of Erk1/2, Akt and Pkc inhibitors.
Collapse
Affiliation(s)
- Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - M Zain H Kazmi
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | |
Collapse
|
7
|
Rogdakis T, Charou D, Latorrata A, Papadimitriou E, Tsengenes A, Athanasiou C, Papadopoulou M, Chalikiopoulou C, Katsila T, Ramos I, Prousis KC, Wade RC, Sidiropoulou K, Calogeropoulou T, Gravanis A, Charalampopoulos I. Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines 2022; 10:614. [PMID: 35327415 PMCID: PMC8945229 DOI: 10.3390/biomedicines10030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.
Collapse
Affiliation(s)
- Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alessia Latorrata
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Eleni Papadimitriou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Constantina Chalikiopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Theodora Katsila
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160 Bizkaia, Spain;
| | - Kyriakos C. Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Kyriaki Sidiropoulou
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 71113 Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| |
Collapse
|
8
|
Dahlström M, Madjid N, Nordvall G, Halldin MM, Vazquez-Juarez E, Lindskog M, Sandin J, Winblad B, Eriksdotter M, Forsell P. Identification of Novel Positive Allosteric Modulators of Neurotrophin Receptors for the Treatment of Cognitive Dysfunction. Cells 2021; 10:1871. [PMID: 34440640 PMCID: PMC8391421 DOI: 10.3390/cells10081871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and results in severe neurodegeneration and progressive cognitive decline. Neurotrophins are growth factors involved in the development and survival of neurons, but also in underlying mechanisms for memory formation such as hippocampal long-term potentiation. Our aim was to identify small molecules with stimulatory effects on the signaling of two neurotrophins, the nerve growth factor (NGF) and the brain derived neurotrophic factor (BDNF). To identify molecules that could potentiate neurotrophin signaling, 25,000 molecules were screened, which led to the identification of the triazinetrione derivatives ACD855 (Ponazuril) and later on ACD856, as positive allosteric modulators of tropomyosin related kinase (Trk) receptors. ACD855 or ACD856 potentiated the cellular signaling of the neurotrophin receptors with EC50 values of 1.9 and 3.2 or 0.38 and 0.30 µM, respectively, for TrkA or TrkB. ACD855 increased acetylcholine levels in the hippocampus by 40% and facilitated long term potentiation in rat brain slices. The compounds acted as cognitive enhancers in a TrkB-dependent manner in several different behavioral models. Finally, the age-induced cognitive dysfunction in 18-month-old mice could be restored to the same level as found in 2-month-old mice after a single treatment of ACD856. We have identified a novel mechanism to modulate the activity of the Trk-receptors. The identification of the positive allosteric modulators of the Trk-receptors might have implications for the treatment of Alzheimer's diseases and other diseases characterized by cognitive impairment.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Cell Line, Tumor
- Cognition/drug effects
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/enzymology
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/psychology
- Disease Models, Animal
- Humans
- Male
- Maze Learning/drug effects
- Membrane Glycoproteins
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Nootropic Agents/pharmacology
- Protein-Tyrosine Kinases
- Rats, Sprague-Dawley
- Receptor, trkA/agonists
- Receptor, trkA/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Small Molecule Libraries
- Triazines/pharmacology
- Mice
- Rats
Collapse
Affiliation(s)
- Märta Dahlström
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Nather Madjid
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Magnus M. Halldin
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Erika Vazquez-Juarez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Maria Lindskog
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Johan Sandin
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
- Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| |
Collapse
|
9
|
Sisti FM, Dos Santos NAG, do Amaral L, Dos Santos AC. The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration. Neurotox Res 2021; 39:886-896. [PMID: 33666886 DOI: 10.1007/s12640-021-00341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (β-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Antonio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
10
|
Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 2020; 295:18494-18507. [PMID: 33122191 PMCID: PMC7939482 DOI: 10.1074/jbc.rev120.015190] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein-coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael D Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
12
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
13
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
14
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
15
|
Subaraja M, Kulandaisamy A, Shanmugam NRS, Vanisree AJ. Homology modeling identified for purported drug targets to the neuroprotective effects of levodopa and asiaticoside-D in degenerated cerebral ganglions of Lumbricus terrestris. Indian J Pharmacol 2019; 51:31-39. [PMID: 31031465 PMCID: PMC6444839 DOI: 10.4103/ijp.ijp_600_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CONTEXT: Homology modeling plays role in determining the therapeutic targets dreadful for condition such as neurodegenerative diseases (NDD), which pose challenge in achieving the effective managements. The structures of the serotonin transporter (SERT), aquaporin (AQP), and tropomyosin receptor kinase (TrkA) which are implicated in NDD pathology are still unknown for Lumbricus terrestris, but the three-dimensional (3D) structure of the human counterpart for modeling. AIM: This study aims to generate and evaluate the 3D structure of TrkA, SERT, and AQP proteins and their interaction with the ligands, namely Asiaticoside-D (AD) and levodopa (L-DOPA) the anti-NDD agents. SUBJECTS AND METHODS: Homology modeling for SERT, AQP, and TrkA proteins of Lumbricus terrestris using SWISS-MODEL Server and the modeled structure was validated using Rampage Server. Wet-lab analysis of their correspondent m-RNA levels was also done to validate the in silico data. RESULTS: It was found that TrkA had moderately high homology (67%) to human while SERT and AQP could exhibit 58% and 42%, respectively. The reliability of the model was assessed by Ramachandran plot analysis. Interactions of AD with the SERT, AQP-4, and TrkA showed the binding energies as −9.93, 8.88, and −7.58 of Kcal/mol, respectively, while for L-DOPA did show −3.93, −5.13, and −6.0 Kcal/mol, respectively. The levels of SERT, TrkA, and AQP-4 were significantly reduced (P < 0.001) on ROT induced when compared to those of control worms. On ROT + AD supplementation group (III), m-RNA levels were significantly increased (P < 0.05) when compared to those of ROT induced worms (group II). CONCLUSION: Our pioneering docking data propose the possible of target which is proved useful for therapeutic investigations against the unconquered better of NDD.
Collapse
Affiliation(s)
- Mamangam Subaraja
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - A Kulandaisamy
- Department of Biotechnology, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | - N R Siva Shanmugam
- Department of Biotechnology, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | | |
Collapse
|
16
|
Naletova I, Satriano C, Pietropaolo A, Gianì F, Pandini G, Triaca V, Amadoro G, Latina V, Calissano P, Travaglia A, Nicoletti VG, La Mendola D, Rizzarelli E. The Copper(II)-Assisted Connection between NGF and BDNF by Means of Nerve Growth Factor-Mimicking Short Peptides. Cells 2019; 8:E301. [PMID: 30939824 PMCID: PMC6523629 DOI: 10.3390/cells8040301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/23/2019] [Accepted: 03/30/2019] [Indexed: 01/16/2023] Open
Abstract
Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Adriana Pietropaolo
- Department of Health Sciences, University of Catanzaro, Campus Universitario Viale Europa, 88100 Catanzaro, Italy.
| | - Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, via Palermo n. 636, 95122 Catania, Italy.
| | - Giuseppe Pandini
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, via Palermo n. 636, 95122 Catania, Italy.
| | - Viviana Triaca
- Medicina Molecolare e Traslazionale "Rita Levi Montalcini", Institute of Cellular Biology and Neurobiology (IBCN), National Research Council (CNR), c/o Policlinico Umberto I, University of Rome "La Sapienza", Via del Policlinico 255, 00161 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00131 Rome, Italy.
| | - Valentina Latina
- European Brain Research Institute, Viale Regina Elena 295, 00161, 64-65, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute, Viale Regina Elena 295, 00161, 64-65, 00143 Rome, Italy.
| | - Alessio Travaglia
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Vincenzo Giuseppe Nicoletti
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
- Institute of Crystallography-Catania, National Research Council (CNR), Via P. Gaifami, 95126 Catania, Italy.
| |
Collapse
|
17
|
Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13:38. [PMID: 30804738 PMCID: PMC6370742 DOI: 10.3389/fnins.2019.00038] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Aging Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Hosseini R, Moosavi F, Silva T, Rajaian H, Hosseini SY, Bina S, Saso L, Miri R, Borges F, Firuzi O. Modulation of ERK1/2 and Akt Pathways Involved in the Neurotrophic Action of Caffeic Acid Alkyl Esters. Molecules 2018; 23:molecules23123340. [PMID: 30562988 PMCID: PMC6321311 DOI: 10.3390/molecules23123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of human lives all over the world. The number of afflicted patients is rapidly growing, and disease-modifying agents are urgently needed. Caffeic acid, an important member of the hydroxycinnamic acid family of polyphenols, has considerable neurotrophic effects. We have previously shown how caffeate alkyl ester derivatives significantly promote survival and differentiation in neuronal cells. In this study, the mechanisms by which these ester derivatives exert their neurotrophic effects are examined. A series of eight caffeic acid esters with different alkyl chain lengths, ranging from methyl (CAF1) to dodecyl esters (CAF8), were synthesized and studied for their influence on neurotrophic signaling pathways. Caffeate esters did not induce tropomyosin-receptor kinase A (TrkA) phosphorylation, which was assessed by immunoblotting up to a concentration of 25 µM. NIH/3T3 cells overexpressing TrkA were generated to further examine phosphorylation of this receptor tyrosine kinase. None of the esters induced TrkA phosphorylation in these cells either. Assessment of the effect of caffeate derivatives on downstream neurotrophic pathways by immunoblotting showed that the most potent esters, decyl caffeate (CAF7) and dodecyl caffeate (CAF8) caused extracellular signal-regulated kinase (ERK1/2) and Akt serine threonine kinase phosphorylation in PC12 cells at 5 and 25 µM concentrations. In conclusion, this study shows that caffeate esters exert their neurotrophic action by modulation of ERK1/2 and Akt signaling pathways in neuronal cells, and further demonstrates the potential therapeutic implications of these derivatives for neurodegenerative diseases.
Collapse
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Hamid Rajaian
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| | - Samaneh Bina
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| |
Collapse
|
19
|
Yao CJ, Chuang SE, Yang YY, Lai GM. Human Urine Extract Cell Differentiation Agent 2 Protects PC12 Cells from Serum Deprivation-Induced Apoptosis Accompanied with Priming of Extracellular Signal-Regulated Kinase Activation and Differentiation Induction. Chin J Integr Med 2018:10.1007/s11655-018-2986-1. [PMID: 29455376 DOI: 10.1007/s11655-018-2986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the potential neuroprotective effect of human urine extract cell differentiation agent 2 (CDA-2) by the model of serum deprivation-induced apoptosis of PC12 cells and study the underlying molecular mechanisms. METHODS Apoptosis of PC12 cells was induced by serum deprivation. CDA-2 at doses of 0.5-4 mg/mL was used to treat the serum-deprived PC12 cells. The cellular viability was measured by sulforhodamine B binding assay and the cell apoptosis was determined by flow cytometer. Western blot was used to analyze the expression of differentiation markers and activity of extracellular signal-regulated kinase (ERK). The cellular morphology was examined under an inverted microscope. RESULTS CDA-2 inhibited apoptotic cell death of serum-deprived PC12 cells in a dose-dependent manner. Expression of low- and mid-sized neurofilaments was observed in serum-deprived PC12 cells treated with CDA-2 or nerve growth factor (NGF). However, CDA-2 did not induce proliferation of these cells like NGF. The morphology of CDA-2 treated cells was changed from rounded to neuron-like flat polygonal shape in contrast to the extensive neurite outgrowth induced by NGF. CDA-2 transiently induced the phosphorylation of ERK in serum deprived-PC12 cells and the expression of neurofilaments induced by CDA-2 was attenuated by mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. CONCLUSIONS Human urine extract CDA-2 showed a potential neuroprotective activity which may correlate with ERK activation and differentiation induction.
Collapse
Affiliation(s)
- Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan, China
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, China
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, China
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, China
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan, China.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, China.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, China.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan, China.
| |
Collapse
|
20
|
Medelin M, Giacco V, Aldinucci A, Castronovo G, Bonechi E, Sibilla A, Tanturli M, Torcia M, Ballerini L, Cozzolino F, Ballerini C. Bridging pro-inflammatory signals, synaptic transmission and protection in spinal explants in vitro. Mol Brain 2018; 11:3. [PMID: 29334986 PMCID: PMC5769440 DOI: 10.1186/s13041-018-0347-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective molecules. Here we report the effects, on spinal cord circuits, of a cytokine cocktail that partly mimics the signature of T lymphocytes sub population Th1. In embryonic mouse spinal organ-cultures, containing neuronal cells and neuroglia, cytokines induced inflammatory responses accompanied by a significant increase in spontaneous synaptic activity. We suggest that cytokines specifically altered signal integration in spinal networks by speeding the decay of GABAA responses. This hypothesis is supported by the finding that synapse protection by a non-peptidic NGF mimetic molecule prevented both the changes in the time course of GABA events and in network activity that were left unchanged by the cytokine production from astrocytes and microglia present in the cultured tissue. In conclusion, we developed an important tool for the study of synaptic alterations induced by inflammation, that takes into account the role of neuronal and not neuronal resident cells.
Collapse
Affiliation(s)
- M Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - V Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - A Aldinucci
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - G Castronovo
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - E Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - A Sibilla
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - M Tanturli
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - M Torcia
- Department of DMSC, University of Florence, 50134, Florence, Italy
| | - L Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| | - F Cozzolino
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - C Ballerini
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
21
|
Castañeda R, Rodriguez I, Nam YH, Hong BN, Kang TH. Trigonelline promotes auditory function through nerve growth factor signaling on diabetic animal models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:128-136. [PMID: 29157806 DOI: 10.1016/j.phymed.2017.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/03/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Protection of cochlear function and reconstruction of neuronal networks in damaged auditory sensory structures is crucial for therapeutic treatment of diabetic hearing loss. Nerve growth factor (NGF) has been used as a novel therapeutic target to protect against the neurodegenerative effects of Diabetes Mellitus (DM). PURPOSE We aimed to evaluate the potential effect of trigonelline (TRG) on reducing auditory damage produced by DM using NGF as a potential marker. METHOD Docking simulations were carried out using Autodock Vina software and visualized using Discovery Studio. Morphological analysis of hair cells and neuromasts was performed on alloxan-induced diabetic zebrafish by fluorescence and scanning electron microscopy. Blockage of NGF receptor phosphorylation with K-252a was used to evaluate TRG and NGF action. Further assessment of NGF by ELISA on a primary culture of spiral ganglion cells was performed as a marker of neuronal function on the hearing system. Finally, auditory function was assessed in LepR(db/db) mice using auditory brainstem response (ABR) and transient evoked otoacoustic emission (TEOAE) during 8 weeks. RESULTS Docking simulations showed that TRG binds to the active site of NGF through molecular interactions with Lysine88 (Lys88) and Tyrosine52 (Tyr52). TRG treatment significantly reduced hair cell loss and neuromast damage in diabetic zebrafish (P < .05). Further evaluation revealed a significant increase in the number of neuromasts after NGF administration (P < .001). TRG and NGF action was suppressed during blockage of NGF receptor phosphorylation. Moreover, spiral ganglion cells revealed significant elevation on NGF values after TRG treatment (P < .05). In vivo evaluation of LepR(db/db) mice revealed a significant reduction in the auditory damage produced under diabetic progression, characterized by reduced ABR hearing threshold shifts and increased signal-to-noise ratio in TEOAE (P < .05). CONCLUSIONS This study suggests that the enhanced hearing function produced by TRG may be mediated by NGF, providing a potential therapeutic strategy for diabetic hearing loss.
Collapse
MESH Headings
- Alkaloids/chemistry
- Alkaloids/pharmacology
- Animals
- Auditory Threshold/drug effects
- Carbazoles/pharmacology
- Catalytic Domain
- Computer Simulation
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hair Cells, Auditory/drug effects
- Indole Alkaloids/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Nerve Growth Factor/chemistry
- Nerve Growth Factor/metabolism
- Otoacoustic Emissions, Spontaneous/drug effects
- Rats, Sprague-Dawley
- Zebrafish
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Isabel Rodriguez
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Youn Hee Nam
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
22
|
Ostrovskaya RU, Yagubova SS, Gudasheva TA, Seredenin SB. Low-Molecular-Weight NGF Mimetic Corrects the Cognitive Deficit and Depression-like Behavior in Experimental Diabetes. Acta Naturae 2017; 9:94-102. [PMID: 28740732 PMCID: PMC5509006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 10/25/2022] Open
Abstract
Based on the comorbidity of diabetes, depression, and dementia and recognizing that a deficiency of the nerve growth factor (NGF) is involved in all of these kinds of pathologies, we studied the effect of the mimetic of dimeric dipeptide NGF loop 4, GK-2, on a model of streptozotocin-induced type 2 diabetes in C57Bl/6 mice. GK-2 [hexamethylenediamide bis-(N-monosuccinyl-glutamyl-lysine)] was synthesized at the V.V. Zakusov Scientific Research Institute of Pharmacology. The study revealed the ability of GK-2 to ameliorate hyperglycemia induced by streptozotocine (STZ 100 mg/kg i.p.) in C57Bl/6 mice, to restore learning ability in the Morris Water Maze test, and to overcome depression after both intraperitoneal (0.5 mg/kg) and peroral (5 mg/kg) long-term administration. The presence of the listed properties and their preservation in the case of peroral treatment determines the prospects of research. Taking into account the previous findings on the ability of GK-2 to selectively activate PI3K/Akt, these data suggest that Akt-signaling is sufficient for pancreatic beta cell function. GK-2 has been shown to exhibit pronounced neuroprotective activity. The coexistence of neuroprotective and antidiabetic effects is in agreement with the fundamental concept holding that the function of neurons and pancreatic beta cells is controlled by similar mechanisms.
Collapse
Affiliation(s)
- R. U. Ostrovskaya
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - S. S. Yagubova
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - T. A. Gudasheva
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - S. B. Seredenin
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| |
Collapse
|
23
|
Janssens J, Lu D, Ni B, Chadwick W, Siddiqui S, Azmi A, Etienne H, Jushaj A, van Gastel J, Martin B, Maudsley S. Development of Precision Small-Molecule Proneurotrophic Therapies for Neurodegenerative Diseases. VITAMINS AND HORMONES 2016; 104:263-311. [PMID: 28215298 DOI: 10.1016/bs.vh.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related neurodegenerative diseases, such as Alzheimer's disease, will represent one of the largest future burdens on worldwide healthcare systems due to the increasing proportion of elderly in our society. As deficiencies in neurotrophins are implicated in the pathogenesis of many age-related neurodegenerative disorders, it is reasonable to consider that global neurotrophin resistance may also become a major healthcare threat. Central nervous system networks are effectively maintained through aging by neuroprotective and neuroplasticity signaling mechanisms which are predominantly controlled by neurotrophin receptor signaling. Neurotrophin receptors are single pass receptor tyrosine kinases that form dimeric structures upon ligand binding to initiate cellular signaling events that control many protective and plasticity-related pathways. Declining functionality of the neurotrophin ligand-receptor system is considered one of the hallmarks of neuropathological aging. Therefore, it is imperative to develop effective therapeutic strategies to contend with this significant issue. While the therapeutic applications of cognate ligands for neurotrophin receptors are limited, the development of nonpeptidergic, small-molecule ligands can overcome these limitations, and productively regulate this important receptor system with beneficial effects. Using our advanced knowledge of the high-dimensionality complexity of receptor systems, the future generation of precision medicines targeting these systems will be an attainable goal.
Collapse
Affiliation(s)
- J Janssens
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - D Lu
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - B Ni
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - W Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - A Azmi
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - H Etienne
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - A Jushaj
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - J van Gastel
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - B Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Maudsley
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium; Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States.
| |
Collapse
|
24
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
25
|
Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 2016; 111:266-282. [PMID: 27618740 DOI: 10.1016/j.neuropharm.2016.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Nerve growth factor (NGF) holds a pivotal role in brain development and maintenance, been also involved in the pathophysiology of neurodegenerative diseases. Here, we provide evidence that a novel C17-spiroepoxy steroid derivative, BNN27, specifically interacts with and activates the TrkA receptor of NGF, inducing phosphorylation of TrkA tyrosine residues and down-stream neuronal survival-related kinase signaling. Additionally, BNN27 potentiates the efficacy of low levels of NGF, by facilitating its binding to the TrkA receptors and differentially inducing fast return of internalized TrkA receptors into neuronal cell membranes. Furthermore, BNN27 synergizes with NGF in promoting axonal outgrowth, effectively rescues from apoptosis NGF-dependent and TrkA positive sympathetic and sensory neurons, in vitro, ex vivo and in vivo in NGF null mice. Interestingly, BNN27 does not possess the hyperalgesic properties of NGF. BNN27 represents a lead molecule for the development of neuroprotective TrkA receptor agonists, with potential therapeutic applications in neurodegenerative diseases and in brain trauma.
Collapse
|
26
|
The Emerging Therapeutic Role of NGF in Alzheimer’s Disease. Neurochem Res 2016; 41:1211-8. [DOI: 10.1007/s11064-016-1829-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
|
27
|
Meeker RB, Williams KS. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen Res 2015; 10:721-5. [PMID: 26109945 PMCID: PMC4468762 DOI: 10.4103/1673-5374.156967] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 12/14/2022] Open
Abstract
The strong repair and pro-survival functions of neurotrophins at their primary receptors, TrkA, TrkB and TrkC, have made them attractive candidates for treatment of nervous system injury and disease. However, difficulties with the clinical implementation of neurotrophin therapies have prompted the search for treatments that are stable, easier to deliver and allow more precise regulation of neurotrophin actions. Recently, the p75 neurotrophin receptor (p75NTR) has emerged as a potential target for pharmacological control of neurotrophin activity, supported in part by studies demonstrating 1) regulation of neural plasticity in the mature nervous system, 2) promotion of adult neurogenesis and 3) increased expression in neurons, macrophages, microglia, astrocytes and/or Schwann cells in response to injury and neurodegenerative diseases. Although the receptor has no intrinsic catalytic activity it interacts with and modulates the function of TrkA, TrkB, and TrkC, as well as sortilin and the Nogo receptor. This provides substantial cellular and molecular diversity for regulation of neuron survival, neurogenesis, immune responses and processes that support neural function. Upregulation of the p75NTR under pathological conditions places the receptor in a key position to control numerous processes necessary for nervous system recovery. Support for this possibility has come from recent studies showing that small, non-peptide p75NTR ligands can selectively modify pro-survival and repair functions. While a great deal remains to be discovered about the wide ranging functions of the p75NTR, studies summarized in this review highlight the immense potential for development of novel neuroprotective and neurorestorative therapies.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimberly S Williams
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 2014; 1596:13-21. [PMID: 25454796 DOI: 10.1016/j.brainres.2014.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
Activation of the high-affinity nerve growth factor (NGF) receptor Trk occurs through multiple processes consisted of translocation and clustering within the plasma membrane lipid rafts, dimerization and autophosphorylation. Here we found that a nonprotein extract of inflamed rabbit skin inoculated with vaccinia virus (Neurotropin(®)) enhanced efficiency of NGF signaling. In rat pheochromocytoma PC12 cells overexpressing Trk (PCtrk cells), Neurotropin augmented insufficient neurite outgrowth observed at suboptimal concentration of NGF (2ng/mL) in a manner depending on Trk kinase activity. Cellular exposure to Neurotropin resulted in an accumulation of Trk-GM1 complexes without affecting dimerization or phosphorylation states of Trk. Following NGF stimulation, Neurotropin significantly facilitated the time course of NGF-induced Trk autophosphorylation. These observations provide a unique mechanism controlling efficiency of NGF signaling, and raise the therapeutic potential of Neurotropin for various neurological conditions associated with neurotrophin dysfunction.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Takao Fukui
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Chika Hikichi
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tomomasa Ishikawa
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Kenichiro Murate
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Adachi
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Hideki Imai
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Koki Fukuhara
- The National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Allen P Kaplan
- Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
29
|
Diversity-oriented synthesis as a tool for chemical genetics. Molecules 2014; 19:16506-28. [PMID: 25317579 PMCID: PMC6271126 DOI: 10.3390/molecules191016506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023] Open
Abstract
Chemical genetics is an approach for identifying small molecules with the ability to induce a biological phenotype or to interact with a particular gene product, and it is an emerging tool for lead generation in drug discovery. Accordingly, there is a need for efficient and versatile synthetic processes capable of generating complex and diverse molecular libraries, and Diversity-Oriented Synthesis (DOS) of small molecules is the concept of choice to give access to new chemotypes with high chemical diversity. In this review, the combination of chemical genetics and diversity-oriented synthesis to identify new chemotypes as hit compounds in chemical biology and drug discovery is reported, giving an overview of basic concepts and selected case studies.
Collapse
|
30
|
Meeker R, Williams K. Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 2014; 9:615-28. [PMID: 25239528 DOI: 10.1007/s11481-014-9566-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
Neurotrophins and their respective tropomyosin related kinase (Trk) receptors (TrkA, TrkB, and TrkC) and the p75 neurotrophin receptor (p75(NTR)) play a fundamental role in the development and maintenance of the nervous system making them important targets for treatment of neurodegenerative diseases. Whereas Trk receptors are directly activated by specific neurotrophins, the p75(NTR) is a multifunctional receptor that exerts its effects via heterodimeric interactions with TrkA, TrkB, TrkC, sortilin or the Nogo receptor to regulate a wide array of cellular functions. By partnering with different receptors the p75(NTR) regulates binding of mature versus pro-neurotrophins and activation of different signaling pathways with outcomes ranging from growth and survival to cell death. While the developmental downregulation of the p75(NTR) has raised questions regarding its role in the mature nervous system, recent data have revealed widespread expression of low levels, a role in synaptic plasticity and adult neurogenesis and upregulation in response to injury or disease. Studies are needed to better understand these processes, particularly in the damaged nervous system, but will be complicated by expression of p75(NTR) on immune cells including macrophages and microglia that are intimately involved in disease and repair processes. Recent approaches that regulate p75(NTR) function with small non-peptide ligands have demonstrated potent neuroprotection in models of injury and neurodegenerative diseases that highlight the importance of the p75(NTR) as a therapeutic target. Future studies hold the promise of revealing a wealth of information on the multifaceted actions of the p75(NTR) that will inform the design of new neurotrophin-based therapies.
Collapse
Affiliation(s)
- Rick Meeker
- Department of Neurology, University of North Carolina, CB #7025 6109F Neuroscience Research Building, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA,
| | | |
Collapse
|
31
|
Dedoni S, Olianas MC, Ingianni A, Onali P. Type I interferons up-regulate the expression and signalling of p75 NTR/TrkA receptor complex in differentiated human SH-SY5Y neuroblastoma cells. Neuropharmacology 2014; 79:321-34. [PMID: 24333329 DOI: 10.1016/j.neuropharm.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 01/10/2023]
Abstract
Both type I interferons (IFNs) and neurotrophins regulate neuroadaptive responses, but relatively little is known on the interaction between these two classes of regulatory proteins. Here we investigated the effect of IFN-β on the expression and functional activity of the common neurotrophin receptor p75NTR and the nerve growth factor (NGF) receptor TrkA. In differentiated human SH-SY5Y neuroblastoma cells prolonged exposure to IFN-β up-regulated p75NTR and TrkA levels, failed to affect the content of sortilin, a p75NTR co-receptor, and, consistent with our previous finding, down-regulated the brain-derived neurotrophic factor receptor TrkB. Quantitative real time RT-PCR indicated that IFN-β increased p75NTR and TrkA mRNA levels. In control and IFN-β treated cells proNGF failed to induce c-Jun N-terminal kinase and nuclear factor/kB activation, two p75NTR/sortilin signalling pathways mediating neuronal death. On the other hand, IFN-β treatment enhanced TrkA autophosphorylation and signalling induced by NGF and proNGF. Knockdown of p75NTR by siRNA reduced TrkA activation by proNGF and a subnanomolar concentration of NGF, whereas co-immunoprecipitation indicated close association of p75NTR and TrkA. Co-treatment with either NGF or proNGF reduced IFN-β pro-apoptotic and anti-neurotrophic effects. Similarly, in primary mouse hippocampal neurons IFN-β increased p75NTR and TrkA expression, down-regulated TrkB and enhanced NGF-induced phosphorylation of the pro-survival protein kinase Akt. The data demonstrate that in neuronal cells IFN-β differentially affects the expression and signalling of neurotrophin receptors and suggest that the up-regulation of the p75NTR/TrkA signalling complex may constitute a novel mechanism by which this cytokine selectively attenuates its pro-apoptotic effect in NGF-responsive cells.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, and Section of Applied Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, and Section of Applied Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Ingianni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, and Section of Applied Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, and Section of Applied Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
32
|
Gudasheva TA, Povarnina PY, Antipova TA, Seredenin SB. A Novel Dimeric Dipeptide Mimetic of the Nerve Growth Factor Exhibits Pharmacological Effects upon Systemic Administration and Has No Side Effects Accompanying the Neurotrophin Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nm.2014.52013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Matrone C. A new molecular explanation for age-related neurodegeneration: the Tyr682 residue of amyloid precursor protein. Bioessays 2013; 35:847-52. [PMID: 23943322 PMCID: PMC4033529 DOI: 10.1002/bies.201300041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emerging evidence supports the role for the intracellular domains of amyloid precursor protein (APP) in the physiology and function of APP. In this short report, I discuss the hypothesis that mutation of Tyr682 on the Y682ENPTY687 C-terminal motif of APP may be directly or indirectly associated with alterations in APP functioning and activity, leading to neuronal defects and deficits. Mutation of Tyr682 induces an early and progressive age-dependent cognitive and locomotor decline that is associated with a loss of synaptic connections, a decrease in cholinergic tone, and defects in NGF signaling. These findings support a model in which APP-C-terminal domain exerts a pathogenic function in neuronal development and decline, and suggest that Tyr682 potentially could modulate the properties of APP metabolites in humans.
Collapse
Affiliation(s)
- Carmela Matrone
- Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
34
|
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-75. [PMID: 23348013 DOI: 10.1016/j.pharmthera.2013.01.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
Collapse
|